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Abstract

This article is the third and last part of a series of three articles about compatible systems of
symplectic Galois representations and applications to the inverse Galois problem.

This part proves the following new result for the inverse Galois problem for symplectic groups.
For any even positive integer n and any positive integer d, PSpn(F`d) or PGSpn(F`d) occurs as
a Galois group over the rational numbers for a positive density set of primes `.

The result is obtained by showing the existence of a regular, algebraic, self-dual, cuspidal
automorphic representation of GLn(AQ) with local types chosen so as to obtain a compatible
system of Galois representations to which the results from Part II of this series apply.

MSC (2010): 11F80 (Galois representations); 12F12 (Inverse Galois theory).

1 Introduction

This article is the last part of a series of three on compatible systems of symplectic Galois repres-
entations and applications to the inverse Galois problem (cf. [AdDW13a], [AdDW13b]). Our main
theorem is the following new result for the inverse Galois problem over Q for symplectic groups.

Theorem 1.1. For any even positive integer n and for any positive integer d there exists a set of
rational primes of positive density such that, for every prime ` in this set, the group PGSpn(F`d) or
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PSpn(F`d) is realised as a Galois group over Q. The corresponding number field ramifies at most
at ` and two more primes, which are independent of `.

In fact, one of the two auxiliary primes can be taken to be any prime, the other one can be chosen
from a set of primes of positive density defined by an explicit Chebotarev condition. The set of
primes ` depends on the two previous choices and the choice of an automorphic form, and is also given
by a Chebotarev condition (in the projective field of definition (see [AdDW13a]) of the compatible
system of Galois representations attached to the automorphic form (see below)) except for a density-
zero set.

Theorem 1.1 is complementary to the main result of Khare, Larsen and Savin [KLS08], in the
sense that it is in the horizontal direction in the terminology of [DW11], whereas loc. cit. is in the
vertical one, that is, ` is fixed and d runs. The horizontal direction needs quite a different approach
from the vertical one. Nevertheless, some ideas of [KLS08], for instance that of (n, p)-groups, are
crucially used also in our approach. The overall strategy is described in the introduction to Part I.

The goal in this Part III is to construct compatible systems of Galois representations satisfying
the conditions in the main theorem on the inverse Galois problem of [AdDW13b]. In order to do
so, we prove the existence of a regular, algebraic, self-dual, cuspidal automorphic representation
of GLn(AQ) with the required local types by adapting the results from [Shi12]. This automorphic
representation is such that the compatible system of Galois representations attached to it is symplectic,
generically irreducible, has a maximally induced place q of a certain prime order p, and locally at a
prime t contains a transvection. In order to show that the transvection is preserved in the image of the
residual representation, at least for a density one set of primes, we will apply a level-lowering result
from [BLGGT13] over suitable quadratic imaginary fields.

The structure of this paper is the following. In Section 2 we recall general facts about regular
self-dual automorphic representations and their corresponding compatible systems of Galois repres-
entations (everything in this section can be found in [BLGGT13]). In Section 3 we show the existence
of the sought for automorphic representation. In Section 4 we specify the conditions on the rami-
fied primes that we will need and explain the properties of the compatible system attached to the
automorphic representation from Section 3. In Section 5 we perform the level-lowering argument.
Finally, in Section 6 we derive the main conclusions that follow from the combination of the results
in our three papers.
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2 RAESDC automorphic representations and the Galois representa-
tions attached to them

The reader is referred to [BLGGT13] for more details concerning anything in this section except the
v = l case of (5) below, for which we refer to [Car12]. For a field k we adopt the notation Gk to
denote the absolute Galois group of k.

Let Zn,+ be the set of n-tuples a = (ai) ∈ Zn such that a1 ≥ a2 ≥ .... ≥ an. Let a ∈ Zn,+,
and let Ξa be the irreducible algebraic representation of GLn with highest weight a. A RAESDC
(regular, algebraic, essentially self-dual, cuspidal) automorphic representation of GLn(AQ) is a pair
(π, µ) consisting of a cuspidal automorphic representation π of GLn(AQ) and a continuous character
µ : A×Q/Q

× → C× such that:

(1) (regular algebraic) π∞ has the same infinitesimal character as Ξ∨a for a ∈ Zn,+. We say that π
has weight a.

(2) (essentially self-dual) π ∼= π∨ ⊗ (µ ◦ det).

Such a pair (π, µ) is an instance of a polarized representation in the sense of [BLGGT13, 2.1].
In this situation, there exists an integer w such that, for every 1 ≤ i ≤ n, ai + an+1−i = w. Let
S be the (finite) set of primes p such that πp is ramified. There exist a number field M ⊂ C, which
is finite over the field of rationality of π in the sense of [Clo90], and a strictly compatible system of
semisimple Galois representations (see [BLGGT13, 5.1] for this notion; in particular the characteristic
polynomial of a Frobenius element at almost every finite place has coefficients in M )

ρλ(π) : GQ → GLn(Mλ),

ρλ(µ) : GQ →M
×
λ ,

where λ ranges over all finite places of M (together with fixed embeddings M ↪→Mλ ↪→Mλ, where
Mλ is an algebraic closure of Mλ) such that the following properties are satisfied.

(1) ρλ(π) ∼= ρλ(π)∨ ⊗ χ1−n
cyc ρλ(µ), where χcyc denotes the `-adic cyclotomic character.

(2) The representations ρλ(π) and ρλ(µ) are unramified outside S ∪{`}, where ` denotes the rational
prime below λ.

(3) Locally at ` (i.e., when restricted to a decomposition group at `), the representations ρλ(π) and
ρλ(µ) are de Rham, and if ` /∈ S, they are crystalline.

(4) The set HT(ρλ(π)) of Hodge-Tate weights of ρλ(π) is equal to:

{a1 + (n− 1), a2 + (n− 2), . . . , an}.
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(The Hodge-Tate weight of χcyc is −1.) In particular, they are n different numbers and they are
independent of λ and `. Therefore, the representations are regular.

(5) The system is strictly compatible, as implied by the following compatibility with Local Lang-
lands: Fix any isomorphism ι : Mλ ' C compatible with the inclusion M ⊂ C w.r.t. the already
fixed embedding M ↪→Mλ ↪→Mλ. Whether v - ` or v|`, we have:

ιWD(ρλ(π)|GQv )F−ss ∼= rec(πv ⊗ | det |(1−n)/2v ). (2.1)

Here WD denotes the Weil-Deligne representation attached to a representation of GQv , F− ss

means the Frobenius semisimplification, and rec is the notation for the (unitarily normalised)
Local Langlands Correspondence, which attaches to an irreducible admissible representation of
GLn(Qv) a WD representation of the Weil group WQv .

Remark 2.1. We did not include ι in the notation since the isomorphism class of ρλ(π) is independent
of the choice of ι. This is easy to deduce from the fact that the Frobenius traces at all but finitely many
places are in M via the Chebotarev density theorem.

Remark 2.2. For every prime p of good reduction for π, and for each λ - p prime of M , the trace
of the image under ρλ(π) of the Frobenius at p belongs to the field of rationality of π (hence to M )
since the map rec twisted by | det |(1−n)/2 commutes with all field automorphisms of C. Therefore,
if the residual representation ρλ(π) is absolutely irreducible, it follows from Théorème 2 of [Car94]
that the representation ρλ(π) can be defined over Mλ.

Remark 2.3. Observe that the above property (5) implies that as long as v and ` are different, the
behaviour locally at v of the representations ρλ(π) is independent of `, and it can be determined (up
to Frobenius semisimplification) from the admissible representation πv, via Local Langlands.

Fix a symmetric form on Mn
λ, and a symplectic form if n is even. Thus we have the subgroup

GOn(Mλ), and also GSpn(Mλ) if n is even, of GLn(Mλ). It is important for us to know a criterion
for the image of ρλ(π) to be contained in GSpn(Mλ) (for any fixed choice of symplectic form on
M

n
λ) up to conjugation. This is deduced from a result of Bellaïche and Chenevier. Noting that µ

must be an algebraic Hecke character, let r ∈ Z denote the unique integer such that µ| · |−r is a finite
character. The integer ring in Mλ will be denoted OMλ

.

Lemma 2.4. Suppose that ρλ(π) is residually irreducible. If n is even and µ∞(−1) = (−1)r

(resp. if n is odd or µ∞(−1) 6= (−1)r) then the image of ρλ(π) is contained in GSpn(OMλ
) (resp.

GOn(OMλ
)) possibly after a conjugation by an element of GLn(Mλ).

Remark 2.5. When n is even, it may happen that the image of ρλ(π) is contained in GSpn(OMλ
)

as well as GOn(OMλ
) after conjugation, cf. footnote 1 of [BC11] for an example when n = 2. The

point is that while ρλ(π) is completely characterised by π alone, there are generally several choices
of µ for the same π with different values of µ∞(−1).
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Proof. By an argument as in Remark 2.2 of [AdDW13a] (where the residual irreducibility is used),
the proof is reduced to showing that the image is contained in either GSpn(Mλ) or GOn(Mλ).

We start with an easy observation. Let ρ : Γ → GL(V ) be an irreducible representation on
an n-dimensional vector space V over Mλ. Fix a basis {ei} for V and write {e∨i } for the dual
basis. Suppose that (ρ∨, V ∨) ' (ρ ⊗ χ, V ) for a character χ of Γ. Let A be an n × n matrix
representing one such isomorphism. Then At = δA for δ ∈ {±1}, which is called the sign of
(ρ, χ). (See the introduction of [BC11].) Then elementary linear algebra shows that if δ = 1 (resp.
δ = −1) then there exists a nondegenerate symmetric (resp. alternating) form V ⊗ V → Mλ such
that B(γv, γw) = χ(γ)B(v, w) for γ ∈ Γ and v, w ∈ V .

So the lemma amounts to the assertion that (ρ, χ) = (ρλ(π), ρλ(µ)) has sign 1 (resp. −1) if n is
even and µ∞(−1) = (−1)r (resp. otherwise). This is exactly [BC11, Cor 1.3].

3 Existence of self-dual automorphic representations with prescribed
local conditions

The goal of this section is to prove the existence of a regular algebraic self-dual cuspidal automorphic
representation of GLn(AQ) with some particular local properties when n is even, for the application
to the inverse Galois problem in Section 6. As we utilise Arthur’s classification for representations of
classical groups, our result depends on a few hypotheses which his work depends on. (See Remark 3.3
below.) The reader may skip to the next section after getting familiar with the notation of §3.4 if he or
she is willing to accept Theorem 3.4 below.

We adopt the convention that all irreducible representations of p-adic or real groups are assumed
admissible. Whenever it is clear from the context, we often write a representation or an L-parameter
to mean an appropriate isomorphism or equivalence class thereof in favour of simplicity. We did
not specialize to F = Q when recalling facts in §3.2 and §3.3 below since the exposition hardly
simplifies by doing so. The attentive reader will notice that Theorem 3.4 easily extends to the case
over any totally real field.

3.1 Plancherel measures

This subsection is a reminder of some facts about Plancherel measures on p-adic groups. Let G be a
connected reductive group over a non-archimedean or archimedean local field K. Write G(K)∧ for
the unitary dual of G(K), namely the set of all irreducible unitary representations of G(K) equipped
with the Fell topology. Let Xur

unit(G(K)) denote the set of all unitary unramified characters of G(K)

in the usual sense. (This is ImX(G) on page 239 of [Wal03].) Harish-Chandra proved (cf. [Wal03])
that there is a natural Borel measure µ̂pl on G(K)∧, called the Plancherel measure, satisfying

φ(1) =

∫
G(K)∧

φ̂(τ)µ̂pl, φ ∈ C∞c (G(K)),
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where φ̂ is the function defined by φ̂(τ) := trτ(φ). Let Θ(G(K)) denote the Bernstein variety,
which is a (typically infinite) disjoint union of affine complex algebraic varieties over C. Viewing
Θ(G(K)) also as the topological space on C-points, the association of supercuspidal support defines
a continuous map ν : G(K)∧ → Θ(G(K)) ([Tad88, Thm 2.2]). In prescribing local conditions for
automorphic representations we will often consider the following kind of subsets. The terminology is
non-standard and only introduced to save words.

Definition 3.1. A subset Û of the unitary dual G(K)∧ is said to be prescribable if

• Û is a Borel set which is µ̂pl-measurable with finite positive volume,

• ν(Û) is contained in a compact subset of Θ(G(K)), and

• for each Levi subgroup L of G and each discrete series σ of L(K), consider the function on
Xur

unit(L(K)) whose value at χ is the number of irreducible subquotients lying in Û (counted
with multiplicity) of the normalized induction of σ ⊗ χ to G. Then the set of points of discon-
tinuity has measure 0.

To show the flavour of this somewhat technical definition, we mention three examples for such
subsets. The first example is the subset of unramified (resp. spherical) representations in G(K)∧ if
K is non-archimedean (resp. archimedean). The second example is the set of all τ ∈ G(K)∧ in a
fixed Bernstein component, i.e. those τ with the same supercuspidal support up to inertia equivalence.
Finally the set {τ ⊗ χ : χ ∈ Xur

unit(G(K))} for a unitary discrete series τ of G(K) also satisfies the
requirements. (By a discrete series we mean an irreducible representation whose matrix coefficients
are square-integrable modulo center.) If G is anisotropic over K (which is true if G is semisimple)
then Xur

unit(G(K)) is trivial so the last example is a singleton.

3.2 Existence of automorphic representations

In this subsection we recall one of the few existence theorems in [Shi12], which are based on the prin-
ciple that the local components of automorphic representations at a fixed prime are equidistributed
in the unitary dual according to the Plancherel measure. The reader is invited to see its introduc-
tion for more references in this direction. There is a different approach to the existence of cuspidal
automorphic representations via Poincaré series (without proving equidistribution), cf. [KLS08, §4],
[Mui10].

Let G be a connected reductive group over a totally real number field F such that

• G has trivial center and

• G(Fw) contains an R-elliptic maximal torus for every real place w of F .

The first condition was assumed in [Shi12] and it is kept here as it is harmless for our purpose below.
However it should be possible to dispense with the condition by fixing central character in the trace
formula argument there. Now let S be a finite set of finite places of F . Let µ̂plv denote the Plancherel
measure on G(Fv)

∧ for v ∈ S. Let Ûv ⊂ G(Fv)
∧ be a prescribable subset for each v ∈ S.
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Proposition 3.2. There exists a cuspidal automorphic representation τ of G(AF ) such that

1. τv ∈ Ûv for all v ∈ S,

2. τ is unramified at all finite places away from S,

3. τw is a discrete series whose infinitesimal character is sufficiently regular for every infinite
place w.

The regularity condition above should be explained. Fix a maximal torus T and a Borel subgroup
B containing T in G over C (the base change of G to C via w : F ↪→ C). Let Ω denote the Weyl
group of T in G. The infinitesimal character χw of τw above, which may be viewed as an element
of X∗(T ) ⊗Z Q, is sufficiently regular if there is an σ ∈ Ω such that 〈σχw, α∨〉 � 0 for every B-
positive coroot α∨ of T in G. (Precisely the condition is that 〈σχw, α∨〉 ≥ C, where C is a large
enough constant depending only on G, S and {Ûv}v∈S .) This condition is independent of the choice
of T and B.

Proof. Our proposition is the analogue of Theorem 5.8 of [Shi12] except that a priori a weaker con-
dition on Û :=

∏
v∈S Ûv is assumed here. Let us explain this point. By the very definition of

prescribable subsets, the characteristic function on Û , denoted 1Û , belongs to the class of functions to
which Sauvageot’s density principle [Sau97, Thm 7.3] applies. (Our last condition in Definition 3.1
corresponds to condition (a)(1) in his theorem.) Hence we can take f̂S = 1Û in [Shi12, Thm 4.11] so
that we have the analogue of [Shi12, Cor 4.12] for our Û . Therefore the analogue of [Shi12, Thm 5.8]
is deduced through the same argument deriving that theorem from [Shi12, Cor 4.12] originally.

3.3 Arthur’s endoscopic classification for SO2m+1

Arthur [Art] classified local and global automorphic representations of symplectic and special ortho-
gonal groups via twisted endoscopy relative to general linear groups. For our purpose it suffices to
recall some facts in the case of odd orthogonal groups.

Let F be a number field. Denote by SO2m+1 the split special orthogonal group over F . Note that
the dual group of SO2m+1 is Sp2m(C). Write

ξ : Sp2m(C) ↪→ GL2m(C)

for the standard embedding, and put LFv := WFv (resp. LFv := WFv × SL2(C)) according as v is
an infinite (resp. finite) place. An L-parameter φv : LFv → GL2m(C) is said to be of symplectic
type if it preserves a suitable symplectic form on the 2m-dimensional space, or equivalently, if φv
factors through ξ (after conjugating by an element of GL2m(C)). For a place v of F , let recv denote
the (unitarily normalised) local Langlands bijection from the set of irreducible representations of
GLr(Fv) to the set of L-parameters LFv → GLr(C) for any r ∈ Z≥1. When v is finite, there is
a standard dictionary for going between local L-parameters for GLr and r-dimensional Frobenius-
semisimple Weil-Deligne representations of WFv in a bijective manner.
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For each local L-parameter φv : LFv → Sp2m(C) (or a local L-parameter for GL2m of sym-
plectic type), Arthur associates an L-packet Πφv consisting of finitely many irreducible representa-
tions of SO2m+1(Fv). Moreover each irreducible representation belongs to the L-packet for a unique
parameter (up to equivalence). If φv has finite centraliser group in Sp2m(C) so that it is a discrete
parameter, then Πφv consists only of discrete series. A similar construction was known earlier by
Langlands (deriving from Harish-Chandra’s results on real reductive groups) when v is an infinite
place of F .

Now let τ be a discrete automorphic representation of SO2m+1(AF ). Arthur shows the existence
of a self-dual isobaric automorphic representation π of GL2m(AF ) which is a functorial lift of τ
along the embedding Sp2m(C) ↪→ GL2m(C). In the generic case (in Arthur’s sense, i.e. when the
SL2-factor in the global A-parameter for τ has trivial image), this means that for the unique φv such
that τv ∈ Πφv , we have

recv(πv) ' ξφv, ∀v.

Remark 3.3. Arthur’s result [Art] is conditional on the stabilisation of the twisted trace formula
and a few expected technical results in harmonic analysis as explained there. See [BMM12, 1.18]
for a summary of these issues. We also note that the references [A24]-[A28] in Arthur’s book are in
preparation at the time our paper is finished. Since these results are expected to become available
from ongoing projects by others or by Arthur himself, the authors think that one need not strive hard
to avoid using them. However see Remark 3.5 below for a possible alternative approach.

3.4 Application: Existence of self-dual representations

We seek self-dual representations with specific local conditions. To describe them we need to set
things up. It is enough to restrict the material of previous subsections to the case F = Q. Let n be
a positive even integer. Let p, q, t be distinct rational primes and assume that the order of q mod p is
n. Denote by Qqn an unramified extension of Qq of degree n. Choose a tamely ramified character
χq : Q×qn → C× of order 2p such that χq(q) = −1 and χq|Z×qn is of order p (cf. Section 3.1 of [KLS08]
and the definition of maximal induced places of order p made in Part I [AdDW13a]). By local class
field theory we also regard χq as a character of GQq (or WQq ). Put

ρq := Ind
GQq
GQqn

(χq).

We write WD(ρq) for the associated Weil-Deligne representation, giving rise to a local L-parameter
φq for GLn(Qq). Since ρq is irreducible and symplectic ([KLS08, Prop 3.1]), the parameter φq
factors through ̂SOn+1(C) = Spn(C) ⊂ GLn(C) (after conjugation if necessary) and defines a
discrete L-parameter of SOn+1(Qq). So the L-packet Πφq consists of finitely many discrete series
of SOn+1(Qq). (In fact [KLS08, §5.3] exploits the fact that Πφq contains a generic supercuspidal
representation as shown by Jiang and Soudry. In our method it suffices to have the weaker fact that
πφq contains a discrete series.)
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It is a little more complicated to explain the objects at t. Let St2 denote the Steinberg repres-
entation of GL2(Qt) which appears as a subquotient of the unnormalized parabolic induction of
the trivial character. Since St2 has trivial central character, it corresponds to an L-parameter val-
ued in SL2(C). Let M be a Levi subgroup of SOn+1 isomorphic to SO3 × (GL1)

n
2
−1 so that

M̂ ' SL2(C) × GL1(C)
n
2
−1. Consider a local L-parameter φMt : WQt × SL2(C) → M̂ having

the form
φMt =

(
rect(St2), φ1, · · · , φn

2
−1

)
, φi ∈ Xur

unit(WQt),

where Xur
unit(WQt) denotes the set of unitary unramified characters of WQt . Then φMt is a discrete

parameter for M . Writing ηM : M̂ ↪→ Spn(C) for a Levi embedding (canonical up to conjugacy),
we see that ξηMφMt is the L-parameter for GLn corresponding to the n-dimensional Weil-Deligne
representation

rect(St2)⊕

n
2
−1⊕
i=1

φi ⊕ φ−1i

 .

Arthur associates a local L-packet ΠφMt
of irreducible M(Qt)-representations to φMt . Define Ût to be

the set of all irreducible subquotients of the parabolic induction of τMt ⊗χ fromM(Qt) to SOn+1(Qt)

as τMt runs over ΠφMt
and χ runs over Xur

unit(M(Qt)). Since the effect of the parabolic induction on
L-parameters is simply composition with ηM (this is implicit in the proof of the proposition 2.4.3 in
[Art]), the L-parameter for any τt ∈ Ût has the following form (after composing with ξ):

λ0rect(St2)⊕

n
2
−1⊕
i=1

λiφi ⊕ λ−1i φ−1i

 , λi ∈ Xur
unit(WQt), 0 ≤ i ≤ n

2
− 1. (3.2)

Notice that Ût is a prescribable subset. Among the conditions of Definition 3.1 we only check the last
one as the others are reasonably easy. By the way Ût is constructed, the function on Xur

unit(L(F )) in
that condition is either identically zero unless L = M (up to conjugacy) and σ is in the Xur

unit(L(F ))-
orbit of τMt for some τMt ∈ ΠφMt

. So we may assume that L = M and that σ = τMt . Then a version
of the generic irreducibility of parabolic induction (see [Sau97, Thm 3.2] attributed to Waldspurger,
cf. the fourth entry in Appendix A of [Shi12] for a minor correction) implies that the function is the
constant function 1 away from a closed measure zero set. This verifies the condition as desired.

Theorem 3.4. There exists a cuspidal automorphic representation π of GLn(AQ) such that

(i) π is unramified away from q and t,

(ii) recq(πq) 'WD(ρq),

(iii) rect(πt) has the form (3.2),

(iv) π∞ is of symplectic type and regular algebraic,

(v) π ' π∨, and
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(vi) the central character of π is trivial.

As we rely on Arthur’s work [Art], our theorem is conditional as explained in Remark 3.3.

Proof. Apply Proposition 3.2 with S = {q, t}, Ûq = Πφq and Ût as above. We have seen that Ûq and
Ût are prescribable. Hence there exists a cuspidal automorphic representation τ of SO2n+1(AQ) such
that

1. τv is unramified at every finite place v /∈ {q, t},

2. τq ∈ Πφq ,

3. τt ∈ Ût,

4. τ∞ is a discrete series whose infinitesimal character is sufficiently regular.

Then the functorial lift π of τ as in §3.3 has the desired properties (i)–(v) of the theorem by construc-
tion. (To verify the regular algebraicity of π, it is enough to note that the 2n-many exponents for z/z̄
in the parameter for π∞, coming from that of τ∞, at infinite places are in 1

2Z\Z and mutually distinct,
cf. the bottom line of [KLS08, p.557].) To see the cuspidality of π, it suffices to note that πq is super-
cuspidal since recq(πq) 'WD(ρq), which is irreducible. Finally (vi) is derived from the fact that the
central character is trivial at (almost) all finite places. Indeed the central character corresponds to the
determinant of the L-parameter for π at each place via local class field theory, but the determinant is
trivial since the parameter factors through SOn+1(C).

Remark 3.5. A slightly different version for the existence of τ can be shown by using Theorem 5.13
of [Shi12], which is obtained via the simple trace formula for G, instead of using Proposition 3.2.
Then one can prescribe τ∞ to be any favourite discrete series at the expense of losing control of
ramification at two auxiliary primes. On the other hand, it is conceivable that one can prove the
existence of π directly, without going through representations of G (thus avoiding the use of twisted
endoscopy), via the simple twisted trace formula for GLn due to Deligne-Kazhdan as long as one is
willing to allow ramification at one auxiliary prime in (i). (This is allowable for our purpose.) The
idea would be to prescribe test functions at q, t and infinite places using the twisted Paley-Wiener
theorem due to Rogawski and Mezo, cf. [CC09, Thm 3.2].

4 Compatible systems attached to the RAESDC representations from
the previous section

Let n be an even integer and let t be an arbitrary prime. Choose a prime p different from t such that
p ≡ 1 mod n. Chebotarev’s density theorem allows us to choose a prime q different from t (out of a
positive density set) such that qn/2 ≡ −1 mod p.
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From now on, we will restrict to triples of primes satisfying these conditions, and we will keep the
notation p, q, t for these primes, chosen in the order specified above. This notation is also compatible
with the one in the previous section.

Consider an automorphic representation π as in Theorem 3.4 and the trivial character 1 of A×Q/Q
×.

Then (π,1) is a RAESDC representation by construction, to which the facts of Section 2 apply. So
there are a number field M ⊂ C and a compatible system of Galois representations ρλ(π) : GQ →
GLn(Mλ) as λ ranges over all places ofM with the following properties for every λ (below, ` denotes
the rational prime dividing λ).

(1) ρλ(π) ∼= ρλ(π)∨ ⊗ χ1−n
cyc and det ρλ(π) = χ

n(1−n)/2
cyc ,

(2) ρλ(π) and its residual representation are absolutely irreducible if λ - p, q,

(3) ρλ(π) is unramified away from R = {q, t} and the residue characteristic of λ,

(4) ρλ(π)|GQ`
is de Rham and has Hodge-Tate weights as described in Section 2; in particular they

are independent of λ and distinct,

(5) ρλ(π)|GQ`
is crystalline if ` /∈ R,

(6) ρλ(π) has image in GSpn(OMλ
) (after a conjugation) by Lemma 2.4 if λ - p, q,

(7) The multiplier of ρλ(π) is χ1−n
cyc ,

(8) WD(ρλ(π)|GQq )F−ss 'WD(ρq)⊗| · |(1−n)/2 if λ - q. In particular, ρλ(π)|GQq ' ρq⊗αλ, where

αλ : GQq →M
×
λ is an unramified character (i.e. q is a maximally induced place of order p in the

terminology of Part I [AdDW13a]), and

(9) WD(ρλ(π)|GQt
)F−ss has the form (3.2) if λ - t. In particular the image of It under ρλ(π) is gen-

erated by a transvection, because rect(St2) is the Weil-Deligne representation having restriction

to It of the form (1, N) with N =

(
0 1

0 0

)
.

All these are easy consequences of the facts recollected in Section 2. Note that for λ - p, q,
the residual representation of ρλ(π) is irreducible since its restriction to GQq is irreducible for the
reason that ρq modulo λ is irreducible ([KLS08, 3.1]). In particular the irreducibility hypothesis
of Lemma 2.4 is satisfied. After a conjugation we may and will assume that the image lies in
GSpn(OMλ

). The determinant of ρλ(π) is computed easily by relating it to the central character
of π, which is trivial (Theorem 3.4 (vi)), keeping in mind that the normalisation of the correspond-
ence involves a twist by | · |(1−n)/2, cf. part (5) of Section 2. Finally in order to see the second
isomorphism follows from the first in (8), observe that WD(ρq) is already Frobenius semisimple.
Since ρq is irreducible, this forces WD(ρλ(π)|GQq ) to be already Frobenius semisimple. Thus
WD(ρλ(π)|GQq ) 'WD(ρq)⊗| · |(1−n)/2, which implies that ρλ(π)|GQq ' ρq⊗| · |

(1−n)/2 since WD

is a fully faithful functor.
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5 Level-lowering and transvections

Throughout this section π will denote the (fixed) automorphic representation considered in Section 4,
and (ρλ(π))λ, for λ running through the primes of a number field M ⊂ C, the compatible system
attached to π. As before we denote by ρλ(π) the residual representation of ρλ(π).

The aim of this section is to study the transvection contained in the image of ρλ(π) given by
its restriction to It, for every ` 6= t, λ | `. We want to show that when reducing modulo λ this
transvection is preserved, or equivalently, that the residual mod λ representation is ramified at t, at
least for a density one set of primes ` and every λ | `. The main tool will be a level-lowering argument
based on Theorem 4.4.1 of [BLGGT13].

One of the hypotheses in this theorem is that, when restricted to the Galois group of a suitable
cyclotomic extension, the residual representation is irreducible. The following lemma will be used to
meet this requirement:

Lemma 5.1. LetF be a quadratic number field. Then ρλ(π)|GF (ζ`)
is absolutely irreducible for almost

every ` (i.e., for all but finitely many primes), and for every λ | `. Moreover, the finite exceptional set
can be bounded independently of F .

Proof. Take ` to be a sufficiently large prime, such that in particular π is not ramified at ` and ` is
larger than the difference between any pair of Hodge-Tate weights plus 2. Further we will assume
` 6= p, q, so that we know that, because of the local parameter at q, ρλ(π) is absolutely irreducible and
ρλ(π) can be defined over Mλ. Call κλ the residue field of Mλ.

Assume that ` > [M : Q]. Because of regularity (and constancy of Hodge-Tate weights), Pro-
position 5.1.2 and Lemma 1.1.4 of [BL10] (the latter is used to get rid of case (3) of the former)
can be applied to conclude that either the residual mod λ representation is reducible, or it is in-
duced, or the group κ×λ im(ρλ(π)) is a sturdy subgroup of GLn(κλ) (see [BL10] for the definition
of sturdy subgroup). We already know that ρλ(π) is irreducible (because of the local parameter at
q). Also, if we assume that it is induced, then we obtain a contradiction (for ` sufficiently large)
by Section 3 of [AdDW13b]. Thus, we conclude that there exists some bound B such that, for all
` > B, κ×λ im(ρλ(π)) is a sturdy subgroup of GLn(κλ). As a consequence of Lemma 4.2.2 of [BL10],
κ×λ im(ρλ(π)|GF (ζ`)

) is also a sturdy subgroup of GLn(κλ). Thus, in particular, ρλ(π)|GF (ζ`)
is irre-

ducible.

From the lemma above, we know that there is a bound B such that for all primes ` > B and every
λ | ` the conclusion of the lemma holds for any quadratic field F . In what follows, we exclude the
primes ` ≤ B.

The following lemma allows us to control the case where a residual representation in our system
can lose ramification at t, at least over imaginary quadratic fields.

Lemma 5.2. Let F be an imaginary quadratic field such that t and q, the primes where π ramifies,
are split. Then among the primes ` that are split in F , there are only finitely many ` such that the
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residual representation ρλ(π) is unramified at t for some λ above `. In particular, the residual mod λ
representation contains a transvection given by the image of It for all but finitely many primes ` that
are split in F , for every λ | `.

Proof. We restrict our reasoning to primes ` that are split in F , different from q, t, and greater than
B. The last condition allows us to apply Lemma 5.1 for the residual mod λ representation.

Observe that, since t is split in F , for every ` 6= t and every λ | `, the restriction ρλ(π)|GF rami-
fies at the primes in F above t, and of course, if we assume that the mod λ representation becomes
unramified at t then the same happens to its restriction to GF . Thus, we can work over GF and this
is the setting where the problem of losing ramification can be attacked because the available level-
lowering results only work, to this day, over CM fields. By (quadratic) base change due to Arthur and
Clozel, the restriction to GF of our compatible system is also attached to an automorphic represent-
ation, namely the base change πF of π, an automorphic representation of GLn(AF ). (Note that πF
is cuspidal since ρλ(π)|GF is absolutely irreducible and that πF paired with the trivial character is a
polarized representation in the sense of [BLGGT13]. Obviously πF is also regular algebraic, so we
can speak of a compatible system attached to πF .)

Thus, we take a prime ` split in F , ` > B, and we assume that ρλ(π) (and, a fortiori, its restriction
to GF ) is unramified at t (the primes in F dividing t, respectively). To ease notation, let us call
ρF,λ := ρλ(π)|GF . This residual representation has an automorphic lift, the one given by the λ-adic
representation attached to πF , and since this λ-adic lift is ramified at the primes above t while ρF,λ is
not, we can apply a level-lowering result in this situation. Namely, we want to apply Theorem 4.4.1
from [BLGGT13] taking S to be the ramification set of ρ̄F,λ, i.e., we will take S = {`, q}. In
particular, t will not be in S. Let us first discuss the idea informally before going into details. The
theorem gives, for a residual representation that is known to be automorphic, the existence of another
automorphic lift with prescribed local types, under some conditions that are met in our situation. We
insist on the new automorphic lift to have the same local type at ramified primes as the given one
except at the places above t where we are assuming the residual representation to be unramified, since
we want this new automorphic form to be unramified at the places above t. This is the reason why, in
our situation, this theorem can be considered as a level-lowering result.

Going back to Theorem 4.4.1 of [BLGGT13], we need to check the two conditions there. The
λ-adic lift that we have, the one attached to πF , is potentially diagonalisable at the primes divid-
ing ` whenever ` is sufficiently large, because then we are in a Fontaine-Laffaille situation (cf.
Lemma 1.4.3 (2) of [BLGGT13] for a precise statement of the criterion for potential diagonalisab-
ility). This verifies the first condition. The second condition is immediately satisfied by Lemma 5.1
and ` > B. We choose one place dividing q and one place dividing ` in F and if we call S′ the set
of these two primes, for any v ∈ S′ we fix as n-dimensional λ-adic representation ρv of GFv the one
obtained from the λ-adic representation attached to πF , restricted to GFv . Having this fixed, we can
apply Theorem 4.4.1 in [BLGGT13] to conclude that there exists another automorphic representation
π′F of GLn(AF ) such that:
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(1) π′F is cuspidal, regular algebraic, and polarizable in the sense of [BLGGT13] (more precisely
RAECSDC when paired with a suitable Hecke character; this is analogous to the RAESDC rep-
resentation in Section 2 except that conjugate self–duality replaces self–duality there), in particu-
lar equipped with an associated compatible system (ρµ(π′F ))µ, indexed by the primes µ of some
number field M ′,

(2) π′F is unramified outside S,

(3) there is a place λ′ of M ′ above ` such that ρλ′(π
′
F ) ∼= ρ̄F,λ,

(4) if v ∈ S′, then ρλ′(π′F )|GFv connects to ρv (see [BLGGT13] for the definition of connects).

On the one hand, by known properties of the connected relation (cf. [BLGGT13], Section 1.4),
Condition (4) at v | ` implies that the Weil-Deligne representations of ρλ′(π′F )|GFv and ρv, restricted
to the inertia group at v, are isomorphic. Since ρv is known to be crystalline, we can conclude that
ρλ′(π

′
F )|GFv is crystalline. Moreover the connected relation implies (by definition) that they have

both the same Hodge-Tate numbers. From this (and conjugate essential self-duality) we deduce that
π′F has level prime to ` and that it has the same infinitesimal character as πF .

On the other hand, at the prime in S′ above q, say w, the Weil-Deligne representations corres-
ponding to ρλ′(π′F )|GFw and ρw have isomorphic restrictions to inertia. Indeed, since πF and π′F
are cuspidal automorphic representations of GL(AF ), the local components π′w and π′F,w are gen-
eric. Hence, by Lemma 1.3.2 of [BLGGT13], ρλ′(π′)|GFw = ρw and ρλ′(π′F )|GFw are smooth. From
Lemma 1.3.4 (2) of [BLGGT13] (due to Choi) we conclude that the inertial types of πF and π′F at w
agree.

Observe that in particular, independently of `, the automorphic representation π′F has fixed in-
finitesimal character at ∞, fixed ramification set and fixed types at the ramified primes. It follows
from the finiteness result of Harish–Chandra (cf. (1.7) and (4.4) of [BJ79]) that there are only finitely
many possibilities for π′F . (We see from [BJ79] that there are finitely many π′F with fixed infinites-
imal character at∞ such that the finite part of π′F has a nonzero invariant vector under a fixed open
compact subgroup of the finite part of GLn(AF ). So it boils down to showing that the conductor of
π′F is bounded. The latter can be seen via local Langlands from that we fix the ramification set of π′F
as well as the types at the primes therein.)

Now assume that the residual mod λ representation attached to πF is unramified at t for infinitely
many primes ` (we keep the assumption that we are only working with primes ` that are split in
F ). For each ` we find π′F as above (which a priori depends on `). Since there are only finitely
many possibilities for π′F as ` varies, we conclude that there exists a π′F as in (1) and (2) such that
the congruence (3) and condition (4) hold true for infinitely many λ. But this has an immediate
consequence for the compatible systems attached to πF and π′F . Since there are congruences between
these two systems in infinitely many different residual characteristics, this forces the traces of both
systems at unramified places to be equal, and then using Chebotarev’s density theorem combined
with the Brauer-Nesbitt theorem we conclude that the two systems are isomorphic. But looking at
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the restriction of these two systems at a decomposition group at t we get a contradiction, because
due to compatibility with Local Langlands, (ρλ(πF ))λ is known to be ramified at the places above t
while (ρµ(π′F ))µ is unramified at the places above t by construction. This contradiction proves that
the residual representation ρλ(π) can be unramified at t only for finitely many primes ` (among the
primes that split in F ).

We can apply the previous lemma over any quadratic number field of the form F = Q(
√
−w)

where w is a prime such that q and t are split in F . It is clear that there are infinitely many such fields;
consider an infinite sequence (Fn)n of distinct such fields. Let us call Tn the set of primes that are
split in one of the Fi, i = 1, . . . n, and let L be the set of primes ` such that ρλ(π) is unramified at t
for some λ | `. Then L∩Tn is finite for any n ∈ N. But as n grows, the sets Tn have (natural) density
arbitrarily close to 1. This clearly implies that L must have density 0.

6 Conclusion

The aim of this section is to show that the system of Galois representations studied in the previous two
sections, attached to the automorphic form constructed in Section 3, does satisfy all the conditions in
the main result on the inverse Galois problem of [AdDW13b]. Let us check this in detail. (In the
setting of [AdDW13b], we take N1 = t, N2 = 1, N = t, and L0 = Q). First, observe that the primes
q and p as in Section 4 satisfy that q is completely split in Q, and p ≡ 1 (mod n), p | qn − 1 but
p - q

n
2 − 1.

The system (ρλ(π))λ of Galois representations of GQ is a. e. absolutely irreducible and sym-
plectic, and it satisfies the following properties:

• The ramification set of the system is R = {q, t};

• The system is Hodge-Tate regular with constant Hodge-Tate weights and for every ` 6∈ R and
λ | `, the representation ρλ(π) is crystalline. Let a ∈ Z be the smallest Hodge-Tate weight and
let us call k the biggest difference between any two Hodge-Tate numbers. By Fontaine-Laffaille
theory, we conclude that for every ` 6∈ R, ` > k + 2, λ | `, χa` ⊗ ρλ(π) is regular in the sense
of [AdDW13b], and the tame inertia weights of this representation are bounded by k (in fact,
these weights for these ` agree with the Hodge-Tate numbers of the system plus a);

• As we have seen in Section 5, for a density one set of primes ` 6= t and for every λ | `, the
transvection corresponding to the image of It under ρλ(π) (cf. (9) of Section 4) is preserved in
the reduction mod λ, hence ρλ(π) contains a nontrivial transvection;

• As we have already observed (cf. (8) of Section 4), for every ` 6= q, for every λ | `, the
representation ρλ(π)|GQq

∼= ρq ⊗ αλ for some unramified character αλ : GQq → M
×
λ and ρq

is, by definition, Ind
GQq
GQqn

(χq) for χq as defined in Section 3;
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• For every ` 6= t and for every λ|`, the image of It under ρλ(π) consists of either a group
generated by a transvection or the trivial group, so ρλ(π)(It) is in any case an `-group, therefore
it has order prime to n! for any ` larger than n.

Thus, the main result on the inverse Galois problem of [AdDW13b] can be applied, and we deduce
the following theorem:

Theorem 6.1. Let π be the automorphic representation given by Theorem 3.4 of Section 3, with the
ramified primes q and t satisfying the conditions specified in Section 4. Then, the compatible system
(ρλ(π))λ has huge residual image for a density one set of primes `, for every λ|`, i.e., im(ρλ(π)) is a
huge subgroup of GSpn(F`) for a density one set of primes.

To derive our Galois theoretic result (i.e. Theorem 1.1), we just observe that, for any given integer
d > 0, we can change the condition p ≡ 1 (mod n) at the beginning of Section 4 by the stronger
condition p ≡ 1 (mod dn) while choosing q and t exactly as we did in Section 4.

With this, we conclude from the main result on the inverse Galois problem of [AdDW13b] that,
for such an integer d, the groups PGSpn(F`d) or PSpn(F`d) are realised as Galois groups over Q for
a positive density set of primes `. Since this can be done for any d, Theorem 1.1 follows.

References

[AdDW13a] Sara Arias-de-Reyna, Luis Dieulefait, and Gabor Wiese, Compatible systems of sym-
plectic Galois representations and the inverse Galois problem I. Images of projective
representations, Preprint, arXiv:1203.6546 (2013).

[AdDW13b] , Compatible systems of symplectic Galois representations and the inverse
Galois problem II. Transvections and huge image, Preprint, arXiv:1203.6552 (2013).

[Art] J. Arthur, The endoscopic classification of representations: orthogonal and symplectic
groups, Preprint, http://www.claymath.org/cw/arthur/.

[BC11] Joël Bellaïche and Gaëtan Chenevier, The sign of Galois representations attached to
automorphic forms for unitary groups, Compos. Math. 147 (2011), no. 5, 1337–1352.

[BJ79] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Auto-
morphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon
State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer.
Math. Soc., Providence, R.I., 1979, pp. 189–207.

[BL10] Thomas Barnet-Lamb, Non-big subgroups for l large, Preprint, arXiv:1006.1110 (2010).

[BLGGT13] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential auto-
morphy and change of weight, Annals of Mathematics, to appear (2013).

16



[BMM12] N. Bergeron, J. Millson, and C. Moeglin, Hodge type theorems for arithmetic manifolds
associated to orthogonal groups, Preprint, arXiv:1110.3049v2 (2012).

[Car94] Henri Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un
anneau local complet, p-adic monodromy and the Birch and Swinnerton-Dyer conjec-
ture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI,
1994, pp. 213–237.

[Car12] A. Caraiani, Monodromy and local-global compatibility for l = p,
Preprint, arXiv:1202.4683 (2012).

[CC09] G. Chenevier and L. Clozel, Corps de nombres peu ramifiés et formes automorphes
autoduales, J. Amer. Math. Soc. 22 (2009), no. 2, 467–519.

[Clo90] Laurent Clozel, Motifs et formes automorphes: applications du principe de fonctori-
alité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI,
1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159. MR
1044819 (91k:11042)

[DW11] Luis Dieulefait and Gabor Wiese, On modular forms and the inverse Galois problem,
Trans. Amer. Math. Soc. 363 (2011), no. 9, 4569–4584.

[KLS08] Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the in-
verse Galois problem, Compos. Math. 144 (2008), no. 3, 541–564.
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