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Abstract – We propose a way to incorporate the effect of a specific class of feedback processes into
stochastic thermodynamics. These “Maxwell demon” feedbacks do not affect the system energetics
but only the energy barriers between the system states (in a way which depends on the system
states). They are thus of a purely informational nature. We show that the resulting formalism can
be applied to study the thermodynamic effect of a feedback process acting on electron transfers
through a junction.
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Introduction. – Our understanding of nonequilibrium
statistical mechanics has significantly improved over the
last fifteen years, in large part due to our ability to accu-
rately manipulate small fluctuating systems operating far
from equilibrium [1,2]. At the theoretical level, the discov-
ery of fluctuation theorems (see the reviews [3–5] and
references therein) and the fundamental new accomplish-
ments in stochastic thermodynamics [6–10] have played
a major role in this respect. In view of these devel-
opments, it is therefore not so surprising that we are
witnessing a regained interest in the study of the intri-
cate connections between information and thermodynam-
ics [11–24] recognized long ago by pioneers such as Szilard,
Landauer, Bennett, and many others (most of these early
works can be found in ref. [25]). What seemed rather
abstract and unrealistic considerations have nowadays
become experimentally relevant questions [26–29]. This
is particularly true when describing systems undergoing
feedback processes. In this paper, we propose to incor-
porate the effect of a specific class of feedback processes
(which we call “Maxwell demon” feedbacks) in the formal-
ism of stochastic thermodynamics and analyze its conse-
quence on the study of thermodynamic efficiencies.
In stochastic thermodynamics, any system described

by a Markovian stochastic dynamics can be shown to
satisfy a “mathematical” second law of thermodynamics.
This means that the Shannon entropy of the system can
be separated into two contributions, an always positive
contribution which only vanishes when detailed balance
is satisfied (i.e., all probability currents between system

states vanish), and a remaining entropy flow contribution.
Establishing the first law requires the key assumption of
local detailed balance: in its simplest form the logarithm of
the ratio between a forward and backward transition rate
due to a given reservoir ν is given by the energy difference
between the states involved in the transition in units of
kbTν . This translates the fact that the mechanisms gener-
ating the transitions between system states are external
reservoirs at equilibrium. Under these circumstances, the
entropy flow can be directly connected to the energy flows
in the system and the “mathematical” second law becomes
the physical second law of thermodynamics. In this paper,
we show that the local detailed balance assumption can
be modified to account for the effect of a specific class of
feedback processes which do not affect the energetics of
the system, but only modify the energy barriers between
system states. Ideally, such feedbacks do not require any
work to function since the energy for crossing the barriers
is provided by the reservoirs. They only use the “informa-
tion” or “knowledge” of the state of the system to adjust
the energy barriers accordingly. Thanks to the modified
notion of local detailed balance, systems subjected to
such feedbacks can still be analyzed within the powerful
framework of stochastic thermodynamic and the effect of
these feedbacks on the thermodynamic properties of the
system can be systematically investigated. Such a theory
is particularly useful to differentiate between general and
system specific features. We apply our formalism to the
study of an electronic Maxwell demon model proposed in
ref. [30]. In the spirit of previous studies on the efficiency
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of small devices operating far from equilibrium [15,31–39],
we study the efficiency with which the feedback can gener-
ate heat or matter fluxes in directions forbidden by the
second law in absence of feedbacks.

Stochastic dynamics with “Maxwell demon”
feedback. – We consider a system in contact with
various reservoirs ν at fixed temperature Tν and chemical
potential µν . The discrete system states are denoted
by m and have an energy εm and number of particles
Nm. Transitions between systems states are triggered by
the reservoirs. The probability for the system to be on
the state m evolves according to the Markovian master
equation

ṗm =
∑
m′
Wmm′pm′ . (1)

The rates satisfy
∑
mWmm′ = 0 (due to probability

conservation) and contain contributions from different

reservoirs ν: Wmm′ =
∑
νW

(ν)
mm′ . We assume that the

system is subjected to a class of feedbacks that do
not affect the energetics of the system but only its
kinetic properties. These “Maxwell demon feedbacks” are
assumed to modify the local detailed balance property of
the rates in the following way:

ln
W
(ν)
mm′

W
(ν)
m′m

=− (εm− εm′)−µν(Nm−Nm′)
kbTν

+ f
(ν)
mm′ . (2)

The feedback parameters f
(ν)
mm′ cannot depend on εm and

Nm and are such that f
(ν)
mm = 0 and f

(ν)
mm′ =−f (ν)m′m. In

the absence of feedback, f
(ν)
mm′ = 0, we recover the stan-

dard local detailed balance property which is generic for
systems interacting with fast equilibrium reservoirs and is
known to lead to a consistent thermodynamic description
of the system [40]. The form (2) implicitly assumes that
the feedback acts by controlling some physical parameters
present in the rates on timescales much faster than the
system and much slower than the reservoirs. It imposes
a weak constraint on the explicit form of the rates which
can assume very different forms depending on the system
under consideration. To fix our ideas, let us consider as a
first example Arrhenius rates

W
(ν)
mm′ =A exp

{
−B

(ν)
mm′ −Em′
kbT (ν)

}
, (3)

where B
(ν)
mm′ is the energy barrier between state m

′ and m
when the transition is caused by the reservoir ν. We see
that the feedback parameter turns out to be the difference
between the energy barriers from state m to m′ and from
m′ to m

f
(ν)
mm′ =

B
(ν)
m′m−B(ν)mm′
kbT (ν)

. (4)

In the absence of feedback, f
(ν)
mm′ = 0 because the

energy barriers have to be the same in both directions.

Fig. 1: (Color online) Illustration of how a feedback, by
modifying the potential landscape separating two well-defined
potential wells, could lead to a discrete description in term of
Arrhenius rates (3). The sketched full (dashed) potential land-
scape corresponds to transitions described by Wmm′ (Wm′m).

The feedback acts exclusively on the energy barriers and
leaves therefore the system energies unaltered (see fig. 1).
We call these feedbacks “Maxwell demon feedbacks”
because they can be seen picturesquely as resulting
from a Maxwell demon which is able to instantaneously
tune the values of the energy barriers whenever at least
one given transition occurs. As a second example we
consider “Fermi golden rule” rates resulting from a
weak interaction between the system and fermionic or
bosonic reservoirs at equilibrium. Assuming (without loss
of generality) that for fermions Nm′ =Nm− 1 and for
bosons εm′ < εm, one obtains

W
(ν)
mm′ = Γ

(ν)
mm′ n

(
εm− εm′ −µν
kbT (ν)

)
,

W
(ν)
m′m = Γ

(ν)
m′m

[
1∓n

(
εm− εm′ −µν
kbT (ν)

)]
, (5)

where depending on the particle species, n denotes the
Fermi or Bose distribution n(x) = (ex± 1)−1 (in the latter
case the chemical potentials vanish), respectively, and the

Γ
(ν)
m′m’s are related to tunneling amplitudes between states.

In the absence of feedback, these are symmetric Γ
(ν)
mm′ =

Γ
(ν)
m′m. The feedback process consists again in modifying
the tunneling amplitudes depending on the state of the
system. Using (2), we find that the feedback parameters
are expressed in terms of the tunneling rates as

f
(ν)
mm′ = ln

Γ
(ν)
mm′

Γ
(ν)
m′m

. (6)

Stochastic thermodynamics with feedback. – We
now consider the stochastic thermodynamic description
of a system subjected to the above-described “Maxwell
demon feedbacks”. We are going to show that, in contrast
to a standard thermodynamic forces, such feedbacks do
not affect the first law of thermodynamics but do enter
the second law. The energy and number of particles in the
system are given by

E =
∑
m

pmεm, N =
∑
m

pmNm. (7)
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Since the total energy and number of particles are
conserved and since “Maxwell demon feedbacks” do not
affect the system energies and number of particles, the
energy and matter balance reads

Ė = λ̇∂λE+
∑
ν

I
(ν)
E , Ṅ = λ̇∂λN +

∑
ν

I
(ν)
M . (8)

The first contribution on the right hand side accounts
for changes induced by an external work source whose
effect on the system energies, εm(λ), and number of
particles, Nm(λ) (this latter case seems however unlikely),
is parametrized by λ. The second contribution accounts
for the energy and matter currents entering the system
from reservoir ν

I
(ν)
E =

∑
m,m′

W
(ν)
mm′pm′

(
εm− εm′

)
,

I
(ν)
M =

∑
m,m′

W
(ν)
mm′pm′

(
Nm−Nm′

)
. (9)

The energy balance can be rewritten as the first law of
thermodynamics,

Ė = Ẇ +
∑
ν

Q̇(ν), (10)

where the work flow contains a mechanical and chemical
component

Ẇ = λ̇∂λE+
∑
ν

µνI
(ν)
M (11)

and where the heat flow with reservoir ν is given by

Q̇(ν) = I(ν)E −µνI(ν)M . (12)

The crucial result up to this point is that the first law
remains unaffected by the feedback. We now turn to the
system entropy which is given by the Shannon entropy

S =−kb
∑
m

pm ln pm. (13)

The entropy balance reads

Ṡ = Ṡe+ Ṡi, (14)

where the entropy production is given by

Ṡi ≡ kb
∑
ν

∑
m,m′

W
(ν)
mm′pm′ ln

W
(ν)
mm′pm′

W
(ν)
m′mpm

� 0 (15)

and the entropy flow by

Ṡe ≡−kb
∑
ν

∑
m,m′

W
(ν)
mm′pm′ ln

W
(ν)
mm′

W
(ν)
m′m

. (16)

Using the modified local detailed balance property (2),
this latter can be expressed as

Ṡe =
∑
ν

Q̇(ν)
Tν
− IF . (17)

The first term on the right-hand side is the standard form
of the entropy flow in absence of feedback. The second
term is the information current due to the feedback and
reads

IF =
∑
ν

I
(ν)
F , I

(ν)
F = kb

∑
m,m′

W
(ν)
mm′pm′f

(ν)
mm′ . (18)

Obviously, while “Maxwell demon feedbacks” do not affect
the energy and matter balance, they do affect the entropy
balance. Using (17), we can rewrite (14) as

Ṡi = Ṡ−
∑
ν

Q̇(ν)
Tν
+ IF � 0. (19)

This is a central result of this paper. In the absence of
feedback, IF = 0, it is well known that entropy production
can be interpreted as a “total entropy” because it can be
seen as the sum of the entropy change in the system, Ṡ, and
the entropy changes in the reservoirs. Indeed, the entropy
change in an ideal (i.e., reversible) reservoir ν is given by
the heat flowing into it divided by its temperature, i.e.,
Ṡν =−Q̇(ν)/Tν . As a result, the positivity of Ṡi implies
that Ṡ �

∑
ν Q̇(ν)/Tν which is the traditional second law of

thermodynamics. In the presence of feedback, depending
on the sign of IF this result need not hold anymore.
The entropy production Ṡi can still be interpreted as
the “total entropy”, but in addition to the change in
the entropy of the system and the reservoirs, it also
needs to contain the entropy change provided by the
feedback mechanism, IF . The notion of equilibrium is
always defined by Ṡi = 0, since it still corresponds to the
situation where detailed balance is satisfied and where
as a result all currents vanish IE = IM = IF = 0 [41].
The results obtained so far are summarized in table 1
in order to facilitate their interpretation. Each element
constituting the total system is subjected to a given
change in energy, matter and entropy. We clearly see
that while “Maxwell demon feedbacks” do not modify the
energy and matter balance, they do affect the entropy
balance. This summary also reveals an interesting duality
between the work source and the “Maxwell demon”.
While the former is an idealized source of energy without
associated entropy generation, the latter is an idealized
source of entropy without associated energy changes.
Without going into details which have been often

reported elsewhere (see, e.g., [42] or [43]), it is clear that
the dynamics we considered implies a fluctuation theorem
for the entropy production defined at the trajectory level

〈e−(∆iS)/kb〉= 〈e−(∆S−
∑
ν Q(ν)/Tν+F )/kb〉= 1, (20)

where F is the integrated information current IF defined
at the trajectory level. This integral fluctuation theorem
is the analog of the fluctuation theorems derived in [14] for
systems subjected to feedback and in contact with a single
reservoir (in this latter case ∆S−∑ν Q(ν)/Tν = (W−
∆F )/T ). We note that the detailed fluctuation theorem

30003-p3



Massimiliano Esposito and Gernot Schaller

Table 1: Illustration of each element constituting the total system. The table lists their respective energy, matter and entropy
change.

System Work source Reservoir ν Demon

Energy Ė ĖW =−λ̇∂λE Ėν =−I(ν)E ĖD = 0

Matter Ṅ ṄW =−λ̇∂λN Ṅν =−I(ν)M ṄD = 0

Entropy Ṡ ṠW = 0 Ṡν =−Q̇(ν)/Tν ṠD =−IF
Total energy conservation: Ė+ ĖW +

∑
ν Ėν = 0→ eq. (8)

Total matter conservation: Ṅ + ṄW +
∑
ν Ṅν = 0→ eq. (8)

Total entropy production: Ṡi = Ṡ+
∑
ν Ṡν + ṠD � 0→ eq. (19)

also holds. The backward dynamics is identical to the
forward dynamics and is subjected to the same “Maxwell
demon” feedback as the forward dynamics. Note that this
is in contrast to detailed fluctuation theorems obtained for
other feedbacks which act by an external (time-dependent)
control of the rates [18].
From now on we will focus on nonequilibrium steady-

state situations and consider for simplicity the case of two
reservoirs ν =L,R. This means that due to energy and

matter conservation we have IE,M ≡ I(L)E,M =−I(R)E,M . Since
furthermore in steady state one has Ṡ = 0, it follows that
Ṡi =−Ṡe and (19) becomes

Ṡi =

(
1

TR
− 1
TL

)
IE −

(
µR

TR
− µL
TL

)
IM + IF � 0. (21)

In an isothermal system T ≡ TL = TR for example, assum-
ing that µR � µL, eq. (21) becomes

Ṡi =−P
T
+ IF � 0, (22)

where the extracted power is given by

P =−Ẇ =
∑
ν

Q̇(ν) = (µR−µL)IM . (23)

In the absence of feedback, the matter flux can only
flow down the chemical potential gradient (i.e., IM � 0).
However, in the presence of feedback, if IF is sufficiently
positive, the matter flux can climb up the chemical
gradient (i.e., IM � 0) and lead to positive extracted
power with an efficiency

η=
P
TIF

= 1− Ṡi
IF
. (24)

A similar analysis can be done in the absence of a chemical
potential gradient µ≡ µL = µR and assuming that TL �
TR. In this case, entropy production (21) becomes

Ṡi =− ηC
TR
Q̇(R)+ IF � 0, (25)

where ηC = 1−TR/TL is the Carnot efficiency. Thanks to
the feedback, heat could flow from lower to higher temper-
ature (i.e., Q̇R =−Q̇L > 0) and cool the cold reservoir
with an efficiency

η=
Q̇(R)
TRIF

=
1

ηC

(
1− Ṡi
IF

)
. (26)

As a final example, we mention that the feedback could
also be used to improve the efficiency of a thermoelectric
generator. To see this, we assume that TL � TR and µR �
µL and rewrite (21) as

Ṡi =− P
TR
+
ηC

TR
Q̇(L)+ IF � 0. (27)

The thermoelectric effect occurs when P > 0. In the
absence of feedback, this requires heat from the hot
reservoir Q̇(L) > 0. The efficiency of this thermal engine
is usually defined by

η=
P
Q̇(L) = ηC +

TR(IF − Ṡi)
Q̇(L) , (28)

which, for IF = 0, is upper-bounded by ηC . We easily see
that the feedback can be such that this efficiency increases
beyond Carnot efficiency. The reason is that the power
generation is not only powered by the heat from the hot
reservoir but also by the information flow resulting from
the feedback.
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Single level quantum dot with feedback. – We
now turn to the thermodynamic analysis of a model
system, proposed in ref. [30], which consists of a single
level quantum dot in contact with two fermionic reservoirs
and subjected to a Maxwell demon feedback. The dot can
be empty (m= 0) or filled (m= 1) and the rates describing
the reservoir-induced transitions between these states are
given by

W
(ν)
10 =Γνnν(ε), W

(ν)
01 =Γνe

fν [1−nν(ε)] , (29)

where the Fermi distribution is given by nν(ε) = (e
xν +

1)−1 and xν = (ε−µν)/(kbTν). The local detailed balance
condition modified to include the feedback effect therefore
reads

ln
W
(ν)
10

W
(ν)
01

=−xν − fν . (30)

If p denotes the probability to find the dot filled, at
steady state we find p=W10/(W10+W01). We introduce
the steady-state probability current (which for this exam-
ple is equal to the matter current IM )

I = W
(L)
10 (1− p)−W (L)01 p

=
W
(L)
01 W

(R)
10

W10+W01

(
eA− 1) , (31)

where we defined the affinity

A= ln
W
(L)
10 W

(R)
01

W
(L)
01 W

(R)
10

= δf − δx (32)

in terms of δf = fR− fL and δx= xL−xR. The affinity
may also be written more explicitly as

A=
ε

kb

(
1

TR
− 1
TL

)
+
1

kb

(
µL

TL
− µR
TR

)
+(fR− fL). (33)

The heat and matter current are proportional in this
model I = IM = IE/ε. This is the so-called tight-coupling

property. Since fν = f
(ν)
01 =−f (ν)10 , the information

current (18) becomes IF = kbδfI and is thus also propor-
tional to I. The three currents (matter, energy and
information) are thus tightly coupled. As a result, the
entropy production can be written as a single collapsed
affinity A times the current I:

Ṡi = kbAI = kb(δf − δx)I . (34)

We will restrict our analysis to the isothermal regime
T ≡ TR = TL, where the feedback is used to generate power
by pumping electrons against the bias. In this case the
power (23) can be written as

P = kbTδxI = kbT (δf −A)I (35)

and the efficiency for generating this power (24) becomes

η=
δx

δf
= 1− A

δf
. (36)

Fig. 2: (Color online) The feedback pumps electrons against the
bias (isothermal leads) thus generating power. For maximum
power vs. A and xL, the efficiency (top), power (middle), and
affinity (bottom) of the process is plotted as a function of δf
and fR. All quantities are dimensionless except power which is
expressed in ΓkbT with Γ=ΓL =ΓR.

At equilibrium, A= 0, the efficiency reaches its upper
bound η= 1. Since close to equilibrium, the current
becomes linear in the affinity, I =LA, we observe the
well-known result that η= 1 corresponds to P = 0. We
therefore turn our attention to the efficiency at maximum
power with respect to A. In the linear (to affinity) regime,
the maximum occurs at the affinity A∗ = δf/2 and thus
leads to the well-known result (for models with tight
coupling) that the efficiency at maximum power η∗ in
the linear response regime is half of the ideal equilibrium
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efficiency, i.e., η∗ = 1/2 [31]. To study the efficiency at
maximum power beyond linear response, we need to
resort to numerics. Generally, even for equal tunneling
rates Γ= ΓL =ΓR, power in eq. (35) will still depend
on xL/R and fL/R. Using δf = fR− fL, δx= xL−xR,
and eq. (32), we choose to eliminate these in favor of
δf , xL, and fR. Maximizing the power numerically with
respect to both A and xL, the maximum power P

∗

still depends on fR and δf . In fig. 2 we therefore plot,
as a function of δf and fR, the efficiency, power and
affinity corresponding to the power maximum obtained
by maximization vs. A and xL. We clearly see that close
to equilibrium at low affinities (corresponding to small
δf), we recover the universal 1/2 behavior. We also see
that the efficiency at maximum power in the nonlinear
regime can become much larger (respectively, smaller)
than 1/2 for large (respectively, low) values of fR.

Summary and outlook. – We considered nonequilib-
rium systems subjected to “Maxwell demon” feedbacks,
i.e., feedbacks which do not affect the system energetics
but only the energy barriers between system states, and
showed that their thermodynamic properties can be
studied using the theory of stochastic thermodynamics
by extending the traditional local detailed balance as
described in eq. (2). We demonstrated that these feedbacks
may be used to convert information into work, to cool a
cold reservoir, or to increase the standard efficiencies of
heat to work conversion above Carnot efficiency (since
in this latter case it is actually heat and information in
combination that are converted to work). Using a simple
model system introduced in [30], we also studied in detail
the efficiency at maximum power of information to work
conversion. Generalizing the present rate-equations–based
scheme to quantum master equations (not reducible
to rate equations) is an interesting venue for future
research.
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