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Efficient universal quantum computation with auxiliary Hilbert space
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We propose a scheme to construct the efficient universal quantum circuit for qubit systems with the assistance of
possibly available auxiliary Hilbert spaces. An elementary two-ququart gate, termed the controlled-double-NOT

gate, is proposed first in ququart (four-level) systems, and its physical implementation is illustrated in the
four-dimensional Hilbert spaces built by the path and polarization states of photons. Then an efficient universal
quantum circuit for ququart systems is constructed using the gate and the quantum Shannon decomposition
method. By introducing auxiliary two-dimensional Hilbert spaces, the universal quantum circuit for qubit systems
is finally achieved using the result obtained in ququart systems with the lowest complexity.
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Building a large-scale universal quantum computer (UQC)
[1] capable of implementing arbitrary unitary operations is a
major challenge in the field of quantum information science.
The UQC can be built by physically implementing a universal
quantum circuit [2–5], constructed by an ordered combination
of elementary quantum gates which consist of one-qubit
and two-qubit controlled-NOT (CNOT) gates. However, this is
difficult to be realized in experiments when the complexity
of quantum circuits (normally defined by the number of
elementary two-qubit gates) is high. In fact, the complexity
of the UQC grows exponentially with the number of qubits,
and a large number of qubits is needed in practical applications.
At present, the UQC has been achieved experimentally only in
two-qubit systems with three elementary two-qubit gates [6].
Therefore, it is of crucial importance to find an efficient
way to build a universal quantum circuit that has the lowest
complexity.

In qubit systems, several matrix decomposition methods,
such as the orthogonal-triangular decomposition (QR) [7],
the cosine-sine decomposition (CSD) [8], and the quantum
Shannon decomposition (QSD), also called n qubits
decomposition (NQ) [9,10], have been introduced to construct
a universal quantum circuit. Among them, the QSD method
gives the best result where the complexity is 4n × 23/

48 − 2n × 3/2 + 4/3 for an n-qubit universal quantum
circuit. Nonetheless, there is a gap toward the theoretical
lower bound of (4n − 3n − 1) /4 [11]. We note that all these
results (including the lower bound) are obtained without the
assistance of auxiliary dimensions or degrees of freedom
(DOFs). This gives us the opportunity to further optimize the
universal quantum circuit in qubit systems with the help of
higher-level physical systems. An example can be found from
Refs. [12,13], in which the three-qubit Toffoli gate and the
general two-qubit controlled-unitary gate were significantly
simplified by harnessing multilevel information carriers.

To simplify the UQC in qubit systems with higher-level
physical systems, we may expand the qubits to qudits (d-level)
by introducing auxiliary Hilbert spaces and then accomplish
the general unitary operation of qubit systems by constructing
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the universal quantum circuits in qudit systems. For the UQC
in qudit systems, there has also been significant progress to
reduce the number of elementary two-qudit gates, such as
the �2[Yd ] gate [14] and CINC gate [15,16], by using the
spectral decomposition [14], QR [15,17], and CSD [18,19]
methods. On the other hand, the auxiliary Hilbert spaces
should have as few dimensions as possible from the viewpoint
of physical implementation. Here, we expand the qubits
to ququart (four-level) and propose a novel fundamental
two-ququart gate, termed the controlled-double-NOT (CDNOT)
gate. Based on the proposed gates and the QSD method, we
construct the universal quantum circuit in ququart systems and
then achieve the simplification of the UQC in qubit systems
with the lowest complexity in the sense that the least-controlled
operations are required both in ququart and qubit systems.
For physical implementation, we pay special attention to
the photonic systems. It is natural to use the path degree
of freedom as auxiliary Hilbert spaces for polarized photon
qubits, and thus qubits are expanded to ququarts (four-level).
The lower complexity of UQC in qubit systems here means
that the number of controlled operations between photons is
significantly reduced.

The controlled-double-NOT gate in ququart systems.
Consider a four-level generalization of the qubit, i.e., ququart,
whose orthonormal basis is denoted by |i〉, i = 0,1,2,3. Let
us define the single-ququart gate X, which acts σx on the two
subspaces {|0〉,|2〉} and {|1〉,|3〉} of a ququart simultaneously
by the matrix X = σx ⊗ I2, where below σx and σz are the
Pauli matrices and Il denotes the unit matrix with dimension
l. For two ququarts, we introduce a new generalization of the
CNOT gate, the controlled-double-NOT (CDNOT) gate, denoted
by �(X),

� (X) |ii〉AB =
{|i〉A ⊗ X|i〉B if |i〉A = |2〉 or |3〉,
|ii〉AB else,

(1)

which means if the control ququart A is in states |2〉 or |3〉,
then X acts on the target ququart B. Similarly, the controlled-
double-phase-flip (CDPF) gate (�(P )) and the general
controlled-double-U gate (�(U )) can be defined by replacing
X with P and U in Eq. (1), respectively, where P = σz ⊗ I2

and U is an arbitrary unitary operation. The circuit represen-
tations for the CDNOT gate and CDPF gate are shown in Fig. 1.
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FIG. 1. (a) Circuit representation for the controlled-double-NOT

gate � (X). The control (target) ququart is denoted by the closed
(open) triangle. (b) Circuit representation for the controlled-double-
phase-flip gate � (P ).

Realization of the elementary ququart gates. We illustrate
the realization of the ququart gates with optical two DOF
systems. Let us build ququarts by the tensor product of the
path (S, T ) and polarization (H , V ) of photons by defining the
basis states as |j 〉 = {|SH 〉,|SV 〉,|T H 〉,|T V 〉}, where H (V )
denotes the horizontal (vertical) polarization.

The arbitrary operation U of a single-photon ququart can
be implemented in linear optical systems from the CSD
decomposition [20], following the relation

U = (
W 1

1 ⊕ W 1
2

)
E

(
R1

y ⊕ R2
y

)
E

(
W 2

1 ⊕ W 2
2

)
, (2)

where W
g

l (l = 1,2; g = 1,2) are unitary 2 × 2 matrices and
R

g
y (θg) = exp(iσyθg); W

g

1 ,R1
y (Wg

2 ,R2
y) act on the polarization

state of the photon through polarization rotations in the path
S (T ); the operator E, defined as E ≡ |0〉 〈0| + |1〉 〈2| +
|2〉 〈1| + |3〉 〈3|, exchanges the states between the two DOFs,
and can be realized as in Fig. 2.

Because of the relation X = H̃P H̃ , where H̃ = H ⊗ I2

and H is the Hadamard gate, there exists the relation

� (X) = (I4 ⊗ H̃ ) � (P )(I4 ⊗ H̃ ). (3)

That means we only need to realize the CDPF gate � (P ) and
single ququart gate H̃ for implementing the CDNOT gate � (X).
For two photons A, B with basis |j 〉A |j 〉B , the gate � (P ) flips
the phase of any polarization state of photon B in path T if
the photon A is in path T and has no effect otherwise and can
be realized by adapting the cavity-assisted setup proposed in
Ref. [21], as illustrated in Fig. 3.

It is important to note that the difficulty for realizing the
CDNOT gate is no more than the CNOT gate and CINC gate
in term of the number of cavities, because only one cavity is
required for one CDNOT gate.

QSD-based universal quantum circuit in ququart systems.
In the following, we shall constructively prove the result: the
CDNOT gate together with single-ququart operations can be
used to form a new elementary quantum gate library for the
four-level quantum computation.

Using the QSD method [9], we decompose the general
n-ququart unitary operator U layer by layer. In each layer, one
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FIG. 2. Optical realization of the exchange operator E, where the
PBS transmits photons in the |H 〉 state while reflects photons in the
|V 〉 state. The half-wave plates (λ/2) are set at 45◦ so as to convert
the polarization of photon in path S from H (V ) to V (H ).
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FIG. 3. (Color online) Schematic setup of implementing opera-
tion � (P ) with the cavity-assisted interactions. The relevant energy
level of the trapped atom [22] is shown in the inset. The atomic
transitions |1〉 → |eL〉 (L = H,V ) are resonantly coupled to the
cavity modes aL.

ququart will be separated out from other n − 1 ququarts and
the QSD method need to be used twice. The decomposition
will be finished until only single-ququart operations are left.
Take the first layer as an example: The quantum circuit is
illustrated in Fig. 4(a) and the decomposition can be expressed
as

U = (
A1

0 ⊕ B1
0

)
Y 1

0

(
A1

1 ⊕ B1
1

)
,(

A1
q ⊕ B1

q

) = (
I2 ⊗ V 1

2q

)
Z1

q

(
I2 ⊗ V 1

2q+1

)
,

(4)
V 1

p = (
A2

2p ⊕ B2
2p

)
Y 2

p

(
A2

2p+1 ⊕ B2
2p+1

)
,(

A2
l ⊕ B2

l

) = (I2 ⊗ W2l) Z2
l (I2 ⊗ W2l+1) ,

where q = 0,1; p = 0,1,2,3; l = 2p + q; and W2l+i (i = 0,1)
are (n − 1)-ququart operations. We then decompose the second
layer where we take each W2l+i as U and continue the recur-
sion. The recursion will be finished until the encountered W

are single-ququart operations. After the above decompositions,
it can be seen that only the operators Y

g

p(g−1) and Z
g

2p(g−1)+q ,
g = 1,2, are left besides single-ququart operations.

FIG. 4. (a) Recursive quantum circuits implementing the UQC in
ququart systems, where the gates V 1

p have the same decomposition
form as gate V 1

0 . The controlled gates R
g

0y (Rg
qz) with half-closed circle

in control ququarts represent the uniformly controlled gate F n−1
n (Rg

y )
(F n−1

n (Rg
z )) corresponding to Y

g

0 (Zg
q ) in Eq. (4). The line with the

backslash symbol (\) represents more than one wire in the quantum
circuit. (b) Recursive quantum circuits of the gate F n−1

n (R1
a), where

some gates D̃g
n have been canceled each other out.
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Here each matrix Y
g

p(g−1)(Z
g

2p(g−1)+q) represents a (n − 1)-
fold uniformly controlled gate Fn−1

n (Rg
y ) (Fn−1

n (Rg
z )) [8,9,19]

with the first ququart as the target ququart. If we let the last
ququart be the target ququart, the matrix of Fn−1

n (Rg
a ) can

be written as diag[Rg
a (α1,β1),Rg

a (α2,β2), . . . ,Rg
a (α4n−1 ,β4n−1 )],

which represents 4n−1 different (n − 1)-fold controlled ro-
tations R

g
a (α,β) of the target ququart, and R1

a(α,β) =
E(Ra(α) ⊕ Ra(β))E, R2

a(α,β) = Ra(α) ⊕ Ra(β), Ra(φ) =
exp(ia · σφ/2), a · σ = axσx + ayσy + azσz. For R2

a(α,β),
α = β.

Now we need to decompose the n-ququart uniformly
controlled gate Fn−1

n (Rg
a ) recursively, and one ququart is

separated out each time. The recursion will be stopped until
the single-ququart gate F 0

1 (Rg
a ) is encountered. The recursive

quantum circuits are shown in Fig. 4(b), and the first layer of
the decomposition is expressed as

Fn−1
n

(
Rg

a

) = Dg
nF̃

(
Rg

a

)
Dg

nF̃
(
Rg

a

)
,

F̃
(
Rg

a

) = D̃g
n

[
I4 ⊗ Fn−2

n−1

(
Rg

a

)]
D̃g

n

[
I4 ⊗ Fn−2

n−1

(
Rg

a

)]
,

(5)

where D̃
g
n = (E ⊗ I4n−1 )Dg

n (E ⊗ I4n−1 ), D2
n = (I4n−1 ⊗ E)

D1
n(I4n−1 ⊗ E), and D1

n = I2×4n−1 ⊕ (
⊕2×4n−2

i=1 X) is actually
a CDNOT gate with the first (last) ququart as the control
(target) ququart. Note that in the first decomposition in
Eq. (5), F̃ (Rg

a ) = I2 ⊗ (
⊕2×4n−2

i=1 R
g
a (α̃i ,β̃i)) and (α̃i ,β̃i) can

be solved by using the relations R
g
a (α̃1,β̃1)Rg

a (α̃2,β̃2) =
R

g
a (α̃1 + α̃2,β̃1 + β̃2) and XR1

a(α̃1,β̃1)X = R1
a(−α̃1,−β̃1). In

each decomposition, the order of matrices can be reversed
and some of the CDNOT gates may cancel each other out, i.e.,
D̃

g
nD

g
nD̃

g
n = D

g
n and D

g
nD̃

g
nD

g
n = D̃

g
n .

Finally, we can see that the universal quantum circuit for
realizing the general unitary operator U in ququart systems
only contains an alternating sequence of CDNOT gates and
one-ququart gates. From Fig. 4, we can get that the number of
CDNOT gates needed to realize the gate Fn−1

n (Ra) is 4n−1, and
the number of CDNOT gates required for the general 4n × 4n

unitary operator U is

N4
n = 5 × (42(n−1) − 4n−1). (6)

It can be seen from Table I that, compared with previous
results [15,17,19] in ququart systems, the number of CDNOT

gates required here is minimum.
Simplifying universal quantum circuit in qubit systems. We

now propose a scheme for simplifying universal quantum
circuit in qubit systems assisted with auxiliary DOF. We
first consider a general unitary operator U acting on m

qubits, represented by |ψ〉 
→ U |ψ〉, where m is odd and

TABLE I. Comparison of the numbers of elementary two-ququart
gates needed to implement a general n-ququart unitary operation
using the QR, CSD and our method. The upper two rows and the bold
lower row denote the numbers of CINC and CDNOT gates, respectively.

n 2 3 4 6 7

QR 440 21 248 396 288 9.9 × 107 1.5 × 109

CSD 72 4464 40 824 2.2 × 107 3.6 × 108

Our method 60 1200 20 160 5.2 × 106 8.4 × 107

FIG. 5. (Color online) (a) Quantum circuit for a general seven-
qubit unitary operation assisted with auxiliary DOF, where U 4 = U .
The ququarts (qubits) are denoted by the bold red lines (blue lines).
(b) Quantum circuit for realizing the transferring operator V . The left
controlled gate applies operation X to ququart A if qubit B is in state
|1〉, and the right controlled gate flips the state of qubit B if ququart
A is in state |2〉 or |3〉. (c) Quantum circuit for realizing U 4. The
controlled gates between the qubit and ququart in (b) and (c) can be
implemented as in ququart systems after expanding the state space of
the qubit (red line) to four levels.

we construct the quantum circuit in four steps, as shown
in Fig. 5(a). First, we pair the qubits A1,A2, . . . ,Ai, . . . ,Am

as A2A3,A4A5, . . . ,A2jA2j+1, . . . ,Am−1Am. For one qubit of
each pair, say when i is even, we use their auxiliary two-level
DOF to construct ququarts by tensor producting the two DOFs.

Then, by executing the transferring operator V , shown in
Fig. 5(b), we transfer the states of each pair of qubits A2jA2j+1

to the ququarts A2j with no change to the states, and let the state
of A2j+1 to |0〉. That means the original state |ψ〉 is converted
into |ψ1〉 = |ψ〉A1,A2,A4,...,Am−1

⊗ |00 . . . 0〉A3,A5,...,Am
.

Third, we need to realize U in the space of the qubit A1 and
ququarts A2,A4, . . . ,Am−1. We decompose U with the QSD
method and obtain four unitary matrices Wi (i = 1,2,3,4), as
shown in Fig. 5(c), which are actually operators for ququart
systems, so we can implement Wi by using the procedure
of ququart systems. As a result, the state |ψ2〉 = U |ψ〉 ⊗
|00 . . . 0〉 is yielded.

Finally, we achieve the operation U by performing the
reverse process V −1 of transferring operator V to every pair
of A2jA2j+1.

If m is even, the decomposition of U in the third step is not
required, and we only need to implement it directly with the
procedure of ququart systems.

Using Eq. (6), we can compute the total number of bipartite
controlled gates N2

m in the universal quantum circuit of m-qubit
systems, yielding

N2
m =

{
(5/16) × 4m − (5/4) × 2m + 2m m even,

(5/16) × 4m − 2m + 2(m − 1) m odd.
(7)

From Table II, we can see that our method provides the
most efficient universal quantum circuit in qubit systems.
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TABLE II. Comparison of the numbers of elementary bipartite
controlled gates needed to implement a general m-qubit unitary
operation using different methods, among which only our results
are derived with auxiliary Hilbert spaces.

m 2 3 4 5 6 7

QR [7] 4 64 536 4156 22 618 108 760
CSD [8] 8 48 224 960 3968 16 128
QSD [9,10] 3 20 100 444 1868 7660
Our method 4 16 68 296 1212 5004
Lower bounds [11] 3 14 61 252 1020 4091

Conclusion. The efficient universal quantum computation
with the lowest complexity in qubit systems is achieved
by expanding the qubits to ququarts with auxiliary Hilbert
spaces and then accomplishing the general unitary operations
with a universal quantum circuit constructed in ququart
systems, in which a new elementary two-ququart gate CDNOT

gate is proposed. In photonic systems, with the help of
path degree of freedom, the polarized photon qubits are

expanded to ququarts, and the lower complexity of UQC means
that the number of controlled operations between photons
is significantly reduced by changing controlled operations
between photons to operations between different degrees
of freedom (path and polarization) of photons, which is
comparatively easy, and, more importantly, deterministic in
contrast to probabilistic in controlled operations between
photons. The UQC scheme proposed here paves the way
to simplify the complicated quantum computation with
assistance of auxiliary Hilbert spaces, e.g., some special
algorithms.
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