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Abstract: 
 
Restenosis, the re-narrowing of a blood vessel after removal of atherosclerotic plaque, is a 

major limitation of surgical treatments for atherosclerosis. Various attempts to prevent or 

treat restenosis by pharmacological or mechanical approaches have had limited success in 

clinical trials. Hence, there is wide interest in developing new strategies to prevent or treat 

restenosis. This review discusses ‘a new-generation therapy’ that uses functional 

nanoparticles to effectively deliver active drug molecules. The potential platforms for 

nanoparticle-based solutions to restenosis include organic (e.g. polymers, liposomes, and 

proteins) and inorganic nanoparticles (e.g. layered double hydroxides, titanium oxide 

nanotubes, and magnetic nanoparticles,). Many in vitro and in vivo studies based on these 

platforms demonstrate the feasibility and potential of using nanoparticle drug delivery 

systems for preventing or treating restenosis, but as yet few have reached clinical trials. It is 

suggested that using inorganic nanoparticles to target deliver multi-functional drugs will be a 

promising approach to preventing or treating restenosis. 
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1. Introduction 
 

 
Cardiovascular disease is the number one cause of death globally, claiming 17.3 million lives 

in 2008 and predicted to reach 23.6 million lives annually by 2030 (reported by World Health 

Organisation). The major underlying cause of cardiovascular diseases, atherosclerosis, is a 

disease of large and medium sized arteries, characterized by focal thickening of the inner 

portion of the artery wall in association with fatty deposits, which may lead to vascular 

occlusion [1]. Surgical treatments to restore blood flow in atherosclerotic arteries include 

percutaneous transluminal angioplasty, stenting, endarterectomy and bypass grafting. 

Although these treatments are initially successful in an overwhelming majority of cases, 

patients frequently develop another blockage at the same site. These problems, termed 

restenosis or ‘vein graft disease’, occur because the procedures, designed to re-open 

atherosclerotic occlusions, also injure the artery wall, causing de-endothelization and medial 

damage [2]. Restenosis is the major limitation of current treatments for atherosclerosis. The 

formation of restenosis is a multi-stage process, attributed to a variety of cellular and 

biological activities, including vessel recoil, vascular smooth muscle cell (SMC) proliferation 

and migration, and delayed thrombotic responses [2]. Despite numerous advances in 

interventional techniques, the incidence of arterial re-narrowing at the site of intervention is 

up to 40% [2], and hence a new, effective treatment is urgently required. A range of 

therapeutic approaches have been developed to prevent or treat restenosis by targeting 

different stage of pathogenesis, including conventional pharmaceutics, drug-eluting or bare 

metal stenting, and nanoparticle-based drug delivery. While the conventional pharmaceutical 

and mechanical approaches have met with limited success, emerging drug delivery utilising 

nanotechnology shows great promise. This review summarizes the recent studies on 

nanomaterials-based anti-restenotic drug delivery systems by grouping the various nano-

platforms into organic and inorganic materials. Future perspectives for delivery of drugs to 

effectively prevent or treat restenosis are discussed. 

 

2. Components of artery wall  
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Normal arteries are composed of three distinct layers. From the innermost to the outmost, 

they are the intima, media, and adventitia [1] (Fig. 1A). 

 

The intima consists of an inner monolayer of endothelial cells which form a non-

thrombogenic barrier against circulating blood. The sub-endothelial space contains SMCs 

within a dense matrix composed mainly of collagen IV, laminin and heparin sulphate 

proteoglycans. The intima is separated from the media by the internal elastic lamina [3, 4]. In 

addition to its barrier function, the endothelium is an important regulator of (1) vascular tone 

through secretion of nitro oxide and other vasoactive agents, (2) platelet activation and 

thrombus formation and (3) inflammation via cytokine secretion and expression of adhesion 

molecules for leukocytes [3]. The endothelial layer also produces a range of factors that 

maintain SMCs in a healthy non-proliferative state [5]. 

 

The healthy media is comprised of multiple layers of SMCs surrounded by their own 

basement membranes and within an interstitial matrix of type I collagen, fibronectin, 

dermatin and chondroitin proteoglycans [1, 6]. Inner elastic lamellae exist between the media 

and the intima. SMCs can exist in multiple phenotypic states, the extremes of which are 

termed as ‘contractile’ and ‘synthetic’ [7-11]. ‘Contractile’-state SMCs contract in response 

to chemical and mechanical stimuli, and are responsible for maintaining vessel tone and 

regulating blood flow. When the artery wall is injured (by chemical insults such as high blood 

cholesterol or mechanical injury such as balloon angioplasty), SMCs modulate from the 

‘contractile’ to the ‘synthetic’ state, and thus lose the ability to contract but gain the ability to 

migrate and proliferate in response to stimuli such as fibroblast growth factor which are 

released at the time of vascular injury [11].  

 

The outer layer of the artery is the adventitia, separated from the media by the external elastic 

lamina. The adventitia consists mainly of fibroblasts, loosely arranged connective tissues and 

interspersed SMCs; it also contains small blood vessels called vas vasora [12]. 

 

3. Pathogenesis of restenosis 
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Angioplasty (with or without stenting) removes the atherosclerotic plaque (Fig. 1B), but also 

damages the endothelium and disrupts the underlying intima, and possibly the internal elastic 

lamina and media (Fig. 1C). This results in an exaggerated wound healing response, 

involving a combination of processes, including elastic recoil [13], thrombus formation [14], 

inflammation [15], neointimal formation and arterial remodelling [5]. 

 

Although stents prevent the initial elastic recoil associated with angioplasty, stent placement 

is accompanied by stretching of the artery, de-endothelialization and plaque compression, 

which often results in dissection of the tunica media and, occasionally, dissection of the 

adventitia [16]. The loss of the non-thrombogenic endothelial layer exposes the underlying 

vessel wall which is immediately covered by platelets and inflammatory cells; these cells are 

activated to release substances which promote local vasoconstriction and thrombus formation 

[17] (Fig. 1D). Mitogens and cytokines, released from platelets, endothelial cells, SMCs and 

macrophages, stimulate SMCs to alter their phenotype from ‘contractile’ to ‘synthetic’ [18]. 

SMC phenotypic change is also induced by mechanical stretching, rupture of the internal 

elastic lamina and dissection of the media [19]. The thrombus, which also contains 

chemotactic and mitogenic factors, forms a provisional matrix which supports SMC 

migration and proliferation. Eventually, the neointima is formed from the accumulation of 

phenotypically modulated SMCs, trapped circulating inflammatory cells and cellular products, 

myofibroblasts from the adventitia and extracellular matrix proteins [20] (Fig. (1D)). 

Changes in the degree of re-endothelialization and extent of macrophage accumulation 

(predominantly as an inflammatory response to stent struts) also determine the extent of the 

restenotic response [21]. 

 

4. Anti-restenotic drugs and therapy 

 

Numerous drugs have been tested for their ability to prevent or treat restenosis in vitro and in 

animal models [22-25]. These drugs can be categorized into several groups based on their 

targets: anti-platelet and anti-thrombotic agents (e.g. aspirin, dipyridamole, heparin, low 

molecular weight heparin (LMWH)); anti-inflammatory agents (e.g. steroids, tranilast); anti-

proliferative and cytostatic agents (e.g. adriamycin, rapamycin, paclitaxel); growth factor 

antagonists (e.g. trapidil, angiopeptin, ketanserin); calcium channel blockers and vasodilators 

(e.g. diltiazem, nifedipine, verapamil); angiotensin II receptor antagonists (e.g. losartan, 
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candesartan); lipid-lowering agents (e.g. statins); and antioxidants (e.g. vitamins E and C)  

[22]. 

 

Although many of these drugs have shown some success in cell culture and animal models, 

the majority have met with limited or no success in clinical trials [26-29]. This lack of 

success has been attributed to many factors, including insufficient drug reaching the target 

cells in the artery wall, deleterious side-effects at effective dosing levels, and difficulties with 

patient compliance [29]. Often the timing and frequency of administration is critical [30]. For 

example, continuous local administration of drugs such as heparin may prevent restenosis 

whereas intermittent administration may exacerbate the disease [30]. By concentrating the 

drug at the site of vascular injury, local treatment is expected to reduce the amount of drug 

required and minimize side-effects, thus improving therapeutic performance. One strategy for 

local delivery is the drug-eluting stent, which has been developed over the past 10 years and 

is now a standard practice (utilized in over 75% of percutaneous coronary interventions in the 

U.S.) [31, 32]. When loaded with anti-proliferative compounds (e.g. paclitaxel or rapamycin), 

these stents have significantly reduced the restenosis rate to less than 10% [5]. However, 

there are problems with the use of drug-eluting stents, including an increased incidence of 

delayed thrombotic events (usually associated with impaired re-endothelialization after stent 

placement and the cessation of anti-platelet therapy), safety issues (e.g. polymer toxicity), and 

the unsuitability of stents for certain anatomical locations or conditions [32].  

 

5. Nanoparticle delivery systems 

 

Nanoparticle-based drug delivery is an emerging technique with the potential to revolutionize 

anti-restenotic therapies [33]. Nanoparticles are defined as having a size range of 1-100 nm, 

although they normally extend to a few hundred nanometers. Their unique physicochemical 

properties (such as large surface area, magnetism or fluorescence) have led to the 

investigation of nanoparticles in a wide range of biomedical applications, including 

biosensing, imaging and drug delivery [33].  

 

As discussed in the following sections, potential platforms for anti-restenotic drug delivery 

include organic (e.g. polymers, liposomes and proteins) and inorganic nanoparticles (e.g. 

layered double hydroxides , and titanium oxide and magnetic nanoparticles) (Table 1). After 
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incorporation into nanoparticles, anti-restenotic drugs can be protected from enzymatic 

degradation, targeted to the injury site and released slowly, thus allowing them to function for 

longer periods and with enhanced therapeutic effects.  

 
 
5.1. Organic nanoparticles as delivery vehicles for anti-restenotic drugs 

 

5.1.1. POLYMERS 

 

Originally synthesized in the 1950s as textile grafts and implants, a number of polymeric 

nanoparticles have been investigated for pharmaceutical applications, including the delivery 

of anti-restenotic drugs [34, 35]. The most commonly used polymers include poly(lactic acid) 

(PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL), all of which 

are US FDA-approved biodegradable polymers and available commercially. 

 

Luderer et al. loaded rapamycin into spherical PLA particles with diameters of ~ 250 nm [36]. 

In vitro studies demonstrated that PLA sustained the release of rapamycin, and rapamycin-

loaded PLA nanoparticles reduced proliferation of cultured human coronary arterial 

endothelial cells and SMCs [36], with smaller particle size (90 nm) having a higher delivery 

efficacy [37, 38]. Similarly, treatment with PLA-conjugated tyrphostin (an inhibitor of SMC 

proliferation) reduced neointimal formation following balloon-injury of rat carotid arteries or 

stenting of porcine coronary arteries, suggesting that PLA may be a suitable delivery agent 

for anti-restenotic therapy, independent of stent design or type of injury [37, 38]. 

 

Co-polymers such as PLGA have also been widely investigated as delivery agents for anti-

restenotic drugs. PLGA nanoparticles have been reported to penetrate the vessel wall and 

remain there for up to 14 days after a single intraluminal injection following balloon injury of 

rat carotid arteries [39]. These nanoparticles have been used to effectively deliver alendronate 

(a bisphosphate that depletes monocytes and macrophages) to balloon injured rabbit arteries 

by subcutaneous injection (1.5 mg/kg) and significantly reduced neointimal formation [40]. 

Intramural delivery of PLGA loaded with 2-aminochromone U-86983 also prevented 

neointimal hyperplasia in balloon-injured porcine coronary arteries [41]. This same group 

reported that drug release kinetics and cellular uptake were influenced by both cross-linking 
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on the nanoparticle surface and the molecular weight of PLGA [42]. Other studies have used  

PLGA as a surface coating to control drug release and prevent biocorrosion of magnesium 

alloy stent materials [43].  

 

Micelles formed from co-polymers have also been utilized as delivery agents for anti-

restenotic drugs. Chen et al. developed a hydrogel-based device in which rapamycin was 

entrapped in the core of self-assembled Pluronic co-polymer micelles [44] (Fig. 2A). This 

strategy increased the drug loading efficiency and prolonged drug release by reducing the 

initial burst release. When tested in a rabbit model, this polymeric drug-eluting stent led to 

reduced inflammation and in-stent restenosis, while at the same time avoiding delayed re-

endothelialization due to drug overdose [45]. Micelles have also been used to sustain the 

release of nitric oxide. Nitric oxide is a potent vasodilator which acts by inducing endothelial-

dependent relaxation of blood vessels and modulating the tone of SMCs, but limited by its 

short half-life in tissues (4-15 s) [45]. Jo et al. designed a ~50 nm spherical micelle produced 

from block copolymer pro-amphiphiles and amphiphiles to deliver a nitric oxide 

donor/prodrug that extended nitric oxide release to a remarkable 7 day half-life [45] (Fig. 2B). 

Moreover, these micelle-NO donor conjugates could penetrate complex tissue structures such 

as arterial media, suggesting their potential for anti-restenotic therapies, possibly as an 

adjunct to anti-proliferative therapies [45]. Another example is NK911 (Fig. 2C), a self-

assembled core-shell nanoparticle consisting of a hydrophilic outer layer (poly(ethylene 

glycol)) and a hydrophobic inner core of poly(aspartic acid) chemically conjugated to 

doxorubicin (antitumor-inactive) and incorporated with antitumor-active doxorubicin [46, 47]. 

Intravenous administration of NK911 at 1.0 mg/kg (but not doxorubicin alone) inhibited 

SMC proliferation and neointimal formation without causing systemic effects in a rat model 

of vascular injury [46]. 

 

The hydrophilic blocks in these micelles or core-shell nanoparticles also function as a surface 

modifier of the hydrophobic blocks, and thus avoid or reduce rapid elimination from the 

systemic circulation by the mononuclear phagocyte system. Poly(ethylene glycol) in NK911 

avoided or reduced rapid elimination from the circulation by the mononuclear phagocyte 

system [47]. The major pharmacokinetic parameters (peak plasma concentration and total 

amount of drug delivered) for NK911-incorporated doxorubicin were approximately 36-fold 

and 29-fold (respectively) higher in plasma than free doxorubicin [47]. Other functional 
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surface coatings include poly(ethylene oxide), poly(vinyl alcohol), D-α-tocopheryl 

polyethylene glycol 1000 succinate and carbopol 940 [48-50]. Another approach to surface-

modifying polymeric nanoparticles is utilization of positively-charged compounds. For 

example, the use of dodecylmethylammonium to modify the surface charge of negatively-

charged polymers (e.g. PLGA) [51-53] has been shown to enhance drug uptake into the artery 

7-10 fold compared with unmodified nanoparticles [51].  

 

5.1.2. LIPOSOMES 

 

Lipidic carrier systems, e.g. liposomes, were first described by Bangham in the 1960’s [54], 

and liposomes have been tested for gene and drug delivery to prevent or treat restenosis for 

more than 20 years [55, 56]. Liposomes are closed vesicles, composed of membrane-like 

lipid bilayers capable of incorporating both hydrophobic and hydrophilic drugs. In vitro 

studies have shown that liposomal delivery of magnolol (a Chinese herbal medicine) 

enhanced its inhibitory effect on rat SMC proliferation [57], with the efficacy of the liposome 

increasing with fatty acyl chain length of phospholipids [58]. Liposomes have also been 

formulated with the photoactivatable agent, Zn(II)-phthalocyanine, and shown to cause >95% 

SMC death under mild irradiation conditions [59]. Moreover, since liposomes are readily 

taken up by phagocytic cells, they have been used to deliver bisphosphonates (which have 

poor cell membrane permeability) [60]. A series of in vitro and in vivo studies have shown 

that liposomal delivery of alendronate or clodronate reduced inflammatory cell accumulation 

and neointimal formation in animal models of vascular injury and in-stent neointimal 

hyperplasia [61, 62]. Liposomes incorporating anti-restenotic drugs have also been 

investigated as coatings for metallic stents and shown in small animals to improve both 

haemocompatibility and drug delivery [63].  

 

5.1.3. PROTEINS 

 

Protein-based nanoparticles also hold promise as drug carriers for prevention or treatment of 

restenosis. For example, encapsulation of alendronate in albumin via electrostatic interaction 

(to form particles sized 250-300 nm) has been shown to enhance its inhibitory on 

macrophages in vitro and reduce neointimal thickening in a rat balloon injury model [64]. In 

another study, systemic delivery of human serum albumin-stabilized paclitaxel (two doses 28 
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days apart) were shown  to reduce neointimal growth in a rabbit model of iliac artery stenting 

for at least 90 days [65]. A safety study of a similar formulation administered to 23 patients 

revealed that the patients could tolerate intravenous injection of albumin-bound paclitaxel at 

doses below 70 mg/m2 [66].  

 

5.2. Inorganic nanoparticles as delivery vehicles for anti-restenotic agents 

 

5.2.1. LAYERED DOUBLE HYDROXIDES 

 

One type of nanoclay, layered double hydroxide (LDH), a hydrotalcite-like material or 

anionic clay, exists in nature and is also readily synthesized in the laboratory [67, 68]. LDH 

consists of metal hydroxide layers, interlayer anions and water molecules (Fig. 3A). The 

chemical composition of LDHs can be represented by the general formula [M2+
1-

xM3+
x(OH)2]x+(An-)x/n

.mH2O. As shown in Fig. 3A, the substitution of a divalent metal cation 

(M2+) by a trivalent cation (M3+) within the layers results in a positive charge, which is 

neutralized by the interlayer anion (An-). Water molecules between the layers are hydrogen 

bonded to layer OH and/or interlayer anions. The electrostatic interactions and hydrogen 

bonds between the layers and the interlayer contents hold the layers together to form a 3-

dimensional layered structure [68]. 

 

LDH nanomaterials have been used for many industrial applications, including as catalysts, 

catalyst support, pollutant absorbents, flame retardants and ion exchangers [69]. Since their 

application as antacids and anti-peptic reagents in 1998, their role in medical applications has 

attracted a wide interest [70], in particular as vehicles for the efficient delivery of therapeutic 

drugs to diseased tissues. LDHs have been used to intercalate a range of pharmaceutical 

agents and active biochemical compounds, including amino acids and peptides, vitamins, 

DNA and ATP (in their anionic forms), and their efficacy as drug carriers examined in a 

number of varied biological systems [71]. 

 

In addition to being simple to synthesis, LDH has many advantages over other nanomaterials 

as a drug/gene delivery system, including low cytotoxicity, good biocompatibility and the 

ability to provide protection for loaded molecules [72, 73]. As they are positively charged, 

LDH nanoparticles are easily attracted to the negatively charged cell membrane via 
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electrostatic interactions, and are quickly taken up by cells via clathrin-mediated endocytosis 

[74]. Importantly LDH particles are relatively stable at physiological pH, retaining their 

structural integrity for at least 3 months at pH 7. However, stability is reduced as the pH 

decreases, with acidic conditions (pH 3-4) leading to rapid dissolution of the LDH structure 

within hours [75]. In the acid environment of endosomal compartments, the alkaline LDH 

will start to degrade and raise the pH within the endosome. The increase in ionic content 

within the endosome (as LDH particles degrade into metal anions, chloride ions and H2O) 

leads to osmotic swelling and eventual rupture of the endosomes, such that remaining 

nanoparticles and their cargo are released into the cytoplasm before they are degraded [76].  

The released metal ions (e.g. Mg2+, Al3+) are not toxic under a certain concentration [72].  

 

With the aim of improving the therapeutic effectiveness of LMWH (an anti-coagulant that 

also selectively inhibits SMC proliferation [77]), we have intercalated LMWH into MgAl-

LDH interlayers [78, 79] and demonstrated the successful intercalation by powder X-ray 

diffraction and transmission electron microscopy. LMWH-LDH presents as a plate-like 

hexagon approximately 90 nm in diameter [78] (Fig. 3B). Compared with free LMWH which 

has a half-life of 2-4 hours under physiological conditions, the intercalated LMWH is 

released from LDH in a sustained manner (~20% in the first 12 hours, and another 20% over 

the ensuing 108 hours), as a result of the exchange of intercalated LMWH for anions from the 

culture medium and consequent dissolution of LDH layers [78].  

 

In vitro experiments using rat SMCs demonstrated the low cytotoxicity of LDH nanocarriers 

[80]. Intercalation to LDH nanoparticles increased the cellular uptake of LMWH by SMCs by 

greater than 10 fold [81] (Fig. 4A). In comparison with unconjugated LMWH, LMWH-LDH 

hybrids showed enhanced suppression of mitogen-activated protein kinase signal transduction, 

and consequent enhanced inhibitory effects on SMC proliferation and migration [80] (Fig. 

4B). Fluorescence and transmission electron microscopy showed that after internalization by 

SMCs, LMWH-LDH conjugates were taken up by the endosomes (Fig. 4C and 4D), but 

(unlike unconjugated LMWH) rapidly escaped from endosomal compartments, thus avoiding 

biodegradation [81]. . 

 

5.2.2. TITANIUM OXIDE NANOTUBES AND TITANIUM NITRIDE OXIDE 
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The stability of titanium oxide (TiO2) materials under physiological conditions suggests their 

suitability for applications where the scaffold functions as a permanent support [82]. 

Moreover, surface modification of bare metal stents with TiO2 nanotubes has been shown to 

promote endothelial re-growth, while at the same time maintaining SMCs in a non-

proliferative phenotype [83, 84]. They have also been used for drug delivery, with the shape 

of the nanotubes influencing the rate drug elution, such that increased surface area (e.g. 

longer nanoparticles or those with smaller diameter) allows more rapid drug diffusion [84]. In 

vitro studies with rapamycin-loaded TiO2 nanotubes showed that drug eluted from the 

surfaces was active and could suppress SMC proliferation for up to 8 days [84]. Another 

study reported sustained release of paclitaxel from TiO2 nanotubes which were biocompatible 

on endothelial cells [85]. Animal studies showed that titanium-nitride-oxide coated stents 

significantly reduced neointimal area in a porcine model of restenosis [86]. Titanium-nitride-

oxide-coated stents were also found to be more effective in patients with de novo lesions, in 

terms of reducing the late loss in lumen diameter, percent stenosis, binary restenosis and 

neointimal volume [86]; importantly they were associated with fewer adverse cardiac events 

than stainless steel stents [86].   

 

5.3.  Nanoparticle-mediated targeted delivery of anti-restentoic drugs 

 

The concept of targeted drug delivery or 'magic bullet' was first described by Paul Ehrlich 

[87].  As described above, drug-eluting stents provide a mechanism for targeted delivery of 

anti-restenotic drugs, increasing the dose at the target site while minimizing systemic side-

effects. However, although the restenosis rate has been reduced to less than 10% in the short-

term [88], there are rising concerns regarding cost and stent safety (incomplete stent 

apposition, late stent thrombosis, abnormal endothelial function and inflammation) [89-91]. 

Thus, alternative, low-cost, targeted delivery systems are being sought. 

 

Antibodies are among the most common targeting agents for drugs, especially for cancer 

treatment, where a small number of therapeutics have reached clinical trials or have FDA 

approval [92]. Previous studies in our laboratory have used an antibody to cross-linked fibrin 

(XLF) to site-deliver anti-restenotic drugs [93, 94]. Having shown that XLF was deposited 
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onto the luminal surface of rat and rabbit artery luminal arteries within 10 min after injury 

and remained for at least 24 weeks, Thomas and Campbell conjugated an antibody to XLF 

with anti-restenotic drugs [95], including heparin, LMWH and rapamycin, which were then 

administered to rabbit arteries immediately after balloon catheter injury [94, 96]. They 

observed that injured arteries of animals receiving conjugated drugs had reduced neointimal 

development with fewer neointimal cells and more extensive re-endothelialization than those 

given control drugs, thus confirming the suitability of this antibody to XLF for targeted 

delivery of anti-restenotic drugs to the site of arterial injury [94]. 

 

In order to achieve sustained delivery of the anti-restenotic drug, we have subsequently 

incorporated these LMWH-anti-XLF conjugates into LDH nanoparticles, and shown that this 

did not interfere with the ability of the antibody to recognize its target. We further showed 

that this antibody effectively targeted LDH nanoparticles to the site of arterial injury, and that 

the sustained release of LMWH from the nanoparticles inhibited neointimal formation and 

thrombus development in a rat model of arterial injury [97]. . 

 

Other approaches include the modification of liposomes with a variety of targeting molecules 

to recognize and bind to the site of arterial injury. One such moiety is the arginine-glycine-

aspartic peptide segment, which has been covalently conjugated to the liposome surface to 

direct liposomes towards integrin GPIIb-IIIa receptors expressed by activated platelets [98]. 

Further studies demonstrated that cyclic arginine-glycine-aspartic-liposomes had even higher 

affinity for activated platelets than their linear counterparts [99, 100]. In another study, Sialyl 

Lewis X was used to direct liposome-encapsulated doxorubicin towards the endothelial-

specific adhesion molecule E-selectin, and showed greater efficacy in preventing restenosis 

than either its unmodified counterpart or free drug [101].  

 

Another strategy is the use of magnetic nanoparticles for site-specific delivery of anti-

restenotic therapies. Chorny and co-workers [102-104] demonstrated that magnetic field 

controlled targeting of paclitaxel-loaded magnetic nanoparticles (~250 nm in diameter) 

inhibited the growth of cultured SMCs, and reduced in-stent restenosis in a rat carotid 

stenting model [102]. This same group also demonstrated that magnetic nanoparticles-loaded 

endothelial cells could be magnetically targeted to steel stent wires [103] as a mechanism for 
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promoting re-endothelialisation after angioplasty. This same approach was used to 

magnetically target antioxidant enzymes to endothelial cells to protect them from oxidative 

stress-mediated damage [104]. These results indicate that magnetic nanoparticles with 

magnetic guidance may be interesting candidates for stent-targeted anti-restenotic therapies. 

 

5.4. The pros and cons of nanoparticle delivery systems 

 

Both organic and inorganic nanoparticles have advantages and disadvantages as drug delivery 

agents. Some polymers (eg. PLA and PLGA) and liposomes have been in the clinic for 

decades. However, in regards to polymeric drug carriers, their relatively high cost limits their 

scale-up, and there are increasing concerns about immune hypersensitivity reactions to them 

[32, 105]. In some cases, other components of polymer-based systems, rather than the 

polymers per se, may lead to systemic toxicity [106]. Another issue is the possibility of 

thrombosis. The presence of polymer in the artery may result in protein adsorption, platelet 

reactions and activation of the intrinsic coagulation cascade. For example, poly(vinyl alcohol) 

can continually activate platelets, and is thus not considered hemo-compatible [107]. There 

are also limitations associated with liposome drug carriers, such as the loading selectivity for 

hydrophobic drugs, relatively high production costs, tedious reconstitution prior to 

administration, and toxicity [108]. 

 

In comparison with organic carriers, inorganic nanoparticles are highly size-tunable, and 

internal/external chemical modifications can be easily achieved. They also tend to 

inexpensive and easily synthesized, available for targeted delivery and capable of 

controlled/sustained release of their payloads [73]. Inorganic nanoparticles such as LDHs 

have the advantage of being able to facilitate the escape of loaded drugs from endosomal 

compartments, thus preventing the degradation of drugs before it reaches its site of action 

[76]. However, only negatively-charged drugs can be intercalated into LDH interlayers and 

thus protected when being delivered. After in vivo injection, these nanomaterials selectively 

interact with biomolecules. Thus, biomedicine will benefit from nano-bio reactivity studies. 

Stucky and co-workers found that hydrotalcite (eg. LDHs) did not enhance the rate of clotting 

over porcine whole blood, and blood clotting rates and haemolytic activity mainly depended 

on inorganic surface charge of a nanomaterial  [109, 110]. Although the early findings 

provide initial motivation for development of inorganic nanomaterial-based drug delivery 
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systems, more extensive studies are needed to determine the safety and feasibility of 

inorganic nanomaterials for biomedical applications. 

 

6. Summary and perspectives 

 

Restenosis is a major complication in the surgical treatment of atherosclerosis. It is a multi-

stage biological process, in which vascular SMCs play a vital role in development of the 

neointimal thickening whereas re-endothelialization of the injured artery wall is critical to 

limiting this process. Despite demonstrated success in animal models, systemic 

administration of drugs to prevent or treat restenosis has had little success in reducing clinical 

restenosis. The drug-eluting stent is the current ‘gold standard’ for percutaneous coronary 

intervention, but there are serious concerns regarding long-term safety and efficacy. The 

application of nanomaterials to more effectively deliver anti-restenotic drugs to the surgery 

site may offer a solution to the problems currently associated with atherosclerosis treatments. 

Organic nanoparticles (ex. polymers and liposomes) have been most intensively investigated. 

Despite some success in clinical trials using polymers and liposomes, there are safety 

concerns which should be considered seriously. On the other hand, inorganic nanoparticles 

such as LDHs, TiO2 and magnetic nanoparticles have many important properties that suggest 

their potential for biomedical applications such as sustained and targeted drug delivery. 

However, there are very few studies or clinical trials on the applications of inorganic 

nanoparticles for restenosis. Given the advantages of inorganic nanoparticles as drug carriers, 

more efforts should be made to explore the application of these materials for anti-restenotic 

drug delivery. 

 

The selection of the drug to be delivered is also vital to effectively prevent or treat restenosis. 

Most studies to date have utilized drugs that suppress neointimal formation by inhibiting 

SMC proliferation. Although the neointima develops predominantly as a result of SMC 

proliferation and migration, other factors such as the importance of re-endothelialization of 

the injured artery should not be neglected. Thus, the key to successful anti-restenotic 

therapies lies in the development of strategies to promote endothelial regrowth, while at the 

same time limiting SMC proliferation.  
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A major advance in prevention or treatment of restenosis would be the development of drug 

delivery systems that address the multiple biological processes associated with restenosis, and 

remain in the artery wall for a considerable time. The use of target-delivered inorganic 

nanoparticles to deliver one or more anti-restenotic drugs is an exciting potential solution to 

the problem of neointimal formation and restenosis after angioplasty.  
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Table 1. Use of nanoparticle-based systems to deliver anti-restenotic drugs. 
 
Chemical 

property 

Category Examples Delivered anti-

restenotic drugs 

References 

 

 

 

 

Organic 

nano-

carrier 

 

Polymers 

PLA, PLGA, 

PCL, NK911 

Rapamycin, tryrphostin,  

alendronate, 2-

aminochromone, nitre 

oxide donor 

37-39, 41, 

42, 45-48 

 

Liposomes 

Liposomes and 

ligand-modifed 

liposomes 

Magnolol, Zn(ІІ)-

phthalocyanine, 

biophosphonates, 

58, 60, 62-

65, 68 
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doxorubicin  

Protein 

 

Albumin and 

cross-linked 

fibrin 

Alendronate, paclitaxel, 

heparin,LMWH, 

rapamycin 

69-74 

 

 

 

Inorganic 

nano-

carrier 

LDHs Magnesium-

aluminium-

LDHs 

LMWH 83, 85-87 

Magnetic 

nanoparticles 

Ferric oxide Paclitaxel, antioxidant 

enzymes 

88-90 

Titanium oxide 

nanotubes and 

titanium nitride 

oxide 

Titanium oxide 

nanotubes and 

titanium nitride 

oxide 

Paclitaxel, rapamycin 91-94 

 
Note: PLA: Poly(lactic acid), PLGA: poly(lactic-co-glycolic acid), PCL: poly(ε-

caprolactone), LMWH: low molecular weight heparin, LDH: layered double hydroxide. 

 
 
 
 
 
 
 
 
 
 
 
Figure Caption 

 

Fig. (1). A normal artery is composed of three morphological distinct layers- the intima, 

media and adventitia (A). Angioplasty removes the atherosclerotic plaque that forms in the 

vessel wall (B), but also injures the endothelium (C). The injury activates platelets which in 

turn release growth factors and other mediators that stimulate vascular smooth muscle cells to 

proliferate and migrate (D), with other factors such as recoil, extracellular matrix formation 

and delayed thrombus, leading to restenosis in up to 40% of patients.  
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Fig. (2). Schematic illustration of different drug loading approaches for polymeric micelles: 

(A) rapamycin is absorbed in the hydrophobic core of Pluronic copolymer L121; (B) covalent 

interaction with NO converts the hydrophilic precursor of a copolymer into hydrophobic, 

eventually resulting in the formation of a micelle for delivery of NO; and (C) the NK911 

micelle carrier consists of polyethyleneglycol and polyaspartic acid conjugated chemically 

with doxorubicin to increase the hydrophobicity of the inner core, entrapping antitumor-

active doxorubicin (unlike the conjugated, antitumor-inactive doxorubicin). 

 

Fig. (3). LDH nanoparticle structure and morphology. A: Schematics for LDH nanoparticle 

3-dimensional structure. B: Transmission electronic microscopic image of LMWH-LDH 

nanoparticles. 

 

Fig. (4). The effect of LMWH-LDH on cultured rat SMCs. A: LDH carrier enhances the 

ability of LMWH to inhibit SMC migration. The orange dashed line shows the original 

scratch injury line, nuclei are stained with Heochst 33342 (blue) and cytoplasm stained with 

Cell Tracker CMFDA (green). B: cellular uptake of LMWH was enhanced by LDH carrier. 

Nuclei are stained with Heochst 33342 (blue), and LMWH is conjugated with fluorescein 

isothiocyanate (green). C: Transmission electron microscopic image of a typical cultured 

SMC treated with LMWH-LDH. Arrows indicate the LMWH-LDH nanoparticles in 

endosomal compartments. D: Co-localization (arrow) of endosomal compartments (red) and 

LMWH-LDH (green) demonstrating that uptake of LDH by SMCs via endocytosis. 
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