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Strategic Exploitation of a Common-Property
Resource under Uncertainty

May 25, 2012

Abstract

We construct a game of noncooperative common-resource exploitation which delivers

analytical solutions for its symmetric Markov-perfect Nash equilibrium. We examine how

introducing uncertainty to the natural law of resource reproduction a¤ects strategic exploita-

tion. We show that the commons problem is always present in our example and we identify

cases in which increases in risk amplify or mitigate the commons problem. For a speci�c class

of games which imply Markov-perfect strategies that are linear in the resource stock (our

example belongs to this class), we provide general results on how payo¤-function features

a¤ect the responsiveness of exploitation strategies to changes in riskiness. These broader

characterizations of games which imply linear strategies (appearing in an Online Appendix)

can be useful in future work, given the technical di¢ culties that may arise from the possible

nonlinearity of Markov-perfect strategies in more general settings.

Keywords: Renewable resource exploitation, stochastic non-cooperative dynamic

games, the commons

JEL Classi�cation Codes: C73, C72, Q20, O13, D43



1. Introduction

In games of common-property renewable resource exploitation each player partly controls

the future evolution of the resource, given the strategies of other players. Models in which

there is a dynamic element and in which resources are shared, play an important role in

economics, e.g., industrial organization models or models with natural resources. The fun-

damental, in�nite-horizon setup, in which all players have full information about the eco-

nomic environment, has been studied in the economics literature almost exclusively within

the deterministic framework. The main �nding of this literature is that the equilibrium is

characterized by a �commons problem�. Namely, the higher the number of non-cooperating

players, the higher the aggregate exploitation rate, so the lower the level of the resource in

the long run.1 Our goal in this paper is to examine how noncooperative strategic interaction

is a¤ected by uncertainty in the natural law of resource reproduction.

Our focus on randomness in resource reproduction is a natural starting point for the

study of uncertainty in resource games. In the real world, resources evolve according to

stochastic laws of motion. Especially in the context of natural resources, as is the case with

biological populations such as forests and �sh species, these evolve subject to the existence

of predators or climate, that are a¤ected by random disturbances.2

Stochastic dynamic games can be particularly complex and di¢ cult to characterize when

the law of resource reproduction, the payo¤s and the distributions of random disturbances

are all given by general functions.3 At the same time, the task of characterizing decisions in

1 See, for example, Mirman (1979) and Levhari and Mirman (1980), Levhari, Michener and Mirman (1981),
Benhabib and Radner (1992), Dockner and Sorger (1996), Sorger (1998 and 2005) and Koulovatianos and
Mirman (2007).
2 In cases of governmental provisions of infrastructure for companies, such as railroads, electricity grids,
telecommunication networks, etc., �nancing and maintenance is also subject to random shocks, such as
business cycles or political cycles.
3 An example of a study examining the link between extraction decisions and uncertain reproduction out-
comes under perfect competition, and also optimal resource preservation policies, is the �shery application
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the presence of uncertainty in a general framework can be demanding even in the case of a

single decision maker.4 We discuss why technical problems arise in multiple-player dynamic

games which use general functional forms. Speci�cally, in resource games problems arise

because each player�s objective function directly contains the strategies of other players.

When the Markov-perfect Nash strategies of other players are strictly concave, a player�s

objective function may lose key properties, such as concavity, di¤erentiability, and continuity.

These technical di¢ culties are discussed in Mirman (1979).

A special class of dynamic games avoids such technical di¢ culties related to the concavity

of Markov-perfect Nash strategies. It is the class of games which possess primitives such

that symmetric Markov-perfect Nash strategies are linear decision rules with respect to the

common resource.5 A game that falls in this class is the parametric example of Levhari and

Mirman (1980). Yet, strategies in the Levhari and Mirman (1980) example are una¤ected by

introducing uncertainty. Here we provide a new example that nests and extends the Levhari

and Mirman (1980) example, in which introducing uncertainty and risk changes (in terms

of �rst- or second-order stochastic dominance) a¤ect exploitation strategies.

Our analysis is extended to the case of N players, where N can be more than two play-

ers. A study that extended the Levhari-Mirman (1980) model to N > 2 players is Okuguchi

(1981), who has also emphasized the e¤ects of entry (or exit) in �sh war in comparison

with cooperative solutions (joint resource management by all players). Understanding how

of Mirman and Spulber (1985). For a paper studying uncertainty and games see Amir (1996). For studies
pointing out technical issues in deterministic di¤erential resource games, such as multiplicity of equilibrium
strategies, arising even in setups with some simplifying assumptions on primitives, see Dockner and Sorger
(1996), and Sorger (1998), while for fundamental proofs of equilibrium existence see Sundaram (1989) and
Dutta and Sundaram (1992, 1993).
4 For example, Mirman (1971) analyzes uncertainty in a model with a single controller, providing a general
result about the role of uncertainty on decisions in two-period models, and discussing issues arising in the
in�nite-horizon setup.
5 Our analysis does not restrict the search for optimal strategies within the linear class. Rather, it restricts
attention to those dynamic games which have a symmetric equilibrium in linear Markov-perfect strategies,
among all possible Markov-perfect strategies.
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noncooperative strategic behavior changes as we add players to a game is the key to un-

derstanding whether, under particular forms of regulation, cooperation is sustainable as a

subgame-perfect equilibrium.6 Here, apart from presenting our example and performing

some comparative analysis of strategies as we increase risk, we do not provide extensions to

resource regulations. We do, however, provide an Online Appendix which proposes theoreti-

cal tools in order to analyze the comprehensive class of games with primitives that allow for

Markov-perfect Nash exploitation strategies which are linear in the resource stock.7 These

tools and theoretical results which are based on a stochastic-dominance analysis of how risk

changes a¤ect strategies, are applicable to other examples of linear-Markov-perfect-Nash-

strategy games that one may discover along the way.

2. The general framework

Time is discrete and the horizon is in�nite, i.e. t = 0; 1; : : :. Let the state variable, x, evolve

naturally (in the case of no exploitation) according to the law of motion,

xt+1 = �tf (xt) : (1)

We assume f 0 > 0, f 00 � 0. The random variable �t is i.i.d., independent of xt and,

�t � �(�t) , t = 0; 1; : : : :

We assume that �, the distribution function of �t, has support S� � R+ and mean E (�t) <

1; for all t.

6 A comprehensive analysis of how regulatory rules may a¤ect the linkup between noncooperative strategies
and the outside option for cooperation is provided by the book by Ostrom et al. (1994). In recent work,
Polasky et al. (2006) have built a resource game that clari�es conditions under which cooperation can
become a subgame-perfect-equilibrium outcome. More interestingly, Tarui et al. (2008) have extended the
Polasky et al. (2006) framework in order to include imperfect monitoring of each player�s harvest.
7 The Online Appendix is available at the journal�s repository of supplementary material which can be
accessed via http://www.jeem-supplemental.org/.
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We consider N � 1 identical players. In period t, each player j 2 f1; : : : ; Ng consumes

cj;t � 0 units of the available stock, and then a realization of the random shock takes place.

Next period�s level of x is given by

xt+1 = �tf

 
xt �

NX
i=1

ci;t

!
:

Each player j 2 f1; : : : ; Ng maximizes his expected discounted utility over an in�nite-period

horizon,

E0

" 1X
t=0

�tu (cj;t)

#
:

We assume u : R+ ! R is twice continuously di¤erentiable with u0 > 0, u00 < 0. All players

have the same momentary utility function, u, and discount factor � 2 (0; 1).

We compare decisions made in the stochastic model with decisions made in a version of

the deterministic model in which the shock � is always equal to its mean, E (�) = ��.8 We

distinguish between the stochastic model carrying the subscript �s�, and the deterministic

model with subscript �d�. We focus on Markov-perfect Nash equilibrium strategies for this

stochastic environment, i.e. strategies of the form fci = Cs;i (x)gNi=1. The problem of player

j 2 f1; : : : ; Ng can be expressed using a Bellman equation, namely,

Vs;j (x) = max
0�cj�x�

NP
i=1
i6=j

Cs;i(x)

8><>:u (cj) + �E

264Vs;j
0B@�f

0B@x� cj �
NX
i=1
i6=j

Cs;i (x)

1CA
1CA
375
9>=>; , (2)

in which Vs;j (x) is the value function of player j in the stochastic setup. In the deterministic

model, player j�s problem, conditional upon the strategies of all other players is,

Vd;j (x) = max
0�cj�x�

NP
i=1
i6=j

Cd;i(x)

264u (cj) + �Vd;j

0B@��f
0B@x� cj �

NX
i=1
i6=j

Cd;i (x)

1CA
1CA
375 . (3)

8 See Hahn (1969), Stiglitz (1970) and Mirman (1971).
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Let Ss (resp. Sd) denote the Markov-perfect Nash equilibrium strategies of the stochastic

(resp. deterministic) game, i.e.

Ss =

8><>:�C�s;i (x)	Ni=1
�������
for all j 2 f1; : : : ; Ng C�s;j (x) solves problem (2)

given Ci (x) = C�s;i (x) ; i 2 f1; : : : ; Ng with i 6= j

9>=>; ,

and

Sd =

8><>:�C�d;i (x)	Ni=1
�������
for all j 2 f1; : : : ; Ng C�d;j (x) solves problem (3)

given Ci (x) = C�d;i (x) , i 2 f1; : : : ; Ng with i 6= j

9>=>; .

Since players have identical utility functions in our analysis, and since we focus on state-

dependent (Markov-perfect-Nash) strategies, it su¢ ces to denote a game only by the tuple

hu; f;�i for simplicity.

With the assumptions imposed so far, it is not possible to analyze the complete equilib-

rium sets, nor to give conditions for the existence of globally unique equilibrium in either the

stochastic or the deterministic game. The presence of other players�strategies in problems

(2) and (3) gives rise to various potential problems.

Suppose, for the moment, that the value function is twice continuously di¤erentiable.9

The interior �rst-order condition, from the dynamic program (2), is

u0 (cj) = �f 0 (y)E
�
�V 0

s;j (�f (y))
�
, with y = x� cj �

NX
i=1
i6=j

Cs;i (x) : (4)

Using the envelope theorem on (2) yields,

9 This is not a valid assumption for the general setup, as we discuss below.
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V 0
s;j (x) = �

2641� NX
i=1
i6=j

C 0s;i (x)

375 f 0 (y)E ��V 0
s;j (�f (y))

�
: (5)

Combining (5) with (4),

V 0
s;j (x) = u0 (Cs;j (x) )

2641� NX
i=1
i6=j

C 0s;i (x)

375 . (6)

A crucial technical di¢ culty is revealed by (6). While u (�) is strictly concave, the strategies

Cs;i (�) of the other players need not be convex, and the value function Vs;j (�) need not be

concave.10 In fact, non-concavity is not the only problem that may arise in a player�s value

function due to the presence of the strategies of other players in this setup. Mirman (1979)

provides examples of games using functions u and f , which meet our general assumptions,

but lead to value functions that are not concave, not di¤erentiable, not even continuous,

and may admit multiple solutions.11 Mirman (1979) demonstrates by example that using

the same functions u and f in a single-controller optimization problem would lead to twice

continuously di¤erentiable and strictly concave value functions. However, these desirable

value-function properties can be lost in games of the form given by (2) or (3).

The example by Levhari and Mirman (1980) does not su¤er from the potential technical

di¢ culties that may arise from the nonlinearity of Markov-perfect Nash strategies of other

players: the fundamentals u and f in the Levhari-Mirman (1980) example are such that

the resulting Markov-perfect Nash strategies are linear in the resource stock. In light of

10For example, even if we assume, for a moment, that the second derivatives of strategies Cs;i (�) exist, then
di¤erentiating both sides of (6) with respect to x leads to,

V 00s;j (x) = u00 (Cs;j (x) )

2641� NX
i=1
i6=j

C 0s;i (x)

375C 0s;j (x)� u0 (Cs;j (x) ) NX
i=1
i6=j

C 00s;i (x) ,

in which V 00s;j (x) may be strictly positive if �i 6=jC
00
s;i (x) < 0 for some x.

11Such problems do not preclude the existence of equilibrium (see, the speci�c example in Mirman (1979,
pp. 65-72)).
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this technical property, here we contribute an example which extends the Levhari-Mirman

(1980) analysis (see Section 5): our example in this paper accommodates the study of how

uncertainty a¤ects strategic exploitation by players while the Markov-perfect Nash strategies

are linear in the resource stock, too.

3. Games with a Markov-Nash equilibrium in linear-symmetric
strategies

Since games hu; f;�i in which fundamentals u and f lead to linear Markov-perfect Nash

strategies avoid technical problems, Theorem 1 below shows a way to identify whether a

pair of functions u and f implies that a certain game hu; f;�i allows symmetric linear

Markov-perfect Nash strategies of the form,12

C�i (x) = !x, with ! 2 (0; 1=N) for all x > 0; all i 2 f1; : : : ; Ng . (7)

The linearity of strategies given by (7) guarantees the di¤erentiability of the value function:

these strategies satisfy conditions (4) and (5), and therefore condition (6), which becomes,

V 0 (x) = [1� (N � 1)!]u0 (!x) . (8)

Therefore, in this equilibrium V 0 > 0, while V 00 exists and is strictly negative. In other

words, a Markov-perfect Nash equilibrium with linear symmetric strategies ensures that V

is twice continuously di¤erentiable, strictly increasing and strictly concave. Notice that,

since we focus on symmetric strategies, the index j is dropped from the value function.

A game hu; f;�i can have at most one linear-symmetric strategy in the equilibrium set

Ss; and similarly a game


u; f; ��

�
can have at most one linear-symmetric strategy in the

equilibrium set Sd: To see this, consider the stochastic case �rst. Fix x > 0, and consider
12Levhari and Mirman (1980) also examine cases of non-symmetric strategies by allowing the discount factors
of players to di¤er. Because here we are interested in the N -player case in which N can be bigger than 2,
we restrict attention to symmetric strategies.
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(4) assuming (interior) linear symmetric strategies Cs;i (x) = !x. This necessary condition

implies,13

 s (!) = �u0 (!x) + �f 0 ((1�N!)x)E [�V 0
s (�f ((1�N!)x))] = 0 for all x. (9)

Similarly in the case of


u; f; ��

�
; the necessary condition from (3) implies,

 d (!) = �u0 (!x) + ���f 0 ((1�N!)x)V 0
d

�
��f ((1�N!)x)

�
= 0 for all x. (10)

Notice that,

 0s (!) > 0 and  0d (!) > 0 for all ! 2
�
0 ;
1

N

�
, (11)

so there can be at most one solution in each case.

In the games we study, the equilibrium strategies, !s and !d of the games hu; f;�i and

u; f; ��

�
respectively, are the unique solutions to,14

 s (!s) = 0 and  d (!d) = 0 . (12)

While functions  s and  d are convenient to work with in order to characterize properties of

the Markov-Nash equilibrium in linear strategies, they do not provide the best way to verify

the existence of a solution, since the value functions themselves enter the expressions in (9)

and (10). Theorem 1 gives necessary and su¢ cient conditions so that there is precisely one

13Notice that since (9) must be met for all x > 0 in the case of linear-symmetric strategies, the function
 s (�) does not depend on x in equilibrium (i.e., when ! = !s). Even if the left-hand side of (9) depends on
x whenever (9) is not met with equality (i.e., when ! 6= !s), this potential dependence on x does not a¤ect
our analysis, so we discard x for the sake of simplicity.
14Amir (1996) shows that for some games an equilibrium does not exist in the deterministic case, while there
is at least one equilibrium for the stochastic version of the same model. In our extended example, presented
in Section 5, linear-symmetric equilibrium strategies exist in both the deterministic and the stochastic game.
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such symmetric equilibrium in linear strategies in the stochastic and the deterministic games

respectively, based on the data of the corresponding game.15

Theorem 1 Game hu; f;�i has a unique Markov-perfect Nash equilibrium in

linear symmetric strategies, if and only if there exists only one !s 2 (0; 1=N)

such that

�s (!s; x) = �s some �s 2 R, for all x > 0

in which

�s (!; x) = u (!x)� �
1� (N � 1)!
1�N!

E [u (!�f ((1�N!)x))]

and � is such that all players�value functions are well-de�ned.16 Game


u; f; ��

�
has a unique Nash equilibrium in linear symmetric strategies if and only if there

exists only one !d 2 (0; 1=N) such that

�d (!d; x) = �d some �d 2 R, for all x > 0

in which

�d (!; x) = u (!x)� �
1� (N � 1)!
1�N!

u
�
!��f ((1�N!)x)

�
and �� is such that all players�value functions are well-de�ned.

Proof
15For the approach followed in the proof of Theorem 1, see Chang (1988), Xie (2003), and Shimomura and
Xie (2008). Note that this result is not a global-uniqueness equilibrium result.
16Whether a player�s optimization problem is well-de�ned in a stochastic Markovian game can depend on
the nature of the shock. For example, if the support of the shock is unbounded, conditions must be placed
on the distribution of the shock in order to guarantee that value functions of players exist. In the context of
the general single-controller stochastic growth model (which is the same as the model of Brock and Mirman
(1972)), Stachurski (2002) identi�es a simple condition on the mean of some monotonic transformation of the
random shock that is su¢ cient to guarantee a well-behaved optimization problem and a well-de�ned long-run
stationary distribution. Unlike Stachurski (2002), we do not provide such a condition for the general game,
but we do so in the context of our more speci�c analysis in Section 5.

9



See Appendix A. �

In our parametric example of Section 5 we use Theorem 1 in order to identify appropriate

functions u, f , �, and the level of �� that guarantee linear Markov-perfect Nash strategies.

4. Why introducing multiplicatively-separable shocks to the resource-
renewal law of the Levhari-Mirman (1980) model does not af-
fect symmetric Markov-perfect Nash strategies

Using the Levhari-Mirman (1980) functions, namely u (c) = ln (c) and f (x) = x�, the value

function of each player in the stochastic model is of the form,

Vs (x) =
�

1� ��
ln (x) + bs , (13)

whereas the value function in the deterministic case is,

Vd (x) =
�

1� ��
ln (x) + bd , (14)

in which bs and bd are constants. The resulting symmetric Markov-perfect Nash strategies

are linear, namely, Cs;i (x) = !sx and Cd;i (x) = !dx for all i 2 f1; :::; Ng. Yet, it is

straightforward to show from (2) and (3) that,

!s = !d =
1� ��

N (1� ��) + ��
. (15)

Therefore, the presence of uncertainty does not alter the rate of consumption in the Levhari-

Mirman (1980) model. The di¤erence between the stochastic and the deterministic model

is that in the stochastic case the state variable evolves randomly and approaches a long-run

stationary distribution. In the stochastic model, the mathematical expectation of algebraic

expressions involving random disturbances enter the value function in an additively-separable

manner and become part of the constant term bs in (13), which does not a¤ect optimization.

This additive separability of terms bs and bd in (13) and (14) justi�es why !s = !d, while,
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generally, bs 6= bd. Below we extend the Levhari-Mirman (1980) example, with uncertainty

a¤ecting Markov-perfect Nash strategies.

5. An extended example

Let,

u (c) =
c1�

1
� � 1

1� 1
�

, (16)

and

f (x) =
h
�x1�

1
� + (1� �)�1�

1
�

i �
��1

, (17)

with � > 0, � � 0 and � 2 (0; 1]. Notice that for � = 1, u (c) = ln (c) and f (x) = �1��x�,

i.e. the Levhari-Mirman (1980) model.17 A similar example, applied to problems of Cournot

oligopoly, has been presented in Koulovatianos and Mirman (2007).18

5.1 Existence of linear-symmetric equilibrium strategies

As in Stachurski (2002), we identify a single su¢ cient condition on the mean of the distrib-

ution of the transformed random variable, �
1� 1

�

t , in order that the stochastic equilibrium be

17To show that lim�!1

�
c1�1=� � 1

�
= (1� 1=�) = ln (c), re-write the limit as

lim�!1

�
e(1�1=�) ln(c) � 1

�
= (1� 1=�) = lim�!1 e

(1�1=�) ln(c) � ln (c) = ln (c), after having applied L�Hôpital�s

rule. A similar proof for the fact that lim�!1

h
�x1�1=� + (1� �)�1�1=�

i�=(��1)
= �1��x� can be found in

Chiang (1984, pp. 428-430).
18For a game with linear symmetric strategies, take (16) and consider a general CES production function

f (x) =
h
�x1�

1
 + (1� �)�1�

1


i 
�1

.

From the general �rst-order conditions of a game with linear strategies,

u0 (!x) = � [1� (N � 1)!] f 0 ((1�N!)x)E [�u0 (!f ((1�N!)x) �)]

(see (4) and (8)). Using (16) and the CES production function,

x�
1
� = � [1� (N � 1)!]�

�y
x

� 1


(1�N!)�
1
 y�

1
�E
�
�1�

1
�

�
,

with y � f ((1�N!)x). Setting � =  is the only way to obtain linear strategies with these functions.
The single-controller version of this example with uncertainty (i.e. N = 1), is similar to this presented by
Benhabib and Rustichini (1994).
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well-de�ned.

Proposition 1 If u and f are given by (16) and (17) respectively, and � is

such that,

E
�
�1�

1
�

�
� � <

1

��
and [E (�)]1�

1
� � �� < 1

��
, (18)

then !s satisfying,

!s =
1

���

h
(1�N!s)

1
� � ��� (1�N!s)

i
, (19)

and !d satisfying,

!d =
1

����

h
(1�N!d)

1
� � ��� (1�N!d)

i
, (20)

de�ne unique linear-symmetric strategies that are Markov-perfect Nash equilib-

rium strategies of the in�nite-horizon stochastic game and the deterministic game,

respectively.

Proof of Proposition 1 From Theorem 1, by simple substitution we can see that

�s (!; x) takes the form,

�s (!; x) =
!1�

1
� (1�N!)�

1
�

1� 1
�

n
(1�N!)

1
� � ��� [(1� (N � 1)!)]

o
x1�

1
� + g (!) ,

in which g (!) does not depend on x. Therefore, if (1�N!)
1
� � ��� [(1� (N � 1)!)] = 0

for a unique ! 2 (0; 1=N) ; then the su¢ ciency part of Theorem 1 can be applied. This

condition is clearly equivalent to (19). By analogous argument, in the deterministic case the

su¢ ciency part of Theorem 1 is satis�ed if there is a unique ! 2 (0; 1=N) satisfying condition

(20). Now it remains to show that !s and !d are unique, and also that the optimization

problem of each player is well-de�ned. Let the two value functions,

12



Vs (x) =
�!

1� 1
�

s

1� ��� (1�N!s)
1� 1

�

x1�
1
� � 1

1� 1
�

+ bs, (21)

Vd (x) =
�!

1� 1
�

d

1� ���� (1�N!d)
1� 1

�

x1�
1
� � 1

1� 1
�

+ bd, (22)

in which bs and bd are constants. If N!s = 
s 2 (0; 1) and N!d = 
d 2 (0; 1), then (21)

and (22) imply that the problem of each player is well-de�ned. To show that 
s 2 (0; 1), we

examine two cases.

Case 1: � > 1

Focusing on aggregate consumption rates, 
 � N!, we express (19) as,

N =
���


(1� 
)
1
� � ��� (1� 
)

� H (
) . (23)

Here,

H (0) = 0 and H (1) =1 ,

while

H 0 (
) = ���

1�(1� 1
� )


(1�
)1�
1
�
� ���h

(1� 
)
1
� � ��� (1� 
)

i2 > 0 , for all 
 2 (0; 1) .

To see the last statement, notice that 1 �
�
1� 1

�

�

 � (1� 
)1�

1
� for all 
 2 [0; 1), with

equality if and only if 
 = 0. So, applying the intermediate-value theorem to (23) shows

that 
s 2 (0; 1), a unique symmetric equilibrium in linear strategies. This case is depicted

by Figure 1. For 
d 2 (0; 1) and uniqueness, replace � with �� in the above argument.

Case 2: � < 1

For this case it is useful to express (19) as,

� (
) � N



=

���

(1� 
)
1
� � ��� (1� 
)

� � (
) , (24)
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in which � (0) =1 and � (0) = ���= (1� ���), and

� (
) > 0 if 
 2
h
0 ; 1� (���)

�
1��

i
.

Due to (18) this interval is non-empty. Moreover,

�0 (
) = ���

1
�
(1� 
)

1
�
�1 � ���h

(1� 
)
1
� � ��� (1� 
)

i2 > 0 for all 
 2
h
0 ; 1� (���)

�
1��

i

as 0 < (1� 
)
1
����� (1� 
) <

h
1
�
(1� 
)

1
�
�1 � ���

i
(1� 
) for all 
 2

h
0 ; 1� (���)

�
1��

i
.

Finally,

�
�
1� (���)

�
1��

�
=1 .

Given that �
�
1� (���)

�
1��

�
< 1 and �0 (
) < 0 for all 
 2

h
0 ; 1� (���)

�
1��

i
, it follows

that 
s 2
�
0 ; 1� (���)

�
1��

�
� (0; 1), and it is unique. These properties of functions � (
)

and � (
) are depicted by Figure 2 which graphically demonstrates the uniqueness of 
. For


d 2 (0; 1) and the uniqueness of it replace � with �� in the above argument.

For the last case of � = 1, see Section 4 above, to verify that (15) satis�es both (19) and

(20), and also that 
s = 
d 2 (0; 1). �

Note that Proposition 1 shows that the Levhari-Mirman (1980) model is indeed a knife-

edge case for � = 1 in our extended example. According to our analysis in Section 4, in

the case of � = 1 of the extended example, uncertainty plays no role.19 However, for other

values of �, uncertainty has a profound impact on each player�s exploitation strategy.

5.2 Impact of uncertainty on strategies

Based on the analytical solution given by Proposition 1, we can check how strategic exploita-

tion rates are a¤ected by changes in risk. By the term �changes in risk�we mean changing

19Notice also that, for � = 1, (21) and (22) yield (13) and (14).
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the distribution function � according to the notions of �rst-order stochastic dominance

(FSD) and second-order stochastic dominance (SSD).

The concept of FSD involves changing � so that any monotonic transformation of the

random variable �, h (�) leads to a change in its expected value E [h (�)]. De�nition 1

formally states the de�nition of FSD (see, for example, Levy (1992, p. 557).

De�nition 1 Let two random variables, ~X and X, in a common probability

space, with both supports being subsets of Z � R+. Then X �rst-order stochas-

tically dominates ~X, or ~X �FSD X, if and only if 20

E [h (X)] � E
h
h
�
~X
�i

for all non-decreasing functions h .

The concept of SSD can accommodate the notion of a �mean-preserving spread�, accord-

ing to which two distribution functions, � and ~� with corresponding realizations � and ~�

can have E (�) = E
�
~�
�
, but E [h (�)] 6= E

h
h
�
~�
�i
for all concave functions h. The formal

de�nition of SSD is given by De�nition 2 (again cf. Levy (1992, p. 557).

De�nition 2 Let two random variables, ~X and X, de�ned on a common

probability space, with both supports being subsets of Z � R+. Then X second-

order stochastically dominates ~X, or ~X �SSD X, if and only if

E [h (X)] � E
h
h
�
~X
�i

for all concave functions h .

Proposition 2 provides a comparison among exploitation strategies after changing the

stochastic structure according to the FSD and SSD concepts.

20Letting ~F and F be the distribution functions of ~X and X,respectively, then ~X �FSD X if and only if
~F (z) � F (z) for all z 2 Z.
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Proposition 2 Let u and f be given by (16) and (17), and �, ~�, and �̂ with

corresponding realizations �, ~�, and �̂ be such that (18) is met, and with �, ~�,

�̂, and �� corresponding to the de�nitions given by (18). Let also ~� �FSD �

and �̂ �SSD �. If !s, ~!s, and !̂s characterize the solutions to games hu; f;�i,D
u; f; ~�

E
, and

D
u; f; �̂

E
respectively, then

� S 1, ~!s S !s , (25)

� S 1, !̂s S !s , (26)

� S 1, !s S !d . (27)

Proof

See Appendix B. �

Equivalence (25) of Proposition 2 which refers to FSD states that if risk changes so that

the expectation of any nondecreasing transformation of the shock increases (this would be a

shift from ~� to � in Proposition 2), then the exploitation rate of each player will decrease

(!s < ~!s) if the elasticity of intertemporal substitution, �, is higher than 1. The FSD

change in risk described by a shift from ~� to � is perceived as an improvement in the

e¢ ciency of resource reproduction and as a source of future utility gains for any value of

� > 0.21 A high elasticity of intertemporal substitution (� > 1) means more tolerance to

any intertemporal consumption pro�le (ct; ct+1) in which ct and ct+1 may be quite di¤erent.

The intertemporal �exibility implied by � > 1 combined with expectations of higher future

gains imply dominance of the (intertemporal) substitution e¤ect over the wealth e¤ect which

generates an incentive for each player to conserve the resource (by decreasing the exploitation

rate, i.e. !s < ~!s).
21To see this perceived improvement consider De�nition 1, function Vs (x) given by equation (21), and j-th
player�s expectation one period ahead, i.e., E

�
V js (�f (z))

�
, with z = x � �i 6=jCs;i (x), which show that a

shift from ~� to � with ~� �FSD � implies E
�
V js (�f (z))

�
� E

h
V js

�
~�f (z)

�i
for all �.
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5.3 General results concerning games with primitives that imply
Markov-perfect Nash Strategies which are linear in the re-
source stock and their relevance with our extended example

The result given by (25) seems speci�c to our example, i.e. particularly speci�c to restricting

� to being equal to another parameter of the resource-reproduction function. Yet, in the

Online Appendix (see Theorem 7 and Remark 1 therein) we show that, in the comprehensive

class of games hu; f;�i which imply linear Markov-perfect Nash exploitation strategies, the

concept of FSD and the equivalence given by (25) hinge upon the comparison of the elasticity

of intertemporal substitution with unity (i.e., �u0 (c) = [c � u00 (c)], in which u is not necessarily

given by (16)). Regarding the role of �increasing risk�through a mean-preserving spread,

equivalence (26) implies that if the coe¢ cient of relative risk aversion is higher than unity

(� < 1), then an increase in risk (shifting from � to �̂ with �̂ �SSD �) leads to a drop in

the exploitation rate for each player (!̂s < !s �see Theorem 6 in the Online Appendix). In

essence, the impact of increasing risk when � < 1 is an e¤ort to conserve the resource, in

a similar fashion to precautionary-savings investment analyses. In the Online Appendix we

show that for the comprehensive class of games hu; f;�i which imply linear Markov-perfect

Nash exploitation strategies, SSD and the equivalence given by (26) depend on the convexity

of the term u0 (c) � c.22

22Our results in the Online Appendix can be useful to researchers who are active in theory and/or applications
of dynamic resource games. Theorists can see why (and how) the mechanics uncovered by our example survive
in more general setups in which Markov-perfect Nash strategies are linear in the resource stock. Researchers
who conduct applied research through numerical simulations of dynamic resource games may be helped by a
conjecture: for setups in which Markov-perfect Nash strategies are close to linear in the resource stock, the
role of primitives in strategic extraction under uncertainty that we have uncovered in the Online Appendix
is likely to survive to some extent as well.
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5.4 Changes in risk and the commons problem in our example

In this subsection we investigate whether increasing risk has an impact on the rate at which

aggregate exploitation rates increase with the number of players. This investigation requires

a comparison of aggregate exploitation rates along two dimensions, the number of players and

the degree of riskiness. In performing such a comparison, if we employ two random variables,

� and ~�, with a discrete di¤erence in the degree of riskiness, the comparison becomes unclear,

as the initial aggregate exploitation rates can also be discretely di¤erent before increasing

the number of players. For this reason, we employ a concept of changing risk that allows for

marginal increases in riskiness. Consider a lognormally distributed shock,

ln (�) � N

�
�� �2

2
; �2
�
. (28)

The expectation of � is, E (�) = e�, whereas its variance is, V ar (�) = e2�
�
e�

2 � 1
�
, i.e., the

parameter � has an impact only on the variance of � and not on its mean (but the parameter

� has an impact on both the mean and the variance of �). So, any two distributions given

by (28) with di¤erent values of parameter � are linked through second-order stochastic

dominance (increase in risk). In particular, if � � �(�) with parameters (�; �) and ~� �

~�
�
~�
�
with parameters (�; ~�), then ~� > � implies that ~� �SSD � (~� represents an increase

in risk from �).

Proposition 3 examines the impact of increases in risk on the intensity of the tragedy of

the commons.

Proposition 3 If u and f are given by (16) and (17), � obeys (28) and condition

(18) is met, then, (i) the commons problem is ampli�ed by an increase in riskiness

if and only if � < 1, (ii) the commons problem is mitigated by an increase in

riskiness if and only if � > 1, (iii) the commons problem is una¤ected by an

18



increase in riskiness if and only if � = 1.

Proof

See Appendix B. �

Proposition 3 shows that, if, � < 1, the overexploitation tendency is exacerbated as

both riskiness and the number of players increase. Note, however, Proposition 2 states that

whenever � < 1, for a �xed number of players, all players would tend to conserve the resource

by decreasing their consumption rates as uncertainty increases. So, in our example, if players

are highly risk-averse, then the commons problem dominates any conservation incentives that

Proposition 2 has suggested to arise after increasing risk. These results indicate the complex,

yet interesting, strategic behavior in Markov-perfect Nash equilibrium outcomes and call for

further investigation in future research.

6. Concluding Remarks

The impact of uncertainty on strategic behavior in games of common-resource exploitation is

not adequately understood. One reason for this lack of progress is that technical anomalies

may arise if Markov-perfect-Nash strategies are nonlinear. One speci�c class of games which

overcomes such anomalies is games that produce Markov-perfect Nash exploitation strategies

which are linear in the resource stock. While the famous Levhari-Mirman (1980) example

falls within this particular class, it nevertheless implies no impact of uncertainty on the

strategic behavior of players. In this paper we have contributed another analytical example

with linear Markov-perfect Nash exploitation strategies which nests the Levhari-Mirman

(1980) example as a special case and which o¤ers insights on how changes in uncertainty

a¤ects players�strategic behavior.

Our example involves additively-separable utility with constant relative risk aversion.
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There are two key �ndings within our example. First, if the coe¢ cient of relative risk aver-

sion is higher than unity, then, for a given number of symmetric players, each player will

conserve the resource once uncertainty (or an increase in risk) is introduced. This conserva-

tion response of players to increases in risk resembles investment literatures in which a high

coe¢ cient of relative risk aversion can be one of the ingredients leading to precautionary

savings. Second, our example suggests that strategic interaction is more complex: we �nd

that the addition of players leads to exacerbated increases in aggregate exploitation rates as

we simultaneously increase risk, if the coe¢ cient of relative risk aversion is higher than unity.

It seems that for highly risk-averse players the commons problem dominates any conserva-

tion incentives that our �rst �nding has suggested to arise after increasing risk. So, in our

example, increasing risk exacerbates the commons problem if players are highly risk-averse.

In an Online Appendix we also develop technical tools for studying the comprehensive

class of games that produce Markov-perfect Nash exploitation strategies which are linear

in the resource stock. This more general analysis shows that the conservation response of

players to increases in risk indeed hinges upon properties of the momentary utility function of

players, always within the linear-strategy class of games. Our results regarding the impact

of increasing risk on the intensity of the commons problem may be more speci�c to our

example which links the elasticity of intertemporal substitution to parameters of the natural

law of resource reproduction. Nevertheless, both our example and our more general analysis

in the Online Appendix give shape to speci�c questions regarding the impact of uncertainty

on strategic interaction in common-resource games for further investigation in more general

setups.

Our contribution is related to the understanding of how rules for regulating the commons

(see, for example, Ostrom et al. (1994)) may depend on the magnitude of risk borne by
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players in a common-resource-exploitation environment. Although we do not examine any

forms of regulation, our example and the tools we develop in the Online Appendix may help

in formally understanding how uncertainty a¤ects strategic exploitation in more general

settings in future work. For example, Polasky et al. (2006) study whether cooperation can

become a subgame-perfect-equilibrium outcome, and Tarui et al. (2008) extend this analysis

to including imperfect monitoring of each player�s harvest. These two papers are closer to

tackling questions of regulation than ours. Yet, introducing informational uncertainty, e.g.,

through Bayesian learning, to such studies, may be natural extensions in order to understand

regulation in more realistic environments. Our work here may be a starting point in order

to pursue such extensions.

21



7. Appendix A �Proof of Theorem 1

Proof of Theorem 1

For the necessity part in the case of the stochastic game, suppose game hu; f;�i has an

equilibrium in linear-symmetric strategies, C�s;i (x) = !sx all i,
�
C�s;i (x)

	N
i=1
2 Ss: Consider

the �rst-order condition given by (9) and combine it with (6), which gives

u0 (!sx)� � [1� (N � 1)!s] f 0 ((1�N!s)x)E [�u
0 (!sf ((1�N!s)x) �)] = 0 . (29)

Condition (29) holds for all x > 0. Therefore, integrating with respect to x, yields the

expression corresponding to �s (!s; x) on the left-hand side: Hence �s (!s; x) = �s for some

�s 2 R, for all x > 0.

For the su¢ ciency part, assume that there is only one !s 2 (0; 1=N) such that �s (!s; x) =

�s for some �s 2 R, for all x > 0, and let � be such that the value function of each player

is well-de�ned. Then, di¤erentiating both sides of �s (!s; x) = �s with respect to x leads

to (29), which is the necessary condition for a linear-symmetric optimum. Di¤erentiating

both sides of (8) with respect to x, yields V 00 (x) = [1� (N � 1)!s]!su00 (!sx) < 0, due to

that !s 2 (0; 1=N). So, C�s;j (x) = !sx for all j 2 f1; :::; Ng is the only Nash equilibrium in

symmetric linear strategies.

For the deterministic case suppose that game


u; f; ��

�
has an equilibrium in linear-

symmetric strategies, C�d;i (x) = !dx all i,
�
C�d;i (x)

	N
i=1

2 Sd: The necessary �rst order

condition becomes:

u0 (!dx) = � [1� (N � 1)!d] f 0 ((1�N!d)x) ��u
0 �!df ((1�N!d)x) ��

�
. (30)

The remainder of the proof is analogous to that in the stochastic game so we omit it. �
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8. Appendix B �Proofs of Propositions 2 and 3

Proof of Proposition 2 By applying the implicit function theorem to (23) and (24), with

the aid of Figures 1 and 2, it follows that

!s = Z (�) , ~!s = Z
�
~�
�
, !̂s = Z

�
�̂
�

and !d = Z
�
��
�
, (31)

in which Z 0 (z) < 0 for all z 2 (0; 1= (��)). The monotonicity of Z (�) together with De�ni-

tions 1 and 2 imply,

~!s S !s , ~� = E

�
~�
1� 1

�

�
T E

�
�1�

1
�

�
, � S 1 ,

and

!̂s S !s , �̂ = E

�
�̂
1� 1

�

�
T E

�
�1�

1
�

�
, � S 1 ,

which prove (25), and (26) respectively. The equivalence given by (27) is a direct implication

of equivalence (26), since the comparison between the deterministic and the stochastic model

is a special case of SSD. Alternatively, equivalence (27) can be proved through Jensen�s

inequality since

!s S !d , E
�
�1�

1
�

�
T [E (�)]1�

1
� , � S 1 ,

which completes the proof of the Proposition. �

Proof of Proposition 3 We denote the aggregate exploitation rate by 
 (�) = N! (�).

Equation (38) implies (after some algebra) that

@
 (�)

@N
=

�� (�)! (�) � (�)��1

N
�
1� N�1

N
�� (�) � (�)��1

� . (32)
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in which

� (�) �
h
��E

�
� (�)1�

1
�

�i�
,

and

� (�) � [1� (N � 1)! (�)] .

Equation (32) can be re-written as,

@
(�)
@N


 (�)
=
@ ln [
 (�)]

@N
=

�� (�) � (�)��1

N2
�
1� N�1

N
�� (�) � (�)��1

� . (33)

Taking the partial derivative of this last expression with respect to �, yields,

@2 ln [
 (�)]

@N@�
=
�� 0 (�) � (�)��2

h
� (�) + (� � 1) � (�) �

0(�)
�0(�)

i
N2
�
1� N�1

N
�� (�) � (�)��1

�2 . (34)

Since,

�0 (�)

� 0 (�)
=
d� (�)

d� (�)
,

we can calculate d� (�) =d� (�) through (19), by applying the implicit function theorem. In

particular, (19) can be written as,

N � 1
N

� (�) � (�)� +
1

N
� � (�) = 0 , (35)

so,

�0 (�)

� 0 (�)
=

N�1
N
� (�)�

1� N�1
N
�� (�) � (�)��1

. (36)

After substituting (36), the expression � (�)+(� � 1) � (�) �
0(�)
�0(�) on the RHS of (34), becomes,

� (�) + (� � 1) � (�) �
0 (�)

� 0 (�)
=
� (�)� N�1

N
� (�) � (�)�

1� N�1
N
�� (�) � (�)��1

.

Yet, (35) implies that, � (�)� N�1
N
� (�) � (�)� = 1

N
, so,

� (�) + (� � 1) � (�) �
0 (�)

� 0 (�)
=

1

N
�
1� N�1

N
�� (�) � (�)��1

� ,
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and (34) gives,

@2 ln [
 (�)]

@N@�
=

�� 0 (�) � (�)��2

N3
�
1� N�1

N
�� (�) � (�)��1

�3 . (37)

Moreover,

@
 (�)

@N
=

�� (�)! (�) � (�)��1

N
�
1� N�1

N
�� (�) � (�)��1

� > 0) 1� N � 1
N

�� (�) � (�)��1 > 0 ,

so, (37) implies that,

@2 ln [
 (�)]

@N@�
T 0, � 0 (�) T 0, � S 1 ,

which proves the Proposition. �
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Figure 1    Equilibrium strategies when 1>η
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Figure 2    Equilibrium strategies when 1<η
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The commons problem and uncertainty: a �rst look

For the general results we concentrate our analysis on the unique equilibrium in linear-

symmetric Markov strategies for games which satisfy the conditions of Theorem 1. We

use the short-hand notation hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) to denote the game

and the equilibrium we are studying in the stochastic and deterministic game respectively.

In addition, since the main body of the paper contains Theorem 1, we name all theorems

starting from �Theorem 2�in this Online Appendix.

Theorem 2 demonstrates a global result about the strategic behavior of players. We show

that for all games hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) the commons problem holds.

Theorem 2 Suppose games hu; f;�i and


u; f; ��

�
satisfy the conditions of The-

orem 1 and consider hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) : As the number of

players, N , increases, the aggregate exploitation rates, 
s � N!s and 
d � N!d

increase.

Proof Consider hu; f;�i1SULS (!s). For any x > 0, a player�s necessary condition (9)

in the paper can be expressed as a function of the aggregate exploitation rate 
 � N!, as,

	̂s (
; N) = �u0
�



N
x

�
+ hs (
) = 0, in which

hs (
) = �f 0 ((1� 
)x)E [�V 0
s (�f ((1� 
)x))] .

Given that V 00
s < 0, and f 00 � 0, h0s (
) > 0. Applying the implicit function theorem on the

equilibrium condition

�u0
�

s
N
x

�
+ hs (
s) = 0,

we obtain

d
s
dN

=
�u00

�

s
N
x
�

�u00
�

s
N
x
�
x
N
+ h0s (
s)


sx

N2
> 0, (38)
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which proves the result. The argument for the deterministic case is the analogous and we

omit it. �

Theorem 2 is sharp for the class of games we examine. It indicates that the commons

problem is robust for games of joint exploitation.23 However, Theorem 2 does not address

how the introduction of uncertainty a¤ects strategic exploitation and the commons prob-

lem. Theorem 3 shows that uncertainty may increase or decrease the equilibrium aggregate

level of exploitation, by comparing the equilibria of pairs of games hu; f;�i1SULS (!s) and

u; f; ��

�1
DULS

(!d) : Theorem 3 is similar to a theorem appearing in Mirman (1971, cf. The-

orem 2 p. 181), appropriately adjusted in order to accommodate a symmetric equilibrium

in linear strategies.

Theorem 3 Suppose games hu; f;�i and


u; f; ��

�
satisfy the conditions of

Theorem 1 and consider hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) : Then, for all

x > 0

!s T !d () E [�s (��d)] S �d
�
���d
�

(39)

where,�s (z) � zV 0
s (z), �d (z) � zV 0

d (z) and �d � f ((1�N!d)x).

Proof

Fix x > 0. Given that both the deterministic and the stochastic strategies are interior,

!s; !d 2 (0 ; 1=N), then  d (!d) =  s (!s) = 0. Since  s is strictly increasing on (0 ; 1=N)

(see (11) in the paper),

!s T !d ()  s (!d) S 0()  s (!d) S  d (!d) (40)

23Other studies that examine the issue of the tragedy of the commons include Dutta and Sundaram (1993),
Sorger (1998, 2005) , and Dockner and Sorger (1996).
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Moreover, from (9) in the paper

 s (!d) = �u0 (!dx) + �
f 0 ((1�N!d)x)

f ((1�N!d)x)
E [�f ((1�N!d)x)V

0
s (�f ((1�N!d)x))]

or

 s (!d) = �u0 (!dx) + �
f 0 ((1�N!d)x)

�d
E [�s (��d)] . (41)

Similarly, from (10),

 d (!d) = �u0 (!dx) + �
f 0 ((1�N!d)x)

�d
�d
�
���d
�
. (42)

Combining (41) and (42) with (40), (39) holds, for all x > 0. �

Theorem 3 gives necessary and su¢ cient conditions for the direction of the impact of

uncertainty on consumption. However, these are based on characteristics (relative curvature)

of the two value functions and not on the primitives of the games.24 In order to �nd the link

to the primitives of the games, notice that from (8)

V 0
s (x) = [1� (N � 1)!s]u0 (!sx) (43)

and

V 0
d (x) = [1� (N � 1)!d]u0 (!dx) . (44)

Hence,

E [�s (��d)] = [1� (N � 1)!s] f 0 ((1�N!d)x)E [�u
0 (!sf ((1�N!d)x) �)] (45)

24Within the class of games we discuss, explicit value functions can be derived, thus making the application
of Theorem 3 straightforward. In our parametric examples in Section 5, we have provided such explicit
formulas for the value functions. The necessity part of Theorem 3 proves useful in characterizing parameter
choices that determine the e¤ect of uncertainty on strategies.
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and

�d
�
���d
�
= [1� (N � 1)!d] f 0 ((1�N!d)x) ��u

0 �!df ((1�N!d)x) ��
�
. (46)

This connection between the value functions and the primitives of the model o¤ered by equa-

tions (45) and (46) proves useful. In particular, this connection helps in distinguishing how

changes in the model�s primitives a¤ect the impact of uncertainty on players�exploitation

strategies.

Some of our proofs in the remainder of the paper rely on the existence of a well-behaved

recursive mapping for calculating the equilibrium. This calculation procedure is the solution

technique suggested by Levhari and Mirman (1980). We next present some key results about

this procedure.

The Levhari-Mirman recursive procedure

Levhari and Mirman (1980) start from the static, one period, symmetric equilibrium,

in which consumption rates of players are equal to 1=N in symmetric equilibrium. They

use this strategy in order to form the value function and then they continue with the two-

period problem, calculate the symmetric strategies again, generalizing the process to the

n-period problem. In general, if a linear symmetric Markov-perfect strategy exists for the

n-period problem, then a tractable recursive mapping on the consumption rates !(n) can

be constructed, in which !(n) denotes the symmetric-equilibrium consumption strategy of

the n-period problem. Characterizing the evolution of !(n), as n increases, is su¢ cient for

characterizing the evolution of the linear-symmetric consumption functions in our class of

models.
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For n = 2; 3; : : :, the n-period problem of player j 2 f1; : : : ; Ng in Bellman form, is

V
(n)
s;j (x) = max

0�cj�x�
NP
i=1
i6=j

C
(n)
s;i (x)

8><>:u (cj) + �E

264V (n�1)
s;j

0B@�f
0B@x� cj �

NX
i=1
i6=j

C
(n)
s;i (x)

1CA
1CA
375
9>=>; , (47)

for the stochastic case, in which V (n)
s;j and V

(n�1)
s;j are the n- and (n� 1)-period value functions

of player j, and C(n)s;i is the n-period strategy of player i. Similarly, in the deterministic case,

for n = 2; 3; : : :, the n-period problem of player j 2 f1; : : : ; Ng is

V
(n)
d;j (x) = max

0�cj�x�
NP
i=1
i6=j

C
(n)
d;i (x)

264u (cj) + �V
(n�1)
d;j

0B@��f
0B@x� cj �

NX
i=1
i6=j

C
(n)
d;i (x)

1CA
1CA
375 . (48)

Again, we focus on (interior) linear-symmetric Markov-perfect Nash strategies. For the

stochastic game, C(n)
�

s;i (x) = !
(n)
s x for all x > 0, with !(n)s 2 (0; 1=N) ; all i; and for the

deterministic game, C(n)
�

d;i (x) = !
(n)
d x for all x > 0, with !(n)d 2 (0; 1=N) ; all i.

Assuming C(n)
�

s;i (x) = !
(n)
s x in (47), the necessary �rst order condition of the (n+ 1)-

period problem of player j 2 f1; : : : ; Ng is,

�u0 (cj) + �
�
1� (N � 1)!(n)s

�
f 0 (y)E

�
�u0
�
!(n)s �f (y)

��
= 0; (49)

in which y = x � cj �
NP
i=1
i6=j

Ci (x) and Ci (x) is the strategy of a player i 6= j.25 Therefore,

linear symmetric equilibrium strategies, !(n+1)s , for the (n+ 1)-period problem, solve,26

	s
�
!(n+1)s ; !(n)s

�
= 0, (50)

25This necessary condition is derived from (47) following the same steps as in the in�nite-horizon case, i.e.,
after applying the envelope theorem on (47). Notice that 49 does not restrict the player to a search for an
optimum among linear strategies only in the (n+ 1)-period problem.
26As above, with function  s (�), (50) must be met for all x > 0 in the case of linear-symmetric strategies, so
the function 	s (�) does not depend on x in equilibrium (i.e., when the expression given by (51) is evaluated

at
�
!
(n+1)
s ; !

(n)
s

�
, n = 1; 2; :::). Even if the expression given by (51) depends on x whenever (50) is not met

with equality (i.e., when this expression is evaluated at some
�
!; !

(n)
s

�
, with ! 6= !

(n+1)
s , n = 1; 2; :::), this

potential dependence on x does not a¤ect our analysis, so we discard x for the sake of simplicity.
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in which

	s
�
!; !(n)s

�
= g (!) + hs

�
!; !(n)s

�
, (51)

with g (!) = �u0 (!x), and

hs
�
!; !(n)s

�
= �

�
1� (N � 1)!(n)s

�
f 0 ((1�N!)x)E

�
�u0
�
!(n)s �f ((1�N!)x)

��
.

It follows that, due to the assumptions u00 < 0 and f 00 � 0,

	s1
�
!; !(n)s

�
> 0 , 	s2

�
!; !(n)s

�
< 0 , for all x > 0, ! 2

�
0;
1

N

�
; !(n)s 2

�
0;
1

N

�
. (52)

Therefore, if !(n+1)s , the solution to (50) exists, and lies in the open interval (0; 1=N), after

applying the implicit function theorem to (50),

d!
(n+1)
s

d!
(n)
s

= �
	s2

�
!
(n+1)
s ; !

(n)
s

�
	s1

�
!
(n+1)
s ; !

(n)
s

� > 0 , for all x > 0, !(n)s 2
�
0;
1

N

�
, (53)

as implied by (52). The same remarks hold for the deterministic case, for the deterministic

game. Given !(n)d , !
(n+1)
d is the solution to

	d
�
!
(n+1)
d ; !

(n)
d

�
= 0 , (54)

in which

	d
�
!; !

(n)
d

�
= g (!) + hd

�
!; !

(n)
d

�
, (55)

with

hd
�
!; !

(n)
d

�
= �

h
1� (N � 1)!(n)d

i
f 0 ((1�N!)x) ��u0

�
!
(n)
d
��f ((1�N!)x)

�
.

The two conditions, (50) and (54), de�ne two recursive mappings.
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De�nition 3 Consider hu; f;�i and


u; f; ��

�
: The mapping Ms : [0; 1=N ] !

[0; 1=N ] is given by 	s (Ms (!) ; !) = 0. The mapping Md : [0; 1=N ] ! [0; 1=N ]

is given by 	d (Md (!) ; !) = 0.

The following results provide a characterization for these two mappings. In particular,

Lemma 1 shows the importance of imposing an Inada condition on the utility function for

obtaining interior solutions (this Inada condition is a su¢ cient condition).

Lemma 1 If limc!0 u
0 (c) =1, for all !(1)s 2 (0; 1=N ] and all !(1)d 2 (0; 1=N ],

the sequences
n
!
(n)
s

o1
n=2

generated by the mapping Ms, and
n
!
(n)
d

o1
n=2

generated

by Md, are such that !
(n)
s and !

(n)
d are unique with !(n)s ; !

(n)
d 2 (0; 1=N), n =

2; 3; : : :.

Proof

Fix any x > 0 and any !(n)s 2 (0; 1=N ]. Then, from (51), 	s
�
!; !

(n)
s

�
= g (!) + hs (!) ,

in which

hs (!) > 0 and g (!) < 0 for all ! 2 (0; 1=N) , and

lim
!!0

g (!) = �1 and lim
!!1=N

hs (!) =1

so 	s
�
!; !

(n)
s

�
intersects the zero axis within the interval (0; 1=N) at least once. Yet, the

fact that, for all ! 2 (0; 1=N), hs0 (!) > 0, and g0 (!) > 0, implies that 	s
�
!; !

(n)
s

�
= 0 has

a unique solution, !(n+1) 2 (0; 1=N). The same argument can be used for the deterministic

analogue of the stochastic model. �

Lemma 1 is crucial in the proof of Theorem 4, which establishes convergence of the

Levhari-Mirman (1980) recursive procedure.
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Theorem 4 Consider hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) and suppose the

one-period games have a symmetric equilibrium strategy, !(1)s = !
(1)
d = 1=N: If

limc!0 u
0 (c) =1, then starting from !

(1)
s = !

(1)
d = 1=N , the recursive mappings

Ms and Md are convergent with limn!1 !
(n)
s = !s and limn!1 !

(n)
d = !d.

Proof

Fix x > 0 and consider the stochastic game. Using the same argument as in the proof of

Lemma 1, starting from !
(1)
s there exists a unique !(2)s 2 (0; 1=N), i.e. !(2)s < !

(1)
s . Moreover,

!s < !(2)s < !(1)s =
1

N
. (56)

In order to show (56), suppose that !(2)s � !s. Since	s1
�
!
(n+1)
s ; !

(n)
s

�
> 0, 	s2

�
!
(n+1)
s ; !

(n)
s

�
<

0, and 	s (!s; !s) = 0, 0 = 	s (!s; !s) > 	s
�
!s; !

(1)
s

�
� 	s

�
!
(2)
s ; !

(1)
s

�
, which contradicts

that 	s
�
!
(2)
s ; !

(1)
s

�
= 0. From Lemma 1, !(1)s = 1=N gives rise to a unique sequencen

!
(n)
s

o1
n=1

that is generated from (50). Given that !s 2 (0; 1=N) is unique, and the map-

ping Ms is a continuous function with M 0
s

�
!
(n)
s

�
= �

	s2

�
!
(n+1)
s ;!

(n)
s

�
	s1

�
!
(n+1)
s ;!

(n)
s

� > 0 for all x > 0, (56)
and the intermediate value theorem imply that !s < !

(n+1)
s < !

(n)
s ,n = 1; 2; : : :. Therefore

the sequence
n
!
(n)
s

o1
n=1

converges and limn!1 !
(n)
s = !s: The same argument holds for the

deterministic analogue of the stochastic model. �

Theorem 4 shows that the procedure that Levhari and Mirman (1980) suggested and im-

plemented in their example, leads to recursive computability of the in�nite-horizon strategies

for a more general class of games, i.e., the class of games hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) ;

which in addition have a unique symmetric equilibrium in the stage game, and which satisfy

limc!0 u
0 (c) = 1. While this result is interesting in its own right (as we have identi�ed a
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reliable calculation procedure), some properties of the mappings Ms and Md are useful in

the analysis of uncertainty. Lemma 2 states these properties of Ms and Md.

Lemma 2 Consider hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) and suppose the

one-period games have a symmetric equilibrium strategy, !(1)s = !
(1)
d = 1=N: If

limc!0 u
0 (c) =1, then for any interval fs = [�!s; !̂s] � (0; 1=N ],

Ms (�!s) � �!s and Ms (!̂s) � !̂s ) !s 2 fs ,

Ms (�!s) > �!s and Ms (!̂s) < !̂s ) !s 2 (�!s; !̂s)

and

lim
n!1

!(n)s = !s for all !(1)s 2 fs .

Moreover, for any interval fd = [�!d; !̂d] � (0; 1=N ],

Md (�!d) � �!d and Md (!̂d) � !̂d ) !d 2 fd ,

Md (�!d) > �!d and Md (!̂d) < !̂d ) !d 2 (�!d; !̂d) ,

and

lim
n!1

!
(n)
d = !d for all !(1)s 2 fd:

Proof

Fix any x > 0 and let fs = [�!s; !̂s] � (0; 1=N ] with Ms (�!s) � �!s and Ms (!̂s) � !̂s.

Since Ms is a continuous function with M 0
s

�
!
(n)
s

�
= �

	s2

�
!
(n+1)
s ;!

(n)
s

�
	s1

�
!
(n+1)
s ;!

(n)
s

� > 0 for all x > 0, the
intermediate value theorem implies that !s 2 fs, since !s is by assumption unique. As

Ms (�!s) � �!s, strict equality holds only if �!s = !s. If Ms (�!s) > �!s, then �!s < !s: From

Lemma 1, any !(1)s 2 (0; 1=N ] gives rise to a unique sequence
n
!
(n)
s

o1
n=1
, so !(n)s < !

(n+1)
s <

!s, n = 1; 2; :::, for all !
(1)
s 2 [�!s; !s). Thus, Ms is stable for all !

(1)
s 2 [�!s; !s). By a similar
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argument, if Ms (!̂s) < !̂s, !
(n)
s > !

(n+1)
s > !s, n = 1; 2; :::, for all !(1)s 2 (!s; !̂s], so Ms

is stable for all !(1)s 2 (!s; !̂s]. Finally, for Ms (!̂s) � !̂s, equality holds only if !̂s = !s,

completing the proof. The same argument can be used for the deterministic analogue of the

stochastic model. �

Lemma 2 is crucial for the comparisons that follow. Speci�cally, in comparing two distinct

models (e.g. the stochastic and the deterministic, or two models with di¤erent stochastic

structures), we can view the solution to one model as a starting point for calculating the

solution to the other model. If this starting point drives the necessary condition of the

second model to be positive or negative, then we can identify the direction in which the

strategy must be updated. The results in Lemma 2, yield a method for identifying where

the �xed point (in�nite-horizon equilibrium) of the second model lies.

With Lemma 2 we are able to identify the primitive features of the model that are

responsible for the impact of uncertainty on strategies. For games that satisfy the conditions

of the lemma, we show that the result of Theorem 2 hinges on features of the utility function,

u, alone, and not on f . Of course, f plays an implicit role, since features of both f and

u interact for the game to belong to this class of games. Nevertheless, our results identify

simple conditions on u that lead to speci�c e¤ects of uncertainty on strategies.

In addition to analyzing the comparison between the stochastic and the deterministic

game, we study the e¤ect of changes in risk under (i) second-order stochastic dominance

(SSD) change, and, (ii) �rst-order stochastic dominance (FSD) change in the distribution of

the shock. We �nd that, within the class of games we study, only the structure of the utility

function is needed to explain the impact of changing risk on strategies. In particular, in the
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case of �rst-order stochastic dominance, it is the coe¢ cient of relative risk aversion that is

responsible for the e¤ect of changes in risk on strategies.

The commons problem and uncertainty: a second look

Theorem 5 Suppose games hu; f;�i and


u; f; ��

�
satisfy the conditions of The-

orem 1 and consider hu; f;�i1SULS (!s) and


u; f; ��

�1
DULS

(!d) : Further suppose

the one-period games have a symmetric equilibrium strategy, !(1)s = !
(1)
d = 1=N:

If lim
c!0

u0 (c) = 1, then: (i) !s < !d if and only if � (z) is strictly convex, (ii)

!s > !d if and only if � (z) is strictly concave, and (iii) !s = !d if and only if

� (z) is a¢ ne, in which

� (z) = zu0 (z) . (57)

Proof

Fix any x > 0. 	s
�
!; !(n)

�
and 	d

�
!; !(n)

�
can be expressed as,

	s
�
!; !(n)

�
= �u0 (!x) (58)

+�

�
1� (N � 1)!(n)

�
!(n)

f 0 ((1�N!)x)

f ((1�N!)x)
E
�
�
�
!(n)�f ((1�N!)x)

��
and

	d
�
!; !(n)

�
= �u0 (!x) (59)

+�

�
1� (N � 1)!(n)

�
!(n)

f 0 ((1�N!)x)

f ((1�N!)x)
�
�
!(n)��f ((1�N!)x)

�
From (58), (59), and Jensen�s inequality,
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(a) 	s
�
!; !(n)

�
> 	d

�
!; !(n)

�
for all !; !(n) 2 (0; 1=N), if and only if, � (�) is strictly

convex,

(b) 	s
�
!; !(n)

�
< 	d

�
!; !(n)

�
for all !; !(n) 2 (0; 1=N), if and only if, � (�) is strictly

concave,

(c) 	s
�
!; !(n)

�
= 	d

�
!; !(n)

�
for all !; !(n) 2 (0; 1=N), if and only if, � (�) is a¢ ne.

So, in case (a), 	d (!s; !s) < 	s (!s; !s) = 0, so Md (!s) > !s. In the proof of Theorem

4 it is shown that Md (1=N) < 1=N . Then, by Lemma 2, !d 2 (!s; 1=N), which proves

statement (i). In case (b), 	s (!d; !d) < 	d (!d; !d) = 0, soMs (!d) > !d. SinceMs (1=N) <

1=N (from the proof of Theorem 4), Lemma 2 implies that !s 2 (!d; 1=N), which proves

statement (ii). Finally, statement (iii) is straightforward. �

Theorem 5 implies that, for the class of games with linear symmetric equilibrium strategies,

the model�s characteristics behind the result of Theorem 2 are given solely by a condition

that pertains to the utility function, u. This does not mean that f does not play any role

in the linkup between uncertainty and strategic behavior. Together with u, the function

f is crucial for placing a game hu; f;�i in the class of games with linear strategies. The

implication of Theorem 5 is that, in this class of games, the e¤ect of uncertainty on strategic

behavior is determined by a condition on the utility function alone. Moreover, notice that

Theorem 5 does not require that u (�) be thrice continuously di¤erentiable.27

We provide two additional characterizations based on comparisons of games using the

notions of second- and �rst-order stochastic dominance.

27For a discussion of this point see Mirman (1971, p. 182) in his analysis of a two-period problem.
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Resource Exploitation and Second-Order Stochastic Dominance

(SSD)

We examine two games, hu; f;�i and
D
u; f; ~�

E
, that have linear-symmetric equilibrium

strategies, !s and ~!s, with shocks denoted by � � �(�) and ~� � ~�
�
~�
�
, and such that one

shock is riskier than the other, in the sense that one distribution dominates the other with

respect to Second-Order Stochastic Dominance (SSD). Theorem 6 provides conditions that

dictate the e¤ect of increasing risk on strategic decisions.

Theorem 6 Suppose games hu; f;�i and
D
u; f; ~�

E
satisfy the conditions of

Theorem 1 and consider hu; f;�i1SULS (!s) and
D
u; f; ~�

E1
SULS

(~!s) : Further sup-

pose the one-period games have a symmetric equilibrium strategy, !(1)s = !
(1)
d =

1=N and limc!0 u
0 (c) = 1. If ~� �SSD � then: (i) if � (z) is strictly convex,

then ~!s < !s, (ii) if � (z) is strictly concave, then ~!s > !s, and, (iii) if � (z) is

a¢ ne, then ~!s = !s, where � (z) is as de�ned in (57).

Proof

Fix any x > 0. The necessary conditions of the two problems, 	s
�
!; !(n)

�
and ~	s

�
!; !(n)

�
,

can be expressed as,

	s
�
!; !(n)

�
= �u0 (!x)

+�

�
1� (N � 1)!(n)

�
!(n)

f 0 ((1�N!)x)

f ((1�N!)x)
E
�
�
�
!(n)�f ((1�N!)x)

��
, (60)
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and

~	s
�
!; !(n)

�
= �u0 (!x)

+�

�
1� (N � 1)!(n)

�
!(n)

f 0 ((1�N!)x)

f ((1�N!)x)
E
h
�
�
!(n)~�f ((1�N!)x)

�i
. (61)

Using the expressions (60) and (61), and De�nition 2,

(a) if � (�) is strictly convex, then ~	s
�
!; !(n)

�
> 	s

�
!; !(n)

�
for all !; !(n) 2 (0; 1=N),

(b) if � (�) is strictly concave, then ~	s
�
!; !(n)

�
< 	s

�
!; !(n)

�
for all !; !(n) 2 (0; 1=N),

(c) if � (�) is a¢ ne, then ~	s
�
!; !(n)

�
= 	s

�
!; !(n)

�
for all !; !(n) 2 (0; 1=N).

So, in case (a), 	s (~!s; ~!s) < ~	s (~!s; ~!s) = 0, soMs (~!s) > ~!s. In the proof of Theorem 4

it was shown that Ms (1=N) < 1=N . By Lemma 2, !s 2 (~!s; 1=N), which proves statement

(i). In case (b), ~	s (!s; !s) < 	s (!s; !s) = 0, so ~Ms (!s) > !s. Since ~Ms (1=N) < 1=N (see

the proof of Theorem 4), Lemma 2 implies that ~!s 2 (!s; 1=N), which proves statement (ii).

Finally, statement (iii) is straightforward. �

Resource Exploitation and First-Order Stochastic Dominance

(FSD)

We examine two games, hu; f;�i and
D
u; f; ~�

E
, that have linear-symmetric equilibrium

strategies, !s and ~!s, with shocks denoted by � � �(�) and ~� � ~�
�
~�
�
, and such that one

distribution dominates the other with respect to First-Order Stochastic Dominance (FSD).

Theorem 7 Suppose games hu; f;�i and
D
u; f; ~�

E
satisfy the conditions of The-

orem 1 and consider hu; f;�i1SULS (!s) and
D
u; f; ~�

E1
SULS

(~!s) : Further suppose

the one-period games have a symmetric equilibrium strategy, !(1)s = !
(1)
d = 1=N

and limc!0 u
0 (c) =1. If ~� �FSD � then,

�0 (z) T 0 for all z > 0) ~!s T !s . (62)

15



Proof

Integration by parts yields,

E [h (�)]� E
h
h
�
~�
�i
=

Z
S�

h
~� (z)��(z)

i
h0 (z) dz

for all di¤erentiable functions h. So, setting h (z) = �
�
!(n)zf ((1�N!)x)

�
, for any !(n) 2

(0; 1=N ] and any ! 2 (0; 1=N), the fact that ~� �FOSD � implies,

�0 (z) T 0 8 z > 0) E
h
�
�
!(n)~�f ((1�N!)x)

�i
S E

�
�
�
!(n)�f ((1�N!)x)

��
. (63)

Based on (63), (60), and (61),

(a) �0 (z) < 0 for all z > 0) 	s (~!s; ~!s) < ~	s (~!s; ~!s) = 0,

(b) �0 (z) > 0 for all z > 0) ~	s (!s; !s) < 	
s (!s; !s) = 0,

(c) �0 (z) = 0 for all z > 0) ~	s
�
!; !(n)

�
= 	s

�
!; !(n)

�
= 0 for all !; !(n) 2 (0; 1=N).

The rest of the proof follows exactly as in Theorem 6. �

Remark 1

�0 (z) T 0 for all z > 0, � u0 (z)

zu00 (z)
T 1 for all z > 0;

i.e. the su¢ cient condition (62) is tightly linked with the value of the elasticity of in-

tertemporal substitution.
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Application of General Theoretical Results on the Speci�c Ex-

ample of the Paper

Clearly our parametric example satis�es the conditions identi�ed in Lemma 1 and The-

orem 4, i.e. limc!0 u
0 (c) = 1, and also the one-period games have a unique symmetric

equilibrium strategy, !(1)s = !
(1)
d = 1=N: Furthermore, substituting (16) and (17) into the

necessary conditions of the �nite-horizon problem given by (50) and (54), we �nd,

Ms (!) =
1

N + (���)� [1�(N�1)!]
�

!

(64)

Md (!) =
1

N +
�
����

�� [1�(N�1)!]�
!

(65)

It is straightforward to verify from (64) and (65) that Ms (!) ;Md (!) 2 (0; 1=N) for all

! 2 (0; 1=N ]. Therefore, we can apply Theorems 3, 5, 6 and 7 to our model.

We can apply Theorem 3 as follows. Let �d = f ((1�N!d)x), and recall the de�nitions

of �s and �d given in Theorem 3. Notice that

E [�s (��d)] =
��!

1� 1
�

s

1� ��� (1�N!s)
1� 1

�

�
1� 1

�

d . (66)

while

�d
�
���d
�
=

���!
1� 1

�

d

1� ���� (1�N!d)
1� 1

�

�
1� 1

�

d . (67)

From (19),

��!
1� 1

�
s

1� ��� (1�N!s)
1� 1

�

=

�
1

!s
�N

� 1
�

,

so substituting this expression into (66),

E [�s (��d)] =

�
1

!s
�N

� 1
�

�
1� 1

�

d . (68)

After using (20), as was done with (19), (67) becomes,

�d
�
���d
�
=

�
1

!d
�N

� 1
�

�
1� 1

�

d . (69)
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Proposition 2 in the paper identi�es the parameters that are behind the comparison given

in Theorem 3.

In our example,

� (c) = u0 (c) c = c1�
1
� )

8><>: �0 (c) T 0, � T 1

�00 (c) S 0, � T 1
. (70)

Since u is thrice di¤erentiable, the concavity of � can be examined through the sign of its

second derivative. Notice that, (70) illustrates the connection between Theorem 3 and the

group of Theorems 5, 6 and 7 together with the results stated by Proposition 2. Most

importantly, it shows how the properties of u can a¤ect the role of uncertainty on strategies.

18



REFERENCES

Dockner, E. J., and G. Sorger (1996), Existence and Properties of Equilibria for a
Dynamic Game on Productive Assets, Journal of Economic Theory, 71, 209-227.

P. K. Dutta, R. K. Sundaram (1993), How Di¤erent Can Strategic Models Be? J.
Econ. Theory 60, 42-61.

Mirman, Leonard J. (1971): �Uncertainty and Optimal Consumption Decisions,�
Econometrica, 39, 179-185.

G. Sorger (1998): �Markov-perfect Nash equilibria in a class of resource games,�Eco-
nomic Theory, 11, 79-100.

G. Sorger (2005): �A dynamic common property resource problem with amenity value
and extraction costs,�International Journal of Economic Theory, 3-19.

19


