View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Repository and Bibliography - Luxembourg

N-Gram Based Test Sequence Generation from
Finite State Models

Paolo Tonella, Roberto Tiella, and Cu D. Nguyen

Software Engineering Research Unit
Fondazione Bruno Kessler, Trento, Italy
{tonella, tiella, cunduy}@fbk.eu
http://se.fbk.eu

Abstract. Model based testing offers a powerful mechanism to test ap-
plications that change dynamically and continuously, for which only some
limited black-box knowledge is available (this is typically the case of fu-
ture internet applications). Models can be inferred from observations of
real executions and test cases can be derived from models, according to
various strategies (e.g., graph or random visits). The problem is that a
relatively large proportion of the test cases obtained in this way might
result to be non executable, because they involve infeasible paths.

In this paper, we propose a novel test case derivation strategy, based
on the computation of the N-gram statistics. Event sequences are gen-
erated for which the subsequences of size N respect the distribution of
the N-tuples observed in the execution traces. In this way, generated
and observed sequences share the same context (up to length N), hence
increasing the likelihood for the generated ones of being actually exe-
cutable. A consequence of the increased proportion of feasible test cases
is that model coverage is also expected to increase.

1 Introduction

In model based testing, test cases are derived from models, which are often
presented by mean of finite state machines, of the application under test [1].
The underlying idea is that the model encodes all relevant application behaviours
and abstracts away the irrelevant implementation details, so that testing can be
focused on covering all critical application behaviours, without wasting time
on non-critical features of the application. Model based testing does not require
white box knowledge of the application under test. Moreover, incremental model
update algorithms [2] can be used with continuously and autonomously changing
applications, as future internet applications.

Models can be defined upfront, at design time, but such practice is not very
common and is costly due to labour work. Alternatively, models can be inferred
from observations of actual executions, recorded as log traces. The two main
techniques for model inference from execution traces are state abstraction and
event sequence abstraction. In state abstraction, abstraction functions are de-
fined to map concrete states into abstract states, so as to control the size of

https://core.ac.uk/display/18438924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the inferred model and to allow for generalisation from the actually observed
states [3]. Event sequence abstraction takes advantage of regular language infer-
ence algorithms, such as k-tail [4], or its variants [5,6]. A finite state machine
is obtained which recognises the language of the event sequences observed in
execution logs. Such finite state machines are actually a generalisation of the
observed sequences (not just their union).

The generalisation performed by model inference is usually unsound, which
means the inferred models might introduce infeasible behaviours (paths allowed
in the model that are impossible in the real application), hence over-generalising,
and they might exclude some possible behaviours (paths allowed in the real ap-
plication that do not exist in the model), hence under-generalising [7]. While
the latter problem can be tackled by increasing the number and the representa-
tiveness of the execution traces used during model inference, so as to make sure
the model includes as many behaviours as possible, the former problem is diffi-
cult to overcome and is particularly troublesome for testers. In fact, during test
sequence generation an over-generalising model might produce test cases that
traverse infeasible event sequences. For the tester, proving that a given test case
derived from the model is associated with an infeasible path is a quite difficult
task. In the general case, the problem is undecidable [8]. While particularly se-
vere with inferred models, the presence of infeasible paths that cannot be tested
is also a major problem with manually defined models.

In this work, we investigate a test sequence derivation strategy based on the
notion of N-grams [9], which aims at mitigating the problem of the generation of
infeasible paths. The idea is that, during the generation of a test sequence, the
next event to add to the sequence should be selected according to the probability
of the N-grams, as observed in the corpus of training traces. By constructing
test sequences as concatenations of N-grams, inserted according to the observed
frequency of occurrence, we expect to reduce dramatically the generation of
infeasible test sequences. Our preliminary results on two applications confirm
this speculation. Moreover, in comparison with other strategies (e.g., graph visit
or random generation), N-gram based test sequence generation exploits some
context information (the previous N — 1 events in the sequence) to determine
the probability of occurrence of the next event, according to the actual sequences
recorded in the execution logs. By reducing the number of infeasible sequences,
N-gram based test sequence derivation delivers several benefits to testers: (1)
the manual effort to confirm that some test sequences are infeasible is reduced;
(2) coverage is increased, since a higher number of test sequences can be enacted
and executed during testing; (3) the test case concretisation effort (necessary to
supply concrete input data and the surrounding test harness) is also reduced,
since less effort is wasted on infeasible cases.

The paper is organised as follows: Section 2 provides some background on
model based testing and on the most widely used test sequence derivation strate-
gies (namely, graph visit and random generation). Our novel technique for N-
gram based test case derivation is presented in Section 3. Empirical data com-
paring our approach with graph visit and random generation are provided in

Section 4. Related works (Section 5) are followed by conclusions and future
work (Section 6).

2 Baseline Sequence Generation Strategies in Model
Based Testing

Model-based testing is an approach to generate test cases using a model of the
application under test [10]. Dias Neto et al. [1] and Shafique [11] surveyed the
state of the art in model-based testing. A model that describes structure and
behaviour of the SUT is useful to acquire the knowledge needed to generate
effective test cases. The model, in fact, provides an abstract and concise view
of the application by focusing on specific aspects, i.e., classes of application be-
haviours associated with different application states. One of the most frequently
used kinds of model is the Finite State Machine (FSM) model, even though
some alternatives do exist (e.g., Briand et al. [12] use UML class and sequence
diagrams). A node in the FSM represents a state of the application and it can
be determined by, e.g., the values of class attributes (in case of object-oriented
applications [13,14]) or the values of graphical objects (in case of GUI-based
applications [15-17]). FSMs are named concrete if each FSM state represents
an actual application state or abstract if each FSM state represents a set (i.e.,
an equivalence class) of concrete states (e.g., [16,18]). A transition in the FSM
represents an application event/action (e.g., a method call, an event handler in-
vocation) that can change the application state, if executed. Additionally, guards
and conditions can enrich the model to capture the context in which events and
actions are executed.

FSM models are exploited to generate test cases. By traversing the appli-
cation FSM, sequences of application events can be extracted, so as to satisfy
given coverage criteria [13]. For example, state or transition coverage (every
FSM state or transition needs to be exercised by at least one test case) are often
used, even if domain-specific (e.g., semantically interacting events [15]) criteria
are sometimes preferred. As examples of output test sequences, based on the
model presented in Figure 1 we can extract the following test sequences: {eq, e2),
<61, €a, €3>, <€4, €5, 63>.

Fig. 1. An example of a model in FSM format; Sy is the initial node, Sy and S5 are
final nodes.

Different test case derivation strategies can be used to produce a set of test
cases that satisfies the adequacy criterion of choice (e.g., transition coverage).
Graph visit and random model traversal are among the most widely used strate-
gies. We describe them in the next two subsections.

2.1 Graph Visit

proc depthFirstVisit(n : Node,p : Path) =
do
next ;= {m® € succ[n] | —wvisited[(n, m)c|};
if (—mempty(next))
then
while (—mempty(next)) do
s° := randChoose(next);
if (—visited[(n, s)e])
then
visited[(n, s).] := true;
depthFirstVisit(s®, p + s°);
fi
next := remove(next, s°);
od
else
if (p increases adequacy) then addToTestSuite(p); fi
fi
od.
while adequacy criterion not satisfied do
visited :=)
p := depthFirstVisit(start Node, ());
od

Fig. 2. Test sequence derivation by depth first visit

Depth-first and breadth-first model traversal can be used to derive test se-
quences from the model, interpreted as a directed graph. Figure 2 shows the
pseudocode of the depth first test sequence generation strategy (DFV: Depth
First Visit). Procedure depthFirstVisit determines the set of successor nodes
that have not been visited yet (set next, where notation m¢ indicates that m is a
successor node if event e is triggered). Each of them is randomly chosen and the
graph visit is recursively activated on such node, if the associated transition has
remained yet to be visited (in fact, a previous recursive call of depthFirstVisit
might have changed its visited state). This node is concatenated to the path
traversed so far during the visit (p 4+ s¢). When no unexplored successor node is
found (next is empty), the visit terminates and the traversed path is added to
the test suite being generated. The depth first visit procedure is called multiple

times from the start node, until some adequacy criterion is satisfied (by construc-
tion, when the adequacy criterion is transition coverage, depthFirstVisit will be
called just once). The global hash table visited records whether each transition
has been visited or not during the sequence generation (it is reset inside the
main loop, before calling depthFirstVisit). The result of this procedure is non
deterministic, since it depends on the successor node s chosen for the contin-
uation of the visit. Different choices may result in transitions being covered at
different times during the visit, which in turn might give raise to different test
sequences being added to the final test suite.

proc breadthFirstVisit(n : Node,p : Path) =
do
end := true;
next := {m° € succ[n] | —visited[(n, m)c|};
while (—empty(next)) do
end := false;
s¢ := randChoose(nezxt);
visited[(n, s)¢] := true;
addToFifoQueue(Q, p + s°);
next := remove(next, s);
od
if (end A p increases adequacy) then addToTestSuite(p); fi
if (—emptyFifoQueue(Q))
then
p = getFromFifoQueue(Q);
breadthFirstVisit(last(p), p);
fi
od.
while adequacy criterion not satisfied do
visited :=)
p := breadthFirstVisit(start Node, ());
od

Fig. 3. Test sequence derivation by breadth first visit

Figure 3 shows the pseudocode of the breadth first test sequence generation
strategy (BFV: Breadth First Visit). Procedure breadthFirstVisit uses a global
queue data structure (Q) to store the partially explored paths to be considered
later during the visit. All unexplored successor nodes (set next) are concatenated
to the current traversal path p and are added to @ for future exploration. When
no unexplored successor node exists, the visit terminates and the traversed path
p is added to the test suite. If queue @ is not empty, there are some pending
paths that need to be traversed through recursive invocation of breadthFirst Visit.
This procedure involves some degree of non-determinism, related to the order
in which the paths to be explored are added to (). In fact, different orders will

change the wvisited state of transitions at different times, possibly resulting in
different test sequences being added to the final test suite. This is accounted
for by the random selection of the node s° from set next, when p + s¢ is added
to . Transition coverage is granted by BFV by construction. An adequacy
criterion different from transition coverage (e.g., maximum test budget) may
require multiple invocations of procedure breadthFirstVisit.

2.2 Random visit

proc randomVisit(n : Node,p : Path) =

do
if (randProb() < RECURSE_PROB A succ|n] # ()
then
s¢ := randChoose(succ[n]);
p := randomVisit(s,p + s°);
fi
if (p increases adequacy) then addToTestSuite(p); fi
od.

while adequacy criterion not satisfied do
p := randomVisit(startNode, ());
od

Fig. 4. Test sequence derivation by random visit

Figure 4 shows the pseudocode of the random test sequence generation strat-
egy (RAND: Random visit). Procedure random Visit decides whether to add an-
other event to the current test sequence or not in a stochastic way. With prob-
ability RECURSE_PROB, a randomly selected successor of the current node
is added to the current event sequence and random Visit is invoked recursively.
When recursion is not activated, the generated test sequence is added to the
test suite, if it increases the test suite adequacy level. Multiple random visits are
performed, until the adequacy criterion (e.g., transition coverage) is satisfied.

The algorithm is clearly non deterministic. The algorithm parameter RE-
CURSE_PROB determines the length of the generated event sequences. To pro-
duce event sequences with an average length equal to that observed in the execu-
tion traces, RECURSE_PROB can be set to AVG_TRC_SZ/(1+AVG_-TRC_SZ),
where AVG_TRC_SZ is the average length of the logged event sequences.

3 N-Gram Based Test Sequence Derivation

N-gram language models are widely used in Natural Language Processing (NLP) [9].
A N-gram language model is a probabilistic language model where the proba-
bility that a word (an event in our case) e is preceded by a sequence of words
(events) depends only on the last N — 1 words.

For example, given a training corpus of English sentences and N equals to 2
(bi-gram), the probability that the word “the” appears after the sentence “she
is so beautiful that” is approximated with the probability that “the” follows
“that”.

Using probabilistic models, knowledge about the N-gram statistics supports
word prediction. In turn, word prediction is a key component used to address
several NLP tasks, such as speech recognition, handwriting recognition, machine
translation, spell correction, natural language generation, etc. In fact, NLP al-
gorithms admit usually multiple sentence derivations and N-gram statistics can
be used to select the most likely among the possible derivations.

proc ngramVisit(n : Node,p : Path) =

do
if (randProb() < RECURSE_PROB)
then
s¢ := ngramChoose(succ[n], suffix(p, N — 1));
p := ngramVisit(s, p + s°);
fi
if (p increases adequacy) then addToTestSuite(p); fi
od.

while adequacy criterion not satisfied do
p = ngramVisit(startNode, ());
od

Fig. 5. Test sequence derivation by N-gram probability

The problem with model based test sequence generation is somewhat sim-
ilar. Among all possible event sequences that satisfy some adequacy criterion
(e.g., transition coverage), only a subset represent feasible event sequences, i.e.,
event sequences that can be actually executed against the application under test.
Infeasible sequences involve execution steps whose order is forbidden by the ap-
plication under test or events whose valid inputs prevents the execution of a later
subsequence. Avoiding the generation of infeasible event sequences is very simi-
lar to avoiding the derivation of unlikely sentences and N-gram statistics can be
used in a similar way as in NLP to achieve such purpose. In fact, by generating
event sequences that contain N-grams previously observed in real executions we
increase the likelihood that such sequences will in turn be executable.

Figure 5 shows the pseudocode of the N-gram test sequence generation strat-
egy (by NGRAM2, NGRAMS3, etc., we indicate that N, the size of the tuples
considered in the N-gram statistics, is respectively 2, 3, etc.). The procedure is
similar to the random visit shown in Figure 4, the key difference being the way in
which the next event to add to the event sequence is chosen. Instead of choosing
which successor node to add randomly (i.e., according to a uniform probability
distribution), the successor to add is chosen in accordance with the conditioned

probabilities of the next events given the last IV — 1 events in the current path
P

ngramChoose(S, (e1,...,en—1)) = s® € S with prob. P(e|e1,...,en—1)

The conditioned probabilities P(e | e1,...,en—1) are estimated from the fre-
quency of occurrence of the N-tuples <e(1)7 €lyev ey EN<1)y -y (e(k)7 €1y EN—1)
in the execution logs. Specifically, the choice (among e, ..., e(®)) of the next
event to add to the event sequence has a probability which is proportional to
the frequency of occurrence of the respective tuples ((eM,e1,... ex_1), ...,
<e(k)7 €155 eN—l>)'

When no N-tuple (e,eq,...,en—_1) appears in the available execution traces,
the next event e is selected randomly among the possible transitions outgoing
from the current node n. In such cases the NGRAM strategy degenerates to
the random strategy. This is expected to occur at increased frequency when NV
takes higher and higher values, since only a small fraction of the possible N-
tuples will be represented in the observed traces. We can thus predict that the
performance of NGRAM will converge to the performance of RAND as the value
of the parameter N increases.

4 Case Studies

We have conducted two case studies to answer the following research questions:

— RQ1 (Feasibility): How many feasible test sequences are generated by the
N-gram strategy, as compared to the graph visit and the random strategies?

— RQ2 (Coverage): What level of transition coverage is achieved by the N-

gram strategy, as compared to the graph visit and the random strategies?

RQ3 (Test suite size): How many test sequences are generated by the

N-gram strategy, as compared to the graph visit and the random strategies?

— RQ4 (Test case length): What is the length of the test sequences gener-
ated by the N-gram strategy, as compared to the graph visit and the random
strategies?

The first two research questions are key to validate the proposed approach.
We conjecture that N-gram based test sequence generation will produce less
infeasible test sequences (hence, higher coverage) than graph visit or random
model traversal. With these two research questions we want to empirically assess
whether our conjecture is confirmed or not by the experimental data.

The last two research questions deal with some interesting properties of the
automatically generated test suites, namely, the number of test sequences they
contain and their length. To make the comparison fair, we adopt the same ade-
quacy criterion with all alternative test sequence generation strategies: transition
coverage. All test suites produced by the various strategies will be transition cov-
erage adequate and will contain only test cases that contribute to increasing such
adequacy level.

4.1 Metrics

To address the four research questions listed above, we have collected the fol-

lowing metrics:

— FEAS (RQ1): Ratio between feasible test sequences and total number of

test sequences generated by each test strategy.

— COV (RQ2): Ratio between covered transitions and total number of tran-

sitions in the model.

— SZ (RQ3): Number of test sequences in the test suite.
— LEN (RQ4): Average number of events in each test sequence of the test

suite.

While metrics COV, SZ and LEN can be easily measured automatically,
using tools, metrics FEAS requires human judgment, since it is not possible to
automatically decide if a test sequence is feasible (i.e., whether it can be executed
by providing proper input data) or not (the problem is undecidable in the general
case). We manually defined a set of constraints for the subject applications to
characterise the event sequences that can be legally submitted to and executed

by the system under test.

4.2 Subjects

State| Abstraction

nl |[initial] false

n2 [s1=0As2=0As3>0
n3 |sl1=0As2=0As3=0
nd |s1 >0Ns2=0As3>0
nd [s1 >0As2=0As3=0
n6 |s1 >0As2>0As3>0
n7 |s1 >0As2>0As83=0
n8 [s1=0As2>0As3>0
n9 |sl1=0As2>0As3=0
s1 [numInShopCart

s$2 |numInCompareCart

$3 [numOfSelectedItems

Table 1. Abstraction functions used to infer the model of Flexstore

The applications under test

! http://www.adobe.com/devnet /flex/samples/flex_store_v2.html

are Flexstore and Cyclos. Flexstore! is an on-line
shopping application developed by Adobe and made available from the companys
web site to demonstrate the capabilities of their testing framework. It is a client-
side application developed in Flex and run by the Flash plug-in. The application

State|Abstraction
nl |[initial] false
n2 |sl =true A s2 = true
n3 |s3 =null A s4 = null A s5 # null A s6 = null A s7T=null A s8 =0
nd |s3 = null A s4 = null A s5 # null A s6 = null A s7T# null A s8 =0
nd |59 = true
n6 |s3 = null A s4 = null A s5 # null A s6 = null A 7 # null A s8 >0
n7 |s3 = null A s4 = null A s5 # null A s6 # null A sT=null A s8 =0

sl |LoggedIn

52 |PaymentReady

s3 |typeRow

s4 |customValuesRow

s5 |trSchedulingType

s6 |scheduling_singlePayment

s7 |scheduling_multiplePayments
s8 |paymentCounts

s9 |End

Table 2. Abstraction functions used to infer the model of Cyclos

allows the user to browse a catalog of mobile phones and to focus on a subset
of models by means of filters, such as price range, camera, tri-band, and video
availability. The customer can select one or more models to perform comparisons
among features. Eventually, the customer can put one or more phones in their
shopping cart.

Cyclos? is a popular open source Java/Servlet Web Application, supporting
e-commerce and banking. Its main features include: banking (e.g., payments,
loans, brokering), e-commerce (e.g., advertising, member payments) and many
others (e.g. access control, management). Cyclos is a quite large system. In our
experiment we focused only on the payment feature of Cyclos.

We have obtained execution traces for both applications by navigating and
exercising the various application features, according to a high level functional
coverage criterion: all functionalities provided in the application menus have been
executed with input data that a user would be typically expected to provide.
The two applications have been instrumented so as to support trace collection.
We collected 100 traces for Flexstore and 999 traces for Cyclos. In total, 3,000
events have been executed in Flexstore during trace production, while 5,965
events have been executed in Cyclos.

We have obtained a FSM model of each application by applying state-based
abstraction to the execution traces. Specifically, we have used the model infer-
ence component [16] of the FITTEST? Integrated Testing Environment (ITE).
The state abstraction functions used for model inference with Flexstore and Cy-
clos are shown respectively in Tables 1 and 2 (state variables are mapped to

2 http://project.cyclos.org
8 EU FP7 project n. 257574

ButtonBar(_itemclick_1

_Grip_Imagel5_click
priceSlider_change
_Grip_Imagel7_click

removeButton67_click

productName_click
compareButton6_click
priceSlider_change

_Grip_Imagel7_click

Grip_Imagel5_click
priceSlider_change

Fig. 6. Finite state model of Flexstore

application variables at the bottom of each table). The resulting FSM models
are shown in Figure 6 and 7.

4.3 Procedure

The test sequence generation algorithms DFV, BFV, RAND and NGRAM,
whose pseudocode is shown in Figures 2, 3, 4, 5, have been applied to the mod-
els inferred for Flexstore and Cyclos (shown in Figures 6 and 7). NGRAM has
been applied with N = 2, 3, 4, using the same traces used for model inference to
obtain the N-gram statistics needed by the algorithm. Since all these algorithms
are non deterministic, each of them has been run 100 times. Results are aver-
aged over the 100 runs. In all runs, each algorithm was executed with transition
coverage set as the adequacy criterion to satisfy.

Metrics SZ and LEN are obtained by measuring the number of test cases
and the number of events per test case in each test suite. Metrics COV has been
obtained by means of a tool that visits the FSM models of the two applica-
tions based on the feasible input sequences in each test suite, keeping track of
the covered transitions. Metrics FEAS has been measured based on two sets of
constraints that define the legal sequences of actions that can be executed on

endKeys_memberUserName

sendKeys_amountVal
select_schedulingTypeSelect IMMEDIATELY

select_schedulingTypeSelect MULTIPLE_FUTURE select_schedulingTypeSelect_SINGLE_FUTURE

sendKeys_paymentCount
sendKeys_firstPaymentDate
sendKeys_recurrenceNumber
elect_recurrenceFieldSelect_ DAYS
click_calculatePaymentsButton
select_recurrenceFieldSelect WEEKS
select_recurrenceFieldSelect_ MONTHS

click_submitButton

click_submitButton

click_submitButton

Fig. 7. Finite state model of Cyclos

the two applications. Test cases which contain event sequences violating such
constraints have been marked as infeasible and have been subtracted from the
count of the feasible sequences. They also do not contribute to metrics COV.

Feasibility constraints have the form: [g]e, indicating that event e can be
triggered only if the guard condition g is true; otherwise, the event sequence
being executed is deemed infeasible. An example of a constraint manually defined
for Flexstore is the following:

[numO f SelectedItems > Olcomparel3_click

indicating that event comparel3_click can be triggered only in a state where
numOfSelectedItems is greater than zero. For Cyclos, an example of constraint
is:

[amount > OA (immediateV singleV (multiple A count > 0)]click_submit Button

It is possible to submit a payment if the amount is greater than zero and the
payment is immediate or single. Multiple payments require in addition that the
recurrence count is greater than zero.

4.4 Results

FEAS|COV| SZ|LEN
DFV 0.10{ 0.19] 5.33|13.41
BFV 0.53/0.37(19.00| 4.11
RAND 0.07] 0.21] 3.05/51.68
NGRAM2| 0.49| 0.48| 3.41|52.83
NGRAMS3| 0.72|0.51| 3.83|49.86
NGRAM4| 0.39| 0.44| 3.93|51.58

p-value(NGRAM3, BFV, FEAS) = 1.793e-09
p-value(NGRAMS3, BFV, COV) < 2.2e-16

Table 3. Results obtained for the Flexstore case study

FEAS|COV| SZ|LEN
DFV 0.53| 0.64| 5.61| 6.22
BFV 0.64| 0.61{14.00| 2.86
RAND 0.32|0.63| 7.36| 5.65
NGRAM2| 1.00|0.83| 5.61| 6.98
NGRAM3| 0.36| 0.69| 7.11| 5.39
NGRAM4| 0.36| 0.67| 7.22| 5.64

p-value(NGRAM2, BFV, FEAS) < 2.2e-16
p-value(NGRAM2, RAND, COV) < 2.2¢-16

Table 4. Results obtained for the Cyclos case study

The results of the experiment are shown in Tables 3 and 4. Let us consider the
graph visit and random strategies first. On Flexstore, BFV achieved a relatively
high feasibility and coverage score, while the other strategies performed substan-
tially worse. On Cyclos, BFV achieved comparatively high feasibility, while on
coverage DFV, BFV and RAND performed similarly, with RAND slightly higher
than the others.

On both applications, the NGRAM based approach was superior to the other
strategies in terms of both feasibility and coverage. On Flexstore the best perfor-
mance was achieved by NGRAM3, while on Cyclos it was achieved by NGRAM2.

On Flexstore, the absolute difference of the best (NGRAM3) FEAS/COV values
with respect to BFV is substantial (0.19 and 0.14) and statistically significant
(very low p-values), according to the Wilcoxon test. Similar results hold for
Cyclos. The difference between NGRAM2 and BFV/RAND on FEAS/COV is
substantial (0.36 and 0.20) and statistically significant.

On Cyclos, NGRAM2 gave the best performance in terms of feasibility.
NGRAM?2 achieved the maximum possible FEAS score (1.0), as in this appli-
cation bi-grams subsume the feasibility constraints. Correspondingly, coverage
reached also a very high value (0.83). With tri-grams (NGRAMS3) several bi-gram
constraints are still met, but there are cases where no tri-gram is applicable (be-
cause there is no such triple in the collected execution traces), which results in
a random selection of the next event. Coverage is correspondingly highest with
NGRAM2, but it is still quite high with NGRAMS3. It can be noticed that in
both applications as N increases (from 2 to 3 and 4) the performance of the
N-gram based methods tends to converge to that of random, both in terms of
FEAS and COV, as expected.

In summary, we can positively answer RQ1 and RQ2: N-gram based test
sequence generation produces a higher proportion of feasible event sequences and
achieves higher coverage than graph visit or random approaches.

In terms of test suite size and test case length (RQ3, RQ4), we can notice
that BFV produced test suites with a lot of very short test cases (19/14 test cases
for Flexstore/Cyclos, each containing on average 4.11/2.86 events). The other
methods are not very different from each other. NGRAM converges to the size
and length of RAND as N increases, as expected. DFV produced more/shorter
test cases than NGRAM (and RAND) on Flexstore, while on Cyclos the opposite
holds: NGRAM produced a bit more test cases per test suite, each with slightly
more events, than DFV, but in both cases the difference is just marginal. Overall,
test suite size and test case length associated with NGRAM seem reasonable for
the applications under test and in line with the values obtained from the other
considered methods.

5 Related Works

FSM models have been exploited to generate test cases in several existing works [13,
15,19-22,16]. In case of a design-time model, abstract test cases can be used to
check how the expected behaviours (coming from the model) have been imple-
mented in the application [19, 20]. Hence, the role of behaviour specifications is
to provide abstract test cases, test oracles, and a measure of the test adequacy
[21]. Instead, the role of an inferred model is mainly to provide abstract test
cases (e.g., [22,19,16]), to be instantiated in executable test cases by adding
inputs and, eventually, test oracles (e.g., [16]). This instantiation is an expensive
activity and the presence of infeasible test cases demand for substantial effort
and knowledge from the tester’s side, who is required to recognise them and
filter them out. To the best of our knowledge, this is the first work which tries to
address the problem of test case infeasibility by adopting a test case derivation

strategy (based on the N-gram statistics) that aims at increasing the likelihood
of feasibility and correspondingly the level of coverage actually achieved.

6 Conclusions and Future Work

In the context of model based testing, we have proposed a test sequence deriva-
tion strategy based on the N-gram statistics. To avoid (or limit) the generation
of infeasible event sequences, the next event to add to a sequence is selected
based on the frequency of occurrence of the N-tuple of events that ends with
the event considered for addition. Experimental results show that the proposed
approach generates a higher proportion of feasible test sequences than graph
visit and random strategies. In turn, the higher proportion of feasible sequences
increases the level of model coverage reached by the test suite.

In our future work we plan to extend the empirical study to additional subject
applications. We intend to study empirically the role of the training material
(i.e., the execution traces) used to learn the N-gram statistics, which is key for a
successful application of the approach. We also plan to investigate the possibility
of further increasing the coverage achieved by hybridising and extending the N-
gram based method (e.g., through smoothing [9]).

Acknowledgments

This work has been funded by the European Union FP7 project FITTEST (grant
agreement n. 257574).

References

1. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on
model-based testing approaches: a systematic review. In: Proc. of the Interna-
tional Workshop on Empirical Assessment of Software Engineering Languages and
Technologies (co-located with ASE’07). WEASELTech 07, New York, NY, USA,
ACM (2007) 31-36

2. Mariani, L., Marchetto, A., Nguyen, C.D., Tonella, P., Baars, A.I.: Revolution: Au-
tomatic evolution of mined specifications. In: Proc of the 23rd IEEE International
Symposium on Software Reliability Engineering (ISSRE). (2012) 241-250

3. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
ADABU. In: Proceedings of the 2006 international workshop on Dynamic systems
analysis. WODA ’06, New York, NY, USA, ACM (2006) 17-24

4. Biermann, A., Feldman, J.: On the synthesis of finite-state machines from samples
of their behavior. IEEE Trans. on Computers 21(6) (1972)

5. Krka, I., Brun, Y., Popescu, D., Garcia, J., Medvidovic, N.: Using dynamic exe-
cution traces and program invariants to enhance behavioral model inference. In:
ICSE (2). (2010) 179-182

6. Lorenzoli, D., Mariani, L., Pezze, M.: Automatic generation of software behavioral
models. In: 30th International Conference on Software Engineering (ICSE), IEEE
Computer Society (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Tonella, P., Marchetto, A., Nguyen, C.D., Jia, Y., Lakhotia, K., Harman, M.:
Finding the optimal balance between over and under approximation of models
inferred from execution logs. In: Proc of the Fifth IEEE International Conference
on Software Testing, Verification and Validation (ICST). (2012) 21-30

Hedley, D., Hennell, M.A.: The causes and effects of infeasible paths in computer
programs. In: Proceedings of the 8th international conference on Software engi-
neering. ICSE ’85, Los Alamitos, CA, USA, IEEE Computer Society Press (1985)
259-266

Jurafsky, D., Martin, J.H.: Speech and Language Processing: An introduction
to speech recognition, computational linguistics and natural language processing.
Pearson Prentice Hall (2007)

Pezze, M., Young, M.: Software Testing and Analysis: Process, Principles and
Techniques. John Wiley and Sons, USA (2007)

Shafique, M., Labiche, Y.: A systematic review of model based testing tool support.
Technical Report Technical Report SCE-10-04, Carleton University, Canada (2010)
Briand, L.C., Labiche, Y.: A UML-based approach to system testing. In: Proceed-
ings of the 4th International Conference on The Unified Modeling Language, Mod-
eling Languages, Concepts, and Tools, London, UK, UK, Springer-Verlag (2001)
194-208

Kim, Y., Hong, H., Bae, D., Cha, S.: Test cases generation from UML state
diagrams. Software, IEE Proceedings - 146(4) (1999) 187 —192

Turner, C.D., Robson, D.J.: The state-based testing of object-oriented programs.
In: Proc. of the Conference on Software Maintenance (ICSM), Montreal, Canada,
IEEE Computer Society (1993) 302-310

Yuan, X., Memon, A.M.: Using GUI run-time state as feedback to generate test
cases. In: Proc. the International Conference on Software Engineering (ICSE),
Washington, DC, USA, IEEE Computer Society (2007) 396-405

Marchetto, A., Tonella, P., Ricca, F.: State-based testing of ajax web applica-
tions. In: Proc. of IEEE International Conference on Software Testing (ICST),
Lillehammer, Norway (2008) 121-131

Andrews, A., Offutt, J., Alexander, R.: Testing Web Applications by Modeling
with FSMs. Software and System Modeling, Vol 4, n. 3 (2005) 326-345
Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
ADABU. In: Proc. of the International Workshop on Dynamic Analysis (WODA),
Shangai, China (2006) 17-24

Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: Proceedings of the 19th international symposium on
Software testing and analysis. ISSTA ’10, New York, NY, USA, ACM (2010) 85-96
Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In France,
R., Rumpe, B., eds.: UML 99 : The Unified Modeling Language. Volume 1723 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (1999) 76-76
Stocks, P., Carrington, D.: A framework for specification-based testing. IEEE
Trans. Softw. Eng. 22 (1996) 777-793

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: Extracting finite-state models from java source code. In:
Proceedings of the International Conference on Software Engineering. (2000) 439-
448

Nguyen, C.D., Marchetto, A., Tonella, P.: Combining model-based and combina-
torial testing for effective test case generation. In: Proc of the ACM International
Symposium on Software Testing and Analysis (ISSTA). (2012) 100-110

