
Better Testing Through Oracle Selection (NIER Track)∗

Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl
Dept. of Comp. Sci. and Eng. U of Minnesota
[staats,whalen,heimdahl]@cs.umn.edu

ABSTRACT
In software testing, the test oracle determines if the application un-
der test has performed an execution correctly. In current testing
practice and research, significant effort and thought is placed on
selecting test inputs, with the selection of test oracles largely ne-
glected. Here, we argue that improvements to the testing process
can be made by considering the problem of oracle selection. In
particular, we argue that selecting the test oracle and test inputs to-
gether to complement one another may yield improvements testing
effectiveness. We illustrate this using an example and present se-
lected results from an ongoing study demonstrating the relationship
between test suite selection, oracle selection, and fault finding.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Testing

Keywords
test oracles, empirical studies

1. INTRODUCTION
Testing is a critical component of the validation and verification

(V&V) of software systems. Testing requires two key components:
the test data and the test oracle. The test data are the inputs given
to the application under test (AUT) and the test oracle is the arti-
fact used to determine if the AUT executes correctly [11]. Clearly,
both the test data and test oracle contribute to the effectiveness of
the testing process; we cannot detect a fault if the test data does not
drive execution to a state where the fault manifests itself, nor can
we detect a fault if the test execution encounters the fault but the test
oracle does not monitor any variables where the fault is revealed as
a failure. While there is a substantial body of work related to the

∗This work has been partially supported by NASA Ames Research Center Coopera-
tive Agreement NNA06CB21A and the National Science Foundation under Grant No.
CNS-0931931, CCF-0916583, and CNS-0821474. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the sponsoring organizations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

effectiveness of test data selection criteria and methods of gener-
ating test data [3, 7, 9], considerably less work has been done on
the effectiveness of test oracles and their impact on the testing pro-
cess [4, 16, 11, 12]. Consequently, while we know that the choice
of test oracle influences the testing process, we have few, if any
techniques for selecting the test oracle, and little understanding of
how our selection impacts the testing process.

We believe that this lack of oracle selection techniques repre-
sents an opportunity to improve testing. This belief stems from
earlier work of the effectiveness of test coverage metrics in which
we noted that stronger test oracles sometimes led to dramatic gains
in testing effectiveness [10], and more recent work demonstrating
theoretically that the test oracle impacts the effectiveness of the
testing process [12]. Accordingly, we have begun investigating how
the choice of test oracle influences the effectiveness of the testing
process, uncovering a number of observations. Of particular note
is that it may be possible to improve the effectiveness of testing by
selecting both test suites and test oracles together—in other words,
by effectively pairing test inputs with test oracles.

We present a subset of the results from a recently conducted em-
pirical study within the domain of avionics. As a first step towards
a method for effective oracle selection, this study is designed to im-
prove our understanding of the problem. In particular, we studied
(1) the influence of test oracles on fixed test suites and (2) the joint
influence of test suite size and oracle selection. Our study yields
two observations key to this report.

First, an oracle using output variables in conjunction with inter-
nal state variables often performs considerably better than an oracle
using only the output variables (up to 27% improvement), with di-
minishing potential gains being observed as an increasing number
of internal state variables are included.

Second, the relationship between test suite size, the number of
variables observed by the oracle, and fault finding varies consider-
ably between case examples. In particular, for some case examples
it appears that both increasing test suite size and considering in-
ternal state information are reasonable means of improving testing
effectiveness, while for other case examples considering internal
state information does not appear as useful.

These observations indicate that developing effective methods
of pairing test inputs and test oracles is an achievable goal. In the
remainder of the paper, we will argue why selecting test inputs and
oracles together makes conceptual sense, and present the empirical
data supporting this argument.

2. RELATED WORK
Existing research on test oracles relates primarily to addressing

the “oracle problem” or “oracle assumption”—the assumption that
developers can determine the correctness of produced output de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

892

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18438629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

spite the apparent difficulty of doing so—by developing test ora-
cles based on methods other than concretely specified oracles [14].
Baresi and Young evaluate several examples of these (and other)
approaches to addressing the oracle problem [2].

In our domain of interest, however, concrete oracles with ex-
pected values manually specified by users are generally used. We
are therefore interested in determining which variables should be
considered by such an oracle. Our study explores how the selection
of these variables influences the effectiveness of the testing process.
To the best of our knowledge, only two other works (by Memon et
al. and Briand et al. [16, 4]) empirically study oracle selection.

Memon et al. define oracles for GUI systems using combina-
tions of oracle information and procedures, and examine their fault
finding effectiveness using mutation testing [16]. Our work differs
primarily in the method used to vary the oracle (we do not vary
the oracle procedure), the analyses performed, and the domain in
which the studies were conducted. In particular, while test cases
of varying length are explored by the authors, the joint influence of
test suite and oracle is not explored in the same manner or detail.

Briand et al. demonstrate that in the domain of object-oriented
systems: (1) a concrete, precise oracle outperforms a state-based
oracle defined as state invariants for the case examples used, (2)
there exist faults only detectable when using both precise oracles
and rigorous coverage metrics, and (3) the cost effectiveness of
precise oracles varies from system to system [4]. Our work dif-
fers primarily in the method used to vary the oracle, the analysis
performed, and the domain in which the studies were conducted.

Voas has developed the propagation, infection, and execution
technique (PIE) for computing testability metrics for locations in
source code. Of relevance here is Voas and Miller’s proposal to
determine where faults may be masked using PIE and monitor in-
ternal state accordingly (using assertions) [13]. As PIE essentially
performs an empirical study to determine masking, it is similar to
running our empirical study to find internal variables to monitor.
However, no large scale empirical study has been conducted to de-
termine the efficacy of using the PIE technique for oracle selection.

3. TEST ORACLES
We use the definition presented by Richardson et al. that divides

test oracles into two parts: the oracle information and the oracle
procedure [11] . The oracle information specifies what is consid-
ered correct behavior, and the oracle procedure verifies that test
executions correspond to the oracle information.

Our case examples are all avionics systems developed in Simu-
link [8] and translated to Lustre [6]. Simulink and Lustre are ex-
amples of synchronous dataflow languages [6]. A test input for
a synchronous reactive system is defined as a sequence of steps,
with each step specifying a value for each input variable. This pro-
duces a corresponding sequence of values of the system’s internal
state variables and outputs. In our study, the oracle information is
specified as sequences of test inputs with corresponding expected
changes to the AUT output variables and internal state variables,
i.e., input/expected value(s) pairs. The oracle procedure simply
matches the actual results from the AUT with the oracle informa-
tion. We term oracles constructed in this fashion as expected value
oracles. In our experience with industrial partners, expected value
oracles are commonly used in testing synchronous reactive systems
in the avionics domain.

A key property of expected value oracles is the subset of outputs
and internal state variables considered by the oracle information;
variables that we term the oracle data. Currently, from our ob-
servations, the prevalent oracle data used in testing critical systems
consists of all of the outputs. We term such an oracle an output-only

oracle. We are interested in how the addition of internal state infor-
mation to the oracle data influences the effectiveness of the testing
process. We term oracles consisting of all the outputs and one or
more internal state variables output-base oracles, and term an ora-
cle considering all outputs and internal state variables the maximum
oracle. We explore how the addition of internal state variables influ-
ences the effectiveness of the testing process by varying the oracle
data, ranging from the output-only oracle to the maximum oracle.

4. PAIRING TEST DATA WITH ORACLES
Consider the process of testing a system. Suppose we plan to

use two test suites: (1) a test suite generated to meet the Modified
Condition/Decision Coverage (MCDC) criterion [5], and (2) a test
suite generated to meet the Unique First Cause (UFC) coverage cri-
terion [15], a black box test coverage criterion based on exercising
Linear Temporal Logic (LTL) requirements. Now consider devel-
oping a test oracle for these test suites, and ask: what should the
oracle data be? One common answer in the domain of avionics,
and perhaps in software engineering research in general, is to sim-
ply defined expected values for all of the outputs, irrespective of
the test suite used.

For MCDC, the tests are designed to exercise internal code
structures. Accordingly, it is possible for each test to be very short,
with its impact limited to the Boolean decision it is designed to
exercise. In contrast, for UFC, the tests are designed to exercise
functional requirements. These requirements are defined in terms
of inputs and outputs, and tests, thus, tend to be longer, as they must
typically cause the system to exhibit a sequence of behaviors.

Given the differences between MCDC and UFC, can we not
tailor a test oracle to their varying characteristics? It seems reason-
able to use a test oracle considering internal state information when
using MCDC, as the tests are designed specifically to manipulate
internal behavior, and might not cause information to propagate
to outputs. When using UFC, however, the tests are designed to
test black-box behavior, and, thus, seem more likely to propagate
information to the outputs—considering internal state information
seems less less valuable when using UFC.

In this example, we have paired a single test oracle with a test
suite. However, we can take this idea to its logical extreme by
considering pairing a separate test oracle with each test input. For
example, if a test input T is designed to exercise a branch deep in
the source code, we could consider only variables related to this
branch when running test T . When running a test T ′ exploring
a different branch deep in another portion of the source code, we
might consider a completely different separate set of variables.

5. STUDY AND RESULTS
In our study, we were interested in how the use of internal state

information in oracle data influences the effectiveness of the testing
process, as measured by the number of faults detected (as defined
by [1]).

5.1 Experimental Setup Overview
We used four industrial synchronous reactive systems developed

by Rockwell Collins Inc. in our experiment. Two systems, DWM_1
and DWM_2, represent portions of a Display Window Manager
(DWM) for a commercial cockpit display system. Two systems
represent various aspects of a Flight Guidance System (FGS), which
is a component of the overall Flight Control System (FCS) in a
commercial aircraft. The two FGS systems in this paper focus on
the mode logic of the FGS. The Vertmax_Batch and Latctl_Batch
systems describe the vertical and lateral mode logic for a flight

893

0 200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

Test Suite Size

R
e

la
ti
ve

 I
m

p
ro

ve
m

e
n
t
in

 F
F

 (
%

)

DWM_2

Latctl

DWM_1

Vert

Figure 1: Relative FF Improvement Across Test Sizes

guidance system. All represent sizable, operational systems.
For each case example, we performed the following steps:

1. Generated random test data: We generated random inputs for
1,000 tests of test lengths between 2-10 steps.
2. Generated mutants: We generated 200 mutants, each contain-
ing a single fault, and removed functionally equivalent mutants.
3. Ran test suite on mutants: We ran each mutant and the original
case example using the entire randomized test suite and collected
the internal state and output variable values produced at every step.
This yields raw data used for the remaining steps in our study.
4. Generated oracles: We generated a sets of oracles ranging,
in size from the output-only oracle to the maximum oracle. We
randomly selected which internal variables were to be included in
an oracle. We also generated all oracles of size 1 (i.e., observing 1
variable).
5. Generated test suites: We randomly generated 36 subsets of
the randomized test suite, with subsets containing 10 to 1,000 tests
from the original test suite.
6. Assessed fault finding ability of each oracle and test suite
combination: We determined how many mutants were detected by
every oracle and a reduced test suite combination. Note that the full
results of our analysis are available online.

These steps are routine in experiments based on mutation testing;
in this case, the details are similar to the steps used in [10].

One relevant risk of using mutation testing in examining these
questions is functionally equivalent mutants, in which faults ex-
ist but these faults cannot cause a failure, which is an externally
visible deviation from correct behavior. For our study, we used
model checking to detect and remove functionally equivalent mu-
tants. This is made possible due to our use of synchronous reactive
systems as case examples—each system is finite, and, thus, deter-
mining equivalence is decidable.

After conducting our study, we performed a number of analyses.
Here we examine those analyses that we believe support the idea of
pairing test inputs and test oracles.

5.2 Improvement Using Maximum Oracle
In Figure 1 we plot the relative improvement in fault finding

when using the maximum oracle over the output-only oracle for
each test suite (smoothed with LOESS using a smoothing factor of
0.70). In Table 1, we list the oracle sizes for each oracle and the
relative increase in oracle size when using the maximum oracle.

For each case example, we can see that the relative improvement
when using a maximum oracle starts fairly high, between 4% and
27%, but drops off quickly as we near 200 tests, dropping below
10% for all case examples at 1,000 tests. This indicates that for

OO Size MX Size Rel. Size Inc.
DWM_1 9 53 489%
DWM_2 7 130 1757%

Latctl_Batch 1 23 2200%
Vertmax_Batch 2 79 3850%

Table 1: Oracle Sizes
(OO = Output-Only Oracle, MX = Maximum Oracle)

a small number of tests, the inclusion of internal state information
into the test oracle is potentially highly influential on effectiveness,
but less so for larger number of tests.

We can also see the maximum oracle is between 4.8 and 133
times larger than the output-only oracle—a substantial increase in
oracle size for potentially modest gains in fault finding. This high-
lights the need for effective methods of oracle selection: the fault
finding improvements are desirable, particularly in the domain of
critical systems, but using the maximum oracle is likely more ex-
pensive than using the maximum output-only oracle. To gain these
improvements without incurring potentially unacceptable increases
in testing cost, we must develop methods of determine which com-
bination of variables is most effectively used in an oracle.

Note that for several of the test-oracles/test-suite combinations,
we manually examined how internal state improved the effective-
ness of testing, and found that each internal variable reveals a small
number of additional faults not caught by the output-only oracle,
with many internal variables revealing no additional faults. Fur-
thermore, the set of additional faults caught is nearly always dis-
joint between variables. Thus, while the maximum oracle is con-
siderably larger than the output-only oracle, only a small portion
of the added internal state variables contribute to improving testing
effectiveness.

5.3 Test Suites, Oracles, and Fault Finding
We present the relationship between test suite size, oracle size

and fault finding as a contour map in Figure 2 for the DWM_1
and DWM_2 case examples. As with Figure 1, these figures have
been smoothed using LOESS. In these figures, the light areas repre-
sent combinations of test suites and oracles that reveal a relatively
high number of faults, and dark areas represent combinations of
test suites and oracles that reveal a relatively low number of faults.
Each contour line represents a constant level of fault finding. (The
straight dashed line is explained below.) For example, we can
see that for the DWM_1 system, 800 tests and the largest output-
only oracle reveals roughly the same number of faults as 200 tests
and an output-base oracle containing 60% of the internal variables
(166 faults), whereas for the DWM_2 system, 800 tests and and the
largest output-only oracle reveals more faults than even 600 tests
with the maximum oracle.

Given this information and a suitable cost function, we can de-
termine what pairing of test suite and oracle maximizes the number
of faults revealed. For example, assume that the testing costs are
such that using a test suite of size x with the maximum oracle and
a test suite of size 3x with the output-only oracle cost the same.
Furthermore, assume that the testing resources allocated allow us
to use 900 tests with the output-only oracle. Plotting this cost func-
tion yields the straight dashed lines present in Figure 2. Examining
these lines, we can determine that the most effective, affordable
test suite and oracle combination for the DWM_1 system is 410
tests with an oracle containing 80% of internal variables, whereas
the most effective, affordable combination for the DWM_2 system
is 900 tests with the output-only oracle.

As shown, given a set cost function and finite resources, the most
effective test suite and oracle combination can vary depending on

894

Percentage of Internal Variables in Oracle

#
 T

e
s
ts

0 20 40 60 80 100

1
0

2
0
0

4
0
0

6
0

0
8
0
0

1
0
0
0

(a) DWM 1 Contour Map (Output-Base)
Percentage of Internal Variables in Oracle

#
 T

e
s
ts

0 20 40 60 80 100

1
0

2
0
0

4
0
0

6
0

0
8
0
0

1
0
0
0

(b) DWM 2 Contour Map (Output-Base)

Figure 2: Combined Effect of Oracle Size and Test Suite Size on Fault Finding

how test suite and oracle size jointly influence the number of faults
revealed. For example, if we were to reverse our test suite and or-
acle selections in the previous paragraph—i.e., use 900 tests with
the output-only oracle for the DWM_1 system and 300 tests with
the maximum oracle for the DWM_2 system—we would find ap-
proximately 5.6% fewer faults for the DWM_1 system and 11.1%
fewer faults for the DWM_2 system.

6. CONCLUSION
We believe this study demonstrates an opportunity to improve

testing effectiveness through better selection of oracle data. How-
ever, given the large variability between case examples, determin-
ing how to improve the test oracle is non-obvious and precludes
general guidelines. This brings us to the goal of this paper: moti-
vating the need for further study on test oracles. Our initial results
indicate that careful selection of the test oracle, perhaps consid-
ering the test suite used, may improve testing. Nevertheless, our
results also indicate this is a challenge, requiring future study. We
therefore propose the following challenges for future research:

• First, for a given method of selecting oracles and test suites,
how can we efficiently determine the most effective combi-
nation of test suite and oracle for a given system?

• Second, how does the use of test suites generated to meet
coverage criteria (both structural and requirements coverage
criteria) influence the effect of oracle selection on the number
of faults revealed?

• Finally, is it possible to prioritize tests more effectively given
additional information about a program’s internal state?

7. REFERENCES
[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.

Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Trans. Dependable and Secure
Computing, 1(1):11–33, 2004.

[2] L. Baresi and M. Young. Test oracles. In Technical Report
CIS-TR-01-02, Dept. of Computer and Information Science,
Univ. of Oregon.

[3] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In L. Briand and A. Wolf, editors, Future
of Software Engineering 2007. IEEE-CS Press, 2007.

[4] L. Briand, M. DiPenta, and Y. Labiche. Assessing and
improving state-based class testing: A series of experiments.
IEEE Trans. on Software Engineering, 30 (11), 2004.

[5] J. J. Chilenski and S. P. Miller. Applicability of Modified
Condition/Decision Coverage to Software Testing. Software
Engineering Journal, pages 193–200, September 1994.

[6] N. Halbwachs. Synchronous Programming of Reactive
Systems. Klower Academic Press, 1993.

[7] M. Harrold. Testing: a roadmap. In Proc. of the Conf. on the
Future of Software Engineering, pages 61–72. ACM New
York, NY, USA, 2000.

[8] Mathworks Inc. Simulink product web site.
http://www.mathworks.com/products/simulink.

[9] M. Pezze and M. Young. Software Test and Analysis:
Process, Principles, and Techniques. John Wiley and Sons,
October 2006.

[10] A. Rajan, M. Whalen, and M. Heimdahl. The effect of
program and model structure on MC/DC test adequacy
coverage. In Proc. of the 30th Int’l Conference on Software
engineering, pages 161–170. ACM New York, NY, USA,
2008.

[11] D. J. Richardson, S. L. Aha, and T. O’Malley.
Specification-based test oracles for reactive systems. In Proc.
of the 14th Int’l Conference on Software Engineering, pages
105–118. Springer, May 1992.

[12] M. Staats, M. Whalen, and M. Heimdahl. Programs, tests,
and oracles: The foundations of testing revisited. In Proc. of
the Int’l Conf. on Software Engineering 2011, 2011.

[13] J. Voas and K. Miller. Putting assertions in their place. In
Software Reliability Engineering, 1994., 5th Int’l Symposium
on, pages 152–157, 1994.

[14] E. Weyuker. The oracle assumption of program testing. In
13th Int’l Conf on System Sciences, pages 44–49.

[15] M. Whalen, A. Rajan, and M. Heimdahl. Coverage metrics
for requirements-based testing. In Proceedings of
International Symposium on Software Testing and Analysis,
pages 25–36. ACM, July 2006.

[16] Q. Xie and A. Memon. Designing and comparing automated
test oracles for gui-based software applications. ACM Trans.
on Software Engineering and Methodology (TOSEM),
16(1):4, 2007.

895

