
Abstract

One of the objectives of TIGA is to compute precise station coordinates and velocities for GPS 

stations of interest. Consequently, a comprehensive knowledge of the stochastic features of the GPS 

time series noise is crucial, as it affects the velocity estimation for each GPS station. For that, we 

present a Monte Carlo Markov Chain (MCMC) method to simultaneously estimate the velocities and 

the stochastic parameters of the noise in GPS time series. This method allows to get a sample of the 

likelihood function and thereby, using Monte Carlo integration, all parameters and their uncertainties 

are estimated simultaneously. We propose this method as an alternative to optimization methods, 

such as the Maximum Likelihood Estimation (MLE) method implemented in the widely used CATS 

software, whenever the likelihood and the parameters of the noise are to be estimated in order to 

obtain more robust uncertainties for all parameters involved. Furthermore, we assess the MCMC 

method through comparison with the widely used CATS software using daily height time series from 

the Jet Propulsion Laboratory. 

Conclusions

• A new Bayesian Monte Carlo Markov Chain method for parameter estimation has been compared to MLE as implemented in CATS using the GPS

position time series from the JPL.

• Overall, both methods agree well, but there are some differences:

• MCMC estimates the uncertainty of the spectral index estimate.

• MLE yields larger estimates for the power amplitude of the power-law noise (𝜎𝑝𝑙) in order to account for zero-values of the white-

noise amplitude (𝜎𝑤𝑛).
• According to MCMC there is more time-correlated noise.

• The North and East component velocity uncertainties from MCMC are 40% larger than those from CATS. The Up component velocity

uncertainties from MCMC are 18% larger. However, the differences are sub-milimetre at the 1𝜎 CL.
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Methodology

Results

Figure 7: Comparison of ZTD time series obtained from UL01, 

BNC2.6 and the PPP-Wizard for 4 stations for 2012-11-14 

00:00UTC to 2012-11-21 00:00UTC

Figure 4: Flow chart of the comparison method between MCMC and MLE.

Maximum Likelihood Estimation (MLE)

The likelihood of getting the observational data given some parameters is defined as:
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• 𝑦: Observational data

•  𝑦: Model data

• 𝜃: Model parameter

• 𝐶: Covariance matrix

• 𝑁: Time series length

The estimated parameters are those of the argument of the maximum of the likelihood:

 𝜃 ≡ arg max 𝐿

Very often there is no closed-form formula for the Likelihood function and numerical computation is

needed. For that purpose CATS has been developed (Williams, 2008).

Monte Carlo Markov Chain (MCMC)

A Metropolis-Hasting algorithm is used to get a sample of the a posteriori distribution that, according

to Bayes Theorem, is related to the Likelihood:

𝑃 𝜃 𝑦 =
𝐿 𝑦 𝜃 𝑃 𝜃

𝑃 𝑦

where, 𝑃 𝜃 and 𝑃 𝑦 are the a priori distributions of the estimated parameters and the data.

Concerning the parameters we have chosen a uniform distribution for them, whereas it is not

necessary to know 𝑃 𝑦 for our algorithm.

Modeling

The chosen model is a linear combination of a linear and periodic (annual and semiannual) terms

with residuals composed by power law and white noise as follows:

 𝑦 𝑡𝑖 = 𝑦0 + 𝑣 𝑡𝑖 − 𝑡0 + 𝐴1𝑦𝑟
𝑐 𝑐𝑜𝑠 2𝜋 𝑡𝑖 − 𝑡0 + 𝐴1𝑦𝑟

𝑠 𝑠𝑖𝑛 2𝜋 𝑡𝑖 − 𝑡0
+𝐴0.5𝑦𝑟

𝑐 𝑐𝑜𝑠 2𝜋 𝑡𝑖 − 𝑡0 +𝐴0.5𝑦𝑟
𝑠 𝑐𝑜𝑠 𝑡𝑖𝜋 𝑡 − 𝑡0 + 𝜀 𝑡𝑖

with 𝑦0 ≡ y 𝑡0 the intercept, 𝑣 the velocity, 𝐴1𝑦𝑟
𝑐 the annual cosine amplitude, 𝐴1𝑦𝑟

𝑠 the annual sine

amplitude, 𝐴0.5𝑦𝑟
𝑐 the semi-annual cosine amplitude, 𝐴0.5𝑦𝑟

𝑠 the semi-annual sine amplitude and 𝜀 𝑡 ,

the residual, composed by

𝜀 𝑡𝑖 =  

𝑘

ℎ𝑖−𝑘𝑢 𝑡𝑖 + 𝑤 𝑡𝑖

where 𝑢 and 𝑤 are white-noise processes with amplitudes 𝜎𝑝𝑙 and 𝜎𝑤𝑛, respectively; and

ℎ𝑗 =
𝛼

2
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𝑗!
with 𝛼 being the spectral index. The first term on the right hand side of Eq. (5) is a power-law process

obtained by the convolution of 𝑢 𝑡𝑖 .

The JPL data set

.

The MCMC Algorithm

Introduction

It is widely known that not accounting for the time-correlated noise within GPS time series leads to

velocity uncertainty estimates [3-11] times too optimistic when compared to a white noise only model

(Zhang et al., 1997; Mao et al. 1999; Williams et al., 2003; Williams et al., 2006). Moreover,

according to Bos et al. 2010, not accounting for the spectral index uncertainty also yields biased

estimates for the uncertainties of deterministic parameters such as, for example, the velocity or the

amplitudes.of the periodic terms.

For this, we propose a Monte Carlo Markov Chain (MCMC) method that simultaneously estimates all

parameters and their uncertainties, the spectral index included, as an alternative to the start-of-the-

art method: the Maximum Likelihood Estimation (MLE) as implemented in CATS software (Williams,

2008). We have carried out a comparison of the performance of both methods by analyzing 90 GPS

time series from the International GNSS (Global Navigation Satellite System) Service (IGS) tracking

network.

In general, the parameter estimates from both methods are in good agreement. Nevertheless, unlike

CATS software, which is a numerical solution of the Maximum Likelihood Estimation (MLE) that

better fits the data, i.e. the daily GPS position time series from the Jet Propulsion Laboratory (JPL),

the MCMC method provides larger uncertainties for all parameters except for the intercept, and more

robust estimates of the stochastic parameters at low spectral index values.
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Fig. 2 shows  the North, East 

and Up components of ALIC 

in Australia as a 

representative GPS time 

series from this data set. 

Also shown is the RMS for 

each component, which is 

1.26 mm, 1.25 mm and 3.66 

mm for the North, East and 

Up components, 

respectively. 

These are typical values for 

the RMS of state-of-the-art 

GPS time series and in this 

case, but also in general, the 

RMS for the Up component 

is ~3 times larger than for 

the North and East 

components.

Figure 1: Map of the GPS stations of the IGS core network

The JPL provides 2381 

daily position time series 

processed using the 

Precise Point Positioning 

(PPP) strategy in the 

GIPSY-OASIS II 

software (Zumberge et 

al. 1997). Out of them, 

90 stations of the IGS 

core network (shown in 

Fig. 1) were selected 

and analyzed with the 

MCMC and MLE 

methods.

Figure 2: GPS time series for ALIC. From top to bottom: North, East and Up 

components.

Fig. 3 shows  the flow chart of the MCMC 

algorithm, namely, a Metropolis-Hastings 

algorithm.

The initial inputs are the starting values of all 

parameters

𝜃0 = 𝛼, 𝜎𝑝𝑙 , 𝜎𝑤𝑛, 𝑣, 𝑦0, 𝐴1𝑦𝑟
𝑐 , 𝐴1𝑦𝑟

𝑠 , 𝐴0.5𝑦𝑟
𝑐 , 𝐴0.5𝑦𝑟

𝑠 , 

the previously estimated optimal step size 𝜌, and 

the Markov Chain length 𝑁.

At the 𝑖𝑡ℎ step, the Markov Chain moves towards 

the maximum of the likelihood if 
𝐿 𝜃𝑖+1

𝐿 𝜃𝑖
> 1, or 

around the last Markov Chain point if 
𝐿 𝜃𝑖+1

𝐿 𝜃𝑖
> 𝑟 ∈

0,1 ; otherwise, the computation of a new 

parameter vector 𝜃𝑖+1 is repeated.

This loop is performed 105times.
Figure 3: Flow chart of the Metropolis-Hasting 

algorithm used in this study to get a sample of the a 

posteriori distribution function of all parameters. 

Figure 4 shows the methodology for 

the comparison between the MCMC 

method and the MLE method (with 

CATS v3.1.2 software).

The common input is the data used 𝑦
(the JPL data set).

There is an extra input for the MCMC 

method only: starting points 𝜃0 and 

optimal step size 𝜌.

Both methods fit data with a linear and 

periodic terms plus the residual 

composed by a power-law and a 

white-noise process, i. e. according to 

Eq. (6).

The output from MLE is that of Eq. (2), 

i.e.  𝜃𝑀𝐿𝐸 and the uncertainties of all 

parameters except for  𝛼. 

The MCMC method provides a sample 

of the a posteriori distribution function 

𝑃  𝜃 𝑦 . Then  𝜃𝑀𝐶𝑀𝐶 and their 

uncertainties are obtained and 

compared with those from the MLE 

method.

Only results for the Up component are 

shown.

Fig. 5 shows the correlation plots of the 

estimated stochastic parameters from MCMC 

(vertical axis) and MLE (horizontal axis) for the 

UP component.

In Fig. 5a the spectral index from the MCMC 

method is systematically larger than from the 

MLE method.

On the other hand, Fig. 5b shows that 𝜎𝑝𝑙 from 

MLE is larger than from MCMC. This is in order 

to account for the lack of power when CATS 

sets 𝜎𝑤𝑛 = 0 in some cases (Fig. 5c).

Figure 5: Correlation plots for 𝛼 (a), 𝜎𝑝𝑙(𝑚𝑚) (b) and 𝜎𝑤𝑛(𝑚𝑚) (c).

Figure 7: Correlation plots for 𝑣 (𝑚𝑚/𝑦𝑟) (a), 𝑦0(𝑚𝑚) (b).

Fig. 7 shows the

correlation for the

velocity and the

intercept estimates

from the MCMC and 

MLE methods. Both

methods agree well, 

even for the

amplitudes periodic

terms (not shown

here).

In order to

account for the 

lack of power 

when CATS 

sets 𝜎𝑤𝑛 = 0, 𝛼
estimates from 

MLE are 

smaller than 

from MCMC 

(Fig. 6). Figure 6: Correlation plots for 𝛼. Red-

circled points correspond to 𝜎𝑤𝑛 = 0 𝑚𝑚.

Figure 8: Correlation plots for 𝜎𝑣(𝑚𝑚/𝑦𝑟) (a),𝜎𝑦0
(𝑚𝑚) (b).

Fig. 8 shows the

correlation plots for

the velocity and the

intercept uncertainties

from the MCMC and 

MLE methods (UP 

component). The

MCMC method

provides larger

uncertainties for 𝑣, 

and smaller ones for 

𝑦0 than MLE.

The medians of the ratio of the MCMC and MLE 

uncertainties (𝑅𝑝) indicate that the velocity uncertainties

from MCMC are 40% larger for the North and East 

components, and  18% for the Up component, than from

MLE (Tab. 1); whereas those for 𝑦0 are smaller.

𝑹𝒑 North East Up

𝜎𝑣 1.40 1.40 1.18

𝜎𝑦0
0.70 0.72 0.63

Table 1: Median of the ratio of the uncertainties
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