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Abstract: Modeling and control of a Quadrotor with robotic arm which uses vision sensor
is discussed. A quadrotor model coupled with a two link manipulator is first developed and
then the integrated control mechanism is investigated. An Image Based Visual Servo system is
introduced and then used with the aerial manipulator to successfully perform specific tasks of

positioning and stabilization during manipulation.
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1. INTRODUCTION

Aerial Manipulation has been an active area of research
in recent times. Mainly because the active tasking of
Unmanned Aerial Vehicles (UAVs) increases the employa-
bility of these vehicles for various applications. For active
tasking one would consider grasping, manipulation, grasp-
ing and transporting etc.

These interesting applications have their own challenges
and have been the subject of various research activities. In
Pounds et al. [2011] the load disturbance on a helicopter
introduced by a gripped object was studied experimentally
and stability bounds were determined. Here the manipu-
lator was a simple gripper which holds the object between
the skids of the helicopter. In Marconi et al. [2011] a ducted
fan UAV interacting with the environment was modelled
and controlled. In this case the interaction was modelled
as a simple contact.

In Lipiello and Ruggiero [2012a] and Lipiello and Rug-
giero [2012b] Cartesian Impedence control and redundancy
had been studied using Euler-Lagrange formulation. In
Orsag et al. [2013b] and Khalifa et al. [2012] a Newton-
Fuler approach had been used to model and control a
quadrotor based manipulator. In Orsag et al. [2013a] a
Lyapunov based Model Reference Adaptive Control was
used to stabilize a quadrotor with multi degree of freedom
manipulator. But due to the complexity of the system only
rigid body dynamics of the quadrotor were considered.

In Kondak et al. [2013] a vision based sensor was used
to control a helicopter with manipulator experimentally
using a simple gripper attached to the fuselage. In Ghadiok
et al. [2011] indoor experiments were performed with a
quadrotor equipped with a gripper and an IR camera was
used to grip an object with LED placed on it.

Contrary to these above mentioned research the key con-
tribution of this article is the development of an Aerial Ma-
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nipulation system with visual sensing where the complete
nonlinearity of the quadrotor is considered along with 2-
link manipulator dynamics. A Newton-Euler approach has
been used to develop the aerial manipulator and Image
Based Visual Servo Systems has been used to perform
control task successfully.

The paper is structured as follows. First the quadrotor dy-
namic is briefly described, then a Recursive Newton-Euler
(RNE) method for a Floating base 2-link Manipulator is
formulated using the classic fixed base RNE method and
integrated with the quadrotor model. This quadrotor with
manipulator model is used as a testbed to perform a series
of tests and understand the dynamic coupling that exist
in the complex model by performing basic tasks such as
quadrotor position tracking and manipulation in hovering
condition. An Image Based Visual Servo (IBVS) System is
briefly introduced and used by the quadrotor to perform
visual servoing.

2. QUADROTOR DYNAMICS

Here the quadrotor dynamics is dealt briefly. Let I =
{E;,E,,E.} be the inertial frame, £ = (x,y,2) be the
origin of the body fixed frame A = {E{, ES, ES,}. The
rotation matrix R is defined by R : A — 1. Here v and
Q) are linear and angular velocities in the body reference
frame A. The model used here is based on Pounds et al.
[2010], Corke [2013]:

e A

where we have G = mges with e3 = [0 0 1]T, T=>t,
Q = >,¢, M = > ,m; and for i € {N,S,E,W

we have rotor thrust t; = CrpAr?w?ts,y, torque ¢ =
CQpAr?’wi\wAeg and moment m; = t; x d;.

The physical parameters are mass m, Inertia I, gravity g,

p the air density, r is the rotor radius with A the area of
the rotor disc, d; is the rotor distance from the quadrotor
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center of mass with dy = (0d h), ds = (0 —d h),
dg = (d 0 h), dyw = (—d 0 h). Here d is the arm length
of the quadrotor and h is the height of the rotors above
the Center of Gravity. The term ty,, is a function of
longitudinal and lateral flapping angles [Pounds et al.,
2010] and the constants Cp and Cg are nondimensional
thrust and torque coefficients respectively.

The motion of the quadrotor is obtained by the variation
of forces and moments on the airframe which can_be

obtained as a function of rotor speeds (w? @3 @3 wj) =

AT 7, 7, TZ)T. Where A is a function of known pa-
rameters [Mahony et al., 2012, Hamel et al., 2002], T is the
total upward thrust as defined earlier and M = (7, 7y, 72)
are the rolling, pitching and net reaction (yawing) torque
applied to the airframe of the quadrotor.

3. ROBOTIC ARM WITH A FLOATING BASE

Different modeling methods exist in literature but the
Newton-Euler method is used here as it helps us to
systematically integrate the robotic arm to the quadrotor
model which was also based on Newton-Euler formulation.

The manipulator to be considered is an open-chain mech-
anism consisting of N joints numbered from 1 to N con-
necting N + 1 rigid links numbered from 0 to N. Link
0 is the base of the manipulator where as N carries the
end-effector.

Remark 1. For ease of understanding to deal with the
floating base manipulator, first a fixed base algorithm of
Newton-Euler method is discussed and then it will be
briefly mentioned how this can be converted into a mobile
base algorithm.

Here first the Kinematics is discussed and then the Recur-
sive Newton-Euler (RNE) Formulation is detailed.

3.1 Kinematics

A standard Denavit-Hartenberg convention is followed. A
joint 4 connects link 7 — 1 to link ¢ and hence the joint ¢
moves link ¢. A link is specified by its length a; and twist
«;. Similarly joints are described through link offset d; and
joint angle ;. Here the coordinate frame {i} is attached
to the far end of the link ¢ and the axis of joint ¢ is aligned
with the z;—axis. In this convention the transformation
from link coordinate frame {i — 1} to frame {i} is defined
by rotation and translation as [Corke, 2013]
LA (05, ds, aq, i) = Tra(0;)T.(di) To(ai) Tra (i) (2)
which can be given as
a; cos b;

cost; —sinb; cosay; sin0;sin oy

i1 _ sinf; cosf;cosc; —cosb;sina; a;sinb;
v 0 sin «y; cos oy d;
0 0 0 1

(3)
3.2 Newton-Fuler Dynamic Equations of Motion

We begin with defining certain link specific parameters
such as m; which is the mass of the link i, r; is the
location of the center of mass of link 7 with respect to
origin of link 7 coordinates and I; is the inertia matrix

of the link i. A Recursive formulation is discussed here
which consist of Forward computation of velocities and
accelerations of each link and Backward computation of
forces and moments in each joints. The Recursive Newton-
Euler formulation for fixed based was discussed in Luh
et al. [1980], Walker and Orin [1982] .This method is
further detailed here but only the rotational joint will be
considered since it is the one being used here.

Forward Recursion ~ Here the angular/linear velocities
and accelerations of each link is calculated recursively in
terms of its preceding link starting from the base to the end
effector. The initial conditions for the base links are vy, vg
and wg, wo and the following equations are calculated

Wi = Wi—1 + Zi—1G; (4)
Wi = W1 + Zi—1Gs + wi—1 X Zi—1(1 (5)
Vi = wi X Py v (6)
0; = w; X pf +w; X (w; X pf) + i1 (7)

N; = Lw; +w; x (I; - w;) 9)

where p* = [d; a;sinf; a; cos Gi]T and the above variables
are defined here
w; angular velocity of link ¢
w; angular acceleration of link 4
v;  linear velocity of origin of link 7 coordinates
with respect to link ¢ — 1 coordinates
©;  linear acceleration of origin of link 7 coordinates
with respect to link 7 — 1 coordinates
7;  linear acceleration of link 7 center of mass
F; total force exerted on link i
N; total moment exerted on link i
q; joint variable (6;) at joint i

Backward recursion  After the velocities and accelera-
tions of the links are computed, the joint forces can be
computed for each link starting from the end-effector to
the base. The required equations are

ni =nit1+ Ni+ (p; +1i) X Fi +p; X fita (11)
fi=Fi+ fit1 (12)
Ty — Zi—1 "Ny (13)

where the above variables are

n; moment exerted on link ¢ by link 7 — 1
fi  forces exerted on link ¢ by link ¢ — 1
7; torque exerted by actuator at joint i (rotational)

These equations can be used to compute the joint torque
by using velocities, accelerations, forces and moments in
the local link coordinate.

Conversion to Mobile base Manipulator A number of
methods exists for floating base manipulators for example
see Featherstone [2008]. One of the simplest way is to
initialize the velocities and accelerations vg, wg, U9, wo at
some non-zero value. These velocities and accelerations are
in turn transmitted from one link to another by forward
recursion and would result in an additional resultant
torque.



Equation of Motion  For a series of links the equation of
motion can be written in a general form as [Corke, 2013,
Luh et al., 1980]

Qum = M ()i + Cin(: ))q + Fin(q) + G () + Jm(q>(T11513
where ¢, ¢ and § are respectively the vector of general-
ized joint coordinates, velocities and accelerations, M,
is the joint-space inertia matrix, C, is the Coriolis and
centripetal coupling matrix, F, is the friction force, G,,
is the gravity loading and @, is the vector of generalized
actuator forces at the generalized coordinate gq. The last
term gives the joint force due to wrench w, applied at the
end-effector and .J,,, is the manipulator Jacobian. Differ-
ent methods exist to compute the above inverse dynamic
equation (14) but the Method-1 of Walker and Orin [1982]
will be used here. Without going into further details this
method is based on the Recursive Newton Euler method
discussed earlier.

4. QUADROTOR WITH ROBOTIC ARM

The coupled equations of motion for the quadrotor with
manipulator is

m 0| [V n 0 | G+T n f

0I|Q QxIQ — |1Q+M n|’
where the vector [f n]T are forces and moments measured
at the base of the manipulator that is exerted on the
quadrotor, since the manipulator is attached to the base

of the quadrotor. For the same reason the base of the
manipulator has vg = v, 99 =v and wy =R, Wy =N

(15)

In order to analyse and study the complex dynamic be-
haviour of a quadrotor with a manipulator, a benchmark
problem was developed by utilizing an existing highly
nonlinear model with flapping characteristics such as that
of Pounds et al. [2010] and the robotics simulation environ-
ment of Corke [2013] was used to implement the robotic
arm and quadrotor model. The quadrotor of Pounds et al.
[2010] is a 4 Kg vehicle with a maximum payload of 1 Kg.
Hence it was a suitable choice for implementation of large
manipulator system. A two link manipulator was chosen
here with length a; = a2 = 0.5 m and mass m; = my = 0.1
Kg with inertia matrix I = ma?/12 diag(0,1,1). Here
m = my1 = mg and a = a1 = as. Two types of problems
that are visibly clear will be dealt immediately, but not
before introducing the basic control structure.

4.1 Basic Control structure

The basic control structure of the quadrotor can be seen
in Figure-1 which is a hierarchical structure. The control
of manipulator is also added to the structure due to the
dynamic coupling that exist between the two systems.
Starting with the quadrotor control a clear time scale
separation is evident from the structure. The inner loop
which is faster attitude rate control uses a PD control for
coupled pitch and roll dynamics. A simple controller could
then be

Upr = —Kpepr — KO,y (16)

where we have ), = O, —©O;,., with ©}, as the pitch and
roll demand, Up, gives us pitch (7,) and roll torque (7).
A similar PD control is also used for the yaw control loop

K0, (17)
where €4, = ¥* — 1 is the yaw error with yaw demand
(U

The outer-loop consists of a z, y position control with PD

type structure, the output of which is the pitch and roll
demand [Corke, 2013]

e;k)r =K (é-;y - gmy - KZU:cy) (18)

where {z.,y.} = &5, — &y is the position error and vy,
is the position rate. For the height control an independent
PD control

Uyaw = _Kpgyaw -

T=—-Kpze — Kqu, +wp (19)
is used where z. = & — &, is the z position error and v,
is the z position rate, along with compensation wy for the
weight of the quadrotor.

For the manipulator control problem an independent joint
control method was used preferable with PI-D configura-
tion such as

1 N .
Un = (—K, — ;Ki)q - Kqq+ Gn(q) (20)

where ¢ is a joint angle error, G,,(q) is a gravity load
torque which can be approximately added if computation
is not possible [Corke, 2013].

The controller gains that are used here to perform the
preliminary tests are: (1) For pitch-roll attitude control:
K, =15x10% K4 = 0.1, (2)z, y position control: K; =
[—0.15,0.15], Ky = 2,(3) yaw control: K, = 100, Kq =1
(4)height (z-position) control: K, = 100, K; = 1. For
the manipulator arm control the controller gains are:K,, =
[100,100], K; = [100,100], Ky = [2,2]

It must be emphasised that at this stage of discussion no
special effort has been made to choose optimal controller
parameters for quadrotor. Since the axis of rotation of
the manipulator is in y-axis and the length is aligned in
the z-axis of the quadrotor the roll-pitch dynamic was
initially stabilized with larger gains before beginning the
manipulator control.

Next two types of control problems are discussed which we
come across in the aerial manipulation system.

4.2 Position control of quadrotor with free manipulator
(Case-1)

The first problem is the position control of quadrotor with
no controls applied to the manipulator. The initial condi-
tion of the quadrotor position is [£2,£),£9] = [0, -1, —4]
and for the manipulator is [¢q1,¢2] = [0.5,—0.5] The con-
trol task for the quadrotor is to move to the position
[€3,6,,€2] = [1,—1,—4]. A simple PD type control loop
discussed above for the quadrotor is employed without
any control effort to the manipulator and the respective
position error and attitude response of the quadrotor is

seen in Figure-2.

In Figure-2 from the position error plot we can see that
asymptotically z. — 0, y. = 0 where as z. < 0. One of
the reasons for z, < 0 is that part of the upward thrust
is used to displace the quadrotor in the z-direction by
pitching downwards which is also visible in the Figure-
2 (middle plot), where we can also see that the yaw angle
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Fig. 1. Control scheme of Quadrotor with manipulator. Here attitude controller is the inner loop and position controller
is the outer loop in the quadrotor control. The manipulator is controlled separately using independent joint control.
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Fig. 2. (Case-1)Top:Position Error, Middle: Attitude, Bot-
tom: Roll (Magnified)

deviates once again explaining the necessity to tune the
yaw and height control loop. The minor oscillations in the
roll angle can be seen in Figure-2 (Bottom) which is the
axis of translation here.

In Figure-3 we can see the uncontrolled manipulator joint
angles {q1, g2} with the torque at the joints {qi, g2} which
is generated purely due to the motion of quadrotor. The
quadrotor transmits the velocities and accelerations to
the 2-link manipulator (since the manipulator is directly
connected to the center of gravity of the quadrotor).

The respective forces and moments that are generated due
to the motion of the quadrotor with uncontrolled manip-
ulator can be seen in Figure-4. Here when considering the
force vector we can see that f, = 2 x 9.82 x 0.1 which is
due to the weight of the 2-link manipulator and also f,
is due to the revolute joint which is aligned along the y-
axis which can also be noted in the moment n, along the
y-axis. Since the motion of the quadrotor is along z-axis
with strong coupling between the roll-pitch dynamic the
oscillations in the roll moment n, can be seen in the roll
attitude in Figure-2.
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Fig. 3. (Case-1)Top: Joint Angles (radians), Middle:Joint
Torque, Bottom: Magnified Joint Torque
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Fig. 4. (Case-1)Top: Forces exerted by the manipulator
to the quadrotor, Bottom: Moments exerted by the
manipulator to the quadrotor
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Fig. 6. (Case-2)Top: Forces exerted by the manipulator
to the quadrotor, Bottom: Moments exerted by the
manipulator to the quadrotor

4.8 Manipulator control with quadrotor in hover (Case-2)

In this scenario the task is to control the manipulator
while maintaining the hover condition. The manipulator
positions are initialized at [g1,¢2] = [0.5,—0.5] and the
task is to attain a constant reference [g1,¢2] = [0.5,0].
The joint angle error and input control torque can be
seen in Figure-5. The forces and moments exerted by the
manipulator on the quadrotor can be seen in Figure-6
where the constant f, due to the weight of the manipulator
is evident in the height error z, which is deviating from
zero (Figure-7). Similar effect can be seen in the yaw
attitude of the quadrotor (Figure-7). These observations
remind us the type of effect the payload can have on the
dynamics of the quadrotor.
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Fig. 7. (Case-2)Top:Position Error, Bottom: Attitude
5. VISUAL SERVOING

The fundamental approaches to Vision based control in-
clude Position Based Visual Servo (PBVS) and Image
Based Visual Servo (IBVS). In the current research IBVS
was used which is discussed next.

5.1 Image based Visual Servoing

The advantage of IBVS (as compared to PBVS) is that the
estimation of relative pose is not required and it is implicit
in the image feature information [Corke, 2013].

As discussed in Corke [2013](page-486) we have the spher-

ical optical flow equation (9 gb)T = J, (0,9, R)v where
we have v as spatial velocity of the camera, the image
Jacobian J, 5(0, ¢, R) is given as

Jps =

__cosgcosf _51n¢Rcos€ __sin#@ sinqb —COS(b 0
sin% __ cos¢ 0 cos¢pcosf sin ¢ cos .
Rsin 6 Rsin 6 sin 0 sin 0

-1
(21)
Here p = (6, ¢) are the spherical coordinates and R =

V(X2 +Y?2+ Z2) is the distance from the camera origin

to the world point.

The control law using the IBVS system is v = JTp*, where
p* is the desired velocity of the features in the ¢f-space. A
proportional control can be used to minimize the feature
error p* = A(p* © p), where © is a modulo subtraction
[Corke, 2013]. The quadrotor is an underactuated vehicle
so we have v = [vi,vy, v}, Qf] which is the velocity
demand to the quadrotor. The internal control loops of
the visual servo system consists of a combination of P,PI

and PD. The z, y velocity demand v;, = {vi,v;} is
minimized using a PI type controller: ©%, = (K, +K;+)ey,

where €, = v* — v with output O, being the pitch-roll
demand. This is followed by the attitude rate loop given
by (16). A Proportional control Uyq, = —K,(2; — Q) is
used to meet the yaw rate demand. A PI type controller
T = (-K, — Klé)svz + wo is used for the height rate
loop where we have ¢,, = v} — v, with T" being the total
upward thrust and wq being the weight of the quadrotor.
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Fig. 8. (VS: Case-1) Vision based position tracking: Joint
error and Torque

For the control of the robotic arm the controller is exactly
the same as the previous case (20).

5.2 Aerial manipulation with visual servoing

Based on the above discussed visual servo system two
types of tasks will be evaluated. The two tasks include
positioning to a reference point and stabilization during
manipulation at a specific reference point.

The controller gains that are used here to perform the
preliminary tests are:(1)For z, y velocity control K, =
[-0.15,0.15], K; = [—0.1,0] (2) pitch-roll attitude rate
control: K, = 15 x 102, K4 = 0.1, (3) yaw rate control:
K, = 15 x 10? (4)height (z-position) rate control: K, =
K, = 15 x 10?, K; = 100. For the manipulator arm
control the controller gains are:K, = [100,100], K; =
[100,100], K4 = [2,2]. The outermost loop which is the
visual servoing, a proportional control gain A = 1 is used.

Positioning using visual sensor (VS: Case-1)  Here the
quadrotor starts at position {0, —1, —4} and has to reach
the point {0.5, —1, —4} while holding the manipulator pose
at {0.5,—0.5}. The manipulator joint error and torque
can be seen in Figure-8. The effort in Figure-8 is the
torque required to hold the manipulator at a given position
during displacement of the quadrotor. The feature error
and camera velocity can be seen in Figure-9. Here we
can observe that the feature error norm tends to zero
asymptotically, and the respective z-direction velocity is
also visible.

Vision based stabilization during manipulation (VS: Case-
2)  Here the purpose is to stabilize the quadrotor at
position {0,—1, —4} while the manipulator changes the
end effector position from {0.5,—0.5} to {0.5,0}. The
manipulator joint error and torque required to attain the
pose can be seen in Figure-10. The feature error norm and
camera velocity can be seen in Figure-11. In Figure-10 we
can see the higher torque required to move the link-2 to
the specified position.
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6. CONCLUSION

In this research an aerial manipulation system was suc-
cessfully developed using Recursive Newton Euler method.
The dynamic coupling between the quadrotor and the
developed two link manipulator was briefly studied while
performing specific task. A visual servo system was also
introduced and used with the quadorotor to perform pre-
cise positioning and hover stabilization with manipulation
task. The future perspective of this research is to develop
a single visual servo system which can be used for control
of robotic arm and quadrotor together.
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