
CodeVoting
Protection Against Automatic Vote

Manipulation in an Uncontrolled Environment

Rui Joaquim and Carlos Ribeiro

ISEL / INESC-ID
rjoaquim@cc.isel.ipl.pt,

carlos.ribeiro@tagus.ist.utl.pt

Abstract. One of the major problems that prevent the widespread of
Internet voting is the vulnerability of the voter’s computer. A computer
connected to the Internet is exposed to virus, worms, spyware, malware
and other threats that can endanger the election’s integrity. For instance,
it is possible to write a virus that changes the voter’s vote to one prede-
termined vote on election’s day. It is possible to write such a virus so that
the voter would not notice anything wrong with the voting application.
This attack is very dangerous because it may pass undetected. To pre-
vent such attack it is necessary to prevent automatic vote manipulation
at voter’s computer. Here we present CodeVoting, a technique to create
a secure communication channel to a smart card that prevents vote ma-
nipulation by the voter’s PC, while at the same time allows the use of
any cryptographic voting protocol to protect the election’s integrity at
the server side of the voting application.

Keywords: Internet voting, vote manipulation.

1 Introduction

Remote electronic voting can be a powerful tool for our democracies. It can allow
citizens to vote from anywhere at anytime and also provides faster vote count.
However, it also brings some risks. Risks to the integrity of the election such as
the risk of automatic vote manipulation, and risks to the privacy of voters that
could ruin one of the pillars of our democracies. These risks apply both to the
client and server side of the voting application.

Currently, cryptographic mechanisms can be employed to provide protection
at server side. Techniques, such as digital signatures and zero knowledge proofs
are normally used to guarantee correct vote handling. To protect voters’ privacy
other cryptographic techniques are used such as homomorphic ciphers, mix-nets
and blind signatures.

Cryptographic voting protocols work at server side based on the assumption
that several parties do not collude. On the other hand we have the client side
of the voting application. The client application is centralized, i.e. not divided
over several opposite entities, therefore it is usually considered “trusted”. The

A. Alkassar and M. Volkamer (Eds.): VOTE-ID 2007, LNCS 4896, pp. 178–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18439042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CodeVoting Protection Against Automatic Vote Manipulation 179

client application shows the ballot, collects the answer, performs the voting pro-
tocol and verifies it on behalf of the voter. However, there is a problem with
this approach, and the problem is considering the client application “trusted”.
The client application can be manipulated to cast a vote on a predetermined
candidate while it misleads the voter into believing that her vote is the one that
is cast. Another week point at client’s side is the possibility of compromising
the client application, or the remote computer where the client program exe-
cutes, to facilitate vote buying and coercion. If the voter uses a computer that
is controlled by the vote buyer or coercer it is easy to produce a vote receipt.

There is much work on the vote buying/coercion problem [4,5,9,10,11,6,12,15]
under the assumption of a secure voter’s platform. However, there is few on
the insecurity of voter’s platform. The work on vote buying and coercion free
voting systems follows two main approaches. The first one is the use of a secure
and secret communication channel between the voter and a trusted party of the
voting system, allowing the voter to cheat on the buyer/coercer. Depending on
the voting system, such secure and secret communication channel can be required
prior to or on the election day. The second main technique used to prevent vote
buying/coercion is allowing the voter to vote several times. Therefore, since
usually the list of voters who voted is public, the only real vote buying/coercion
possible that gives the attacker 100% of guarantees is to buy/coerce the voter
to abstain.

We understand that vote buying/coercion is a potential big problem on In-
ternet voting systems. However, we consider that the use of an insecure voters’
platform can have a potential higher risk to election’s integrity. We base our
opinion on three reasons.

– First, large scale vote buying/coercion, involving possibly thousands of vot-
ers, is quite unlikely to pass undetected.

– Second, with all the security flaws on operating systems and applications, it
is easy to write a virus that would be active on election’s day to change the
voter’s vote.

– Third, we believe that writing a virus and disseminating it would be cheaper
and more difficult to trace back to the authors than a vote buying/coercion
attempt of a thousand voters, therefore more appealing to an attacker.

Therefore, we can say that the client side weaknesses of a remote electronic
voting system is the main issue that prevents the widespread of remote electronic
voting [2,7,8,13].

CodeVoting addresses some problems of the insecure voter’s platform, namely
automatic vote manipulation. CodeVoting works by creating a secure communi-
cation channel to a trusted component of the voting system. Therefore, Code-
Voting can be considered as a kind of user interface to the voting system.

We propose the use of a tamper resistant device, such as a smart card, to
be the trusted component of the voting system at client’s side. Since a smart
card provides a much more secure execution platform than an of-the-shelf PC,
using CodeVoting to create a secure communication channel to the smart card,

180 R. Joaquim and C. Ribeiro

throughout the voter’s PC, will prevent automatic vote manipulation by mali-
cious software installed in the voter’s PC. Nevertheless, the voter’s PC network
and I/O capabilities will still be used to interact with the voter and the server
side of the voting system.

The use of secure devices, e.g. smart cards, in electronic voting is not new
[5,11]. Secure devices are typically used as a way to provide secure voter’s au-
thentication and for the generation and secure storage of secret values of the
voting protocol. However, there is always the need to use the voter’s computer
to show the ballot and collect the answer, and usually this is assumed to be
performed by a trusted vote client application. Our goal it to show how one can
build a simple, secure and private communication channel between the common
voter and her smart card, without the need to trust on the voter’s computer.
Secure communications channels are easy to achieve between machines, e.g. by
sharing a secret key. However, making a secure and private communication chan-
nel between a machine a common human being is not so straightforward. The
challenge is to keep the complexity of the communication channel as small as
possible so the human can deal with it.

1.1 Vote Manipulation Attacks

A vote manipulation attack can be a modification of the voter’s vote. The vote
modification attack can be performed in two ways: i) changing the vote to a
predetermined candidate or ii) changing the vote to a random candidate. While
the first attack is more powerful the second may be easier to prepare in advance.
By other words, to change a vote to a predetermined candidate one must have
the knowledge of which candidate one wants to change the vote to, while to
change the vote to a random candidate there is no need to know the candidates
in advance.

If one wants to boost the number of voter for candidate A it is preferable
to perform an attack to directly change the votes to votes for candidate A. On
the other hand, if one wants the decrease the votes for candidate B, it suffices
to perform a random vote modification attack in an area known to be much
favourable to candidate B.

The other kind of vote manipulation attack is to fake a successful vote delivery.
In many voting systems this can be done just by presenting the message “Your
vote was successfully delivered. Thank you for voting.”. This attack allows an
attacker to reduce the votes on a candidate just by targeting an area with great
affinity for that candidate.

In the next section we describe current proposals to minimize the weaknesses
at the client side. In Sect. 3 we present Code Voting, a solution that prevents vote
manipulation at client side. Then, we present in more detail the main components
of CodeVoting in Sect. 4 and 5. We evaluate CodeVoting resistance to vote
manipulation attacks on Sect. 6. Finally, we present some issues and future
work on CodeVoting in Sect. 7 and conclude in Sect. 8.

CodeVoting Protection Against Automatic Vote Manipulation 181

2 Related Work

Cryptographic voting protocols can prevent vote manipulation at server side
but that’s only relevant if those properties cannot be easily broken at the un-
controlled client side of the remote voting system. Here we present an overview
of the current proposals to deal with this problem.

One proposal is to restrict remote electronic voting to controlled environ-
ments [2], such as controlled voting kiosks, providing immediate protection on
the common threats of uncontrolled environments, such as virus and other mali-
cious programs. In a controlled environment it is also possible for election officials
to verify that the correct client application is installed and running. However,
this solution as the disadvantage of restricting voter’s mobility and does not re-
ally work in the presence of corrupted voting officials who can install a malicious
vote client application.

In 2001, Chaum [3] presented SureVote. SureVote allows the voter to vote
using secret vote and reply codes. These secret codes allow the voter to detect
if anyone changed the vote code during the voting process. SureVote consists in
the generation of a secret vote and reply code for each candidate and for each
voter. The codes are delivered to the voters prior to the election day. On election
day the voter sends the vote code of her favourite candidate through the voting
channel, e.g. Internet. At server side the reply code is computed by a set of
trustees and sent to the voter that confirms it to verify that there was no vote
modification. After the election end the trustees compute the real votes from the
vote codes and publish the results. However, if there is at least one corrupted
trustee, SureVote does not guarantee that in the counting phase the vote code is
translated to the right candidate. Another issue with SureVote is that to protect
against vote tracking and personification it is necessary to secretly create and
anonymously deliver the vote codes to the voters, a requirement that is very
hard to achieve and that creates new opportunities to attack the voting system.

A SureVote similar voting scheme was also used in the UK to enable the use of
Internet, SMS and telephone voting channels [16]. The drawbacks of this system
are the same than the ones of SureVote, i.e. it is necessary to guarantee that
the codes are secretly generated and anonymously delivered to the voters, and
there is no guarantees that the code vote is translated to the right candidate.
The reply code only confirms that the vote has reached an entity that knows the
right reply code.

Another proposal to solve the insecure platform problem is to use trusted com-
puting technology [17]. Trusted computing is a technology that allows remote
attestation of machines and programs running on them. With remote attesta-
tion it is possible to certify that the voter is using the correct voting program.
Trusted computing also provides ways to secure I/O operations between the pro-
gram and the physical I/O devices, therefore creating a secure environment for
an application to run. The attestation process is based on measures performed
on the software by a hardware module called trusted platform module (TPM).
The client of a remote voting application needs to interact with the voter (I/O
device drivers), needs to establish a connection with the voting server (network

182 R. Joaquim and C. Ribeiro

protocol stack + network adapter driver) and, last but not least, it needs an en-
vironment to run on, i.e. what it really needs is a working operating system. The
attestation of the core of the operating system, the device drives and the voting
application can be cumbersome. Moreover, there are also problems concerning
the maturity of the currently deployed technology [14] and concerning the re-
vocation of cracked machines [1]. We believe that, for now, the application of
trusted computing to remote voting as the only guaranty of correct application
behaviour is not a valid alternative.

Kutylowski and Zagórski [10] propose the use of cryptographically hidden
ballots. The voter requests n encrypted ballots that are randomized. Then she
chooses one to use and verifies the other ballots with the help of a private external
channel. If the revealed ballots are correct the voter uses the chosen ballot to
cast her vote. The main disadvantages of this solution are the need of a private
external channel to verify the ballots and the complexity of the voting protocol
that requires the voter to deal directly with cipher texts.

The last proposal we are aware of replaces the standard PC’s I/O by a secure
I/O device [18]. The disadvantages of this solution are the necessity of a non
standard I/O device, the corresponding costs, and the reduced I/O capabilities
of the device used. However, it may be a possibility in a semi-controlled envi-
ronment as a solution that allows adapting a standard PC to Internet voting.

3 CodeVoting

Reading the last section the reader quickly understands that none of the pre-
sented proposals is perfect. Here we present a proposal that does not restrict the
voter’s mobility, protects the vote even if the vote client application is executed
in a malicious machine, and allows for the use of cryptographic voting protocols
that protect voter’s privacy and vote integrity at server side. Nevertheless, our
system is simple enough to be used by the common voter.

Briefly, our solution consists in the following steps: i) the voter expresses her
vote as a secret code, ii) the secret code is translated into the corresponding
candidate code (clear vote), iii) the clear vote is used in a cryptographic voting
protocol.

We propose the use of a tamper resistant device, such as a smart card, to be the
trusted component of the voting system at client side. This trusted component
we will call from now on VoterCard. The VoterCard will be used to securely
authenticate the voter to the vote server, e.g. by means of digital signature, and
it will also be in charge of i) the translation of the secret code to the candidate
code, hiding the clear vote from the vote client application, and ii) the use of
the cryptographic mechanisms provided by the cryptographic voting protocol.
Additionally, it also provides proof of correct conclusion of the voting protocol.

3.1 CodeVoting Details

CodeVoting can be seen as a rearrangement of the ideas presented by Chaum [3].
However, the idea of CodeVoting is to use the codes just as a user interface and

CodeVoting Protection Against Automatic Vote Manipulation 183

not as the entire voting protocol. The secret codes are the base for the secure
and private communication channel between the voter and her VoterCard. The
voter will use secret codes to choose her favorite candidate. Each VoterCard has
a set of secret codes associated with it that are printed on a paper card, the
CodeCard. The details on how the voter gets her VoterCard and CodeCard are
explained later.

For the voter the voting process is quite simple. The voter just uses a Code-
Card to translate the candidate code into a vote code.

Election for the Most Important CodeCard
Figure in Security

Candidate Vote Code
A - Alice Blank vote SIT5Y
B - Bob A A3CR2
C - Eavesdropper B 97RG7
D - Attacker C GHFT1

D WL764
Enter your vote code: ...

Confirmed vote delivery code
6HKG2

Fig. 1. Example of a ballot (on the left) and a CodeCard (on the right)

For example, a voter, with the ballot and CodeCard of Fig. 1, that wishes to
vote for candidate D just have to enter WL764 as the vote code.

Every voter will have a different CodeCard, therefore different vote codes
for the same candidate. Each CodeCard is associated to a VoterCard, which
is responsible for the translation of the vote code to the candidate code. Only
the voter and the VoterCard should know the codes written on the CodeCard.
Therefore, CodeVoting protects against a malicious voting application trying to
change the voter’s vote.

After translating the vote code to the candidate code any voting protocol can
be used to cast the vote. One solution is using the VoterCard to process the candi-
date code accordingly to the cryptographic voting protocol and submit the vote.
Another alternative is to create an unchangeable vote and pass it to the voting
client application running on the voter’s PC so it can proceed with the voting
protocol.

When the VoterCard receives a confirmation of a successful vote delivery it
releases the confirmed vote delivery code, assuring the voter that her vote was
successfully delivered.

Based on this overview of CodeVoting the reader can easily understand that
CodeVoting is a kind of an user interface plugin to a voting system that can
protect the voter’s choice from manipulation.

184 R. Joaquim and C. Ribeiro

4 VoterCard

As explained before, the VoterCard is in charge of the translation of the vote code
to the clear vote, and also of the execution of a cryptographic voting protocol.
However, we did not explained how each voter gets a VoterCard.

We propose to do the distribution of the VoterCards to the voters in a regis-
tration phase. This procedure is only required once, i.e. the VoterCard will be
reused in subsequent elections. Since the VoterCard is a smart card we propose
the use of it also as a secure voter’s authentication mechanism, by means of dig-
ital signature. Therefore, a public key infrastructure (PKI) should be in place
before the registration process. The PKI used can be set up just for elections’
proposes or can be of more wide-use in a national e-Government project. This
last approach can be useful to prevent at some level vote buying and coercion,
because if the voter gives her VoteCard to a vote buyer/coercer it is not just a
vote that the voter gives away, it is also all the e-Government rights of the voter.

4.1 Is the VoterCard Trustworthy?

Reading the description of CodeVoting, the reader quickly understands that
CodeVoting relies on the correct behaviour of the VoterCard. Therefore one can
ask: CodeVoting is designed to protect the voter from the insecure voter’s PC,
but what guarantees are given that the VoterCard does in fact do what it is
supposed to do? One way to verify that the VoterCard does in fact what it is
supposed to do is to test it. Besides testing the VoterCards in the production
phase we believe that would be good to have additional random testing by an
independent certification authority.

Additionally we can make voters also part of the certification process. It could
be possible for a voter to verify her VoterCard by running a fake election with
instant results sometime before the real election.

Nevertheless, one can point out that the application running inside the Voter-
Card is somehow able to detect that is being subject to a test, and therefore
it will act properly in the tests but it will still change the voter’s vote on the
real election day. To prevent this scenario one must be sure of the software
running inside the VoterCard. Fortunately, smart cards support signed applica-
tions. Therefore, and because it is possible to know which software is inside the
VoterCard by verifying its signature, it is possible to use open source certified
software. Of course, we can also have certified applications running on a PC.
However, since it is possible for an attacker to take control of the voter’s PC,
a signed application does not guarantee correct behaviour. On the other hand,
it is not possible to take control over the smart card. Therefore, an open source
signed application can guarantee correct behaviour.

5 CodeCard

The CodeCard is just a paper card with codes printed on it. There should be
one CodeCard per VoterCard so that every voter votes with different codes.

CodeVoting Protection Against Automatic Vote Manipulation 185

The voter should be the only one with access to the codes of her CodeCard to
prevent manipulation of her vote. Consequently we have a problem to solve: how
to create the CodeCard, associate it with the VoterCard and give it to the voter
without leaking the codes.

We propose to generate each voter’s CodeCard within the VoterCard. This is
a good option because the CodeCard becomes automatically associated with the
correspondent VoterCard and no other entity besides the VoterCard has access
to the codes on the CodeCard. However, we still have the problem of how to
secretly print the CodeCard, i.e. how to give it to the voter without leaking the
codes. We think the best idea is to have a certified CodeCard printing machine,
the CodeCard generator interface (CCGI), available at the local authorities’
offices. Since the codes are generated inside the VoterCard the CCGI would be
very simple. It would consist only of a smart card reader, a keypad (for inserting
the PIN of the VoterCard and unlock it) and a small printer. We believe that
such a simple hardware could be easily certified and sealed to ensure the secrecy
of the codes printed. With the CCGI certified and in place a voter could go to
any local authority office to generate a CodeCard for her VoterCard. For privacy
reasons the CCGI should be inside a private booth, similar to the ones used for
traditional paper based voting.

6 Evaluation

We defend that CodeVoting protects against vote manipulations at the voter’s
PC under the following assumptions: i) the CodeCard is generated in a secure and
controlled environment by the VoterCard (the voter is the only person there),
ii) the voter keeps her CodeCard secret, and iii) the correspondence between the
candidate and its code (letter) cannot be changed. The last assumption can be
achieved by publicly exposing the ballot or by any other technique that prevents
a ballot change, such as using an image hard to forge/modify as a ballot.

Under these assumptions changing a vote to a predetermined candidate is
virtually impossible because the corresponding vote code is not known by the
attacker, and the probability of guessing the correct vote code, with 5 alphanu-
meric symbols, is 1 in 365, i.e. less than 1 in 60 million.

A random candidate change attack has almost the same probability of success
as the previous attack. If we have n candidates running for the election the
probability of guessing a random valid vote code is n − 1 in 365. However, to
prevent an easy denial of service attack the CodeCard should not automatically
block when the voter inserts invalid vote codes. Therefore, this limitation allows
an attacker to perform a brute force attack to get a random valid vote code.
To minimize such an attack simple measures can be used, such as delaying the
vote code verification function and/or increasing the length of the vote codes.
For instance, with a delay of three seconds the probability of a successful one
hour brute force attack is just 1 in 50000, for a vote code with 5 alphanumeric
symbols and n = 11. Moreover, adding to the three seconds delay an increase of
the vote code length to 6 symbols results in a reduction of the attack’s success
probability to less than 1 in 1 million.

186 R. Joaquim and C. Ribeiro

The other possible attack is to fool the voter into believing that she cast a
vote, while in reality no vote was cast. To prevent such attack we propose the
use of another code to confirm vote delivery. The VoterCard only releases this
code after getting a confirmation that the vote was successfully delivered, e.g.
could be a message signed by the election server. Therefore, if we use a confirmed
vote delivery code with the same length of vote codes, this attack has the same
probability of success than the attack of changing the vote to a predetermined
candidate. The receipt received by the VoterCard can be stored inside of it to
provide a poof of vote delivery, therefore allowing the voter to protest if her vote
is not considered for the final tally.

If the voting system does not allow a voter to cast several votes there is also
a possible attack to the voters’ trust on the voting system. The attack goes as
follows: the attacker lets the voter successfully cast a vote and then change the
valid confirmed vote delivery code to a fake one. The voter would think that
something wrong had happened, however there was nothing wrong. Then the
voter would try to vote again and the voting system replies that the voter had
already voted and, of course, the voter will protest. If the voting system allows
the voter to cast several votes this attack would not be a problem.

Another valuable aspect to evaluate is the implication of CodeVoting in the
vote buying/coercion problems. CodeVoting allows the voter to produce a receipt
of the vote by giving away the CodeCard to an attacker prior to the election day.
On election day, the attacker can demand the voter to vote using a computer
controlled by the attacker, e.g. by using a web site controlled by the attacker or
a special program develop by the attacker. In this case the attacker will have
a vote receipt that proves the voter’s vote, therefore enabling vote buying and
coercion. We think the best way to prevent such attack is by allowing the voter
to vote several times, i.e. update her vote. We believe that the possibility of a
vote update in a machine not controlled by the attacker would discourage vote
buying and coercion attacks.

7 CodeVoting Issues and Future Work

In this section we will present some issues we have identified with CodeVoting
that we will address in future work, namely the capacity of dealing with a large
candidate list and the problems raise by the reuse of the CodeCard.

Large candidate lists are a big issue when considering the real application of
CodeVoting. As proposed, the CodeCard must have an entry for each possible
candidate. If we consider elections with a large number of candidates, lets say
above thirty, the size of the CodeCard starts to become to large and usability
problems may arise.

Another issue is the CodeCard reuse. If a voter uses the same CodeCard in
more than one election it is possible for an attacker to replace the voter’s vote
by a random one. To be able to perform this attack an attacker must collect the
codes used on the previous elections. Additionally, the attacker must also be in
control of the PCs used by the voter to vote in each election. If the voter uses

CodeVoting Protection Against Automatic Vote Manipulation 187

different PCs to vote it will be much harder to perform the attack. We can also
make this attack harder by doing all the voting protocol inside the VoterCard,
without leaking the voter’s identification to the voter’s PC. In this case the
attacker only has the unlocking PIN to identify the voter.

Of course, the voter can always protect herself against the CodeCard reuse
attack by getting a new CodeCard for her VoterCard between elections. However
an issue still remains: simultaneous elections. The simultaneous elections issue is
a particular case of the CodeCard reuse issue, in which the voter cannot go (or is
not convenient to go) to the local authorities and get a new CodeCard. One solu-
tion that may work in some particular cases is to use sequential candidate label-
ing throughout all the simultaneous elections, e.g. instead of using candidate A
and B for election 1 and 2, use candidate A and B for election 1 and candidate
C and D for election 2. This simple candidate labeling solves the problem of
simultaneous elections but can be lead to the large candidate list issue.

8 Conclusions

Automatic vote manipulation at client side is one of the biggest dangers that
prevent the widespread of Internet voting. We present Code Voting a solution to
prevent automatic vote manipulation at client side of a voting application that,
at the same time, allows the use of cryptographic voting protocols that protect
voters’ anonymity and election’s integrity at server side.

CodeVoting prevent the manipulation of the voter’s vote at three levels: i)
prevents the change of the vote to a predetermined candidate, ii) prevents the
change of the vote to a random candidate, and iii) prevents vote dropping by a
malicious voter’s PC.

Besides providing protection against automatic vote manipulation, Code Vot-
ing can also provide additional protection to the vote and voter. Namely, the use
of CodeVoting in conjunction with a cryptographic voting protocol that runs
completely inside the VoterCard may prevent the vote client application, run-
ning on the voter’s PC, from having access to the clear vote or a message that
could directly identify the voter during the voting procedure, therefore providing
additional protection to the voter’s privacy at the client side of the voting system.

The use of CodeVoting also have implications concerning the vote buying/
coercion problem, namely because the CodeCard can be used to get a receipt of
the voter’s vote. Nevertheless, these implications can be minimized if the voting
system allows the voter to update her vote.

Another issues identified in CodeVoting that will deserve our attention in
future work are the usability issues concerning elections with a large candidate
list, and the issues related with the reuse of the CodeCard, specially in the case
of simultaneous elections.

Acknowledgments

We would like to thank the anonymous reviewers and the conference participants
for their helpful comments.

188 R. Joaquim and C. Ribeiro

References

1. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004:
Proceedings of the 11th ACM conference on Computer and communications secu-
rity, NewYork, USA, pp. 132–145 (2004)

2. California Internet Voting Task Force: A report on the feasibility of Internet voting
(January 2000), http://www.ss.ca.gov/executive/ivote

3. Chaum, David: SureVote. September 2007.// International patent WO 01/55940
A1 (02 August 2001), http://www.surevote.com/home.html

4. Clarkson, M., Myers, A.: Coercion-Resistant Remote Voting Using Decryption
Mixes. In: Workshop on Frontiers in Electronic Elections, Milan, Italy (September
2005)

5. Estonian Internet Voting System (July 2007), http://www.vvk.ee
6. Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryp-

tion. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556.
Springer, Heidelberg (2000)

7. Internet Policy Institute: Report of the National Workshop on Internet Voting:
Issues and Research Agenda (March 2001),
http://www.diggov.org/archive/library/dgo2000/dir/PDF/vote.pdf

8. Jefferson, D., Rubin, A., Simons, B., Wagner, D.: A Security Analysis of the Se-
cure Electronic Registration and Voting Experiment (SERVE) (January 2004),
http://www.servesecurityreport.org/paper.pdf

9. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections.
In: Workshop on Privacy in the Electronic Society, Alexandria, Virginia, pp. 61–70
(November 2005)

10. Kutylowski, M., Zagórski, F.: Coercion-Free Internet Voting with Receipts. In:
Workshop on e-Voting and e-Govrnment in the UK. Edinburgh (February 2006)

11. Lee, B., Kim, K.: Receipt-Free Electronic Voting Scheme with a Tamper-Resistant
Randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
389–406. Springer, Heidelberg (2003)

12. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections.
In: Security Protocols Workshop, Paris, France, pp. 25–35 (April 1997)

13. Rubin, A.: Security Considerations for Remote Electronic Voting Over the Internet.
Communications of the ACM 45(12) (2002)

14. Sadeghi, A., Selhorst, M., Stüble, C., Wachsmann, C., Winandy, M.: TCG Inside?
- A Note on TPM Specification Compliance. In: STC 2006: Proceedings of the 1st
ACM Workshop on Scalable Trusted Computing, Virginia, USA (November 2006)

15. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme A Practical Solution to
the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

16. UK’s National Technical Authority for Information Assurance: e-Voting Security
Study (July 2002),
http://www.ictparliament.org/CDTunisi/ict compendium/paesi/uk/uk54.pdf

17. Volkamer, M., Alkassar, A., Sadeghi, A., Schulz, S.: Enabling the Application of
the Open Systems like PCs for Online Voting. In: FEE 2006: Proceedings of the
Frontiers in Electronic Elections Workshop, Germany (September 2006)

18. Zúquete, A., Costa, C., Romao, M.: An Intrusion-tolerant e-Voting Client Sys-
tem. In: WRAITS 2007: 1st Workshop on Recent Advances on Intrusion-Tolerant
Systems, Lisbon, Portugal (March 2007)

http://www.ss.ca.gov/executive/ivote
http://www.surevote.com/home.html
http://www.vvk.ee
http://www.diggov.org/archive/library/dgo2000/dir/PDF/vote.pdf
http://www.servesecurityreport.org/paper.pdf
http://www.ictparliament.org/CDTunisi/ict_compendium/paesi/uk/uk54.pdf

	CodeVoting Protection Against Automatic Vote Manipulation in an Uncontrolled Environment
	Introduction
	Vote Manipulation Attacks

	Related Work
	CodeVoting
	CodeVoting Details

	VoterCard
	Is the VoterCard Trustworthy?

	CodeCard
	Evaluation
	CodeVoting Issues and Future Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

