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ABSTRACT: A multinational collaborative team led by the US Pharmacopeial Convention is 24 

currently investigating the potential of NIR spectroscopy for nontargeted detection of adulterants 25 

in skim and nonfat dry milk powder. The development of a compendial method is challenged by 26 

the range of authentic or nonadulterated milk powders available worldwide. This paper 27 

investigates the sources of variance in 41 authentic bovine skim and nonfat milk powders as 28 

detected by NIR diffuse reflectance spectroscopy and chemometrics. Exploratory analysis by 29 

principal component analysis and varimax factor rotation revealed significant variance in 30 

authentic samples and highlighted outliers from a single manufacturer. Spectral preprocessing 31 

and outlier removal methods reduced ambient and measurement sources of variance, most likely 32 

linked to changes in moisture together with sampling, preparation, and presentation factors. 33 

Results indicate that significant chemical variance exists in different skim and nonfat milk 34 

powders that will likely affect the performance of adulterant detection methods by NIR 35 

spectroscopy.  36 

 37 

Keywords. Skim milk powder, nonfat dry milk, melamine, NIR spectroscopy, chemometrics, 38 

PCA, varimax, compendial, diffuse reflectance, variance. 39 
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INTRODUCTION 41 

Skim milk powder (SMP) and nonfat dry milk (NFDM) are important food ingredients and 42 

sources of nutrition with more than 9 billion pounds estimated to be produced globally in 2011.
1
 43 

Numerous testing standards exist for both of these ingredients and other milk derivatives, but no 44 

authoritative testing standards currently exist for verifying the identities and integrities of these 45 

ingredients. This was underscored by the tragic 2008 melamine adulteration incident involving 46 

milk powders, which highlighted vulnerabilities in existing food safety and quality assurance 47 

systems that were not capable of guarding against the possibility of unknown adulterants.
2–4

  48 

 49 

A workshop on this topic was convened by the United States Pharmacopeia (USP) in 2009 50 

entitled “Food Protein Workshop—Developing a Toolbox of Analytical Solutions to Address 51 

Adulteration.”
5
 One of the key outcomes from the meeting was a need for standardized and 52 

reliable non-targeted screening procedures combined with multivariate statistical analysis tools 53 

to assess food ingredients rich in protein, such as milk and plant protein-derived ingredients, in 54 

quality assurance (QA) and quality control (QC) settings. Such procedures would become useful 55 

tools to allow authentication of ingredients based on a qualitative comparison with a library of 56 

milk powders, with the expectation that adulterated samples would classify as outliers and as 57 

such be considered nonauthentic. This nontargeted approach has the potential to significantly 58 

advance a solution to the age-old problem of using targeted methods to detect adulteration—as 59 

those responsible for adulteration are constantly evolving and engineering new, previously 60 

unknown adulterants to circumvent existing targeted QC methods.  61 

 62 
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Several promising analytical methods, including near infrared (NIR) spectroscopy, are currently 63 

being investigated by a USP-led collaborative research project aimed at developing and 64 

validating a toolbox of methods to detect adulteration in SMP and NFDM.
6
 Benefits of NIR 65 

spectroscopy compared to other technologies include its ready availability, low cost, high 66 

throughput, and robust and rapid analytical measurements. However, developing these 67 

nontargeted classification methods is complicated by the potential physicochemical variability of 68 

pure, nonadulterated milk powder ingredients in commerce worldwide. Such variations are well 69 

known to broaden the range and classification boundaries of authentic ingredients, thereby 70 

decreasing the method’s sensitivity for detecting lower concentration adulterants. This problem 71 

is especially true with NIR diffuse reflectance spectroscopy, which already exhibits typical 72 

detection limits on the order of 0.1%, where physical properties influence the resulting spectra 73 

and chemical signatures are not well resolved.  74 

 75 

The basic compositional variability of SMP and NFDM (e.g., total protein, lactose, water, fat, 76 

and ash) is thought to be somewhat limited by the standardization of raw milk used to produce 77 

these powders and international standardization efforts for product compositions. Little is known, 78 

however, of the variability of minor chemical constituents, such as milk metabolites, small-79 

molecule additives, and protein composition in commercial SMP and NFDM, and their influence 80 

on NIR spectra. For raw fluid milk, factors reported to influence these minor constituents include: 81 

raw milk geographic origin, animal origin (e.g., bovine versus water buffalo) and breed, season, 82 

and animal diet.
7
 For further processed ingredients like milk powders, processing parameters 83 

such as preheating temperatures, concentrate heating temperatures, drying temperatures, and 84 

drying equipment (e.g., spray versus drum driers), may also introduce additional chemical and 85 
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physical differences that are measurable by NIR spectroscopy. This was confirmed by a study 86 

that reported that heat treatment type (low, medium, or high heat) could be discriminated by NIR 87 

spectroscopy and chemometrics.
8
 More research is therefore needed to better characterize the 88 

NIR variance of commercial SMP and NFDM and determine how this variance may affect the 89 

performance of nontargeted NIR analysis methods for detecting adulteration.  90 

 91 

Understanding the repeatability and reproducibility of a NIR measurement is an important 92 

consideration when developing classification methods for detecting adulteration. Advanced NIR 93 

platforms for solid-phase reflectance spectroscopy are available and have been designed to 94 

reduce the effects of instrumental variance. The use of standard materials to monitor and verify 95 

instrumental calibration, like wavelength accuracy, photometric linearity and accuracy, and noise, 96 

is also common practice to ensure performance. However, extraneous features can still be 97 

manifest in NIR spectra from other sources of measurement variance, including ambient 98 

conditions and sample presentation parameters. For example, ambient temperature changes can 99 

have significant effects on NIR spectra for materials involving hydrogen bonding or containing 100 

water. A difference of a few degrees may result in significant spectral changes such as peak 101 

intensities and absorbance shifts. Hygroscopic materials are also sensitive to humidity, as the 102 

NIR spectrum is known to have broad intense bands related to water absorption. Presentation of 103 

the sample to the measurement interface can also introduce variability. The material particle size 104 

and diameter of the sample cup can alter the scattering effects on the spectra, while the 105 

homogeneity and measured surface area of the sample can also influence the accuracy of the 106 

measurement. 107 

 108 
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In this study, variance of NIR spectra from 41 different bovine skim milk powders and nonfat 109 

dry milk powders was explored using principal component analysis and varimax rotation 110 

methods. Experimental design was controlled in such a way as to either reduce the influence of 111 

NIR measurement variance or monitor well-known sources of variance. Resulting spectral data 112 

were then interpreted for influential sources of variance using principal component score trends 113 

and spectral signatures in rotated principal component loadings. Chemical analysis of samples of 114 

interest is also reported to support the interpretations of the rotated principal components.  115 

 116 

MATERIALS AND METHODS 117 

Milk Powder Samples. A total of 41 milk powders, including 19 skim milk and 22 nonfat dry 118 

milk, were acquired from eight suppliers produced between August 2008 and May 2012. 119 

Certificates of analysis indicated product origin details (including production sites and lot 120 

numbers), and processing conditions (condensing temperatures labeled as high, medium, and low 121 

heat). Proximate chemical composition was also indicated on the certificates including levels of 122 

moisture (%), fat (%), and protein (%). A detailed summary of all milk powders studied and their 123 

supplied attributes and properties is provided in Table 1.  124 

 125 

NIR Spectral Measurement. Fourier transform (FT) near infrared spectra were acquired at the 126 

US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of 127 

Food Processing Science and Technology, with a PerkinElmer Frontier FT-NIR system 128 

(Waltham, MA, USA) fitted with the NIRA reflectance accessory (diffuse reflectance). A 12 mm 129 

diameter spot was illuminated on the sampling interface, while the spinning cup feature of the 130 

reflectance accessory was enabled during acquisition. Each resulting percent reflectance (% R) 131 
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NIR spectrum was an average of 32 scans at 4 cm
–1

 resolution, over a spectral range between 132 

1000 and 2500 nm (4000 and 10000 cm
–1

).  133 

 134 

Instrument performance was internally verified daily by vendor-specific tests in transmittance (T) 135 

mode, including the “Abscissa Check” (wavelength accuracy) and the “Ordinate Check” 136 

(photometric response); both checks used an internal polystyrene standard for comparison 137 

against spectra acquired at calibration. Photometric noise was also verified daily to be within 138 

specification using the “Noise Check,” which calculated root mean square noise (RMS, %T), 139 

peak-to-peak noise (%T), and baseline trending over a specified range.  140 

 141 

A background scan (99% Spectralon diffuse reflectance standard) was acquired at the beginning 142 

of the experiment per software requirements and all automatic prompts for additional 143 

background scans were disabled for the remainder of the experiment. However, extra reflectance 144 

standard measurements were incorporated into the experimental design as independent samples. 145 

Spectra of a USP NIR suitability reference standard (USP, Cat. No. 1457844, Lot No. G0K264, 146 

Rockville, MD, USA) and a 99% Spectralon diffuse reflectance standard (Labsphere, Cat. No. 147 

AS-01160-060, North Sutton, NH, USA) were acquired at specified intervals on each day of 148 

analysis. These spectra were used to monitor the drift in wavelength accuracy and correct for 149 

drift in photometric intensity, independent of the system’s internal requirements. A tolerance for 150 

agreement for wavelength accuracy per USP general chapter <1119>
9 

is ± 1 nm for peaks 151 

between 70 and 2000 nm and ± 1.5 nm for peaks between 2000 and 2500 nm. Four wavelength 152 

peaks were measured across the spectral range (1261.1, 1536.2, 1971.2, and 2313.1 nm) and 153 

wavelength peak maxima were determined using a center of gravity algorithm
10

. 154 
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 155 

Sample Analysis. NIR spectra of six subsamples for each milk powder sample were acquired in 156 

a randomized order on three consecutive days of analysis with two subsamples per milk powder 157 

being acquired on each day of analysis. Stock samples were stored in sealed glass jars, and 158 

remixed by multiple inversions between subsampling. For each milk powder subsample, a 1.0–159 

1.5 cm thick (about 25 g) portion was evenly distributed into a 100-mm dish (PerkinElmer, Cat 160 

No., L1181257, Oakbrook, IL, USA) by gently swirling, taking care not to impact any surfaces, 161 

so as to not alter the natural particle size distribution. The dish was placed on the sampling 162 

interface of the reflectance accessory and covered for each measurement. Since the same dish 163 

was used for each subsample, it was thoroughly cleaned between measurements by pouring out 164 

the milk powder and removing the excess particles with a vacuum and Kimwipe™ tissue.  165 

 166 

In addition, on each day of analysis, six replicate measurements were acquired for randomly 167 

selected subsamples with the sample remaining on the sampling interface between replicates. 168 

While variance contributions from subsampling and instrumental repeatability are expected to be 169 

relatively small in comparison to the variance associated with the chemical and physical 170 

differences between samples, it is nonetheless necessary to characterize these contributions. 171 

Reflectance standards were acquired at intervals of every six milk powder subsamples. Spectral 172 

acquisition included 246 unique subsample spectra, 105 additional replicate spectra (not included 173 

in exploratory principal component analysis described in the following section), and 84 reference 174 

standard spectra, for a total of 435 spectra.  175 

 176 
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Principal Component Analysis and Varimax Rotation. Principal component analysis (PCA) 177 

was used to explore the variance in the repeatability of the NIR measurement, milk powder 178 

subsamples, and NIR spectra of the 41 commercial milk powder samples (MATLAB 2012, The 179 

Mathworks Inc., Natick, MA, USA, and PLS_toolbox 5.2, Eigenvector Research Inc., 180 

Wenatchee, WA, USA). PCA is an exploratory chemometrics method that aims to reduce the 181 

dimensionality of data from a large number of original measurements (e.g., 6000 variables in an 182 

NIR spectrum) to a small number of principal components (typically, the first 3–5 components), 183 

with the remaining, higher-order components typically reflecting measurement noise. The 184 

reduction is calculated such that each principal component (PC) is orthogonal to its preceding 185 

component and explains the largest percentage of the total variance in the remaining data set. For 186 

example, the first PC accounts for the largest percentage of total variance; the second PC 187 

explains the largest percentage of the remaining variance, and so on. Principal components can 188 

be expressed as a linear combination of the original spectral variables, where each variable is 189 

weighted based on its variance contribution for that PC and can be plotted graphically as the 190 

variable loading plot. Similarly, each sample can be projected onto each PC loading and can be 191 

plotted using its score or projection onto the principal component. 192 

 193 

Varimax rotation, an orthogonal rotation method, is used to rotate the principal components so 194 

that groups of variables will load onto a single rotated component instead of being distributed 195 

across several principal components. The rotated component is referred to as a factor and may 196 

correspond to a factor in the experimental design or property of the data; this may aid the 197 

spectral interpretation to chemical or physical sources of variance.
11

 The interpretation is 198 

simplified because after a varimax rotation, original variables that contribute variance in multiple 199 
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relevant (or retained) PCs tend to be expressed in a single rotated component. Generally, the 200 

varimax solution means that each component has a small number of heavily-weighted spectral 201 

variables and a large number of insignificant spectral variables.  202 

 203 

Exploratory Chemical Analysis. Six of the aforementioned milk powders (highlighted in Table 204 

1) were selected for further characterization and chemical analysis by high-pressure size 205 

exclusion chromatography (HPSEC) for estimation of denatured protein. The HPSEC method 206 

utilized a Shodex Protein Column KW-803(8 × 300 mm, maintained at 25 °C), with a mobile 207 

phase of 0.05 M NaH2PO4 and 0.15 M NaCl at pH 7.0 (flow rate = 0.3 mL/min). Separated 208 

analytes were detected at 214 nm with a total run time of 75 min. Samples were also analyzed for 209 

levels of ε-N-[furoylmethyl]-L-lysine (furosine), as an early stage marker for Maillard browning, 210 

by liquid chromatography (LC-UV)
12

 following acid hydrolysis.  211 

 212 

RESULTS AND DISCUSSION 213 

Wavelength Accuracy. Spectral peak positions of the USP NIR system suitability standard were 214 

determined using a custom written center of gravity script in MATLAB. Deviations from the 215 

expected wavelength positions of 1261.1, 1536.2, 1971.2, and 2313.1 nm, as provided by the 216 

USP system suitability standard certificate at a bandwidth of ± 2 nm, were calculated. All peaks 217 

were demonstrated to be within tolerance of ± 1 nm for peaks below 2000 nm and ± 1.5 nm for 218 

peaks above 2000 nm, and no distinct trends between days of analysis were observed. 219 

Photometric Intensity. Deviations in spectral profiles of the 99 % reflectance standard were 220 

observed over the consecutive days of analysis. Trends of this spectral variance were explored by 221 

PCA, where the data was mean-centered prior to analysis. Figures 1a –c contain reflectance 222 
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standard scores for PCs 1 through 3 plotted against their sequential acquisition in time. 223 

Respective loading plots of these PCs (Figures 1d–f) explain 99.7 % of the spectral variance, and 224 

demonstrate contributions from a sloping baseline and broad spectral features centered at ~1400 225 

nm and ~1930 nm. While the cause of the baseline slope is uncertain, the latter features are 226 

typical of ambient moisture which has known absorbance bands in those regions. Principal 227 

components (4 and 5), which accounted for less than 0.3% of the total variance, possessed some 228 

features between 2200 and 2400 nm (data not shown). These absorbance features can be 229 

attributed to artifacts present on the standard or sampling interfaces, and were only observed for 230 

3 of the 99% reflectance standard measurements acquired on day 1.  231 

 232 

Reflectance standard measurements are typically used in calculating double beam “pseudo-233 

absorbance” spectra, and are intended to correct for instrumental drift and ambient variance 234 

contributions in sample spectra. PCA of single beam milk powder spectra (N = 351, %R mean-235 

centered spectra) showed clear moisture band contributions in PC5 through PC7 loading plots 236 

(i.e., greater than 0.1 % variance), similar to those observed in the reference standard. Baseline 237 

sloping effects were also observed in 3 of the 4 first principal components calculated from this 238 

data set. As a result, milk powder absorbance spectra (A) were calculated using equation 1, 239 

where the reflectance standard spectrum (RRS) used for the correction was that which was 240 

acquired just prior to the reflectance milk powder spectrum (Rmilk).  241 

 242 

� � �log�� 	
��
�

��

�       [1] 243 

 244 
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While the relationship between absorbance and diffuse reflectance is not accurately defined by 245 

equation 1 (for reasons not discussed in this report
9,13

), for the purposes of this application, the 246 

estimate or “pseudo-absorbance” will be considered sufficient. After this conversion, principal 247 

component contributions of ambient moisture bands and sloping baselines were no longer 248 

observed in any of the first seven PCs of the milk powder absorbance spectra. 249 

 250 

Note, subsample measurements (N = 18) that were corrected with the 3 outlier 99% reflectance 251 

standard spectra (as described previously) had also exhibited extraneous features between 2200 252 

and 2400 nm, which was not present before the double-beam absorbance calculation. These 253 

resulting subsample absorbance spectra were removed from all subsequent data analyses.  254 

 255 

Milk Powder Variance by Chemometrics. 256 

Preprocessing. Resulting “pseudoabsorbance” spectra (6001 variables/spectrum) were further 257 

corrected using standard preprocessing algorithms applied to NIR spectral data, including 258 

standard normal variate (SNV) correction and first derivative transformation using a Savitzky–259 

Golay algorithm (window size = 35 points, third-order polynomial fit). End points of all spectra 260 

were subsequently removed from the spectral dataset (20 points from both higher and lower 261 

wavelength ends). Preprocessing methods employed are used to correct for any potential 262 

physical phenomena or interferences that result in unwanted signal variability that may not be 263 

corrected by instrument calibration methods. For example, diffuse reflectance spectra of 264 

powdered samples often contain effects due to light scatter from particles within the sample; 265 

these effects are manifest as a multiplicative interference across the NIR spectrum. The 266 

magnitude of the multiplicative scatter is a function of particle size and its distribution. Typical 267 
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preprocessing techniques used to correct this include multiplicative scatter correction (MSC) or 268 

SNV transformation. SNV generally provides the same results as the more commonly used MSC 269 

method, without the need for a reference spectrum. For each spectrum, the mean value of all 270 

variables (e.g. absorbance values) is subtracted from each variable. Each mean-subtracted 271 

variable is then  divided by the standard deviation of all variables for that spectrum. 272 

Particle size can also influence the spectral pathlength (or light beam penetration) as a result of 273 

variations in sample packing, bulk density, and sample thickness; this is manifested as a constant 274 

background in the NIR spectrum. Derivatives are often used to reduce this effect, where the 275 

background of first derivative spectra is converted to a constant level, correcting constant 276 

baseline offsets. The additional benefit of derivative preprocessing is its ability to emphasize 277 

small shoulders and peaks so that the resulting spectra have more pronounced features. These 278 

attributes may be useful when targeting small changes in intensity. Savitzky–Golay convolutions 279 

are often used to calculate derivative spectra
14

, where at each variable in a spectrum, a 280 

polynomial of specified order is fit to the number of points (window) surrounding the variable. 281 

An estimate for the value of that variable is calculated from the derivative of the fitted function. 282 

The algorithm moves to the next point along the spectrum and performs the same calculation 283 

using the same window size and polynomial order. Since fewer data points are fitted near the 284 

end-points of a spectrum, the approximation of the polynomial fit and subsequent derivative can 285 

introduce unusual features in this region, and are often removed from the spectral dataset. 286 

However, the challenge of applying a derivative is the interpretation of the resulting spectrum 287 

because peaks and features are no longer visually intuitive. It is helpful to remember that first 288 

derivative spectra have peaks at regions of maximum slope in the original spectrum and cross the 289 

zero line at locations of peak maxima/minima in the original spectrum. 290 
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 291 

The additional advantage of using these preprocessing methods is that both SNV and first 292 

derivative transformation were shown to be effective in removing variability introduced between 293 

replicate and subsample measurements of the same milk powder material (as evaluated by PCA), 294 

indicating that the major source of variance between replicate measurements is from light 295 

scattering and pathlength effects, while minor sources were attributed to random noise 296 

contributions.  The NIR spectra are also mean-centered so that absolute magnitudes are not 297 

considered in a multivariate analysis, but only relative changes to the mean. This preprocessing 298 

step is often used prior to PCA. 299 

 300 

PCA and Varimax Rotation. Principal component analysis was applied to the 228 preprocessed 301 

milk powder spectra from 41 unique milk powder samples with either 5 or 6 subsamples each 302 

(18 subsamples had been previously removed from the data set, see description under 303 

Photometric Intensity). Score plots were explored for unique clustering patterns for various 304 

classification categories, including day of analysis, SMP versus NFDM, supplier, and 305 

condensing temperatures (high, medium, and low heat). No clear trends were observed in many 306 

of these categories, except for the resolved clustering of particular samples, S081, S082, S086, 307 

and S145 along PC 1, and S116 along PC 2 (Figure 2). Interestingly, samples S081, S082, and 308 

S086 were manufactured by the same supplier, while S145 exhibited a lower moisture content 309 

than the majority of the milk powder samples (mean ± std = 3.61 ± 0.47%, S0145 = 1.80%). An 310 

additional cluster of samples, S033, S051, S053, S055, S107, was observed in covariance of PC1 311 

and PC2, however, no single sample property could be attributed to this cluster, even though the 312 

majority of these samples were low heat processed samples. 313 
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 314 

Five principal components were retained from the PCA, capturing 60.60% of the total variance, 315 

and were rotated using the varimax factor rotation algorithm (Figures 3a–e). Interpretations of 316 

the rotated components revealed features related to chemical sources of variance, including water 317 

and R–OH combination band contributions for PC 1 (1450, 1940 nm), a distinguishing lactose 318 

spectrum for PC 2, other sugar contributions for PC 3, lipids (fats) and protein contributions for 319 

PC 4, and additional C–H combination band contributions in PC 5.
15–18

 Few signal contributions 320 

from below 1400 nm were observed in these principal components, demonstrating the limited 321 

sensitivity in the third overtone region of the NIR spectrum. While some contributions were 322 

observed at ~1400 nm, these small features can generally be attributed to moisture.  323 

 324 

Based on these interpretations, principal component analysis of targeted spectral regions on the 325 

spectral data set (228 spectra) was analyzed to confirm the chemical sources of variance for the 326 

resolved samples in Figure 2. Score and loadings plots (Figure 4a–c) from PCA of NIR spectra 327 

between 2200 and 2500 nm, the C–H combination band region, demonstrated significant 328 

discrimination of supplier B samples S081, S082, S086, and even, S087, based on the covariance 329 

structure of PC 1 and PC 2 (not varimax rotated). Absorbance bands in this region are most 330 

likely correlated to lactose, fat, and protein content, and are typically used for quantitative 331 

determination of these constituents. Score and loading plots from PCA of NIR spectra between 332 

1700 and 2200 nm resolved similar sample clusters as observed for the full spectral window, 333 

again emphasizing the major contributions of both moisture (~1930 nm) and R–OH (~2000 nm) 334 

combination bands in discriminating the same samples, S081, S082, and S086. The spectral band 335 

for the R–OH stretch (2000 nm) is most likely associated with functional groups in sugars 336 

Page 15 of 31

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



16 

 

(lactose, etc.), and may also suggest that the source of variance in the spectral bands above 2200 337 

nm is also correlated to this chemical source of variance since similar milk powder samples are 338 

discriminated in both regions.  339 

 340 

Milk Powder Variance by Exploratory Chemical Analysis. Milk powders, S081, S082, S086, 341 

S087, S091, and S096 were selected for further characterization by chemical analysis; 4 of which 342 

were discriminated by PCA, while the other 2 samples clustered near the center of the PCA 343 

space (along first 5 PCs). Basic compositional analysis showed no difference between these 344 

samples for total protein (total nitrogen content), total fat, total lactose, total ash, and total sugars 345 

(data not shown). Additional chemical analysis for aggregated protein and furosine levels (Table 346 

2) suggested a correlation to condensing temperature, where a direct relationship was observed 347 

between the heat level and aggregated protein, and between the heat level and furosine 348 

concentration. Both correlations are theoretically expected since an increase in condensing 349 

temperatures can cause changes in the tertiary structures of milk proteins leading to denaturation 350 

and aggregation.
19

 The extent of the Maillard reaction can also be catalyzed by heat, and an 351 

increase in furosine, a byproduct of this reaction, is expected.
20

 While these results are expected, 352 

they do not support the clustering patterns observed in the PCA space. Additional sources of 353 

variance are thought to contribute to the separation of these samples, and further characterization 354 

of these milk powders is required. One possibility that should be explored is the presence at low 355 

levels of chemical food additives which are authorized in international standards for addition to 356 

milk powders.
21

 Exploring these and other unknown sources of variance could be investigated 357 

using targeted assays for specific chemical additives and multivariate approaches by Raman and 358 

NMR spectroscopy. 359 
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 360 

This study has demonstrated that appropriate experimental design and spectral preprocessing can 361 

reduce the instrumental and measurement sources of variance in NIR spectra of skim and nonfat 362 

dry milk powders, thus providing the basis for a robust compendial method for authentication. 363 

However, defining boundary conditions for classifying authentic milk powder is still challenged 364 

by the unknown chemical sources of variance that discriminate between authentic milk powders. 365 

In addition, the development of specifications is limited by the number and source of authentic 366 

milk powders, as the 41 samples analyzed here do not necessarily represent the population of 367 

commercially available milk powders in the United States and other countries. Finally, the 368 

sensitivity in detecting adulterants present in samples is still unknown; potentially broad 369 

specifications may reduce the capability of such methods to detect any low-level adulterants 370 

present in skim and nonfat dry milk powder. 371 
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ABBREVIATIONS USED 378 

A, Absorbance; FT, Fourier transform; HPSEC, high-pressure size-exclusion chromatography; 379 
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correction; NFDM, nonfat dry milk; NIRA, near-infrared reflectance accessory; NIR, near-381 

infrared spectroscopy; NMR, nuclear magnetic resonance; PCA, principal component analysis; 382 
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PC, principal component; QA, quality assurance; QC, quality control; R, reflectance; RMS, root 383 

mean square; SMP, skim milk powder; SNV, standard nominal variate; �, transmittance; USP, 384 

US Pharmacopeia 385 
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FIGURE CAPTIONS 

 

Figure 1. Principal component analysis of 99% reflectance standard acquired on three 

consecutive days of analysis (N = 42). Scores plots of a) PC 1; b) PC2; c) PC3; and their 

respective loadings plots in d–f.  

 

Figure 2. Score plot of PC1 versus PC2 from PCA of NIR spectra of 41 varying milk powders 

from 8 different suppliers (A–H) and their subsample measurements (total = 228 spectra). 

Spectra were preprocessed using standard normal variate (SNV) correction and first-derivative 

transformation using a Savitzky–Golay algorithm (window size = 35 points, third-order 

polynomial fit). 

 

Figure 3. Varimax rotated loading plots of a) PC 1; b) PC 2; c) PC 3; d)PC 4; e)PC 5, from PCA 

of NIR spectra of 41 varying milk powders from 8 different suppliers and their subsample 

measurements (total = 228 spectra). Spectra were preprocessed using standard normal variate 

(SNV) correction and first-derivative transformation using a Savitzky–Golay algorithm (window 

size = 35 points, third-order polynomial fit). 

 

Figure 4. PCA of NIR spectra between 2200 and 2500 nm of 41 varying milk powders from 8 

different suppliers (A–H), and their  subsample measurements (total = 228 spectra). Score plots 

of a) PC 2 versus PC 1 and their loading plots in b) PC 1; c) PC 2. Spectra were preprocessed 

using standard normal variate (SNV) correction and first-derivative transformation using a 

Savitzky–Golay algorithm (window size = 35 points, third-order polynomial fit). 
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TABLES 

Table 1. Certificates of analysis data from 41 milk powder samples acquired from eight suppliers produced between August 

2008 and May 2012.  

Sample 

Code 

Particle Size (µm) 

Supplier 
Class of Milk 

Powder  

Process 

Type  

(LH = Low 

Heat; MH = 

Medium 

Heat; HH = 

High Heat) 

Production 

Location 

Production 

Country 

Production 

Date 

Moisture 

Content 

(%) 

Fat 

Content 

(%) 

Protein 

Content 

(%) 
d(0.1) d(0.5) d(0.9) 

S021 9.6 36.6 86.8 A NFDM LH A-1 USA 7/12/2010 3.6 0.65 35.67 

S022 15.7 60.7 133.4 A SMP - A-1 USA 2/27/2010 3.8 0.4 33.71 

S023 16.2 51.2 112 A NFDM MH A-1 USA 5/5/2010 3.3 0.67 35.4 

S024 7.3 32.6 87.7 A NFDM MH A-1 USA 5/5/2010 3.1 0.66 35.56 

S030 14.5 42.2 86.2 A NFDM HH A-2 USA 7/18/2010 3.87 1.05 - 

S031 - - - A NFDM HH A-2 USA 11/16/2009 3.49 0.69 - 

S032 - - - A NFDM LH A-2 USA 6/19/2010 3.92 0.99 - 

S033 11.1 36.6 77.2 A NFDM LH A-2 USA 2/26/2010 3.71 0.95 - 

S047 10.7 40.2 92.8 A NFDM LH A-1 USA 6/7/2010 3.68 0.59 35.5 

S051 13.2 45.9 105.6 A NFDM LH A-1 USA - - - - 

S053 18.2 54.6 124 A NFDM LH A-1 USA - - - - 

S054 16.7 68.1 152.8 A NFDM LH A-1 USA - - - - 

S055 17.6 54.9 124.1 A NFDM LH A-1 USA 8/26/2008 3.63 0.83 35.69 

S061 16.4 57.8 124.9 H NFDM LH H-1 USA 3/8/2011 3.4 0.54 - 

S068 17.2 58.6 124.7 H NFDM LH H-1 USA 2/21/2011 3.46 0.573 - 
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S070 15.5 57.2 122 H NFDM LH H-1 USA 2/7/2011 3.294 0.62 - 

S076 13.2 43.5 94.4 A NFDM HH A-2 USA 1/14/2011 3.5 0.61 - 

S077 20.5 65.5 139.5 A SMP LH A-1 USA 2/21/2011 4 0.58 33.4 

S080 11.5 42.6 110.8 B SMP LH B-1 USA 3/27/2011 4 0.65 34.29 

S081
b
 21.5 69.4 196.9 B NFDM HH B-2 USA 3/9/2011 3.17 0.75 35.44 

S082
b
 29.8 123.8 432.9 B NFDM LH B-2 USA 2/27/2011 3.59 0.66 36.09 

a
median diameter of d(0.5), with 90% of volume distribution below a diameter of d(0.9), and 10% of volume distribution 

below a diameter of d(0.1). 

b
samples characterized by HPSEC and LC-UV. 

“-” indicates unknown entry. 

 

Table 1 (continued). Certificates of analysis data from 41 milk powder samples acquired from eight suppliers produced 

between August 2008 and May 2012.  

Sample 

Code 

Particle Size (µm) 

Supplier 
Class of Milk 

Powder 

Process 

Type  

(LH = Low 

Heat; MH = 

Medium 

Heat; HH = 

High Heat) 

Production 

Location 

Production 

Country 

Production 

Date 

Moisture 

Content 

(%) 

Fat 

Content 

(%) 

Protein 

Content 

(%) d(0.1) d(0.5) d(0.9) 

S084 10.6 37.3 89.2 B SMP MH B-1 USA 1/30/2011 3.66 0.6 34.06 

S085 11.1 40.5 99 B SMP MH B-1 USA 3/8/2011 3.85 0.69 34.22 

S086
b
 23.6 80.9 245.8 B NFDM HH B-2 USA 1/15/2011 3.58 0.7 35.64 

S087
b
 19.8 77.9 193.2 B NFDM LH B-2 USA 3/7/2011 3.29 0.62 35.84 
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S089 15.3 53.2 143.6 B NFDM MH B-3 USA 3/12/2011 3.6 0.78 35.73 

S091
b
 16 68 231.4 B NFDM MH B-3 USA 12/26/2010 3.78 0.95 36.31 

S093 20.1 64.2 146.3 A NFDM LH A-1 USA 2/1/2011 3.8 0.76 36.04 

S094 10.1 36.3 89.8 A NFDM MH A-1 USA 2/13/2011 3.8 0.77 35.9 

S095 23.4 82.3 187.6 D SMP MH D-1 New Zealand 10/20/2010 3.9 1 32.7 

S096
b
 17.3 57.8 125 B SMP MH B-4 USA 2/8/2011 3.96 0.67 34.12 

S097 15.3 50.7 110.8 B SMP LH B-4 USA 3/12/2011 3.78 0.69 34.3 

S098 13.7 41.6 89.9 B SMP LH B-4 USA 8/29/2010 3.92 0.75 34.4 

S106 21.8 66 148.8 E SMP MH E-1 Ireland 8/17/2010 3.82 0.95 37 

S107 22.8 65.3 135.1 E SMP MH E-1 Ireland 5/15/2010 4.49 0.95 35.7 

S108 14.9 51.5 116.2 G NFDM - - - - - - - 

S110 12.7 37.6 77.3 G NFDM - - - - - - - 

S116 13.1 39 83.2 C SMP MH C-1 Denmark 4/2/2011 4 0.5 - 

S117 15.2 39.7 89.8 C SMP MH C-1 Denmark 3/15/2011 4 0.07 - 

S145 - - - F NFDM LH F-1 USA 5/12/2012 1.8 0.01 - 

S149 - - - F NFDM HH F-1 USA 5/15/2012 2.37 0.02 - 

a
median diameter of d(0.5), with 90% of volume distribution below a diameter of d(0.9), and 10% of volume distribution 

below a diameter of d(0.1). 

b
samples characterized by HPSEC and LC-UV. 

“-” indicates unknown entry. 
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Table 2. HPSEC data for approximation of protein aggregation and LC–UV data for determination of furosine (an early stage 

marker for Maillard browning) of 6 selected samples from Table 1. 

Sample Code  

(LH = Low Heat; MH = 

Medium Heat; HH = High 

Heat) 

Aggregated Protein  

(% of Total Protein) 

Furosine 

(mg/100 g) 

S081 (HH) 27% 242 

S082 (LH) 12% 163 

S086 (HH) 28% 215 

S087 (LH) 11% 152 

S091 (MH) 23% 137 

S096 (MH) 19% 105 
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FIGURES 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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