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ABSTRACT

Today, numerous organisations rely on information software systems to run their businesses.
The effectiveness of the information software system then, depends largely on the degree to
which the organisation’s business is accurately captured in the business model. The business
model is an abstract description of the way an organisation’s functions. Thus, the more precise
the business model, the more accurate the requirement definition of the information software
system to be engineered.

There are an abundance of tools and notations available today to support the development
of many types of business process. Many of these artifacts rely on the concept of a business
process to describe a business model. A business process is commonly known as “a set of one
or more linked procedures or activities which collectively realise a business objective or policy
goal, normally within the context of an organisational structure defining functional roles and
relationships”. This thesis is concerned with modelling business processes as a means to ac-
curately capture an organisation’s activities and thus, the requirements of the software system
that supports these activities.

Among the infinite set of possible business processes, this thesis targets only those characterised
by the qualities of dependability, collaboration and time. Business processes having these specific
dimensions are referred to as Dependable, Collaborative and Time-Constrained (DCTC) business
processes. A dependable business process is one whose failures or the number of occurrences in
which business process misses its goal are not unacceptably frequent or severe (from certain
viewpoint). A collaborative business process is one that requires the interaction of multiple
participants to attain its goal. A time-constrained business process is one that owns at least
one property expressed in terms of an upper or lower time bound. This thesis investigates how
DCTC business processes can be described such that the resulting model captures all the relevant
aspects of each dimension of interest. In addition, the business model must be comprehensible
to the stakeholders involved not only in its definition, but also in its further use throughout the
software development life cycle.

A revision and analysis of notations that exist for modelling business processes conducted in
this thesis have revealed that today there does not exist any modelling language that provides
comprehensible, suitable and sufficiently expressive support for the characteristics of depend-
ability, collaboration and time in an integrated manner. Hence, a significant part of this thesis
is devoted to the definition of a new business process modelling language named DT4BP. The
aim of this new modelling language is to be comprehensible, suitable and expressive enough to
describe DCTC business processes.

The definition of this new modelling language implies that a concrete syntax, an abstract syntax,
a semantic domain and a semantic mapping is provided. The definition of this new modelling
language is given following the Model-Driven Engineering (MDE) approach, and in particular
the metamodelling principles. Thus, meta-models and model transformations are used to pre-
cisely specify the abstract syntax and semantic mapping elements of the language definition,



vi Abstract

respectively. Since DT4BP is a textual modelling language, its concrete syntax is specified by a
context-free grammar. The Coordinated Atomic Actions conceptual framework with real-time
extensions (Timed-CaaFWrk) is used as the semantic domain as it covers a large part of the
abstractions included in dependable collaborative time-constrained business processes. The for-
malisation of this semantic domain according to the metamodelling principles is also part of the
material presented in this thesis.

Since the business model is considered as a representation of the requirements document the
software system to be developed, it is crucial to validate whether it captures the requirements
as intended by the stakeholder before going further in the software development process. Hence,
besides the comprehensibility, suitability and expressiveness of the modelling language with re-
spect to the domain of interest, it is of special interest to provide a mechanism that allows
modellers to ensure that the business model is correct with respect to the stakeholder’s expec-
tations. One way of achieving this goal is to provide the modelling language with an executable
semantics. In this manner, any business model can be executed on sample input data, and its
dynamic behaviour observed. The observation of the dynamic behaviour of the model may be
considered as a simulation of the model based on the sample input data.

By performing several simulations of the model, the modeller, in cooperation with the stake-
holder, can judge whether the business model is correct. This thesis provides an executable
semantics for Timed-CaaFWrk that, used in combination with the model transformation that
defines the semantic mapping element of the language definition, allows DT4BP models to be
validated by simulation. In this manner, the dynamic behaviour of a particular DT4BP model
for a given sample input data can be observed by transforming it into a Timed-CaaFWrk model,
which is then run thanks to the given executable semantics.
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1. INTRODUCTION

Abstract

This chapter introduces the problems that this thesis aims to address. In addi-
tion, the issues that motivated the thesis are discussed. The chapter begins with a
presentation of the dimensions (or concerns) that circumscribe the research domain.
Next, the problems that have been identified within this domain are introduced. This
discussion is followed by a list of contributions aimed at solving these problems. The
chapter concludes with a description of the organisation of the thesis. Please note,
that no references are provided in this chapter. Here the focus is on the scope of
the research domain along with its associated concepts. These are both discussed in
depth later in the Chapter focusing on the state of the art, Chapter 2.

1.1 Research domain

In today’s world, numerous organisations1 rely on software systems2 to run their businesses.
The software system must assist the organisation to provide the services or products it offers
to its customers. The effectiveness of the software system in achieving these goals depends
largely on the degree to which the organization’s business is accurately captured in the business
model. A business model is a simplified view (i.e. abstraction) of the business that has to
be supported by the software system. An accurate business model can, thus, be considered
as the requirements document that is needed for developing a software system to support the
organisation’s activities.

1.1.1 Business process modelling

A central concept used for modelling businesses is the business process. A business process is
defined by the community as “a set of one or more linked procedures or activities which collec-
tively realise a business objective or policy goal, normally within the context of an organisational
structure defining functional roles and relationships”. A process definition is a description or
representation of what a particular business process is intended to do. The process definition,
then, is the model that captures those aspects of the business that must be supported by the
software system. This thesis is concerned with 1) the modelling of business processes as a means
to capture the organisation’s activities and 2) the requirements of the software system that
supports these activities.

1 Here the term organisation is used as synonym of enterprise.
2 The expression software systems is used to indicate the piece of software that satisfies the user’s requirements
along with the hardware and environment where it is deployed.



2 1. Introduction

1.1.2 Dependable collaborative business processes with time constraints

Among the infinite number of possible business processes, this thesis targets only a particular
set of business processes. The first characteristic that narrows the domain of business processes
to investigate is dependability. Other characteristics that further specify the kind of business
process are the notions of collaboration and time. Hence, attention here is focused not only on
dependable business processes, but also on those that are collaborative and time constrained.
Collaborative here means that multiple participants take part throughout the process to achieve.
Time-constrained indicates that there exists at least one element in the business process that
owns a time-related property.

1.1.2.1 Dependability

A dependable business process is one whose failures, i.e. occurrences when the business process
misses its goal, are not unacceptably frequent or severe from some particular viewpoint. Business
process reinforcement is achieved by following an iterative modelling process aiming at improving
the dependability of the business process. Dependability capabilities are achieved by introducing
explicit recovery activities into the business process model. As a result, a business process3 is
defined as dependable when it is capable of achieving its business objective completely, as initially
promised or partially when encountering situations that would cause the business process to fail.
Partially in this context means sufficiently well enough to satisfy the requester’s expectations.
Situations that may lead a business process to fail range from technological, e.g. the Y2K
problem, or financial circumstances, e.g. the sub-prime mortgage crisis, to environmental, e.g.
the global greenhouse effect. All these examples have the common characteristic of forcing
changes in the way the business process is being performed. The ability of the business process
to tolerate, recover and react to these changes while providing its business objective, defines its
dependability.

1.1.2.2 Collaboration

Nowadays companies often require several people with various skills to provide the services they
offer. This requirement imposes the constraint that business processes are composed of multiple
participants that collaborate at different stages in the process in order to provide the service or
product (i.e. the process’ goal). Thus, business process with two or more participants are named
collaborative business processes. In this kind of business process, the collaboration is defined by
the participants and their interactions. In intra-organisational collaborative business processes,
participants represent different units or people within the same organisation. Whereas in cross-
organisational collaborative business process each participant represents an entire organisation.

Collaborative business processes are becoming the rule rather than the exception due to the fact
that companies try to keep the number of permanent employees to a minimum. Such a require-
ment has the result that companies rely more and more on outsources, i.e third-party companies
that perform some specific activities for the company that contracts them. In companies with
this kind of organisation, the collaboration among the participants turns from intra-enterprise
to inter-enterprise, which implies not only an increase in the communication among partici-
pants, but also a change in the communication pattern employed, i.e. peer-to-peer rather than
a centralised server-based service.

3 In this context, the notion of business process includes the organisation that owns it.
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Another reason collaborative business processes are becoming more important, is due to inten-
sified globalisation as organisations need to transfer information faster, make decisions quicker,
adapt to changing demands, deal with larger pools of international competitors and reduce their
cycle times.

1.1.2.3 Time

Time constraints are different rules expressed in terms of maximums and/or minimums, which
are aimed at determining how a particular business process is expected to behave from a temporal
viewpoint. A business process is considered as time-constrained when it includes at least one
time constraint in its definition.

A time constraint may be set over different elements within the process definition. For example,
a time constraint can be used to determine the maximum allowed duration of the overall business
process, or just one of the activities performed by a certain participant. Moreover, the (direct
and indirect) effects of a time constraint also depend on the element to which it is attached. A
time constraint set over an activity only affects the time related to its execution, whereas a time
constraint set over a participant indirectly affects all the activities enclosed by the participant,
since they are expected to be completed by certain point in time (at the latest).

Time constraints may also be applied over the data a business process requires to achieve its
goal. In this case, a time constraint attached to certain data value may be used to determine
the validity of its time stamp, in the sense that beyond that point in time the data becomes
obsolete.

Depending on the application domain where the business process is engineered, time constraints
such as those mentioned may be required by the end-users. However, it is worth noting that the
existence of time constraints in a business process may not only be due to user requirements,
but may also be due to organisational rules, laws, commitments, policies and standards to which
the business process must adhere. Hence, it often arises that time-related information must be
included in the process definition.

1.1.3 Metamodelling

The particular set of business processes addressed in this thesis is defined by the intersection
of the orthogonal dimensions of dependability, collaboration and time. Business processes be-
longing to this set are referred to as Dependable, Collaborative and Time-Constrained (DCTC)
business processes. This thesis is focused on modelling DCTC business processes.

The success of modelling DCTC business processes depends largely on the how close the mod-
elling notation maps to the problem domain. Modelling notations with built-in support for the
concerns of the domain of interest not only ease the modelling burden, but also enhance the
readabillity and comprehension of the resulting models. It is thus of particular interest to have
a domain-specific modelling language (DSML) to describe DCTC business processes.

This thesis adheres to the Model Driven Engineering (MDE) principles, and in particular to
the metamodelling technique when addressing the definition of modelling languages. Hence,
the notions of meta-model, model compliance, and model transformation are major concerns on
which this thesis relies on for its contributions.
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1.1.4 Business process validation

Since the business model or process definition may be considered as the requirements document
needed to accurately develop the software system, it is crucial to validate whether the business
model captures the requirements intended by the customer before progressing in the software
development process. Hence, in addition to having the modelling language close to the domain of
interest, it is of special interest to have means that allow business analysts and software engineers
to check the correctness of the business model with respect to customer’s expectations. One way
of achieving this is to use a modelling language with an executable semantics. In this manner,
any business model can be executed on sample input data, and then its dynamic behaviour can
be observed. The observation of the dynamic behaviour of the model may be considered as a
simulation of the model based on the sample input data. The customer then, by performing
several simulations of the model, can judge whether the business model adequately captures
their expectations or not. This procedure for validating business processes is also a concern of
this thesis.

1.1.5 Coordinated Atomic Actions

The idea of a dependable business process relies on concepts and principles coming from the
dependable computing domain, in particular those features concerned with fault tolerance. Co-
ordinated Atomic Actions is a fault tolerance conceptual framework (CaaFWrk) aimed at design-
ing complex distributed systems consisting of components that can both cooperate and compete
amongst themselves. The CaaFWrk unifies the concepts of conversations, originally intended to
ensure fault tolerance of cooperative systems and transaction, originally intended to ensure fault
tolerance and structuring of the competitive systems. In addition, it incorporates a concurrent
exception handling scheme that provides dependability in distributed and concurrent systems.

CaaFWrk, introduced in the early 90’s, has since become a rich and sound set of results, which
have been developed by the community. The concepts brought by the CaaFWrk are, for the
most part, abstractions of the concepts included in collaborative business processes. Therefore,
this thesis selects CaaFWrk as the foundation for the conceptual framework underpinning the
language for modelling DCTC business processes.

1.2 Problem statement

The business analyst is the person in charge of providing the process definition or model. As the
name states, this person should be business oriented since the modelling requires some under-
standing of organisational issues, policies and corporate directions. People with a background
in software engineering may also participate in the production of the process definition since the
business solution is required to be aligned with the software system that supports its execution.

The fact that people with different profiles, i.e. business and IT, need to cooperate and com-
municate in the production of the business process, implies that the notation for achieving the
models must be comprehensible, i.e. the notation should ease the writing of models capable
of being understood by every stakeholder. Along with comprehensibility, suitability and ex-
pressiveness are also important characteristics to be considered when selecting the modelling
language. While suitability determines the ease with which a concept can be captured, expres-
siveness focuses on the facilities that formulate the different concepts of interest to the type of
business process being modelled.
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This thesis defines a modelling language that is comprehensible, suitable and expressive enough
for modelling dependable, collaborative and time-constrained business processes. This business
process modelling language should:

• include concepts related to dependability, collaboration and time, that result from adapt-
ing, at a syntactic and semantic level, the Coordinated Atomic Action conceptual frame-
work,

• adhere to the model driven engineering paradigm by using metamodelling and model
transformation techniques, and

• be provided with an executable semantics to allow validation by simulation.

1.3 Contributions of this thesis

The main contributions of this thesis are the following:

1. A new business process modelling language, Dependability and Time for Business Processes
(DT4BP), suitable for modelling dependable, collaborative, and time-constrained (DCTC)
business processes.

The DT4BP modelling language has been defined by focusing on the three equally impor-
tant aspects of dependability, collaboration, and time. The language allows the modeller
to explicitly capture information related to the different actions the entities must perform
within the same business process. In addition, the language also allows the modeller to de-
termine the way these entities interact amongst themselves to achieve the business process
goal. The language also provides features to model exceptional situations that may arise
during execution, as well as the steps that allow the business process to recover from such
a situation. DT4BP has a powerful set of time-related primitives that allow the modeller
to attach time constraints to the different kinds of elements involved in a process defini-
tion. However, the most important aspect of the language is the integrated way in which
the concerns of dependability, collaboration and time have been addressed. It is because
of this integration that there exist primitives, to model, among other things, exceptional
situations that arise during the interaction of two different entities or due to a missing
time constraint. Last, but not least, the fact that the language has been defined follow-
ing the metamodelling principles also contributes to the validation of the Model Driven
Engineering (MDE) approach as a means for the definition of domain-specific languages.

2. A new version of the CaaFWrk conceptual framework with real-time extensions (called
Timed-CaaFWrk) to support the design of dependable distributed real-time object-oriented
software systems.

The Timed-CaaFWrk provided in this thesis allows the software designer to define dif-
ferent temporal reference frames for the participants entering into the same Coordinated
Atomic Action (CAA). For example, the maximum allowed time participants have to get
involved into the execution of a CAA and the maximum allowed elapse time to complete
the execution of the CAA may both be constrained. The time-related extensions given to
the conceptual framework also allow the software designer to define periodic CAAs, set
constraints over the data objects used during the execution of the CAA, or set delays or



6 1. Introduction

deadlines over a subset of the instructions to be performed by certain participant once
engaged within a CAA. The definition of the Timed-CaaFWrk has been given according
to the metamodelling principles, which contribute to the formalisation of the conceptual
framework.

3. An implementation of the Timed-CaaFWrk for the Java programming language called
Timed-CAA-DRIP.

This implementation framework is meant exclusively to support the development and
execution of a software system designed according to the Timed-CaaFWrk. It provides
a set of Java classes to allow programmers to implement the particular functionalities
of the software system, while at the same time respecting the structure defined at the
design level. The Java classes with which the programmers have to interact, adhere to
the same terminology employed at the design level, making the gap between design and
implementation shorter. At run-time, the customisations made by the programmers are
automatically bound up with the built-in classes enclosed within the framework, such
that the implemented software system executes according to the conceptual framework
principles.

4. Amodel-to-model (M2M) transformation to automate the generation of a Timed-CaaFWrk-
compliant model from a given DT4BP-compliant model.

Defining the DT4BP modelling language according to the metamodelling principles im-
plies providing a model-to-model (M2M) transformation between DT4BP and a Timed-
CaaFWrk to supply the semantic mapping (one of the language definition elements).
Providing the semantic mapping as an M2M transformation has the potential benefit of
translating DT4BP models into Timed-CaaFWrk models.

5. A model-to-text (M2T) transformation to automate the generation of Java code from a
given design described in terms of the Timed-CaaFWrk.

Having formalised the Timed-CaaFWrk according to the metamodelling principles allows
the software designer or programmer to define a M2T transformation, whose goal it is to au-
tomate the development phase. This M2T transformation then takes a Timed-CaaFWrk-
compliant model and generates Java source code that interfaces with the Timed-CAA-
DRIP. The source code obtained as result of this M2T transformation adheres to the best
practices principles regarding the interfacing with Timed-CAA-DRIP.

6. A tool to validate DT4BP models by simulation

Let the M2M transformation that provided the Timed-CaaFWrk-compliant model from
a DT4BP-compliant model be T1, and let the M2T transformation that provided a Java
implementation from a given Timed-CaaFWrk-compliant model be T2 (both contributions
previously mentioned). Then it is possible to compose T1 with T2 (i.e. T1 ◦T2) such that
given a certain DT4BP model MDT4BP , a Java source Timed-CaaFWrk-compliant MJava

implementation can be automatically obtained. Hence, this Java source code MJava , after
a by-hand completion, can be compiled and subsequently executed to simulate MDT4BP .
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It is worth emphasising that the results of this thesis contribute to the domains of business pro-
cesses and fault tolerance. With respect to the business processes domain, the thesis contribution
focuses on modelling and validation (contributions (1) and (6). For the fault tolerance domain,
the contributions focus on Coordinated Atomic Actions (contributions (2),(3), (4) and (5)).
Therefore, anyone interested in either of these domains may benefit from the novel approaches
considered in this thesis.

Finally, a running example is used to demonstrate how the different DT4BP features are used to
explicitly to capture the dependable, collaborative and time-related aspects of this case study. In
addition, this running example demonstrates the comprehensibility, suitability and effectiveness
of DT4BP, which allow business analysts to model DCTC business process. However, it is worth
mentioning that no empirical assessment has been carried out to evaluate whether DT4BP prop-
erly fulfils the attributes of comprehensibility, suitability and effectiveness in broader application
domains.

The same running example is also used as vehicle to realise a proof-of-concept of the proposed
validation tool.

1.4 Thesis organisation

The thesis is organised into seven chapters, plus five appendices containing additional informa-
tion the reader may find useful for understanding some of the concepts that are introduced.
Here, a summary of the content of each chapter and appendix is given.

Chapter 2 introduces the background related to the areas of business processes, dependability,
and model-driven engineering as the thesis contributions rely heavily on these concepts. In this
chapter the thesis introduces: 1) the business processes terminology, 2) the concepts coming from
the dependability computing area that underlie the notion of dependable business processes and
3) the concepts and principles that govern the Model-Driven Engineering field, with particu-
lar emphasis on those concepts and principles dealing with the definition of domain-specific
languages.

Chapter 3 describes DT4BP, a novel business process modelling language designed for specifying
dependable, collaborative and time-constrained (DCTC) business processes. The chapter de-
scribes each of these dimensions. This discussion is then followed by an analysis of the support
provided by existing business process modelling languages with respect to these dimensions.
After having introduced the domain of interest and the state of the art with respect to its mod-
elling, the DT4BP modelling language is described. The chapter concludes with an analysis
and comparison of DT4BP with existing modelling languages to demonstrate how this novel
language exceeds the capabilities of existing notations.

Chapter 4 describes Timed-CaaFWrk, a new version of the Coordinated Atomic Actions con-
ceptual framework that includes real-time extensions. The chapter starts by presenting the fun-
damental concepts that form the Coordinated Atomic Action conceptual framework (referred to
as CaaFWrk). After establishing the basis of the conceptual framework, its real-time extensions
are described. This chapter also includes a description of the Timed-CAA-DRIP implementa-
tion framework along with the interface that allows programmers to use it. The chapter closes
with a description of the model-to-text transformation that is used to automatically obtain Java
source code. The code is generated by taking as input a software system design given according
to the Timed-CaaFWrk principles.
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Chapter 5 describes the semantic mapping that relates each DT4BP concept with a concept of
the chosen semantic domain, which in this case is the Timed-CaaFWrk conceptual framework.
The chapter starts by introducing the notation used to describe the semantic mapping. This is
followed by a description of the semantic mapping. The chapter concludes with a description of
how the semantic mapping can be combined with other model driven artifacts to execute DT4BP
models. The discussion also covers how this approach can be used for validation purposes.

Chapter 6 describes the extensions, improvements and potential directions for future research
with respect to the DT4BP modelling language, Timed-CaaFWrk and the Timed-CAA-DRIP
implementation framework. Chapter 7 completes the thesis, summarising the main results that
were achieved.

There are five appendices. Appendix A contains the grammar that specifies the concrete syntax
of the DT4BP modelling language. Appendix B demonstrates, in one consolidated figure, all
the concepts and relationships that form part of the DT4BP meta-model. Appendix C provides
the full DT4BP models concerning the diagnosis case study, which is used mainly in Chapter
3 as a vehicle to exemplify the different features that make up the DT4BP modelling language.
Next, Appendix D uses a single figure to combines all the concepts and relationships that form
part of the Timed-CaaFWrk meta-model. Finally, Appendix E lists all the transformation rules
that define the semantic mapping between DT4BP and the semantic domain Timed-CaaFWrk,
as well as the meta-models used by such transformation.



2. BACKGROUND

Abstract

The scope of the research presented in this thesis covers the areas of: (1) business
processes, (2) dependability, and (3) Model-Driven Engineering (MDE). The goal of
this chapter is to introduce relevant aspects belonging to each of these areas providing
the background on which the thesis relies. The presentation of the background is
structured into three parts, each representing the three areas of interest. Section
2.1 introduces the terminology regarding business processes, as well as concepts and
aspects regarding the modelling and validation of business processes. Section 2.2 gives
a detailed presentation of the background regarding the dependability of the computing
area, with a special emphasis on those concepts that underpin the notion of dependable
business processes as considered within this thesis. Section 2.3 presents the MDE
field by giving information about its aim, and describing in detail the concepts and
principles that govern this topic when specifying domain-specific languages.

2.1 Business processes

Within the context of this thesis, it is used the definition of business process provided by the
Workflow Management Coalition (WfMC) [Wor] in its Terminology & Glossary [Wor99] released
at the end of the 90’s. According to this document, a business process is considered as “a set
of one or more linked procedures or activities, which collectively realise a business objective or
policy goal, normally within the context of an organisational structure defining functional roles
and relationships”.

Many people consider the workflow domain as the predecessor to Business Process Manage-
ment (BPM), the current area that “supports business processes using methods, techniques, and
software to design, enact, control, and analyse operational processes involving humans, organ-
isations, applications, documents and other sources of information.” [van04]. Therefore, since
BPM has its origins in the workflow domain, it makes sense to consider such a definition for the
term business process.

Other definitions for business process have also been provided. Ko in [Ko09] lists those definitions
that have their origins in the area of business process re-engineering (BPR). However, all of these
(with more or less emphasis) view a business process in the same perspective, i.e. as a set of
ordered activities designed to take one or more inputs, produce a specific output for a particular
stakeholder and which is carried out collaboratively by a group of humans and/or machines
within an organisation.

It is worth noting that the definition of BPM provided by van del Aalst restricts business pro-
cesses only to those that are operational. Operational business processes are those that enclose
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the current activities the organisation carries out in order to meet (medium-term) tactical or
(long-term) strategic decisions. Business processes that cannot be made explicit (like strategic
or management business processes) are left out of the BPM’s domain. This method of classi-
fying business processes is inherited from the way in which traditional organisation charts are
organised: operational control, management control and strategic planning [Ant65].

The definition about BPM encompasses the concept of “supporting” business processes. This
support represents the different phases that allow a business process to be realised. These phases,
which are enclosed in what it is called the BPM life cycle, are:

• Design: in this phase, a business process is realised by a model, which must capture all its
relevant aspects, in a manner such that the model is understood by the person providing
the model (aka modeller), but also any other individual concerned with its definition (e.g.
stakeholders) and implementation (e.g. IT managers or developers),

• Configuration: this phase is concerned with the implementation of the business process
model (produced in the previous phase) by means of configuring a process-aware informa-
tion system in order to obtain IT support for the execution of the business process,

• Enactment: this stage covers the deployment of the business process to achieve its exe-
cution using the IT support,

• Diagnosis: the results of having executed a business process (aka traces) can be used to
analyse its behaviour in order to identify existing problems or ways in which the model
can be improved.

Once problems or areas for improvement have been identified, the business process has to be
re-designed to address these issues. This leads to the restart of the BPM life cycle, thus, defining
an iterative closed-loop life cycle.

With the exception of the first phase (i.e. Design), the rest of the life cycle phases are con-
cerned with the process-aware information system that provides support for running the business
process. Information technologies that focus on process management are good candidates for
achieving the process-aware information system that will provide the required support for run-
ning such business. Workflow Management Systems (WfMS) and Enterprise Resource Planning
(ERP) systems are two distinct solutions that focus on business processes that have received
special interest in the past two decades [CBS04].

A WfMS is a system that defines, creates and manages the execution of business processes
through the use of software, running on one or more workflow engines, which is able to interpret
the process definition, interact with business process participants and, where required, invoke
the use of IT tools and applications [Wor99].

On the other hand, an ERP is a generic off-the-shelf system that supports most of the key
functions (e.g. logistics, sales, and financial management) any organisation requires [SGD03].
Since an ERP is a generic system, its implementation in a particular organisation involves a
process of customisation in order to align it with the specific needs of the organisation. The
ERP capabilities are configured according to the information provided by the process definition,
since it is the model that describes the requirements of the organisation. Therefore, process
definition plays a key role in determining the appropriate information system (whether it is a
WfMS or an ERP) that supports the running of the organisational business.
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The Service-Orientation (SO) (also known as Web Service) landscape is yet another category
that plays an important role when providing IT support for business processes. Technologies
within this area are meant to support the implementation of business processes through web
services. A web service can represent an atomic activity within a business process, a sub-
process component of a larger business process, or even an entire business process. Furthermore,
since these alternatives are complementary, a business process may be implemented such as the
coordinated composition of several web services. Methodologies that allow web services to be
derived from a business process model can be found in [Pv07] and [Erl05].

In any case, the design phase determines the business process model, which represents the
requirements to be satisfied for providing the needed IT-support, whatever approach is taken.
Since this thesis is mainly concerned with the modelling of business processes, the design phase
deserves special attention.

2.1.1 Business process modelling

The aim of the design phase is to produce a model of the business process run by the organisation.
As every useful model, it is an abstraction of the real business process. This model has to offer
a simplified view of the business process which will be used not only in the subsequent phases
of the BPM life cycle, but also as a communication medium between the actors involved in the
design phase, who may not necessarily may have the same professional background. In fact, van
del Aalst [van02] points out that the engineering of business processes is a complex activity that
requires the participation of not only organisational and business experts, but also of information
technologists (i.e. IT Managers and Developers). Juric and Pant [PJ08] go further and provide
one possible structure (which has proven to be efficient) of the team in charge of the modelling
process. Such a structure is composed of:

• a process owner,

• two persons to assist the process owner, coming from the same department,

• a process quality representative,

• a business process analyst (usually the modeller),

• an IT representative, and

• optionally, an external consultant

A process model is expected to contain all the relevant information about the business process.
Since the relevant information and aspects to be considered can easily over complicate the
business process, a method for organising the information to be placed within a model is required
such that this problem is avoided. The notions of view and diagrams represent a means to
organise the way the information is organised within a model [EP98]. A view is an abstraction
that captures information about one or more specific aspects of the business process from only
a particular viewpoint. Each view consists of one or more diagrams, each of which shows only
one relevant component of the view. Examples of views that may be considered when modelling
a business process are data, functionality, resources and motivation [Toh99, LZRT08, Zac99].

The reasons for creating a business process model range from the need to optimise the throughput
for reaching the final product or business objective, to storing corporate knowledge. Having a
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model of a particular business process helps employees to understand how the business goal is
obtained, or helps them calculate the cost in reaching such goal [Sch98].

The process of modelling a particular business process starts when the organisation realises the
need for automating or improving (either fully or partially) at least one of its business processes.
The event that triggers the initiation of the process (usually) comes from the management
sector of the organisation as a response to the strategic plan defined by the organisation’s board
director. The management then presents the requirements’ business process along with a high
level overview of the required steps to achieve the business process’ goal.

The business process requirement elicitation phase is still manually practised in the industry
and it involves several meetings and discussions until the business process modelling team (and
fundamentally the analyst) fully understand what it is required [Ko09]. It is worth noting that
people who are not part of management nor the business process modelling team but who have
a good knowledge regarding the current or existing process that need to be automatised (or
improved) should also be included in these meetings and discussions.

Once the business process modelling team feels comfortable with the input collected about
the management’s requirements, the modeller describes the requirements using a language that
allows them to be easily interpreted. Thus, the language chosen to carry out the modelling of
the business process plays an important role in this phase as it determines how understandable
(for all the involved actors) the resulting model is.

2.1.1.1 Languages

A language is inherent to a modelling process. Whatever needs to be modelled, a language
is required to generate the description of the targeted concepts. The design phase is not the
exception, so that a language is required for carrying out the modelling of the business process.

Flow diagrams and block diagrams represent the first-draft of notations used to model business
processes [PJ08]. Over the years, a number of standards and/or widely used approaches have
emerged. However, not all the standard languages that appeared within the BPM landscape
were designed modelling business processes.

Some of these standards were created to facilitate the portability of business process models
across different Business Process Management Systems (BPMS) (known as interchange stan-
dards), whereas others were just meant to allow a deployed business process to be executed
(known as execution standards). The XPDL [Wor08] language, which is aimed at facilitating
the interoperability between workflow technologies, is an example of an interchange standard.
BPEL [OAS07] is a language that is used for modelling of business processes using web ser-
vices, providing a special emphasis on describing the interactions between the web-services that
compose the process. BPEL is an example of execution standard.

The categorisation of current standards by both their features and the BPM life cycle has been
proposed by Ko et al. [LLK09] as an attempt to bring clarity to the language in the BPM
field. Languages that allow modellers to describe business processes and their possible flows and
transitions in a diagrammatic way belong to the type of graphical standards, and represent those
to be used in the design phase of the BPM life cycle.

The same authors (i.e. Ko et al.) classify UML Activity Diagrams (UML-AD) [Obj09b], Business
Process Modelling Notation (BPMN) [Obj09a] and Event-driven Process Chains (EPC) [ARI09]
into the category of graphical standards. Pant and Juric [PJ08] also identify the same languages
as sophisticated notations defined for coping with the modelling process, which demonstrates the
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relevance of such languages in the BPM field in general, and in the design phase, in particular.
In an historical revision regarding BPM standard approaches, ter Hofstede et. al. [tvAR09]
includes BPMN, UML-AD and EPC as well-known approaches for specifying business processes.
However, it is worth noting that EPC is considered not for being a formal standard, but for
having been around for over 15 years as it is the modelling language used within the ARIS
environment [Sch00, Sch98].

There are also some languages, like Yet Another Workflow Language (YAWL) [YAW09a], that
span both the design and enactment phases of the BPMN life cycle. Since YAWL brings a new
notation to the BPM arena, within the context of this thesis, it is only considered as part of the
design phase. Further details about EPC, BPMN, UML-AD and YAWL, from the perspective
of the business processes being targeted in this thesis (i.e. DCTC business processes), are given
in Chapter 3.

Almost all languages belonging to the graphical standard category1 lack formal semantics in their
definition. This represents a major problem when there is a desire for some kind of analysis to
be performed over the business process model before its deployment and enactment. This has
led people to either give formal semantics to the business process modelling language of interest,
or to use directly an existing formal notation for specifying the process. Examples of assigning a
formal semantics to BPMN can be found in [DDO08, WG08, WG09, PW06, AKM08], whereas
Petri nets [Pet96] is the usual formalism used to model directly business process [van02].

As pointed out in [LLK09], formal languages like Petri nets, pi-calculus [Mil82] or CSP [Hoa85]
define the BPMN theory on which BPMN standards are based. This leads towards the interpre-
tation that formal languages should be used as means to assign semantics to BPMN standards
instead of being used directly to model business processes. One of the main reasons supporting
this thought is that graphical notations like UML-AD and BPMN are easy for non-technical
users to understand and use. Therefore, “easiness”, “understandability” or “formality” are rele-
vant notational characteristics that may make ease (or make difficult) the work of the modeller
when it comes to describing the concepts of interest. The next section inspects the desirable
characteristics a business process modelling language should contain.

2.1.1.2 Quality attributes

In the IEEE Standard Glossary of Software Engineering Terminology [Ins90], the term quality
is defined as “the degree to which a system, component, or process meets specified requirements”.
The “system, component or process” that is under consideration in the context of this work is the
process definition (i.e. the model) that describes certain business process. The “requirements”
are those expected properties, features or characteristics that such a model should contain. De-
spite the fact that the “requirements” vary with the needs and priorities of the person requiring
such model, there are some characteristics that any model should contain as these affect di-
rectly its quality. These characteristics are called quality attributes. The fact that a particular
model contains or does not contain them depends considerably of the person in charge of writing
the model. However, the language used for modelling plays a key role in facilitating the mod-
els that do contain these desirable attributes. A modelling language composed of a particular
quality attribute will help in writing models that need such a quality attribute. According to
[Bt98, FHL+96, Har97, Rus07] the following quality attributes are important to be included into
any business process modelling language:

1 YAWL is an exception.
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• Conceptuality: the International Standards Organisation (ISO) in its standard ISO/TR-
9007 [Int] defines a model adhering to the “conceptualisation principle” as one that includes
only the relevant aspects of the universe of discourse. Furthermore, such aspects are
expected to be platform independent in the sense that they should not hold any kind of
technology or implementation-related information. A modelling language with constructs
that allow for the capture of the central concepts of the problem domain at the adequate
abstraction level would hold such quality attribute. In any case, it is worth noting that
conceptuality is a subjective quality: while some modellers agree that the concepts of the
domain of interest are the correct constructs to capture (as long as they are at the right
abstraction level) others modellers might disagree.

• Suitability: this attribute identifies the ease with which a concept and its interrelationship
with other concepts can be captured within a model. Thus, a modelling language suitable
to a particular domain of interest is one that holds features that allow both concepts and
the ways they are related to each other to be captured and represented in the same manner
in which they appear in the domain of interest. This direct representation of concepts and
relationships would simplify not only the modelling process, but also the understanding
of the model’s content (although this is considered as yet another quality attribute called
comprehensibility -see further). Suitability is a subjective quality since the assessment
depends on who writes (or reads) the model.

• Expressiveness: the “100% principle” mentioned by the ISO in its ISO/TR-9007 [Int] states
that a model should include all relevant information concerning the problem being tackled
in the domain of interest. This quality attribute then is concerned with communicating
all the different concepts than can be of interest for the problem at hand. As opposed to
suitability, this attribute focuses on the general means provided by the modelling language
such that a concept not bound to any domain can be always expressed somehow. Expres-
siveness is an objective attribute: let Lbp be a business process modelling language that
provides the different constructs C1, ..,Cn , it can be proven whether or not a particular
business process can be modelled.

• Formality: a language that has both its syntax and semantics formally defined (i.e. they
are grounded on mathematical bases) is considered as formal. A language that has its
syntax described in a formal way, but its semantics given by statements written in a natural
language is considered to be semiformal. Languages that are not formal nor semiformal are
considered to be informal. This quality attribute thus determines the precision with which
both the syntax and semantics of a particular modelling language are given. Obviously, the
most desirable approach is to rely on a formal modelling language for describing business
processes as its use eases the process of creating consistent and unambiguous models.
Formality is an objective attribute: the way the syntax and semantics of the language are
given determine the level of formality.

• Enactability: Rusell claims that “ultimately, there is no benefit in proposing a business
process modelling language that is not capable of being enacted”. Such a claim indicates that
modellers look for languages that allow them to run models such that their correctness can
be validated before going further with any tasks that take them as input. Therefore, this
quality attribute determines the degree to which a particular modelling language facilitates
the execution of the models it allows to describe. It is worth noting that running a business
process model is not only useful for validating its correctness, but also for analysing its
current performance for optimisation purposes. Enactability is an objective attribute
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since it is determined by the degree of formality with which the semantics of the modelling
language is given.

• Comprehensibility: a model does not make sense if it can only be understood by the
person who wrote it (although it also happens that, after writing the model, its creator
is also unable to understand its meaning). A model then has to be written such that the
information it carries allows any other stakeholder to have the same interpretation as the
individual/individuals who wrote it. Despite there being no guarantee that a modeller will
come up with a comprehensible model for the particular problem at hand, a modelling
language can be thought to ease this requirement with just such a desirable attribute.
Comprehensibility, thus, is the ease with which models can be understood by stakeholders.
Such an attribute is very subjective as it depends on the skills, experience and taste of the
reader.

• Maintainability: a model represents an abstraction of a real fact. In our context, mod-
els describe business processes. It is accepted without question that business processes
change very often because the organisations that run such processes change their needs
continuously to adjust to the business environment. The ease with which a model can be
modified to meet a new requirement or corrected when a mistake is discovered determines
the maintainability of the model. It is important to notice that new requirements might
necessitate modifications at the level of the modelling language (e.g. a new construct has
to be added or modified), so that both the language and its associated tools must also be
maintainable. Despite the maintainability of a model, it is always arguable, that there are
good accepted practices (e.g. information hidding, modularity, low coupling/high cohesion
between modules, etc.) that can help assess the maintainability attribute.

2.1.1.3 Assessment criteria

In order to evaluate the achievement of certain quality property, a quality assessment criteria
must be defined. A quality assessment criteria is defined [CLV02] as a set of explicit rules and
conditions, which are used to evaluate one or more quality properties of a modelling language.
Different quality criteria have been reported as means to assess business process modelling
languages.

Rusell [Rus07] relies on the notion of workflow patterns [vtKB03] to assess the expressiveness
of business process modelling languages. The more workflow patterns a particular modelling
language supports, the higher its power of expression.

Vasko et al. [VD06] use the functional, behavioural, informational, organisational, and opera-
tional aspects2 identified by Jablonski et al. [JB96] to assess the comprehensibility of workflow
modelling languages. Each aspect is evaluated separately. The functional aspect, that is con-
cerned with the activities a particular process must perform and how these activities are struc-
tured, is evaluated by analysing the possibilities the language provides for nesting activities. The
other aspects (except the operational aspect3) are evaluated by analysing the support provided
by the language to model the workflow patterns as defined in [Rus07].

Hommes et al. [HR00] assess the quality of a business modelling language by means of the
following quality properties: suitability, completeness, coherence, expressiveness, comprehen-
sibility, arbitrariness, effectiveness and efficiency. These quality attributes are measured by

2 It is worth noting that such aspects are claimed to be widely accepted in the workflow technology
area [HOP05].

3 At the writing time, we are not aware of any available methodologies for evaluating this aspect.
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extracting the information provided by the Modelling Concept Table and Model Table. The
Modelling Concept Table contains those modelling concepts that constitute an individual model
Mi . In this table, each modelling concept is described by its name, meaning, and notation. A
fourth column in the table contains the model that describes the relationships among the differ-
ent modelling concepts (i.e. Mi meta-model -called MMi). The Model Table lists the different
kind of models (i.e. MM1..n) and their goals (i.e. what are they meant for). A third column
in the table provides the model that describes the relationships among these different kind of
models (i.e. the meta-model of MM1..n). For example, a model is claimed to be coherent if there
are not isolated parts in its metamodel (fourth column in the Modelling Concept Table).

Aguilar et al. [ARGP06] assess a business process by its maintainability. This quality attribute is
evaluated by measuring the structural complexity of the business process models. The metrics
used for evaluating the structure of the models are adapted from those used to measure the
structural complexity of software processes [GPR+06].

List et al. [LK06] evaluate the expressiveness of business process modelling languages by means
of a generic meta-model that captures a wide range of business process concepts. These concepts
are categorised in a similar way to the approach proposed by Jablonski et al. in [JB96]. Business
process modelling languages with means to describe the concepts contained in the meta-model
are considered expressive enough to model a very broad range of business processes.

Ortiz et al. [OHNAEE+07] also assess a business process modelling language by means of its
expressiveness. The evaluation is made based on a set of concepts which authors claim to be
the key elements any business process should be made of. Such concepts are also categorised by
levels in accordance with the different perspectives by which a business process can be viewed. A
quantitative metric is given to evaluate the presence of each concept in certain business process
modelling languages. The higher the score of the modelling language, the more expressive the
language is considered to be.

Gruhn et al. [GL07] adopt metrics used for analysing the complexity of software programs
to assess the control flow of business process models. These metrics measure the effort to
understand a model as well as several of its structural aspects (i.e. modularisation, nesting
depth, and crossed reference with other models). Since such metrics are useful to evaluate the
structure and legibility of a model, according to the categorisation of quality attributes proposed
by Boehm [BBL76] it can be concluded that, the characteristic that is actually being assessed
is the maintainability of the model.

2.1.2 Business process validation

Once the modeller has reached a business process model (or process definition), two kinds of
problems regularly appear:

1. the process definition is neither syntactically nor semantically correct, and/or

2. the information held by the process definition does not actually capture the intentions of
the stakeholders.

The first kind of problem reveals that the process definition is not right, whereas the second
problem indicates that the process definition is not the right one from the stakeholder’s view-
point. Both problems are concerned with the correctness of the process definition and they
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are identified when the process definition is subjected to analysis. The analysis of the process
definition is addressed through verification and validation [JB96].

In the IEEE Standard Glossary of Software Engineering Terminology [Ins90], the term verifica-
tion is defined as “(1) the process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start of that phase,
(2) formal proof of program correctness”. Validation is defined as the process of evaluating a
system or component during or at the end of the development process to determine whether it
satisfies specified requirements, where a requirement represents a condition or capability needed
by a stakeholder to solve a problem or achieve an objective. Looking at these definitions from the
perspective of a modeller in charge of providing a process definition, verification is the activity
(process, or means) that allows problems of the first type to be either detected or shown to be
in absence. On the other hand, validation is the activity (process, or means) that deals with
problems of the second type as it allows the modeller to check whether the process definition
captures the stakeholders’ requirements.

It is thus important not only to verify the process definition before going further in the BPM
life cycle, but also to validate it in order to assess its overall correctness. The modeller then,
during the design phase, has to iteratively model the right process definition (i.e. the model is
syntactically and semantically correct) while ensuring that the process captures the stakeholders’
requirements. Notice that this way of proceeding is not only required by the BPM life cycle,
but also by every development process that is driven by models. The determination of whether
a model is correct or not, i.e., model verification and validation, is part of any development
process that relies on models to obtain the final product.

Within the context of this thesis special attention is given to the validation of the process
definition, as the major concern is (along with the modelling of DCTC business process) to
provide a means to ensure that the stakeholders’ requirements have been captured. For the
reader interested in business process verification, a list of existing verification techniques is
provided by Chen et al. in [CY06].

A way of validating a model consists of observing the dynamic behaviour of the system described
by the model in order to check whether it conforms to the intuitive behaviour of the ideal system
that the stakeholders have in mind [GJM02]. Observing the dynamic behaviour of the modelled
system may consist of (1) providing an interpreter for the language in which the model is
described and (2) executing the model by providing some input data. This manner of observing
the dynamic behaviour of a modelled system is also called simulation.

It is worth noting that the simulation of a model requires, first instantiating the model, and
next executing scenarios using some input data. This procedure indicates that one simulation of
a model showing that it does not behave as expected by the stakeholders is enough to conclude
that the model is incorrect. Conversely, a successful simulation of the model on a finite number
of cases is not proof of a valid model in the general case. This conclusion stresses the fact that
the absolute validity of a model cannot be obtained from simulating a model [DG98].

Nevertheless, simulation has proven to be a useful means for obtaining better insight into the
operation of the process being modelled as it is usually the only tool available in workflow
management systems4 to perform analysis [van02]. Furthermore, Ren et al. [RWD+08] argue
that, under complex business scenarios, simulation is the only technique that enables modellers
to analyse not only the behaviour of the modelled business process, but also its performance
over time providing better insight regarding bottlenecks and hand-over times.

4 Known as the early generation of Business Process Management Systems (BPMS) [van04].
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It is worth noting that not only the business process simulation, but also the analysis of both
the required input data for performing the simulation and the output data generated by the
simulation improve the knowledge about the process itself. This sometimes leads to valuable
insight for the re-design of the business process. In case an existing version of the business
process is already deployed and running, its actual behaviour can be recorded and then used as
input data for performing simulations of the re-designed version. The technology that uses event
logs to analyse a business process is called process mining [tvAR09]. In this manner, process
mining represents a complementary technology for simulating business processes. However, as
was already stated, the use of process mining depends on the existence of an earlier version
of the business processes under execution. This is the reason why process mining is primarily
used for the diagnosis of existing operational business processes. Diagnosis represents the fourth
phase in the BPM life cycle.

In the case that the operational behaviour of the model is displayed graphically as it moves
through time, the simulation is said to be animated. Otherwise, every model simulation (at
least) has to produce an execution trace that can be subsequently analysed in order to determine
whether the model captures the expected requirements.

A different way of validating a model consists of analysing the properties that can be deduced
from the model, and comparing them to the properties the ideal system is expected to contain.
Examples of how this approach can be used to allow a more precise understanding of the model
can be found in [KPR04, FLM+04].

Other techniques used to perform model validation (which are not confined to the business
processes domain) are listed by Sargent in [Sar00]. It is worth mentioning that the author in
that work emphasises the fact that a combination of techniques is generally used to validate a
model.

2.2 Dependability

2.2.1 Dependable computing

The idea of a dependable business process, as introduced in Section 1.1, relies on concepts and
principles that come from the dependable computing area [IFI]. In the software engineering
literature, the term dependability is defined as the ability to deliver service that can justifiably
be trusted [ALRL04]. Such a service is delivered by a system: i.e. an entity made of hardware,
software and humans. In the business domain, the service is the business process, whereas the
system is the business organisation that owns such a process.

It is assumed that systems are not perfect, i.e. they are expected to fail from time to time.
A system fails (aka system failure, or simply failure) when there is a service failure: i.e. the
delivered service is judged (by a particular judgemental entity [RK07]) as being different from its
intended state. As system failures are unavoidable, the challenge is to reduce their frequency and
severity. A dependable system, thus, is one that has the ability to avoid service failures that are
more frequent and more severe than is acceptable from the judgemental system’s point of view.
The term “judgemental system” covers concepts ranging from failure detectors implemented in
hardware or software to the legal justice system. Furthermore, since the judgemental system
is itself a system, it might also fail (as judged by another higher level judgemental system).
In this work, as will be demonstrated later, the role of judgemental system is played by the
stakeholders that request the service that is to be provided. An error is the part of a system
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state that might lead to a failure. The hypothesised cause of the error is a fault. An error does
not necessarily lead to a failure as it may be avoided by chance or design, or simply because it
does not constitute a fault for the enclosing system.

There exist four general mechanisms to achieve dependability [ALRL04]: fault prevention, fault
tolerance, fault removal, and fault forecasting. Fault prevention deals with the objective of
avoiding the introduction of faults during the software development process. As such objective
is a part of the general aim of every software development methodology, fault prevention can
be considered as an inherent part of it. Thus, good practices in software development (e.g.
modularity with low coupling and high cohesion, information hiding, use of strongly typed
languages for the specification, design and implementation) help in reducing the number of
faults when developing a system. Fault tolerance is aimed at allowing the system to provide the
service in spite of the presence of faults. The basic activities required to achieve fault tolerance
are error detection (i.e. to identify the presence of an error) and system recovery (i.e. to lead
the system to a well-defined state without detected errors from which the system can continue
its normal execution). Fault removal deals with uncovering faults that have occurred at any
phase in the development process. Activities covered by this mechanism range from checking
the specification of the system to uncover specification faults up to exercising the system (i.e.
testing) to uncover development faults. Fault forecasting is aimed at evaluating the behaviour
of the system under the occurrence of faults such that it can be concluded which ones would
lead to system failure.

The effectiveness of each mechanism depends on the context and nature of the fault. Thus, the
dependability of a system can be increased by a combined use of these mechanisms. It is worth
mentioning that a totally dependable system (i.e. a perfect system) is impossible to achieve,
but it should be the objective that any development process must try to attain. This work
takes the view that fault tolerance is a means to achieve dependability, complemented with the
other existing ones (i.e. fault prevention, fault removal, and fault forecasting). Based on the
assumption that faults cannot be fully avoided or removed, the choice is to enrich the system
with means to detect erroneous system states and then to perform the necessary recovery steps
that lead the system to a well-defined state (fault tolerance view). Both the error detection
tools and the recovery steps are made part of the model that describes the system. This model
is produced during the analysis phase of the development methodology that is being followed
(fault prevention view). The model not only describes the functional aspects of the system,
but also the fault tolerant ones. Such model can be used to perform an early evaluation of the
system behaviour with respect to its adherence to the expected functional properties as well
as with respect to the occurrence of faults (fault forecasting view)5. If such early evaluation
reports that the system model either does not adhere to certain functional property or does not
behave as expected when facing a particular fault, then the model has to be corrected because
it is faulty (fault removal view). This early evaluation is carried out until the model fulfills
both the functional and fault-tolerant aspects. Once this point is reached, the next phase of the
development process (i.e. design) begins.

2.2.2 Fault tolerance

Fault tolerance is achieved by error detection and subsequent system recovery. There are two
kinds of error detection techniques: concurrent and preemptive [ALRL04]. Systems that allow
errors to be detected during the delivery of the normal service are said to support concurrent

5 Modelling and simulating error detection and recovery activities could be used as an effective method to
estimate the consequences of a fault.
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error detection. Those that detect errors only while running in specific modes or at a particular
period of time (e.g. audit and start up, respectively) are said to support preemptive error
detection.

The purpose of the recovery phase is to lead the system back to a certain state such that it can
continue executing. This can be achieved by modifying the system state such that it does not
contain errors. This technique is known as error handling. It can be implemented by backward
error recovery (sometimes called rollback), forward error recovery (sometimes called rollforward),
compensation, or any combination of these. Backward error recovery returns the system to a
saved state that existed before the error occurred. This state is assumed to be correct since in
the past it allowed the system to be fully operational. Implementations of this technique include
checkpoints [EAWJ02], conversations [Ran75], and transactions [GR92].

Forward error recovery is aimed at leading the system towards a new (i.e. not reached recently)
correct state. Reaching such a state is only possible when there exists precise knowledge about
the kind of error that has corrupted the system. When the class of error is known, specific
activities meant to deal with this particular error are performed. By executing these procedures,
reaching the correct new state should be possible, thus, allowing the system to resume its
operation either as before the error was detected (best case scenario) or in a mode where not
all its services are available (aka degraded mode). Forward error recovery is usually achieved
by using exception handling mechanisms (EHM) [Cri89, BM00] as they embody concepts (i.e.
exception and handler) and capabilities (e.g. detection, control flow transfer, exception and
handler categorisation) that make this type of error recovery mechanism easy to implement.

Compensation aims to allow the system execution to progress as expected despite it being
in an erroneous state. This technique is implemented under the assumption that a system
erroneous state holds enough redundant information to allow the error to be masked. Hardware
redundancy includes supplementary and potentially similar hardware in the system, whereas
software redundancy includes additional components, i.e. programs, objects or data. Software
redundancy is complemented with software diversity to solve the problem of replicated design and
implementation faults. N-version programming [Avi85] and recovery blocks [HLMSR74, Ran75]
are the original and basic techniques that implement software diversity.

Error handling techniques intended to cope with errors such as those previously described (i.e.
rollback, rollforward, and compensation), leave the fault untreated. Thus, for a fault that has
already led the system to an erroneous state there is clearly a possibility that the fault will
continue to produce errors. As the repeated manifestations of a fault can make a system fail
despite the efforts of the fault tolerance technique it implements6 it may be necessary to eradicate
the fault from the system.

Techniques aimed at removing the fault from the system to avoid it being reactivated are part
of the final phase of fault tolerance. This phase is known as fault handling, and it implies
identifying the fault (i.e. diagnosing), isolating the faulty element (e.g. component, module,
class), reassigning the tasks performed by the faulty element among non-faulty elements (i.e.
system re-configuration), and restarting the system.

2.2.2.1 Fault tolerance in distributed real-time systems

As previously stated, the approach to achieving dependability in business processes is centred
around fault tolerance. Mechanisms or tools will have to be used in business processes that

6 Either because the consequences of the fault become more and more serious, or because the system cannot
longer provide its service as expected due to the overheads of dealing with recurring errors[AL81].
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are collaborative and hold timing constraints. Thus, it is logical to explore how fault tolerance
has been successfully applied in the computing domain when engineering “collaborative systems
with timing constraints” (known as distributed real-time systems in the computing field).

A “distributed system” [BW01, Lam78] is defined as a system composed of multiple autonomous
processing nodes cooperating toward a common purpose or toward achieving a common goal.
These autonomous processing nodes communicate with one another by exchanging messages.
It is a necessary condition for a distributed system that the message transmission delay is not
negligible compared with the time between events in a single processing node (multiprocessor
computers are excluded as the message transmission delay is negligible). This definition is
compatible with our way of considering collaboration in business processes.

A system is “real-time” [Bur91] if at least one of the computational tasks that it executes is
constrained somehow by time (compatible with our way of considering time constraints). Such
a definition indicates that the correctness of the result provided for the task depends not only of
its logical value, but also on the time at which it is provided. These timing constraints appear
in the requirements specification in the form of deadlines. This definition is compatible with our
way of considering timing constraints in business processes.

Distributed systems (being real-time or not) have the partial-failure property: the occurrence
of a failure (it does not matter of which kind) usually affects only a part of the system [Tel94].
Fault tolerance techniques exploit this property to coordinate the execution of the distributed
system so that non-faulty processing nodes can take over the activities of those that are failing.

Fault-tolerant algorithms based on replication (i.e. systematic compensation for fault masking)
are an option since (potentially) every processing node can be used for redundancy purposes.
Every system component that needs to be replicated (nothing forbids to replicate the entire
system) can be deployed on one of the processing nodes that compose the distributed system.

There also exist fault-tolerant algorithms designed to insure the correct behaviour of the system
(while certain conditions hold) despite failure occurrences [LSP82]. Still others are meant for
identifying the kind of failure (even in the case of multiple occurrences) to be able to perform the
necessary recovery actions that will lead the system to either its normal behaviour (best scenario)
or a graceful degradation, instead of reaching an overall malfunctioning [CR86]. Such fault-
tolerant algorithms have to coexist with scheduling algorithms that take care of the temporal
behaviour of the distributed system, when timing constraints need to be satisfied. In this
scenario, a trade-off between dependability and performance must be made.

Fault tolerance techniques can be also applied within each processing node that is part of the
real-time distributed system. The advantage of this technique is an increase in the dependability
of the local computations carried out in the processing node. One method for achieving this is
to combine exception handling principles with scheduling practises for providing fault tolerance
by means of forward error recovery [dALB05]. This approach categorises processes or activities
as primary or alternative tasks: a primary task is one whose execution is required in error-free
scenarios, whereas an alternative (i.e handler) is one that must be executed only when some
error is detected (i.e. exception is raised).

Such a categorisation helps in scheduling the tasks. Since an alternative task is expected to run
less often than a primary one, different priorities can be assigned to them. It might be decided,
for example, that alternative tasks run with higher priorities as a way to increase the system’s
tolerance for detecting errors.

Another alternative, is to use the transaction processing paradigm for executing the timing
constrained tasks within a processing node. Turning every task into a transaction allows fault
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tolerance to be provided by means of backward error recovery (atomicity property - the A of
the ACID7 properties granted by the transaction processing paradigm). However, the transac-
tion processing mechanism (whatever it is) embedded into the processing node has to include
scheduling aspects so that the number of transactions missing their timing constraints are min-
imised [AGM92]. Advanced transaction mechanisms, like the one introduced in the next section,
can be used when some of the ACID properties need to be relaxed, while keeping others in tact.
This is the case for long-running transactions (i.e. transactions intended to run over long periods
of time) that maintain consistency and durability (C and D), while they relax atomicity and
isolation (A and I) [Gra81].

2.2.3 Coordinated Atomic Actions

Coordinated Atomic Actions [XRR+95] represent a fault tolerance conceptual framework8 used
to increase the dependability of distributed and concurrent object-oriented (OO) software sys-
tems9.

The abstract concurrent OO computation model, which the coordinated atomic actions con-
ceptual framework (CaaFWrk) is based, is defined as a collection of interacting objects (which
may or may not be distributed) where the processes (or threads) executing concurrently (i.e.
these processes may, but need not, overlap [BA06]) correspond to the executions of operations
(which may be associated with a single object or several different ones) on a group of objects.
Those objects that own the operations concurrently executed can be considered as active ob-
jects, whereas the objects on which operations are applied can be considered as passive objects.
The conceptual framework does not make a distinction as a particular object can behave both
as active and passive during the software system execution. What the conceptual framework
does assume is that each object executes just one of its operations at time.

The kernel of the CaaFWrk is an abstraction, which is defined as a generalised form of the
atomic action10 concept. This abstraction allows a set of concurrent processes to perform a
group of operations on a collection of objects. Therefore, it represents an atomic logic unit (i.e.
indivisible and with well-defined boundaries) for the execution of a set of concurrent processes.
Furthermore, the atomicity, consistency, isolation and durability (ACID) properties are ensured
for those objects being accessed by the processes forming part of the atomic logic unit.

This atomic logic unit works also as a damage confinement area. It constrains the spread of
errors to its enclosing context. This is achieved by allowing recovery procedures to be associated
with each atomic logic unit. Exceptions and exception handling features are used to identify
the presence of an error and eliminate it by putting in place one of the recovery procedures
associated with the atomic logic unit being executed. Therefore, exception handling forms the
basis of the CaaFWrk to implement fault tolerance. In the context of the CaaFWrk, this atomic
logic unit is known as a coordinated atomic action11 (CAA), the concurrent processes are the
participants, and the set of operations that each participant performs inside the CAA is known
as the role.

The CaaFWrk then can be seen as a tool that designers may use for structuring the software
system activities (design) in order to meet the user’s requirements (specification). Concurrent

7 The acronym ACID means: Atomicity, Consistency, Isolation and Durability.
8 A technique with its own terminology and strategy to implement fault tolerance.
9 The expression software systems is used to mean the piece of software that satisfies the user’s requirements
along with the hardware and environment where it is deployed.

10 Abstraction that allows the execution of a set of operation to be seen as only one indivisible operation.
11 The conceptual framework was named after the coordinated atomic action.



2.3. Model-driven language engineering 23

OO software systems with high levels of dependability belong to the domain set for which the
CaaFWrk was meant to be used as a design tool.

Real-time software systems are (either inherent or imposed) concurrent and very often have
dependability requirements ([BW01], pages 7-12). Thus, these types of software systems are
first-class candidates to be designed using the CaaFWrk. However, the timing requirements
imposed by most of the real-time software systems are not possible (or, at least, not easily)
to be modelled by the conceptual framework. Therefore, extensions to make it available for
designing real-time software systems are required.

An initial attempt was proposed by Romanovsky et al. in [RXR99]12. In this work, the CaaFWrk
was extended to allow timing constraints to be placed over a CAA abstraction. These timing
constraints then apply over the set of concurrent process that come together to perform the CAA.
The violations of any of the timing constraints imposed at the CAA level are seen as exceptions.
This leads to situations in which timing and value exceptions can be raised concurrently. How the
exception handling mechanism copes with such situations was the main focus of the Romanovsky
et al. paper.

The description of the CaaFWrk along with its time extensions are described and analysed in
depth in Chapter 4 as it is the chosen semantic domain for providing meaning to the expressions
of the DT4BP business process modelling language introduced in Chapter 3.

2.3 Model-driven language engineering

2.3.1 Model-driven engineering

Model-Driven Engineering (MDE) refers to a software development approach in which the soft-
ware system to be developed is initially described by an abstract model and systematically
transformed into a concrete implementation [FR07]. The MDE’s goal is to help developers
reduce the gap between the problem domain level concepts and those that are at the imple-
mentation level and which are used to implement the problem domain level concepts. Current
efforts to bridge this gap are difficult and costly, not only because these efforts require intensive
error-prone hand-made activities at the implementation level, but also because of the complex
requirements imposed onto the software (e.g. run over multiple distributed platforms, adapt-
able to the constant changes of the environment where they are embedded, and behave in a
dependable manner) as well as the growing pressure to reduce cost and time to market13.

MDE attempts to solve this problem by raising the abstraction level at which software is devel-
oped, while automating the generation of the final source code using technologies that support
systematic transformation of problem-level models (e.g. requirements model) to software-detail
models (e.g. source code). The Eclipse Modelling Framework (EMF) [BBM03] is an example of
a technological framework intended to support MDE.

It is worth noting that MDEmay also be referred to asModel-Driven Development (MDD) [AK03,
BCT05], Model Engineering [Béz04], or Model-Based approach [GRS08]. However, the term
MDA, which stands for Model-Driven Architecture is very often used (wrongly) as a synonym of
MDE. MDA [Obj01] is an initiative that adheres to the MDE approach (i.e. MDE encloses MDA)
launched by the industry-driven organisation OMG [Obj] in its role of provider of standards for

12 Similar and extended information can be found in [RXR98, BRR+98].
13 The length of time it takes from when a software is concieved until it is available for sale.
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the software development community. MDA exploits the notion of model by introducing the
concepts of platform independent model (PIM) and platform specific model (PSM), and the dif-
ferent kinds of mappings these models might involve. While a PIM focuses on those system
aspects that are not related to any particular technology, a PSM is the model that defines “a set
of subsystems and technologies that provide a coherent set of functionality through interfaces
and specified usage patterns” [FR07]. Thus, the approach is to start with a PIM description of
the software system, which it is to be refined (PIM to PIM transformation) until it is realised in
a platform-specific way (PIM to PSM transformation) and eventually transformed into source
code (PSM to PSM transformation). These transformations are expected to be fully or semi-
automatised, as advocated by the MDE approach, in order to improve the productivity while
simultaneously reducing the complexity of integrating different technologies [Ken02, AK03].

The use and creation of models above the code level is the focus of the MDE, since it is the
mechanism for raising the abstraction level at which software is developed. Models thus are
the first-class entities being manipulated (i.e. analysed, simulated, transformed) during the
mode-based process. The required support for properly manipulating models is also a part of
the duties enclosed in the MDE landscape. This support goes from tools for editing, analysing
or simulating models, to technologies for extending a modelling language to allow modellers
to capture concepts as they appear at the domain level. Moreover, the fact that models are
transformed into another models, may lead to the existence of multiple modelling languages
within the same model-based development process. In this manner, mechanisms to create and
use models having a special emphasis on modelling languages, play a very important role within
the MDE field [Kle08].

Since the BPM field has as the ultimate goal providing IT support for the execution of the
business processes, it can benefit from the ideas brought by the MDE field. Perez et al. [PRP08]
have reviewed the different proposals for exploiting MDE within the BPM. Such systematic
reviews have determined that most of the works in this domain point the use of MDE as a valid
approach for BPM. The definition of the BPMN language [WM08, Obj09a] from part of the
OMG, is additional evidence of the interest of applying MDE in the management of business
processes. This notation was engineered to bridge the gap between the format of the initial
design of the business processes and the format of the languages that will execute these business
processes (e.g. BPEL [OAS07]). Information and examples regarding how BPMN maps into
BPEL can be found in the Annex A of the BPMN specification [Obj09a] and in the work of
Giner et al. [GTP07].

2.3.2 Modelling language specification

A modelling language is the vehicle (means, or medium) that allows the modeller to write the
models that let him reason about a problem within a particular domain. A modelling language
(as every language in general, whether it is natural or artificial) consists of a syntax and a
semantics.

Considering a model as made up of a finite sequence of symbols taken from a finite alphabet, the
set of lexical rules that decide whether a model is valid or not defines the syntax of the language.
On the other hand, the semantics of the language is the set of rules that give meaning to the finite
sequence of symbols (i.e. the model) by relating the syntax to a semantic domain [HR04]. The
semantic domain is a well-defined and well-understood domain on which the language engineer
relies to provide meaning to each expression of the language being defined. In this manner, every
valid syntactic expression must be bound to an element of the semantic domain such that the
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meaning of the syntactic expression is precisely defined (in terms of the semantic domain). The
set of bindings between each syntactical expression and its semantic domain element is known
as semantic mapping.

It is worth observing that the syntax of a language usually consists of both concrete and abstract
parts. The lexical rules that define the concrete syntax specify the permitted sequence of symbols
that a model must have in order to be considered as valid, as well as the unique structure or
parse tree (i.e. it is not ambiguous) that is assigned to each sequence of symbols. Conversely,
the rules that define the abstract syntax specify the structure of the expressions allowed in the
language. This means that these rules are not concerned with an acceptable sequence of symbols
nor with assigning to each such sequence a unique structure or parse tree. Instead, the abstract
syntax rules specify the set of allowable parse trees for the language [AU77, Hen90, App98].

Both the (concrete and abstract) syntax and the semantics (i.e. semantic domain and seman-
tic mapping) need to be described. For textual languages, both syntaxes are described using
context-free grammars. A grammar is a tuple of four elements < T ,NT ,S ,P >, where

• T is the set of basic symbols (called terminals), which the sequences that define the model
are composed of,

• NT is the set of special symbols (called non-terminals) used to denote sets of symbol
sequences such that each of these sets determine a particular syntactic category,

• S is one particular non-terminal selected as the start symbol, and

• P is a set of productions (or rewriting rules that define the manner in which the syntactic
categories determined for each non-terminal can be built up from one another and from
the terminals.

A grammar is context-free when each of these production rules has a single non-terminal symbol
on the left-hand side. The Backus-Naur Form (BNF) [BBG+63] and its extended versions are
the most popular grammar-like notations [KLV05] used by language designers to define the
(concrete and abstract) syntax of textual languages.

Kleppe [Kle08] identifies other kinds of grammars that could be used when describing the (ab-
stract rather than concrete) syntax of a language like attributed and graph grammars 14, while
Klint et al. [KLV05] add algebraic signatures to this list of grammars formalisms (see [BM07]
for an example).

Other alternatives for defining the syntax of a language include: (1) the profiling mechanism
provided by the UML [Obj09b] and (2) the metamodelling principle. The UML profiling is a
facility provided by the UML language to extend its definition for the purpose of introducing
domain-specific concepts such that the modeller deals with concepts that are at the level of
problem discourse. It must be observed that this mechanism only allows for the definition of the
abstract syntax of the language as the concrete syntax remains the one provided by the UML
language. On the other hand, the metamodelling principle allows for the definition ob both the
concrete and abstract syntax of a language, so that it can be considered as more powerful than
the UML profiling facility. The metamodelling principle is a model-driven language engineering
process in which the parts of the language (mainly the abstract syntax) are defined in terms
of (usually) UML class diagram models [Kle07, GRS08], although this is not mandatory to

14 So far, it is too complex to be put in practice in the definition of a language.
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adhere to the metamodelling principle. The KM3 language [JBA06] for example, is a textual
language meant for supporting the definition of meta-models. Furthermore, there is evidence
that modelling language engineers following the metamodelling principle do not always ask for
visual languages to define the meta-models [RJK+06]. Please note, that both the UML profiling
facility and the metamodelling principle are considered as enclosed in the MDE approach.

Regarding the description of the language semantics, the possible existing approaches are [AU77,
Kle08, NN92]:

• Operational (or interpretive): the meaning of each possible statement that can be writ-
ten using the language’s constructs is specified by rules (or axioms) that determine the
induced computation of such statement when it is executed on a particular abstract ma-
chine. The abstract machine is characterised by a state (i.e. variables with their current
values), whereas the rules specify how the state is transformed by a statement written
using the different language constructs. Thus, the abstract machine (or state) and the set
of rules (or axioms) determine a state transition system that describes how the execution
of each statement takes place in a given initial state. It must be emphasised that the state
transition system encloses both the semantic domain (i.e. abstract machine’s state) and
the semantic mapping (i.e. abstract machine’s transition rules).

• Translational: the meaning of each possible statement that can be written using the
language’s constructs is specified by giving rules, which associate each statement with
one (or more) statements in a language whose semantics is already well-known and well-
understood. In this case, the focus of the semantic definition of the language is given
on the semantic mapping rather than on the semantic domain, since the latter (i.e. the
semantic domain) is assumed not only to exist, but also to be well-understood, even when
its own semantics is not mathematically defined (e.g. the Java programming language as
defined in [GJSB05].).

• Axiomatic: the meaning of each possible statement that can be written using the lan-
guage’s constructs is specified by giving rules of the form {P}C{Q} that relate the state
before (i.e. {P}) and after (i.e. {Q}) the execution of the statement (i.e. C ). The se-
mantic domain (usually a logical system) is used to describe the conditions {P} and {Q},
which define the correctness criteria for the statement C : the statement C is correct if
whenever the initial states fulfils {P} and C terminates, then the final state is guaranteed
to fulfil {Q}. Notice that the way of describing each of the rules determine the semantic
mapping between the language and its associated semantic domain (i.e. logical language
used to describe {P} and {Q}).

• Denotational: the meaning of each possible statement that can be written using the lan-
guage’s constructs is specified by giving mathematical functions that describe the effects
(value of the function) of having executed such statements (arguments of the function). It
is probably the semantic approach that best provides for the semantic mapping since every
function is the precise description about the binding between a statement and its meaning
according to the chosen semantic domain. Please observe that an important aspect of this
semantic approach is the use of composition to define the semantics of the language. For
example, the meaning of the statement f (a ‘+’ b) is defined as the result of performing
f (a) + f (b), where the symbol ‘+’ represents certain operator within the language being
specified, and which is mapped onto the common mathematical operator +.

Combermale et al. [CCGT09] after having surveyed the different ways of formalising the seman-
tics within the MDE context, concluded that the two principal approaches being considered are
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the operational and translational. Kleppe ([Kle07], page 138) agrees with this conclusion and
also emphasises that when having a good target language the translational approach is the most
suitable.

Terms like dynamic semantics [RJK+06, JBC+06] or behavioural semantics [CCGT09, RDV09],
which can be found in the literature, do not represent new approaches to describe the semantics
of a language. These terms are meant to refer to a language in which the semantics is defined
as a state transition system, but without giving details as to whether the chosen approach is
operational or translational. In other words, both dynamic and behavioural semantics denote a
concise way of indicating that the modelling language allows its models (i.e. every valid model
that can be created using the modelling language) to be executed.

2.3.3 Metamodelling

Recall that the principal concern of MDE is to use models for raising the abstraction level at
which the software is developed. The success of this process (in part) depends on the modelling
languages used to support the creation and manipulation of the models. The key role of the
modelling language within the MDE approach lies in narrowing the focus it gives to modellers
to create and manipulate models using the jargon of the domain of discourse. Furthermore,
modellers do not need to understand (or even know) the existance of the mapping that allows
such a concepts to be transformed into the final implementation, since it is obtained by applying
(semi)automatic systematic transformations.

Engineers providing a modelling language for the MDE community may choose between ei-
ther an extensible general-purpose language, or defining a domain-specific modelling language
(DSML) [FR07]. Engineers choosing the former option will need to use the extension mecha-
nism provided by the general-purpose language to define domain-specific concepts. The UML
language with its profiling mechanism is an example of an extensible general-purpose modelling
language that can be used to define a DSML. On the other hand, engineers that want to define
a domain-specific modelling language will use the metamodelling principles to implement not
only the selected concepts of the domain, but also the tools that allow them to transform one
model into another. The high-quality typesetting system LATEX [LaT] is an example of such a
domain-specific language.

As usual, every approach has its pros and cons. The principal advantage of using UML with
its profiling mechanism to define a DSML is the variety of existing off-the-shelf UML tools (e.g.
Magic Draw [No 10], Borland Together [Bor10]) that at the same time allow language engineers
to ease the DSML definition and reduce the time-to-use as modellers have tools for dealing with
models from the very beginning. The main disadvantage of the UML alternative is that the new
DSML must respect the original UML syntax and semantics, which leads to the problem of not
having the relevant or required components within the DSML, thus, contradicting the notion of
domain-specific. The way of dealing with this drawback is to define a DSML by metamodelling
principles (i.e. second choice). The price to be paid for this choice is the high initial cost
in developing tools for supporting both the modelling and use of the language. Fortunately,
tools for supporting the metamodelling principles (e.g. MetaEdit+ [Met10], EMF [BBM03],
ATL [ATL10a], Kermeta [Tri10a] and QVT [Obj08]) have appeared in the last years, making the
metamodelling principle the best choice when defining a DSML. Industrial experiences provide
evidence for this claim [KTK09].
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2.3.3.1 Model-based languages

As already indicated, the term metamodelling denotes the engineering of a (software) modelling
language driven by the MDE approach. In metamodelling, a meta-model is an artifact used to
define (part of) a language. The metamodelling’s origin is related to the launch of the MDA
framework (introduced in Section 2.3.1). It is also related to the fact that the OMG realised by
the UML language was just one possible meta-model (among many) that could be used to apply
MDA [Béz04]. To avoid the proliferation of multiple non-compatible meta-models, the OMG
came out with the Meta Object Facility (MOF) [Obj06]: a global integration framework for the
definition of meta-models, or in other words, a language for defining modelling languages.

The metamodelling principle brings with it the notion of “metalevels”. A metalevel represents
a conceptual space in a stratified architecture in which a particular model is defined. A model
m i defined in level i of the stratified architecture represents the meta-model for those models
m i−1

j (with j = 1..w) placed at the level i − 1 that are defined using the concepts provided in

m i . The relationship conformantTo is used as a means to determine those models m i−1
j placed

at level i − 1, which are properly described using the concepts defined in the model m i at level
i . The OMG instantiates this general stratified metamodelling architecture with four levels,
placing MOF at the highest level (i.e. i = 4). MOF, as claimed in its definition (see [Obj06],
page 11) is described using itself, which leads to the notion of self-conformance.

The statement that a meta-model defines “part of” a language refers to the abstract syntax of
the language. As explained in Section 2.3.2, a language definition also involves the provision of
a concrete syntax and semantics. These additional components comprise the definition of the
language may or may not be given by a meta-model. Within the context of this thesis, a meta-
model is only used as means to formalise the abstract syntax of a language, unless otherwise
stated.

The UML class modeling notation is used to describe MOF compliant meta-models. Thus,
the abstract syntax definition of a language will look like a UML class diagram. When the
UML class modelling notation is not sufficient to describe the required relationship among the
concepts of the language under definition, the Object Constraint Language (OCL) [WK03] is
used. Please observe that the OCL constraints placed on a meta-model must also be considered
when evaluating the conformance of a particular model with respect to its meta-model.

2.3.3.2 Model transformation

Model transformation is also a key part in the MDE, since it is the means to reach the fined-grain
models (e.g. source code) that implement those models being described using domain-specific
concepts. Within the OMG MDA’s world, transformations represent the mechanism to refine
the initial highest abstract PIM until reaching the most detailed PSM. Transformations within
the MDE approach are not only useful for achieving model refinement, but also for refactoring
(i.e. the same model is reorganised according to certain criteria) or for migrating (i.e. the same
information is modelled using other notation).

A transformation then can be seen as a function that takes n input models (aka source models)
and returns m output models (aka target models). The aim of a model transformation is to
transform any valid set of source models into a valid set of target models. This statement merits
two observations: first, the source models are assumed to be valid ones, whereas the transforma-
tion itself ensures that the resulting target models are valid; second, the model transformation
is described in terms of the source and target meta-models [Kle08], because it is expected to be
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general enough such that it can be applied over the full set of valid models defined by the source
meta-model. Thus, the signature for a transformation T aimed at transforming n input models
M s

j (j : 1..n) into m target models M t
k (k : 1..m) is the following:

T : MM s
1 ×MM s

2 × ...×MM s
n −→ MM t

1 ×MM t
2 × ...×MM t

m ,

where MM s
j is the source meta-model to which the source model M s

j must conform to, and MM t
k

is the target meta-model to which the generated target model M t
k will conform to.

There exist several ways of categorising transformations [Kle06, SK03, MV06, CH06]. Despite
the fact that some of these criteria overlap in the characteristics considered to classify a trans-
formation (e.g. number of source and target models or languages used to describe the source
and target models), there is not a common comparison criteria that can be used to select the
best transformation approach according to any specific need. In the context of this thesis, the
classification criteria given by Kleppe in [Kle06] is very convenient, since transformations are
categorised based on their relationship with the parts used to define a modelling language (i.e.
concrete and abstract syntax, semantic domain, and semantic mapping). Thus, let L1 and L2

be two different modelling languages defined according to the metamodelling principle, then the
transformations can be categorised as follows:

• intra-language transformations: are used either to (1) generate one part of the language
definition part, or (2) represent a part of the language definition. A syntax transformation
is an example of the first case as it can be used to generate the concrete (resp. abstract)
syntax given the abstract (resp. concrete) syntax. A semantic transformation is an exam-
ple of the second case, as it is used to define how the valid statements that can be defined
using the abstract syntax concepts are mapped to the expressions in the semantic domain.

• intra-model transformations: are used to transform the same model. Refactoring and view
transformation are examples that fall into this category. The former performs changes over
the model according to certain criteria, whereas the latest shows only partial information
(also selected according to certain criteria) owned by the model.

• inter-model transformations: are used to transform a model written in L1 into another
model written in L2. Transformations meant to perform a mapping from a concrete syn-
tax to another concrete syntax are called stream-based transformations, whereas those
transformations that map an abstract syntax into a different one are called structure
transformations.

Figure 2.1 shows the transformations listed above along with their relationship to the elements
of the modelling languages L1 (i.e. Cn1,A1,S1) and L2 (i.e. Cn2,A2,S2). Please note that
bidirectional arrows are used to indicate that a transformation can be defined in both directions,
but not that it must be bidirectional.

Structural transformation and semantic definition transformation are of special interest within
this thesis, as they are used when giving semantics to the domain-specific modelling language
introduced in Chapter 3. ATL [ATL10a] and Kermeta [Tri10a] are the transformation languages
used to implement each of these transformations, respectively. A detailed comparison between
Kermeta and ATL can be found in [Wie10].
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Fig. 2.1: The relationship between transformations and language definition (taken from
[Kle06]).



3. THE DT4BP BUSINESS PROCESS

MODELLING LANGUAGE

Abstract

This chapter describes DT4BP, a novel business process modelling language meant
for specifying dependable, collaborative and time-constraint (DCTC) business pro-
cesses. The chapter starts by introducing the dimensions of interest that define the
domain space addressed by the language (Section 3.1). Section 3.2 analyses the sup-
port provided by existing business process modelling languages with respect to the
dimensions of interest. After having introduced the domain of interest and the state
of the art regarding to the modelling of such as domain of interest, the DT4BP mod-
elling language is described. The description of the language is given in two parts.
The first section (Section 3.3) is aimed at providing a quick introduction to the es-
sential elements of the language, but without extensive detail. The purpose of this
section is to give the reader an overview of the language and its constituent compo-
nents, which will be detailed in the following section. The second section (Section
3.4) details the key concepts that determine the relevant information that modellers
commonly need to include when describing DCTC business processes, along with the
primitives that make their concrete representation possible. The introduction and
description of the key concepts of the DT4BP modelling language, as well as the
relationship between each of these concepts are provided following the section con-
cerning the metamodelling principles. This chapter concludes with an analysis and
comparison between DT4BP and existing business process modelling languages dis-
cussed in Section 3.2. This comparison allows the reader to clearly see where this
novel language exceeds current existing notations.

3.1 Dimensions of interest

As claimed in Chapter 1, the main objective of this thesis is to define a modelling language
for describing Dependable Collaborative Time-constrained (DCTC) business processes. The
objective is to make this language comprehensible, suitable and expressive enough such that the
modelling of this kind of business process becomes “easier”. In the end, what is required then, is
to define a language for a very specific domain. These kinds of languages are known as Domain-
Specific Languages (DSL) [KT08]. The first rule when defining a DSL is to understand the
domain of interest. Doing this allows for the identification of the core concepts and components
the modelling language should cover. Once the modelling concepts are identified, they are
formalised by creating a metamodel, because the metamodelling approach has been chosen to
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describe the language. In this case, the domain of interest is determined by the intersection of
four concepts: business process, collaboration, time and dependability. Thus, identifying the
concepts that play a central role in the domain of interest is a necessary condition to engineer
a comprehensible, suitable and expressive modelling language.

3.1.1 Business Process

Some of the factors that should be considered when modelling “what a particular business
process is intended to do”1 can be deduced from its definition2. An activity represents a piece
of work performed within the business process. An activity might require some data in order to
perform. It might also produce certain data as result of its execution. It is usually the case that
more than one activity is required to reach the goal. In that case, activities have to be ordered,
using certain control-flow operators, to create the different paths the business process can go
through during its enactment3. In any case, these paths should lead to achieving the business
process’ goal. The goal, represents the expected result obtained once the business process was
enacted.

A business process is enacted within the context of an enterprise. The activities enclosed in the
business process are performed by resources that belong (whether directly or indirectly) to the
enterprise. Since a resource is defined as an entity with the capabilities to perform a business
process’ activity, it can be either a machine or a human being. A machine is able to perform
only activities that are fully automatic, whereas a human being is required to perform activities
that are manual or semi-manual.

Resources are involved during the enactment of the business process. But, they also are part
of the process definition. Both the available resources that may be assigned to a particular
activity, as well as the policy that determines which one will be selected at enactment-time4 to
perform the activity are part of the information that must be explicitly contained in the process
definition.

It is usually the case that enterprises group their human resources according to a certain organ-
isational structure. This organisational structure is generally defines a hierarchical relationship
between the enterprise’s staff members. However, an organisational structure can also be used to
capture details about the human resources that are relevant to drive the business processes run
by the enterprise. In this perspective, it is assumed that each business process has an associated
resource model that describes the resources that are available to enact the business process.
The notion of participant is used as a grouping mechanism to join (either human or non-human)
resources with similar profiles and/or duties (e.g. doctors, nurses, secretaries, etc.).

The notion of participant is also used as grouping mechanism to join the activities that are
required to be performed by a same participant within a same business process. Thus, the
notion of participant is used as a binding mechanism between the business process definition
and the resource model to select (according to certain policy) the resources that will perform
the participant’s activities during the enactment of the business process.

1 The outcome of this activity is known as process definition.
2 Business process: a set of one or more linked procedures or activities, which collectively realise a business
objective or policy goal, normally within the context of an organisational structure defining functional roles
and relationships [Wor99].

3 Enactment: the actual execution of the business process.
4 The expressions run-time and execution-time are used synonomously with enactment-time.
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3.1.2 Collaboration

By definition, a business process takes place within the context of an organisational structure.
It is such a structure that determines how the work carried out by the an organisation is divided
amongst its staff. In today’s world, companies require several people with different skills to
succeed in providing their company’s services. This requirement leads to business processes
involving multiple resources that collaborate along the process to succeed in providing the offered
service or product (i.e. the process’ goal).

Each resource is assumed to have its own processing capacity for performing activities (one after
the other). Thus, while a resource denotes a human or non-human entity capable of executing
its activities in parallel with some other part, a collaborative business process denotes a set of
resources that interact among them. Two resources interact if they communicate by exchanging
messages. Thus, a resource should be able to send and/or receive a message from another peer
resource (i.e. a resource that is involved within the same business process). The fact that they
interact is what defines them to be collaborative with respect to reaching of the process’s goal.
The collaboration between resources, thus, is expected to be captured in the business process
definition as it is a major concern in the kind of business process being targeted.

Collaboration is defined as the exchange of messages between the different resources required
to perform the business process activities. However, since this information must be captured
in the business process definition, the notion of participant must be used instead of the notion
of resource. As explained in the previous section, the notion of participant is used within a
process definition to group the activities that are required to be performed (at enactment-time)
by the same resource (selected according to certain specified policy). Therefore, in the business
process description, messages are exchanged between participants that are enclosed within the
same business processes. A particular participant then may send a message to one or more
participants, and receive messages (one at a time) sent by other peer participants. Notice
that a message may convey certain information, so that messages can not only be used as a
synchronisation means among participants, but also as a medium to share information among
them. It is worth emphasising that a business process is considered collaborative if and only if
two or more participants enclosed within the same business process exchange messages, in spite
of the existence of other means to exchange information by and among the participants (e.g.
data sharing).

In other words, the concept of collaboration in the context of this thesis is semantically equivalent
to the one assumed in the business process modelling language BPMN: a collaboration simply
describes the participants and their interactions, where the interaction represents the exchanged
messages among the participants [WM08].

3.1.3 Time

During the modelling of a particular business process, the modeller (i.e. the business analysts
or the software engineer) requires means to describe the time constraints that form part of the
business process being modelled. In this thesis, a time constraint is seen as information given
in the form of upper and/or lower time bounds associated with a business process or any of
its constitutive parts (e.g. participant, activity). Examples of business process time-constraints
are: minimum delay (i.e. the minimum amount of time that must elapse before the start of the
business process), maximum delay (i.e. the maximum amount of time that can elapse before
the start of the business process), and maximum elapse time (i.e. the maximum allowed time
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for completing the execution of the business process). These time constraints are derived from
the business goal, organisational rules, laws, commitment, and so on [EPR99].

The information held by a time constraint can be relative or absolute. Absolute time refers
to time as seen in the physical world, whereas relative time refers to the passage of time with
respect to certain event5. Within the context of this thesis time constraints set during the
modelling phase are assumed to hold relative information, only. Events that can be used as a
frame of reference for relative time constraints are: (1) the point in time in which the business
process is requested, (2) the point in time in which the business process starts its execution, (3)
the point in time at which a business process activity starts being executed, and (4) the point
in time at which a business process activity is completed6.

Nevertheless, it is assumed that during the enactment of the business process, absolute deadlines
are computed for any relative time constraint. This indicates that the frame of reference used
during the execution of a business process is the one determined by absolute time. Therefore,
at enactment-time, it is assumed that there exists a device capable of measuring the passage of
the physical time such that the time constraints can be monitored to determine whether they
are met or not. Such s device is called s clock.

Every participant involved in a collaborative business process needs to have the same point of
view regarding the passage of the time. The global time based on physical time is assumed as
the time model when modelling the targeted business processes. This time model assumes that
there exists a unique clock that accurately measures the passage of physical time7, which is
accessible to all participants involved in the business process. Since all participants access the
same clock, all of them have the same perspective regarding the passage of the time.

It is worth observing that the global time based on physical time model can be achieved us-
ing a clock coordination algorithm [GZ89, CF94, Net09] 8. This gives evidence that the time
model considered during the modelling phase is not an oversimplification of the real time model
considered during the business process enactment.

3.1.4 Dependability

A business process definition is expected to capture all the possible paths that can be used
to achieve its goal. A process instance that follows one of these paths is termed well-behaved
or normal. It might be the case that a particular process instance follows a path which has
not been considered in the definition. Because it is assumed that all possible paths that can
be used to achieve the business process goal are specified in the process definition, instances
following a non-specified path fail in reaching the business process’ goal. It is assumed that
once the instance has deviated from the process definition it will eventually fail, if no corrective
activities are performed. A process instance missing its goal is termed a business process failure
A dependable business process is one whose failures (i.e. process instances missing the goal) are
not unacceptably frequent or severe (from some given viewpoint). Therefore, a business process
increases its dependability when for those events that cause it to fail more often than expected,
corrective activities are explicitly included in its definition such that instances do not miss the

5 In theory, absolute time is also relative, since it counts from a particular event. (e.g. the Christ’s birth is the
event on which the Gregorian calendar -unofficial global standard- relies on for numbering the years)

6 The reader is referred to Section 3.4.3 for the full list of events that can be used as frame of reference for
defining relative time constraints over a business process and its constitutive parts.

7 Atomic clocks are examples of these kinds of clock.
8 A clock coordination algorithm allows a set of distributed clocks to be strongly synchronised to each other.
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goal in spite of facing with such undesirable events. In this case, let BPdef1 be the original
business process definition, and let BPdef2 be the new one obtained by including the corrective
actions require to deal with the undesirable event. Then it is said that BPdef2 ismore dependable
than BPdef1 . New definitions of the process are provided (i.e. BPdef3 ,...,BPdef(n−1)

) until a
definition BPdefn is obtained such that it includes corrective activities for every undesirable
event that makes it fail more often than desired.

The corrective actions to be included in a process definition depend on the particular kind of
undesirable event to be handled. Depending on the severity of failure,it might be possible for the
system to recover(1) completely, (2) partially, or (3) not at all. In any case, the required activities
to deal with the problems have to be included explicitly in the business process definition. The
initial business process goal must always be considered while redefining the dependable business
process. This is called explicit dependability modelling.

It is up to the stakeholders (i.e. owners of the business, business analysts and IT managers and
developers) to define what the expected events the business process might be faced with, and
more importantly, what required activities will need to be performed in each case to allow the
business process not to fail. Notice that it will depend on the severity of each expected event
whether the business process reaches its goal totally or partially. The severity of each event
determines whether the business process reaches its goal totally or partially. Unforeseen or even
impossible events as defined by the stakeholders define the set of unexpected events. When the
circumstances force the business process to confront an unexpected event, the business process
(usually) will fail. In this scenario, stakeholders must decide to convert unexpected into expected
events, and then modify the business process to allow it to manage the situation properly next
time the event arises. If no action is taken (i.e. the business process will fail again when the
situation comes), then the business process has not improved its dependability. However, a
business process confronted with an unexpected event might not fail. It may happen that the
business process can cope with an unexpected event if the event is implicitly included within
the total set of expected events.

Once stakeholders have decided which events the business process will be able to accommodate
while at the same time providing its business objective (either as promised originally, in the
best case, or at least partially), the modelling of dependable business processes is reduced to
describing every expected event, along with the activities that will allow the business process to
accommodate these events when they occurr (aka handler).

3.2 Existing business process modelling languages

This section examines business process modelling languages that are currently being used to
specify business processes. Among all these languages, only those that belong to the graphical
standards (according to the classification given in Section 2.1.1) that are widely used in both
the industrial and academic sectors have been considered. Based on this selection criteria, the
specific business process modelling languages examined are:

• UML Activity Diagram (UML-AD) version 2.2 [Obj09b]

• Business Process Modelling Notation (BPMN) version 1.2 [Obj09a]

• Yet Another Workflow Language (YAWL) [YAW09a]

• Event-driven Process Chain (EPC) as implemented by ARIS Express 1.0 [ARI09]
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These languages are analysed with respect to the kind of business processes this thesis targets,
i.e. DCTC business processes. Therefore, special emphasis is placed on the features these
modelling languages provide for describing participants and their collaboration, time constraints
and dependability aspects. Both the way and means these languages use to cover any of the
dimensions of interest are to be considered when engineering the DT4BP language. This is
because the here aim is to provide a new business process modelling language that not only
encompasses each of these dimensions in an improved but also does in an integrated manner.

It is worth noting that in addition to the individual analysis of each existing modelling language,
a general comparison between the four languages is also given in Section 3.5. The reason
for deferring this comparison until later is because the DT4BP modelling language, which is
introduced in the next section, must also be considered in this comparison. However, the reader
wanting a compact view of the support provided for each existing modelling languages and its
position with respect to the others, can directly proceed to Section 3.5 and obviate the DT4BP-
related information for these insights.

3.2.1 UML-AD

A UML-AD is one of the different kinds of diagrams the UML [Obj09b] language provides for
describing behaviour. A UML-AD can be considered as a directed graph, since it describes a
set of nodes (aka activity nodes) linked by directed connections (activity edges). Activity nodes
connected by activity edges define the potential execution paths that may be followed by the
UML-AD. However, only one path is to be followed once the UML-AD is initiated.

An activity node can be either an action, an activity, or a flow-of-control construct. An action
represents a single step within an activity, i.e. it is not further decomposed within the activity
diagram. An activity represents a step that is composed of individual elements that are actions.
A flow-of-control construct is a node that allows coordinating the execution flow in a UML-AD
(e.g. DecisionNode, ForkNode, JoinNode, MergeNode).

Incoming and outgoing activity edges are used in activity nodes not only to specify the control
flow from and to other nodes, but also to specify the data flow. In this manner, incoming edges
can be used by an activity node to acquire its data inputs. Outgoing edges can be used to deliver
data information to the enclosing context of such activity node.

There exist structuring mechanisms to organise the UML-AD layout. An activity partition is a
kind of activity group for identifying activity nodes that have some characteristic in common.
A UML-AD then can be divided into partitions such that its component activity nodes9 are
organised in a way that eases the understanding of the UML-AD. It is argued in [Obj09b] that
a partition often corresponds to an organisational unit of the enterprise in charge of running the
process the UML-AD describes. Hence, the UML-AD’s partitions give a roughly implicit10 idea
of the type, skill and capability of the resources required to enact the UML-AD.

3.2.1.1 Collaboration

Even though partitions can be used to represent the different participants involved in the same
UML-AD, the control and data flow defined by the activity edges are not confined to the same

9 An activity edge can be contained in multiple partitions, since it is possible it has its activity node source in
one partition and the activity node target in a different one.

10 UML-AD does not provide any means to explicitly model the resources that are necessary to execute the
described process.
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partition. This means that the partitions placed over the UML-AD do not impose any constraints
on the control and data flow between activity nodes. Thus, UML-AD has a more general means
to achieve collaboration as considered in the context of this work, i.e. the interaction between
two different participants is only achieved by exchanging messages. This results because an
activity edge that connects two activity nodes placed in different partitions do not indicate
anything about the protocol being used to achieve this interaction.

3.2.1.2 Time

Time information on UML-AD is described using the notion of Accept Event Action. As with
every action, the Accept Event Action describes a single step within an Activity, however in this
case, this action only occurs when its associated condition is satisfied. Thus, an Accept Event
Action is used to capture the occurrence of a particular event that satisfies a certain condition.
When the event to be captured is a time event, the action outputs the output parameter, the
point in time at which the event occurred. An Accept Event Action that captures a time event is
termed Accept Time Event Action. Note that the point in time that is specified by the condition
of an Accept Time Event Action might be absolute or might be relative to some other point in
time.

In this manner, the notion of Accept Time Event Action is the only means provided by UML-AD
to model time constraints as considered within the context of this work. Even though in principle
every minimum and maximum time constraint can be modelled with this concept, its use must
be combined with other concepts (e.g. interruptible activity region) and included several times
(e.g it must appear twice to define a range of time) to model the desired requirement. This may
easily lead to overloaded models.

3.2.1.3 Dependability

Pre- and post conditions may be associated wtih an activity node. A pre-condition is a constraint
that must be satisfied when the activity node execution is started. Conversely, a post-condition
is a constraint satisfied when its execution is completed.

An activity node11 is considered as protected when an exception handler is attached to the node.
An exception handler is an element that specifies what will be executed in the case that the
specified exception occurs during the protected node execution. The handler body is an activity
node that does not have any explicit input or output edges. Regarding the data flow, the handler
body has access to the same information as the protected node, and its output must correspond
in number and types to the result pins of the protected node. Regarding the control flow, a
protected node might have more than one exception handler. This handler might cope with
more than one exception. Once an exception is raised, a handler is searched for coping with
the exception. The selection policy is based on type matching: the type of raised exception
must match one of the types held by a handler. In the case more than one handler satisfies
the selection policy, only one is selected in a non-deterministic manner. When the handler
body completes (normally) the execution, it is as if the protected node had itself completed the
execution.

In the case that there are no handlers that satisfy the selection policy, the exception is propagated
to the enclosing context that contains the protected node. Then the handling process is restarted.

11 Please note that an activity group can play the role of a protected node. In this case, the activity group is
named interruptible activity region.
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This procedure is repeated until either a handler is found or the outermost level is reached and
the exception is not caught. In this case, nothing can be said about the UML-AD behaviour,
since it is unspecified.

3.2.2 BPMN

BPMN relies on Business Process Diagram (BPD) to allow business processes to be graphically
modelled. A BPD then is meant to contain one or more business processes, which are all
described using a graphical notation. This graphical notation is a flowchart-like notation that
has its elements divided in four categories:

1. Flow Objects: elements used to defined the behaviour of a business process. There are
three Flow Objects: Events, Activities and Gateways. Events are used to model the
“happening” of something during the course of a business process. Depending on when
such events occur, they are categorised as start, intermediate or end events. An Activity
is used to described a piece of work. When an activity is not divided into sub-activities it
is considered as atomic, otherwise it is non-atomic. Gateways are used to control the flow
of the business process by means of decision points, forking points, and merging points.

2. Connecting Objects: elements used to connect Flow Objects. There are three kinds of
Connecting Objects including: Sequence Flow, Message Flow and Association. A Sequence
Flow is used to show the dependency order between Flow Objects. A Message Flow is used
to show the flow of messages between two different participants. A participant represents
a business entity or role that is modelled as a Pool in a BPD (see below).

3. Swimlanes: elements used to group Activities. There are two grouping elements: Pools and
Lanes. A Pool is used to group those activities that the same participant has to perform
in a business process. A Lane is a sub-partition within a Pool, used to organise and
categorise the activities the same participant performs. A Pool allows a business process
to be partitioned in such a way that activities are grouped according to the participant
in charge of their execution. However, explicit information about the actual resources
that takeover the activities enclosed by a participant is not given as the language does
not provide a means to specify this information (i.e. organisation structure, resources and
policies of allocation).

4. Artifacts: elements used to provide additional information about the business process
being modelled, without affecting the Sequence Flow or Message Flow of such process.
The artifacts provided by the notation are: Data Object, Group and Annotation. A Data
Object is used to model the information an activity requires to be performed and/or what
information is produced once such activity has executed. Both Group and Annotation are
artifacts meant to ease the documentation of the business process. While the Group is
used to define categories of activities, Annotation allows the business analyst to provide
additional information for the reader of the BPD.

These notation elements provide the support required to model concepts that are applicable to
the business process, only. This means that other kind of modelling done by organisations like
business rules, data models and organisational structures and resources are out of the scope of
BPMN.
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3.2.2.1 Collaboration

BPMN defines a collaboration as any BPD that contains two or more participants which interact
with each other. These interactions are defined as communication, in the form of message
exchange (shown as Message Flows) between two participants. Therefore, the Pool and Message
Flow elements provided by the language are the necessary means to model the collaborative
aspects of a particular business process.

It should not be surprising that BPMN considers collaboration as a first-class concern, since
support for it was sought since its inception. [WM08].

3.2.2.2 Time

Time is supported in BPMN by the notion of Timer Start Event and Timer Intermediate Event.
A Timer Start Event is used to start a business process, whereas a Timer Intermediate Event is
used to delay the start of a particular Activity or to interrupt its execution. Both kind of timers
posess a time condition that specifies when the event occurs, i.e. is triggered. When a timer is
used to start a process (i.e. it is a Timer Start Event), its time condition may be a specific date
and time (e.g. Dec 31, 2009 at 8 AM) or a recurring time (e.g. every Monday at 8am). In any
case, the condition is compared with a clock12 that measures the passage of physical time.

As stated earlier, a Timer Intermediate Event is used either to delay the execution of an Activity
or to interrupt its execution. A delay is modelled by inserting a Timer Intermeditate Event
between Activities in a process. The Flow Objects that can precede a Timer Intermediate
Event are Activities, Gateways, or Intermediate Events.

The time condition held by a Timer Intermediate Event describes the delay in starting the next
Activity of the process. This time condition specifies an absolute time (e.g. wait until Dec 31,
2009 at 8 AM) or a relative time (e.g. wait 2 weeks) that might be repetitive (e.g. wait until next
Monday at 8am). However, Time conditions written using absolute time inhibit the re-usability
of the process as the absolute time condition will be valid only once. It is good practice then to
rewrite absolute time conditions as relative conditions, if possible.

A Timer Intermediate Event attached to the boundary of an Activity represents a deadline for
the execution of the Activity. This means that the Activity has the time condition described
by the Timer as the maximum allowed time for completing its execution. If the time condition
becomes true before the Activity is completed, then the Activity is immediately interrupted.
The time condition that a Timer Intermediate Events used as a time-out holds is always relative
to the start of the Activity to which the Timer is attached.

3.2.2.3 Dependability

BPMN provides elements to support exception handling. An Intermediate Event attached to
the boundary of an Activity is used to model an exception that may occur during the execution
of the Activity. In the case that an exception is raised (i.e. the trigger the Intermediate Event
holds is fired), the Activity is interrupted. As normal flow is the flow followed by the process
when the Activity terminates its execution normally, exception flow is that to be followed when
an Intermediate Event occurs. Intermediate Events attached to an Activity are used to denote

12 This clock should be seen as a calendar that also provides information about the current physical time: i.e.
YYYY-MM-DD:HH.MM.SS
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the different exceptional flows the Activity can follow. Flow from the Intermediate Events (i.e.
exceptional flows) can go anywhere. The execution can follow a completely new path to perform
some handling activities for the exception, or it can join the normal path as if the exception
would have not occurred. Alternatively it can go go back to attempt a new execution of the
activity.

BPMN also provides support for the notion of transaction. In BPMN, a transaction is defined
as a formal business relationship and agreement between two or more participants [WM08]. A
transaction is considered as successfully executed when all the participants taking part have
reached a common agreement point.

Since a transaction involves multiple participants, its definition is spread over the pools that
describe each participant. Each participant (i.e. Pool) includes a transactional sub-process
defining those activities that form part of the transaction. A double-lined boundary indicates
that a sub-process is a transaction.

In the case that any of the participants taking part in the transaction faces with a processing or
technical error, then the transaction is interrupted. There are two possibilities for interrupting
a transaction. It can be terminated immediately or some compensation can be performed before
terminating such that the transaction is considered cancelled. Intermediate Events attached
to the transactional sub-process boundary are used to represent each kind of interruption. An
Error Intermediate Event is used to model the sudden interruption of the transaction, whereas
a Cancel Intermediate represents the cancellation of the transaction.

As just mentioned, cancelling a transaction may require that some compensation be performed.
Compensation is the undoing of the work a particular Activity has completed. Since compensa-
tion does not happen automatically, another Activity is required to undo the work of the original
Activity. BPMN supports compensation by means of Compensation Activity, Compensation In-
termediate Event and Compensation Association. Every activity that requires compensation
must have a Compensation Intermediate Event attached to its boundary. A Compensation As-
sociation is used to bind the original Activity with the one that compensates its effects. The
Compensation Association must start at the Compensation Intermediate Event attached to the
original Activity and end in the Compensation Activity. A Compensation Activity must not
have any incoming or outgoing Sequence Flow. In addition, its use is not limited to activities
enclosed within a transactional sub-process (i.e. every Activity can have an associated Compen-
sation Activity).

3.2.3 YAWL

YAWL is a modelling language meant for supporting most workflow behaviours commonly found
in practice. Such common workflow behaviours are known as workflow patterns [vtKB03]. They
are categorised according to four different perspectives: control flow, data, resource, and excep-
tion handling. A business process specification in YAWL is determined by a set of one or more
YAWL-nets, which define a hierarchical graph. Every YAWL-net describes part of the work the
business process performs1 by means of tasks and conditions.

Tasks are either composite or atomic. A composite task in a YAWL-net is a reference to another
YAWL-net at a lower level in the hierarchy of the graph, which describes the way in which
such a composite task is defined. An atomic task represents a unit of work that is not further
subdivided into sub-tasks.

1 In case the specification is composed of only one YAWL-net, the net contains the entire definition of the
business process.
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A condition represents a state of the business process, which can be used to make a choice in
the flow of the process. A condition must be located in-between tasks, except the mandatory
conditions input and output that every YAWL-net must have to be considered valid. The input
condition represents the starting point of the business process, whereas the output condition
represents the end of such business process.

For each YAWL specification, there exists one YAWL-net that does not have a composite task
referred to it, forming the root of the graph. This YAWL-net is known as the top level process
or top level net.

A task is connected to either a condition or another tasks by a flow, which is represented by
an unidirectional arrow. A YAWL specification is considered as correct if every task is tied into
a YAWL-net via flows that can be traced back to the YAWL-net’s input condition, and which
eventually lead to the YAWL-net’s output condition [BD07]. The number of incoming/outgoing
flows a particular task has ranges from one to many. Special decorators have to be added over a
task that has more than one incoming or outgoing flow. A split decorator is used to specify that
the task that owns the decorator is followed by one or more tasks. A join decorator specifies
the required tasks to be completed before allowing the tasks to become available for execution.
Both the split and join decorator have the OR, AND and XOR associated operators, which are
used to determine their behaviour. Details about the behaviour of each can be found in Rusell’s
thesis [Rus07] on page 252.

YAWL uses a terminology that differs from the one used here, i.e. the terminology of reference
within the context of this thesis. In YAWL, a participant refers to the actual resource that
performs a particular task, whereas the notion of role is used to group different participants
that share the same feature. In the terminology here, the terms used to are resource and
participant, respectively. To avoid any misunderstanding, YAWl terms have the subscript yawl :
i.e. participantyawl and roleyawl .

YAWL uses the concepts of participantyawl and roleyawl as the building blocks to define the
Organisational Model of the enterprise that owns and runs the business process being modelled.
The Organisational Model along with additional constraints are the elements used to specify
the participantyawl allocation policy: i.e. what are the participantyawl that must perform certain
tasks. Despite the different terminology employed by YAWL, the fundamental idea of modelling
the resources that will takeover the participant’s activities at enactment time is considered in
the modelling language as explained in Section 3.1.1.

3.2.3.1 Collaboration

Collaboration, as considered in the context of this work (i.e. message exchange between two
different participants), is not supported in YAWL.

3.2.3.2 Time

YAWL has been recently extended with features to define the time behaviour of a particular
atomic task [YAW09b]. These features include the possibility to define a timer, used to constrain
the behaviour of an atomic task. The semantics of a timer depend on whether the atomic task
is manual or automated.

For a manual atomic task, a timer is used to define a time frame onto which the life cycle of
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the manual atomic task13 is allowed to take place. For this kind of atomic task, the timer is
initiated either when the task is enabled (i.e. it is offered or allocated) or started. Activation
on enablement means that the timer begins as soon as the manual task is enabled, whereas
activation upon starting means the timer starts only when the task has started, i.e. the task
will be first offered, then allocated, and once it is started the timer is initiated.

For an automated atomic task, a timer behaves as a delay: the task instance created to execute
an automated task delays its execution until the timer’s expiry value is reached. The expiry
value specifies the duration of the timer, and it is either an absolute time (i.e. a specific date
and time is defined) or a relative time, i.e. for a manual task the timer is relative to its enabling
or starting, whereas for an automated task to the creation. Whether the task is manual or
automated, once the expiration value is reached by the timer, the task instance will complete
whatever its current status is (i.e. offered, allocated, started).

3.2.3.3 Dependability

YAWL covers dependability by means of exception handling. The actions to be taken when the
exceptions that may arise during the execution of a particular business process can be handled,
are defined by a set of primitives incorporated into the modelling language. These primitives,
which are chained in sequence, define the handling process (called exlet) for a particular excep-
tion. Such handling primitives are:

• Suspend Workitem: a workitem (i.e. a process instance activity) is suspended until it
is either continued, restarted, cancelled, failed or completed, or the entire process instance
is cancelled or completed. A process instance activity can be suspended only when it has
a status of fired, enabled or executing)

• Suspend Case: a case (i.e. a process instance) is suspended. Suspending a process
instance means that every single activity owned by the suspended process instance is
suspended.

• Suspend All Cases: all process instances of a particular business process definition are
suspended.

• Continue Workitem: resumes the execution of a process instance activity, which was
previously suspended.

• Continue Case: resumes the execution of a process instance (i.e. every activity owned
by such process instance resumes its execution)

• Continue All Cases: resumes the execution of all process instances belonging to a same
business process definition.

• Remove Workitem: ends the execution of a process instance activity and marks its
status as cancelled. Further activities that are in the same process path of the removed
activity are not executed.

• Remove Case: ends the execution of the process instance.

13 At enactment-time, a task is created (or instantiated), then it is offered to the pool of available participantsyawl

that can executed; once the task has been allocate to a particular participantsyawl it can be started. While a
task is being executed by the participantsyawl , it can be suspended. Eventually the task is expected to either
complete or fail.
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• Remove All Cases: ends the execution of all process instance of a particular business
process definition.

• Restart WorkItem: restarts the execution of a process instance activity under the same
conditions as it was when executed for first time (i.e. the process instance activity is
rolledback).

• Force Complete WorkItem: completes a process instance activity that is currently
under execution (i.e. its status is fired, enabled or executing). The process instance
activity is considered as successfully executed, and the execution proceeds to the next
process instance activity.

• Force Fail WorkItem: fails a process instance activity that is currently under execution
(i.e. its status is fired, enabled or executing). The process instance activity is considered
as unsuccessfully executed (but not cancelled), and the execution proceeds to the next
process instance activity.

• Compensate: executes a business process that, depending on the primitives used pre-
viously either runs in parallel along with its parent business process instance, or does so
while its parent is suspended or removed.

A handling process that is defined using the above-listed primitives will take over the execution
of the parent business process instance only when a certain exception occurs. An exception is
defined as the occurrence of a certain kind of event along with the existence of a rule that allows
the event to be bound with a handling process. The kind of events for which a rule may exist
are:

• Pre and post Case/WorkItem execution: events that generate a notification that a
particular case (i.e. process instance) or workitem (i.e. process instance activity) is ready
to be executed or has just concluded its execution. Such events are meant specifically to
check four kind of rules:

– CasePreConstraint: rules that are checked before the process instance begins its
execution,

– ItemPreConstraint: rules that are checked before the process instance activity
begins its execution,

– CasePostConstraint: rules that are checked just after the process instance con-
cludes its execution,

– ItemPostConstraint: rules that are checked just after the process instance activity
concludes its execution.

• External Trigger: events that generate a notification of the occurrence of something
outside of the process instance execution that affects its continuation. Such events are
categorised depending on whether they affect the entire process instance (aka CaseEx-
ternalTrigger) or just one of its activities (ItemExternalTrigger). Based on this categori-
sation, the event can be handled at the level of either the process instance or one of its
activities.

• Timeout: event that generates a notification that a particular process instance activity
owning an associated timer has reached its deadline.
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• Resource Unavailability: event that generates a notification that the selected resource
to be allocated for carrying out certain process instance activity is unavailable to accept
the allocation.

• Item Abort: event that generates a notification that the execution of a particular process
instance automated activity (i.e. the activity is automatically executed by an external
application) has aborted before being completed.

• Constraint Violation: event that generates a notification that the data constraint as-
sociated with the process instance activity being executed has been violated.

A rule14 is a predicate, which is used to determine which handling process, if any, to invoke. If
for a certain kind of event a rule exits and evaluates to true, the handling process owned by the
rule is invoked. If no rule exists for a certain kind of event in a given business process definition,
then the event is simply ignored when the process instance is executed.

3.2.4 EPC

EPC is graphical language meant to describe business processes in a manner business people
can easily understand and use. EPC has become a widespread modelling language because it is
the notation used by some of the leading tools in of the field of business process management
such as SAP R/3 and ARIS [van99].

A business process is described in EPC as a set of events and activities which, when chained in
sequence, define the control flow structure of the business process. An event is used to describe
both a condition that leads an activity to be started and a result of having executed one. An
activity describes a piece of work that needs to be performed in order that the entire business
process completes successfully. An activity may require some information (i.e. input parameter)
to execute or it may produce information (i.e. output parameter) due to its execution. The
document element is the primitive provided by EPC that allows information to be modelled in
the business process definition.

A connector is the element used to link the different elements that compose a business process
definition. An activity can be connected to another by using a connector. Events are allowed
to be connected to activities.

Rules are special kind of connectors used to bind both events and activities. There are three
kinds of rules:

• AND rule: the processing steps that follows the rule are performed once all incoming
processing steps are completed.

• OR rule: the processing steps that follows the rule are performed once at least one
incoming processing steps is completed.

• XOR rule: the processing steps that follows the rule are performed once one (and only
one) incoming processing steps is completed.

Other elements provided by the language are oriented to the specification of the resources in
charge of carrying out the business process activities. These elements are Organisational Unit,

14 A detailed explanation about rules can be found in [YAW09b], in Section 7.5.
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Role and Person. While the element Organisational Unit is used to define the organisational
structure of the enterprise that runs the business process(s) being modelled, the Role element
is used as the means to specify the profile, skills or characteristics of the people belonging to a
particular Organisational Unit. The element Person is used to define an actual person, who is
usually bound to at least one role. Such binding means that the person has the abilities to play
such role. Thus, it can be specified at modelling time whether an activity is always performed
by the same person, or it is deferred until runtime. The former choice is made by linking the
activity to the particular person, whereas the latter is done by linking a role or organisational
unit to the activity.

3.2.4.1 Collaboration

Collaboration, as considered in the context of this work (i.e. message exchange between two
different participants), is not supported in EPC.

3.2.4.2 Time

The language (at the writing time) does not provide any element that allows time-related aspects
of a business process to be modelled (e.g. activity duration, delay between activities, etc.)

3.2.4.3 Dependability

The language (at the time of this writing) does not provide any element for addressing depend-
ability as considered within this work.

3.3 DT4BP: a tutorial introduction

This section is aims at providing a quick introduction to DT4BP. At this point in the discussion,
the goal is not to be complete or even too precise. Thus, important features of the language
are intentionally left out. The goal is to get the reader to the point where he can understand
how business processes are modelled in DT4BP as quickly as possible. The best way to do this
(and probably the only way) is to take the reader through the actions of modelling business
processes. A fictitious and simple business process for diagnosing a patient is used as running
example to describe a DCTC business process15. This example is adapted from the one described
in [MRv+09]. The business process is aimed at dealing with people arriving at a hospital’s
diagnosis unit with the intention of being diagnosed and getting a treatment for the detected
disease. The activities involved in the business process are the following:

1: registration: upon the arrival of the person at the diagnosis unit, a secretary checks his
identity (by requesting his medical insurance card) and then registers his admission to the
diagnosis unit,

15 This case study will be extensively and intensively used along the thesis as a vehicle to demonstrate how the
introduced concepts can be put in practice.
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2.1: examination: an assistant and a nurse do the first examination of the patient16 like
checking his temperature and blood pressure to determine his overall health status, and
in parallel,

2.2: make document: a nurse prepares the patient sheet. A patient sheet is a document
that includes not only personal information about the patient as his name, address, phone
and age, but also relevant medical information gathered from his local record stored in the
hospital’s database (if any).

3: consultation: a doctor evaluates the results of the examination and checks the patient
in order to diagnose the disease or problem. Once the doctor has made his diagnosis, he
sets a treatment and informs the patient. Both the diagnosis and the prescribed treatment
(and the medicine to take, if any) are written in the patient sheet.

4: give information: a nurse gives more precise information to the patient about the
prescribed treatment and how to get the medicine (e.g. doses and frequency).

The hospital administration wants the diagnosis units to attend to every patient in no more
than two hours after their arrival at the unit (if possible). This requirement is refined as
multiple time constraints over every individual activity of the process in the following manner:
“registration” must take less than 15 minutes, “examination” and “make document” less than
30 minutes, “consultation’ less than 1 hour (but more than 15 minutes to ensure there has been
some quality in the check), and “give information” less than 15 minutes. These requirements
are what make the business process time constrained as considered in this thesis.

Undesirable events that may take place along the diagnosis business process range from non-
critical, for example foreigners or people without medical insurance trying to get diagnosed,
to critical issues such as a fire in the hospital. The diagnosis business process, thus, has to
be enriched such that either the process’ goal (i.e. the patient is diagnosed) can be totally or
partially reached, or the negative effects of the event over the process can be mitigated. In
this manner, while some alternative activities are added to allow a foreigner to be diagnosed,
others are added to mitigate the harmful consequences of a fire at the hospital, even knowing
the process will fail. Considering these undesirable events17 as possibilities (along with activities
that will be required to deal with them should they arise) during the development of the business
process makes the business process a dependable business process as considered in this thesis.

The collaborative aspect of the process is determined by the required interaction between the
different categories of people (e.g. a secretary, a nurse, an assistant, and a doctor) in each of the
activities that composes the business process. In the “registration”, for example, the secretary
interacts with the person (i.e. potential patient) that wants to be diagnosed in order to certify
that the person has medical insurance. In the “examination” activity, the interaction is between
the patient, a nurse and an assistant. The patient also interacts with a doctor and a nurse in
the “consultation” and “give information” activities, respectively. Since the patient is required
to perform some activities during the process, he is also considered a participant18.

The requirements previously introduced make the diagnosis component of the business process a
part of the business processes this thesis targets (i.e. DCTC business processes). The remainder

16 Once the person is within the diagnosis unit he is considered a patient.
17 The reader is referred to the Appendix C for the full list of undesirable events being considered in the running

example.
18 A business entity that is required to perform at least one activity of the process is considered a participant

in the process.
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of this section uses this business process as a vehicle to demonstrate the main characteristics of
the DT4BP language that make it suitable for business process modelling.

3.3.1 Getting started with DT4BP

In DT4BP, the specification of a business process is split into four different views or models.
This division is meant to ease the organisation and interpretation of the process definition.
These models are the Process Model, the Data Model, the Resource Model and the Dependability
Model. While the Process and Resource models are mandatory, the existence of the Data and
Dependability models depends on whether data elements are required and whether undesirable
events are being handled, respectively. The Process Model describes the control flow of the
business process, whereas the Resource Model describes the flow of the actual business entities
on which the organisation relies to achieve the enactment of the business process.

In achieving a business process specification using the DT4BP language, the initial model to be
provided is the Process Model. The activities involved in the business process and the flow on
which these activities should be performed at enactment-time are part of the information to be
described within the Process Model.

The notion of participant is used as a means to group the activities tha the participant is
responsible. The activities that each participant must perform are either composite or atomic.
A composite activity (for the sake of simplicity) can be seen as one that is made up of sub-
activities. Conversely, an atomic activity is one that is not composed of sub-activities. The
sub-activities that a composite activity refers to, are defined in another business process. In this
manner, a composite activity actually refers to a different business process.

The concept of composite activity determines the hierarchical structure of business processes.
A business process containing a composite activity is at a higher level than the business process
that encloses the sub-activites the composite activity refers to. It is assumed the existence of a
business process which is not referred to by any composite activity. This business process is the
root of the hierarchical structure. In DT4BP, it is a good modelling practice to restrict the root
business process to only one participant (usually the organisational unit in charge of running
the business process). This will provide an overall view of the activities that take place within
the business process in a condensed view.

Adhering to this good modelling practice, the root Process Model19 that corresponds to the
diagnosis business process is shown in Figure 3.1. The activities “registration” (line 12), “exam-
ination” (line 17), “makeDocument” (line 18), “consultation” (line 21), and “giveInformation”
(line 23) are enclosed within the participant DiagnosisUnit, which is the hospital unit where these
activities take place. These activities are executed in sequence (modelled with the control-flow
operator ‘;’ ), except examination and makeDocument which are executed in parallel (modelled
with the control-flow operator ‘split’ ).

Notice that all these activities are composite activites, which means that (1) business processes
named registration, examination, makeDocument, consultation and giveInformation are also
part of the overall definition of the diagnosis business process20, and (2) these business processes
are located at a lower hierarchical level with respect to the diagnosis business process, which is
the root business process.

19 This is a simplified version of the real Process Model. See the Appendix C for the full description of the
model.

20 The reader is referred to the Appendix C for the full description of these business processes.
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1 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ; ; PROCESS MODEL
3 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 business process d i a gno s i s (out Pat ientSheet ps ) {
5

6

7 participant Diagnos i sUnit {
8 FireAlarm fa ;
9

10 do{
11 Person prs ;
12 composite r e g i s t r a t i o n [ , p = al loc (new Pat ient ) ] ( out prs ) within [ , 15 min. ] ;
13

14 Temperature t ;
15 BloodPressure bp ;
16

17 do{ sp l i t composite examination [ p , , ] ( out t , bp )
18 composite makeDocument ( in prs ; out ps )
19 }within [ , 30 min. ] ;
20

21 composite c on su l t a t i on [ p , ] ( in ps , t , bp ; out ps ) within [ 15 min. , 1 h s . ] ;
22

23 composite g ive In fo rmat ion [ p , ] ( in ps ) within [ , 15 min. ]
24

25 }deviation [ EX Fire | f a = #ON) ]
26 }
27

28 }

Fig. 3.1: Process Model of the Diagnosis Business Process.

Figure 3.2 shows part of the Process Model of the registration business process. This business
process involves two different participants: the Secretary and the Patient. The Secretary inter-
acts with the Patient by requesting his medical insurance card. This interaction, which defines
the collaborative aspect of the business process, is achieved by an exchange of messages between
the two participants using the primitives send (lines 8 and 17) and receive (lines 10 and 15).

The resources in charge of executing the activities enclosed by the Secretary and Patient partic-
ipants within the registration business process are specified at the level of the composite activity
that refers to such business process. In this manner, the resource allocation policy for the regis-
tration business process is modelled within the diagnosis Process Model, in the resource region
(i.e. area determined by the [ ] brackets - line 12). The allocation policy specified for the regis-
tration business process defines that the secretary (modelled with the symbol ‘ ’) will be any of
those specified within the Resource Model associated to the registration business process (shown
in Figure 3.3). Whereas the resource required to play the activities enclosed by the patient
participant, is created at enactment-time (i.e. upon the creation of the process instance).

A reference for the created resource (here named p) is kept in order to specify that the same re-
source must be involved in the subsequent composite activities of the diagnosis business process.
The reference p is considered a resource variable and can be used in any subsequent resource
region with respect to its definition. Notice that the activities enclosed by the secretary par-
ticipant within the registration business process are to be executed at enactment-time by the
resource Ann (line 5, in Figure 3.3) as it is the only available resource that matches for that
kind of participant.

Both a business process and its composite activities might require some information in order
to be able to execute, or they might produce some information as result of their execution.
DT4BP adheres to an object-oriented model to allow modellers to represent information in a
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1 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ; ; PROCESS MODEL
3 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 business process r e g i s t r a t i o n (out Person p){
5

6

7 participant Sec r e ta ry {
8 send reqSSCard to Pat ient block ;
9 . . .

10 receive reqSSCard ( ssCard ) from Pat ient ;
11 . . .
12 }
13

14 participant Pat ient {
15 receive reqSSCard from Sec r e ta ry ;
16 . . .
17 send reqSSCard ( ssCard ) to Sec r e ta ry ;
18 . . .
19 }
20 }

Fig. 3.2: Extract from Process Model of the Registration Business Process.

1 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ; ; RESOURCE MODEL
3 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 resources{
5 Sec r e ta ry = Ann ;
6 Pat ient ;
7 }

Fig. 3.3: Resource Model of the Registration Business Process.

business process. An object represents an entity that contains certain information. The kind of
information that may be contained by an object is determined by its data type. The data types
used to create objects within a business process must be defined in the Data Model associated
with the business process. Figure 3.4 shows the Data Model of the diagnosis business process.
A data type is defined in the Data Model using the construct type and followed by a name. The
name of the data type is its identifier, which must be unique within the same Data Model. A data
type can be defined in a structured manner by using other defined data types. This is the case for
the Person data type, which relies on the data type Calendar and the pre-defined types21 String
and Integer (the other pre-defined types are Float and Boolean). Please note that the Integer
type represents mathematical natural numbers, whereas Float the mathematical concept of real
numbers. The String type represents a sequence of characters22, and the Boolean type the values
true and false. A data type’s attribute may have the range of possible values constrained. This
is achieved by setting conditions (aka invariants) over each of the attributes to be constrained.
Conditions (introduced by the construct where) are first-order logic formulas written using the
OCL language [WK03]. The data types Temperature and BloodPressure are examples of data
types with invariants. A data type can also be defined as an enumeration of elements23. This is
the case of the data type Alarm.

Objects take place within the Process Model, only. The name of the object is its identifier, and

21 Pre-defined data types are referred to as types.
22 Characters of the ISO/IEC 8859-1:1998 [Int98], known as Latin-1.
23 The elements of an enumeration are considered strings.
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; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
; ; DATA MODEL
; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
type Person{

String name ;
String surname ;
Calendar birthday ;
String address ;
String c i t y ;
String country ;
Integer ssn ;

}

type Calendar ;

type Temperature { Integer t where (30 <= t ) and ( t <= 50)}

type BloodPressure { Integer bp where (50 <= bp) and (bp <= 250)}

type Treatment , Medicine , Diagnos is , Medica lHistory ;

type Pat ientSheet {
Integer ssn ;
String name ;
String surname ;
String address ;
String c i t y ;
String country ;
Medica lHistory mh;
Diagnos i s d ;
P r e s c r i p t i on p ;

}

type Pre s c r i p t i on {
Treatment t ;
Medicine m;

}

type FireAlarm = enum{ON,OFF}

Fig. 3.4: Data Model of the Diagnosis Business Process.

it must be unique within the context of a same business process. The scope of an object is
determined by the place where it is defined. A parameter is an object defined in the header24 of
the business process. The object ps is an example of a parameter object (line 4, in Figure 3.1).
For this kind of object, the scope is the entire Process Model. It is worth noting that a parameter
can be defined as input or output. Input parameters represent objects that carry information
coming from the environment where the business process is enclosed, whereas output parameters
are used to pass information to the environment. Notice that an object that wants to be used
both to receive and send information from/to the environment must be defined as input and
output. An object may also be defined within a participant. In this case case the scope of the
object is the participant where it is defined.

An object (whether defined as a parameter or not) is used both to pass information to an activity
to allow its execution and to capture the effects of having executed the activity. Objects used
to pass information to the activity are known as input arguments. Those used to capture the
effects of the activity execution are known as output arguments. Notice that the same object
can be used as both input and output argument. In the example, the (parameter) object ps is

24 Part of the process definition that contains only the name and parameters of the business process.
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used as both input and output in the consultation composite activity (line 21, in Figure 3.1).

The DT4BP language offers facilities for modelling time constraints over a business process, as
well as its constitutive parts (e.g. participants and activities). The time-related requirements
concerning the diagnosis business process are modelled using the primitive within. This primitive
is aimed at defining the minimum and maximum allowed time an activity may take. The
requirement that the registration of a patient should take less than 15 minutes is modelled using
this primitive (see line 12, in Figure 3.1). Notice that the symbol ‘ ’ is used to model the fact
that there is no boundary regarding the minimim allowed time for the execution of the activity.
In the same manner, the same primitive is used to constrain the other composite activities (lines
19, 21 and 23). Notice that for the composite activities examination and makeDocument, which
are to be executed in parallel, the time constraint modelled with the primitive within applies to
both activities as it is associated with the block (modelled with the construct do) that contains
both activities.

Making the diagnosis business process more dependable means dealing with certain undesirable
events such that their occurrence during the process enactment either do not result in a failure
of the business process (ideal scenario), or the negative effects they produce can be mitigated.
When modelling a dependable business process, the first step consists of identifying the unde-
sirable events that may take place during the enactment of the business process. For the sake of
simplicity, the only undesirable event to be considered here is a fire taking place at the hospital.
Once the undesirable events have been identified, the next step consists of modelling how the
occurrence of these events are detected. DT4BP provides the notion of deviation to model the
detection of an undesirable event. A fire is detected within the diagnosis unit when the fire alarm
(modelled with the object fa -line 8, in Figure 3.1) is activated (i.e. the value held by the object
fa is equal to #ON ). The fact that the alarm may turn on at any point during the execution
of the activities carried out within the diagnosis unit is modelled attaching the deviation to the
entire block of activities (lines 10-25).

1 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ; ; DEPENDABILITY MODEL
3 ; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 resolution{
5 EX Fire −> Evacuation ;
6 }
7

8 recovery{
9 Evacuation ( ){

10 participant Diagnos i sUnit {
11 evacuateDiagnos i sUni t ( ) ;
12 }
13 } fa i led
14 }

Fig. 3.5: Dependability Model of the Diagnosis Business Process.

The concept of deviation is used to model not only how the undesirable event is detected, but
also how its occurrence is noted within the business process where it takes place. The occurrence
of an undesirable event is noted by means of signals or exceptions. Thus, EX Fire models the
exception that will mark (at enactment-time) that a fire is taking place within the diagnosis
unit. It is worth noting that the raising of an exception at enactment-time changes the execution
flow of the business process to the handler meant for dealing with the exception. The binding
between the exception used to note the occurrence of an undesirable event and the handler in
charge of its handling, as well as the proper definition of the handler, is modelled within the
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Dependability Model. Figure 3.5 shows the Dependability Model associated to the diagnosis
business process. The model is composed of two parts: the first part, named resolution modelles
the binding exception-handler (line 5), whereas the second part, named recovery, provides the
definition of the handler (lines 9-13), which consists of the evacuateDiagnosisUnit activity. This
activity is executed once the control flow of the business process is transferred to the activity
due to the exception. It must be noted that this handler does not help to reach the process’
goal (i.e. patients are not supposed to be diagnosed nor receive any treatment in the case of a
fire), but it does help to mitigate the effects of the fire (patients are evacuated so that they are
not injured because of the fire). The keyword failed (line 12) is used to model the fact that the
business process fails despite performing activities by the handler.

This section provides an overall view of the different models to be considered when composing
a business process in DT4BP. In the following discussion, a more detailed description of the
language will be given.

3.4 DT4BP: a detailed explanation

This section presents the DT4BP language in detail. The language is presented by introducing
the domain-specific concepts that allow the modelling of the targeted business process. These
domain-specific concepts are introduced according to the dimension of interest enumerated in
Section 3.1. In this manner, Section 3.4.1 presents the concepts oriented toward the modelling of
the business process aspects, Section 3.4.2 presents the concepts that allow for modelling the col-
laboration between participants enclosed within a same business process, Section 3.4.3 presents
the time-related concepts, and Section 3.4.4 presents the concepts that allow the modeller to
describe the dependability-oriented aspects of the business process.

The domain-specific concepts presented in these four different sections are formalised according
to the metamodelling principle (see Chapter 2, Section 2.3). This organization demonstrates that
the language domain-specific concepts are formalised in terms of meta-model elements. Thus,
every time one or more concepts are introduced the meta-model component corresponding to
that formalisation is given so that the reader may have a clear understanding how the entire
DT4BP meta-model is obtained (Appendix B). This meta-model represents the abstract syntax 25

of the DT4BP language [Kle08].

The diagnosis business process presented in the previous section is used again to show how the
DT4BP domain-specific concepts are implemented when modelling a DCTC business process.
Hence, the symbols that allow each domain-specific concept to be present within a process
definition are also given in this section. These symbols are part of the concrete syntax 26 of the
language (often simply referred to as syntax ). The concrete syntax then is what the language
user (the business process modeller in this particular case) needs to know to write syntactically
correct DT4BP models. The concrete syntax of DT4BP (which is a textual modelling language)
is specified by a context-free grammar using an extended version of the BNF 27 notation. The
full DT4BP concrete syntax is given in Appendix A. Thus, the parts of the diagnosis business
process shown throughout this thesis are written in accordance with this concrete syntax. Please

25 The part of the language specification, which describes the structure of the allowed expressions in the lan-
guage [Hen90].

26 That part of the language specification, which describes the sequence of symbols that must be present in the
concrete form of a model, as well as to assign (in an unambiguous manner) to each sequence of symbols a
unique structure or parse tree.

27 Backus-Naur Form.
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note, that when referring to the reserved words28 of the DT4BP language, they appear as bold
text.

3.4.1 Core elements

The aim of this section is to introduce all the features that DT4BP provides with regards to
modelling the business process dimension. These features have been defined bearing in mind
the concepts identified in Section 3.1.1, which correspond to the business process part of the
targeted domain. These features then are expected to be sufficient to allow modellers to describe
comprehensive process definitions.

3.4.1.1 Activity

An activity represents a logical unit of work that is performed within the context of a business
process. A business process is assumed to be composed of one or more activities. The work
these activities represent is what allows the business process to reach its goal.

The work an activity represents may be complex. The divide and conquer strategy is often
applied when a task is very complex. Hence, decomposition is used as means to allow a complex
activity to be sub-divided into sub-activities such that their completion (i.e. each sub-activity
successfully perform its task) represents the completion of the enclosing activity. These sub-
activities can be seen as activities that are performed within a different business process. Let bp1
and bp2 be two different business process such that bp1 has a complex activity actbp11 that itself

is divided into sub-activities actbp21 , ..., actbp2n that are performed within the business process bp2
and which are not further subdivided into sub-activities. Then, actbp11 is known as a composite

activity, whereas actbp21 , ..., actbp1n are known as atomic activities. As a result, the business
process bp2 is considered as being at a lower hierarchical level with respect to the business
process bp1.

A composite activity, then, can be seen as a reference to another business process. At enactment-
time, the execution of a composite activity is indeed made by the execution of the activities
enclosed within the referred business process. The composite activity may be considered as
the caller of the referred business process, which waits for the completion of the inner business
process in order to be considered as completed. In other words, a composite activity represents
the embedding of a business process into another business process such that they can be hier-
archically structured. It is assumed that there exists one (an only one) business process that
is not referred to by any composite activity, and which is known as the root of the hierarchical
structure (constraint (1)). For a non-root business process then there exists (at least) one com-
posite activity which refers to such business process (constraint (2)). Business processes at the
lowest level are necessary made of atomic activities, only.

Figure 3.6 shows the part of the DT4BP meta-model that formalises the notions of composite and
atomic activity. An Activity29 is defined as an abstract class30, since it is made concrete either
as an Atomic or a Composite activity. An Atomic activity has a name, its identifier; whereas a
Composite activity is associated with the business process to be called at enactment-time. The
name of the business process called by the composite activity (modelled with the association

28 Within the context of this thesis, referred to as constructs, primitives or keywords.
29 When referring to a class that appears on the meta-model, its name is written in capital.
30 An abstract class is denoted in the meta-model by showing its name in italic
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named call) is the identifier of such composite activities. A composite activity must call a non-
root business process (constraint (3)). The business process being called by a composite activity
must be different from the one that encloses the composite activity. In other words, a business
process cannot be self-referred (constraint (4)).

Composite

name : String

Atomic

Activity

isRoot : boolean
name : String

BusinessProcess
call

11

Fig. 3.6: Kind of Activities in DT4BP.

The OCL conditions31 that check these constraints are shown in Figure 3.732.

−−cons t r a in t 1
context Bus ines sProces s inv uniqueRootBP :

Bus ines sProces s . a l l I n s t a n c e s ()−>one (bp | bp . i sRoot )

−−cons t r a in t 2
context Bus ines sProces s inv nonRootBPisCalled :

Bus ines sProces s . a l l I n s t a n c e s ()−> s e l e c t (bp | not (bp . i sRoot))−>
f o rA l l (bp | Composite . a l l I n s t a n c e s ()−> e x i s t s (cmp : Composite | cmp . c a l l=bp ) )

−−cons t r a in t 3
context Composite inv callNonRootBP :

Composite . a l l I n s t a n c e s ()−> f o rA l l (cmp : Composite | not (cmp . c a l l . i sRoot ) )

−−cons t r a in t 4
context Par t i c i pan t inv nonSe l fRe f e r ence :

Pa r t i c i pan t . a l l I n s t a n c e s ()−> f o rA l l (p : Pa r t i c i pan t |
( l e t

cmps :Sequence ( Composite)= p . stmts−>
s e l e c t ( stmt : Statement | stmt . oclIsTypeOf ( Composite))−>

c o l l e c t ( stmt | stmt . oclAsType ( Composite ) )
in

cmps−>f o rA l l (cmp : Composite | cmp . c a l l <> p . bp)
)

)

Fig. 3.7: Formalisation of the conditions 1-4 in terms of the OCL specification language.

3.4.1.2 Control flow

It is not enough to identify the activities that are required to achieve the business process’ goal.
It is also necessary to specify the order in which these activities must be completed to achieve

31 In order to be syntactically correct, OCL expressions were written using the Dresden OCL2 Toolkit [Sof99].
32 The reader is encouraged to examine the full DT4BP meta-model shown in the Appendix B to understand

the formalisation of the constraint (4).
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the goal.

The execution dependencies between activities are specified using control flow operators. The
selection of the types of control flow operators included in DT4BP for organising the execution
order of the activities was strongly influenced by those proposed by van der Aalst and van Hee
in [van02]. The types of control flow operators included in DT4BP are:

• Sequential execution: allows activities to execute one after the other (i.e. act1; act2)),

• Parallel execution: allows certain activities to execute in parallel, meaning that the ac-
tivities can be executed simultaneously or in any order. The parallel execution of activities
is differentiated into two cases: 1) parallel activities that need to be synchronised before
the end of the enclosing business process, and 2) parallel activities that last until the end
of the enclosing business process. The concept split is used to denote the former case (i.e.
split (act1, ..., actn), .., (act1, ..., actm); ), whereas spawn refers to the latter case (i.e. spawn
(act1, ..., actn), .., (act1, ..., actm); ),

• Conditional execution: allows execution to choose between two activities based on
certain conditions. The concept if-then-else is used to denote this control flow operator
(i.e. if cond then act1 else act2),

• Iterative execution: allows the execution of one or more activities while a certain con-
dition holds. Depending on whether the condition is checked before or after the activities
are executed, the iterative execution of the activities can be differentiated between while
(i.e. while cond do act1, ..., actn) and repeat (i.e. repeat act1, ..., actn until cond).

The formalisation of these concepts with regard to the control flow operators is shown in Fig-
ure 3.8. These operators (i.e. Split, Spawn, If, While and Repeat) are specialisations of the
class Control. The abstract classes Control and Activity are the two types of Statements (also
abstract) that can be performed. Please note, that while the control flow operators If, While
and Repeat allow the execution of an ordered (potentially empty) sequence of instructions, the
operators Split and Spawn only allow the execution of two or more activities. The attributes
until and cond, which are used to denote the predicates of the conditional operator If, and the
iterative operators While and Repeat are of type OclConstraint. The OclConstraint data type
represents first-order logical expressions, written using the OCL language [WK03].

It is worth noting that, in the context of this thesis, OCL is used as a tool to write first-order
logical expressions that must be used for decision making33 In addition, these expression must
also be computed within a reasonable amount of time. Thus, the modeller may only rely on a
sub-set of the OCL’s primitives for writing such expressions.

Figure 3.9 shows how some of the control flow operators are used to order the activities of
the diagnosis business process. The first activity to be performed is “registration”. This is
a composite activity, therefore a business process definition for “registration” has to be also
provided as part of the overall business process definition34. The split operator is used to start
“examination” and “make documents” composite activities in parallel. “Consultation” will wait
for the completion of these parallel activities since they were started using a split primitive. It is
worth recalling that, in DT4BP, the information concerned with the control flow of the business
process activities is depicted in the Process Model view.

33 There exists a Turing machine that always halts given any finite input string.
34 Idem for “examination”, “make document” , “consultation” and “give information”.
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Fig. 3.8: Control flow operators in DT4BP.

3.4.1.3 Participant and Resource

The notion of participant is used as a structuring mechanism to encapsulate a set of activities and
their dependencies under the context of a particular kind of business entity. A business entity
capable of doing work is known as a resource. A resource can be either human (e.g. a worker)
or non-human (e.g. plant or equipment) and can be owned by either the organisation leading
the business process or a third-party entity with whom the organisation has an agreement. A
participant then prescribes the class of resource required to perform the activities it encapsulates,
rather than the actual resource that performs such activities at enactment-time.

A participant does not specify which actual resource performs its activities. This fact points
out that some extra information is required to define the resource candidates for the participant
that has to be included in the business process definition. Such information could be given at
modelling time (referred to as static) or be deferred until enactment-time, until the point in
time in which the process instance needs to be executed (referred to as dynamic).

Specifying the identity of the resources that will be assigned to the participant at enactment-
time prevents the problem of unexpected or non-suitable resource allocation arising during the
execution of the process instance. The resources to be used by the participants are specified in
the call of the business process35, and not in its definition according to the following (concrete)

35 The root business process is called from the environment where it is enclosed, whereas inner business process
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business process d i a gno s i s ( . . . ) {
. . .
composite r e g i s t r a t i o n ( . . . ) ;
sp l i t composite examination ( . . . ) , composite makeDocument ( . . . ) ;
composite c on su l t a t i on ( . . . ) ;
composite g ive In fo rmat ion ( . . . )

}

business process r e g i s t r a t i o n ( . . . ) { . . . }

Fig. 3.9: Process Model of the Diagnosis Business Process.

syntax:

nameBP [alloc(res1),...,alloc(resn)](...);).

This allows the modeller to implement different resource allocations for the same business process
definition. The main drawback of this approach is that if the specified resource is not available,
then the process might suffer from unacceptable delays. The deferred allocation approach over-
comes this problem, since the decision of which resource must perform the participant’s activities
is postponed until the moment the instance becomes executable. It is at this point that one
resource belonging to the class prescribed by the participant in the process definition is chosen
to execute the activities. Therefore, the deferred allocation approach based on the class of re-
sources is considered the by-default strategy to allocate resources to participants. However, any
static binding between a particular resource and a participant overrides the default allocation
strategy.

It might be necessary to constrain the resource population used to select the resource that will ex-
ecute the participant’s activities. This is achieved by embedding OCL predicates in the resource
specification (i.e. nameBP [alloc(r | predOCL(r))]()). Furthermore, to allow cross references be-
tween resource allocations of different business processes the notion of resource variable is intro-
duced. A resource variable is used to store the resource that has been selected by the allocation
approach (whatever it is) for performing the participant’s activities(i.e. nameBP [p=alloc()]()).
Resource variables are defined in the resource allocation area (i.e. the scope defined between
the “[” and “]” brackets). A resource variable can be used in any subsequent resource allocation
area enclosed by the same participant to associate a reference with a formerly used resource.

Resources can also be created upon request. This means that a new resource is created on
demand to allow a particular process instance to be executed. Creating a resource on demand
describes the case in which an organisation relies on some external resources to accomplish their
business processes. In this case, the organisation does not directly own all the resources required
for the accomplishment of the business process, but it has the chance to borrow them from some
external source (e.g. by subcontracting them from a third-party company for the duration of the
process instance). It is worth noting that a resource variable can be used to store the reference
to a resource created on demand, in case it has to be used to execute another business process
within the context of the same participant instance.

It may be of interest to model the particularities belonging to each resource (e.g. previous
experience, skills, cost, etc) as such information could be used at enactment-time to select
the “best suitable” (according to a certain policy) resource elements for the activities to be
performed. The notion of capability is introduced to describe the characteristics of interest

are called by composite activities.
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that a particular resource may have. Notice that if a capability must be used as a criteria for
selecting a resource at enactment-time, the capability should be somehow quantified according
to a particular pre-defined metric.
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Fig. 3.10: Participant and Resource-related concepts in DT4BP.

Figure 3.10 shows how previously introduced concepts, such as participant, resource, resource
allocation policy, and resource capabilities, are formalised by means of metamodelling. The
entry point for reading this part of the meta-model is the class BusinessProcess. A business
process has a name (its identifier) and an ordered list of (one or more) participants. Each of
these participants is related to only one business process (modelled with the association bp)
and contains the (ordered) list of statements (modelled with the composite relationship stmts)
that need to be performed to allow the business process to reach its goal. Notice that the name
owned by the participant represents its identifier (which must be unique) within the context of
its enclosing business process.

The resources that may execute the statements enclosed by a certain participant are the can-
didates of that participant. Notice that a participant may have none36 or many candidates
(modelled with the association candidates), whereas a particular resource must participate in
the execution of at least one participant (modelled with the association mightParticipateAs).

The capabilities each resource has (which range from none to many) are modelled with the
composite relationship capabilities. Each capability is modelled as a pair (name, value), where

36 In this case, a resource is created on demand at enactment-time.
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the name is the identifier of the capability (unique within the context of the resource). The
value is an integer number that quantifies the resource according to the capability.

Since the allocation resource is defined upon the call of the business process, its modelling must
be associated with the place where the call takes place. As previously explained, a business
process is called by a composite activity (see part of the meta-model described in Figure 3.6). A
composite activity then contains the resource allocation policies (modelled with the composite
relationship resources) that select each of the required resources to achieve the execution of the
process instance at enactment-time. Notice that (1) there must exist as many resource allocation
policies as participants in the business process, and (2) the order in which the resource allocation
policy is placed determines the participant to be played by the selected resource. A resource
allocation policy (modelled by the abstract class ResourceAllocation) is either:

• Static: a specific resource is selected at modelling time. The association resource is used
to capture the information about the resource to be used,

• Reference: the resource to be used is the one contained in the resource variable being
referred to (modelled with the association ref ),

• OnDemand: the resource to be used does not exist, thus it is created at enactment-time,

• Dynamic: the resource to be used is the one that satisfies the selected criteria specified
by the first-order logic formula contained in the attribute pred. In the case that multi-
ple resources satisfy the selection criteria defined by the logical formula, one resource is
randomly chosen.

1 business process d i a gno s i s ( ) {
2

3 participant Diagnos i sUnit {
4 . . .
5 composite r e g i s t r a t i o n [ , p = al loc (new Pat ient ) ] ( . . . ) ;
6 sp l i t composite examination [ p , , ] ( ) , composite makeDocument [ ] ( . . . ) ;
7 composite c on su l t a t i on [ p , ] ( . . . ) ;
8 composite g ive In fo rmat ion [ p , ] ( . . . )
9 }

10 }
11

12 business process r e g i s t r a t i o n ( . . . ) {
13 participant Sec re ta ry { . . . }
14 participant Pat ient { . . . }
15 }

Fig. 3.11: Participants and resource allocation policies used in the Diagnosis Business Process.

The running example is used again here as a means to demonstrate how the above concepts
are used in practice. Figure 3.11 shows how a participant of class DiagnosisUnit encapsulates
the activities related to the diagnosis process (lines 3-9), while a participant of class Secretary
(line 13) and another of class Patient (line 14) are required by the registration business process
to perform its activities. It is also shown how a new resource of class Patient will be created
at enactment-time (as the specified resource allocation policy is OnDemand) to undertake the
execution of the registration business process. The keyword new followed by the participant
name is the way to specify this type of resource allocation policy. The same Patient resource
that undertakes “registration” must be used to perform “examination”, “consultation”, and
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“giveInformation” business processes. Thus, once the Patient resource is created, it is stored
in the resource variable p. The variable is used upon calls to the other business processes to
specify the Patient resource to be used by them. An underscore symbol (i.e. ‘ ’) is used in the
allocation area to denote that the default allocation approach has total freedom to select the
resource that will undertake the business process37.

The different classes of resources (i.e. participants) along with the actual resources that belong
to each class are specified in the Resource Model view. A business process definition has
an unique associated Resource Model view, which is used for the process instances to find the
resources they need at enactment-time. Figure 3.12 shows the Resource Model related to the
registration business process. This Resource Model specifies that there exists only one resource
able to play the participant secretary, whereas there are no resources for the participant patient.
This corresponds to the fact that the resource allocation policy for this kind of participant is
OnDemand.

resources{
Sec r e ta ry = Ann ;
Pat ient ;

}

Fig. 3.12: Resource Model of the Registration Business Process.

In this manner, the resource belonging to a certain class indicates that the resource is a candidate
for the participant. As previously stated, a resource might belong to more than one class of
participant. This means that a resource might participate with more than one participant within
the same business process, but with only one at the same time during enactment-time. Therefore,
a resource r might participate as participant p in certain business process if (and only if) r is
one of the candidates of p. Using the meta-model shown in Figure 3.10, this property can be
specified in OCL. Figure 3.13 shows such specification:

context Par t i c i pan t inv ResourceCandidates :
s e l f . cand idates −>f o rA l l ( r : Resource | r . mightPart ic ipateAs −> i n c l ud e s ( s e l f ) )

context Resource inv Part ic ipantMightPlay :
s e l f . mightPart ic ipateAs −>f o rA l l (p : Pa r t i c i pan t | p . cand idates −> i n c l ud e s ( s e l f ) )

Fig. 3.13: Consistency between resource candidates and potential players of a participant.

3.4.1.4 Data

An activity might require some data to execute. It is also possible that this data is generated by
an activity performed earlier. For example, in the running example, the doctor needs to know the
temperature and blood pressure of the patient to be able to perform the “consultation” activity.
This information is the outcome provided by the “examination” activity. This means that the
data required by or produced by an activity is also part of the business process definition, and
therefore it must be modelled. Hence, concepts that allow for the representation and utilisation
of data to be modelled within a business process are required.

37 This can also be denoted by using the alloc() primitive without argument.
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As the data required by a business process depends strongly on the domain that is being targeted,
the characteristics of the data may be very simple, or quite complex. A modelling language then
should include a means to allow domain specific data entities to be defined. The abstract
datatype principle is the chosen means to satisfy this requirement. This means that specific
datatypes that match with the domain of the problem being modelling can be specified.

The notion of type is used to introduce a new datatype. A datatype defines a collection of data
items. These data items are referred to as objects of the corresponding datatype. The concrete
syntax that allows the modeller to define a new datatype is the following: type typeName.
Attributes may be part of a datatype definition. An attribute has a name and a datatype.
Attributes within the same datatype must have distinct names, however, an attribute may
have the same name as its enclosing datatype. The attribute’s datatype specifies the kind of
value it may hold. The following concrete syntax allows modellers to define attributes within a
datatype: typeName{typeName1 attr1,...,typeNamen attrn}). A datatype may also be defined as
an ordered sequence of strings. This kind of datatype is referred to as an enumerated datatype.
The concrete syntax used to define enumerated datatypes is the following: type typeName=
enum{string1, ..., stringn}.

Basic primitive types as String, Boolean, Float or Integer exist by default. The semantics of
each primitive type is the following:

• Integer: represents mathematical natural numbers,

• Float: represents mathematical real numbers,

• String: represents a sequence of (latin-1 [Int98]) characters, and

• Boolean: represents the values true and false.

It might be necessary to impose certain conditions on a particular datatype such that the possible
values that it can represent is constrained. These conditions are known as invariants. Invariants
are described using first order logic formulas written in OCL. The keyword where is used to
introduce an invariant within a datatype definition.

It is worth mentioning that the collection of datatypes used within a particular business process
are defined in Data Model view. Each business process has one associated Data Model.
Conversely, objects are declared within the Process Model view of the business process. The
name of the object is its identifier, and it must be unique within the context of the Process
Model where it is declared.

The scope of an object is determined by the place where it is defined. An object can be defined
either within the context of a participant, which is referred to as a local object, or as a parameter
of a business process in which case it is referred to as a parameter object. A parameter object is
accessible to every enclosed participant within the same business process, whereas a local object
is only accessible for the activities enclosed within the same participant where it is defined.
At enactment-time, every time a process instance is initiated, a new object instance is created
whether it is a parameter or a local object.

Activities may carry arguments (i.e. act(in argin1 , ..., arginn ;out argout1 , ..., argoutm )). An argu-
ment is used either to pass information to the activity (listed in the in part) or to get side effects
of the activity execution (listed in the out part). Both local and parameters objects are eligible
to be used as arguments in an activity. Arguments are passed by value.



62 3. The DT4BP business process modelling language

The parameters of a business process are also divided between input and output. Input parame-
ters are used to receive information from the enclosing context and output parameters to return
to the enclosing context any useful side effect produced by the execution of the process. Input
parameters in the outer most business process are used to capture the information belonging to
the environment where the business process operates, and which is required for its execution.

It is worth recalling that an object represents an entity that contains certain information, which
is determined by its datatype. The way of assigning information to an object depends on
whether it is a parameter or a local object. In the case of parameter objects, the information is
assigned upon the business process call. This means that the information held by the arguments
is passed over the parameters of the business process once it is called. The case for local objects
is different. Assigning information to a local object is part of the duty of an activity. Thus, to
assign information to a local object, it has to be passed as an output parameter to an activity.
Notice that the declaration of a local object only represents the instantiation of the object, i.e.
no information is assigned upon the declaration of a local object. When an object is instantiated,
it is assumed that its value is “undefined”. An object is considered as undefined when the value
it holds is not in the domain defined by its datatype. The fact that an object is undefined, thus,
means that no value has yet been assigned to it.

The formalisation in terms of metamodelling of the previously introduced concepts is shown in
Figure 3.14. This part of the meta-model shows that none or many datatypes are associated
with a particular business process. This is modelled by the association dttps. Each of these
datatypes is either:

• a datatype that has none or many attributes, and may or may not have an invariant
(modelled with the classes DataType and Attribute, and the composite relationship attrs),

• an enumerated datatype (in whose case it does not have any attributes) and may or may
not have an invariant (modelled with the classes DataType and EnumerationLiteral, and
the ordered composite relationship enum), or

• a primitive datatype (modelled with the classesDInteger, DFloat, DString andDBoolean 38)

The classes Parameter and LocalObject indicate that an object is either a parameter or a local
object. The name of the object is modelled with the attribute name owned by the abstract
class Object. A parameter object is owned by the business process (modelled with the ordered
composite relationship params), whereas a local object is owned by the participant where it is
declared. Notice that a local object is declared with the statement Objdecl. This statement
allows the modeller to declare one (and only one) local object, and maintains a reference to
the object (modelled with the association var) to allow further use of the object. Both local
and parameter objects can be used as arguments in the activities enclosed by the participants
of the business process. This is the reason why the class Argument is associated by obj with
the abstract class Object. The composite relationship named args contains an ordered list of
arguments of the activity. Whether the object is an input or output argument is determined by
the attribute kind. The type IOType is an enumerated type that allows the following values: in,
out and in out.

Conditions written in OCL are placed over (some) the concepts shown in Figure 3.14 to check
whether a particular DT4BP model is valid or not. The first condition placed over the meta-
model specifies that every valid DT4BP model must have every data type defined by either

38 To avoid name collisions between DT4BP and the languages used for its specification, the DT4BP primitive
types are preceded by a ‘D’.
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Fig. 3.14: Data and Object aspects in DT4BP.

combining multiple elements of other types, or enumerating an ordered sequence of strings
without mixing them. Figure 3.15 shows how this exclusive (aka. XOR) manner of defining
data types is specified in OCL.

context DataType inv XorOnEnumAttr :
not s e l f . a t t r s−>isEmpty ( ) implies s e l f . enum−>isEmpty ( )

Fig. 3.15: OCL invariant over the DataType concept.

It is also possible to determine statically whether the arguments of a composite activity are
well-typed with respect to the parameters expected by the inner business process the composite
activity refers to. The OCL condition that performs this check is shown in Figure 3.16. Notice
that this constraint relies on concepts that have been formalised both in Figure 3.14 and Figure
3.6 (regarding to the composite activity notion).

Figure 3.17 shows part of the data model associated with the “diagnosis” business process of
the running example. This figures shows the definition of the Temperature data type: this data
type holds an integer attribute t. The predicate shown in line 2 defines the allowed values for
the attribute t.

Figure 3.18 shows some of the local objects defined in the Diagnosis process such as prs,t and bp
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context Composite inv CheckTypesOnParams :
l e t

args : Sequence (Argument ) = s e l f . args−>asSequence ( ) ,
prms : Sequence ( Parameter ) = s e l f . c a l l . params−>asSequence ( )

in
args−>c o l l e c t ( e | e . kind ) = prms−>c o l l e c t ( e | e . kind ) and
args−>c o l l e c t ( e | e . obj . type . oclAsType (DataType ) . name) =
prms−>c o l l e c t ( e | e . oclAsType ( Object ) . type . oclAsType (DataType ) . name)

Fig. 3.16: OCL invariant for the type-checking.

1 type Temperature { Integer t where
2 (30 <= t ) and ( t <= 50)}

Fig. 3.17: Part of the the Diagnosis Business Process Data Model.

(lines 5, 8 and 9; respectively) that are used as arguments in the “registration”, “examination”
and “makeDocument” activities (lines 6, 11, and 12; respectively). In the same figure, it can
be seen that parameter objects are defined in a business process. The “diagnosis” business
process has an output parameter object name ps, which is of type PatientSheet (line 1), whereas
the “makeDocument” business process has an input parameter object of type Person called
prs (line 17) and an output parameter object of type PatientSheet called ps (line 18). Notice
that the arguments being passed to the “makeDocument” business process when it is called
from “diagnosis” (line 12) are well-typed with respect to the parameter objects specified in its
definition (lines 17-18).

1 business process d i a gno s i s (out Pat ientSheet ps ){
2

3 participant Diagnos i sUnit {
4

5 Person prs ;
6 composite r e g i s t r a t i o n [ , p = al loc (new Pat ient ) ] ( out prs )
7

8 Temperature t ;
9 BloodPressure bp ;

10

11 sp l i t composite examination [ p , , ] ( out t , bp ) ,
12 composite makeDocument ( in prs ; out ps ) ;
13 . . .
14 }
15 }
16

17 business process makeDocument ( in Person prs ;
18 out Pat ientSheet ps ) { . . . }

Fig. 3.18: Parameters, local objects and arguments in business processes.

3.4.1.5 Instantiation

A process instance is a particular situation of a business process that takes place at enactment-
time. This means that for the same business process bp many different process instances
ibp1 , .., ibpn can be created. Each process instance ibpj is created according to the pattern defined



3.4. DT4BP: a detailed explanation 65

by the business process bp, but each of them represents a different enactment of the business
process.

The creation of a process instance (i.e. the instantiation of a business process) happens every
time the business process is called. Non-root business processes, i.e. business processes that
are not at the top level of the hierarchical structure determined by the process definition, are
called by composite activities. Whereas root business processes are called when certain events
takes place in its enclosing environment. The event that (at enactment-time) leads to the
instantiation of the business process has to be modelled within the business process definition as
this is information relevant for the people involved in the management (i.e. design, monitoring
and re-design) of such business process. Thus, a root business process must be associated with
the event that produces its execution. This is formalised by the meta-model shown in Figure
3.19 along with the OCL constraint described in Figure 3.20.

isRoot : boolean
name : String

BusinessProcess
name : String

Event

requestedBy

0..1

1

Fig. 3.19: Events in DT4BP.

context Bus ines sProces s inv eventForRootBP :
i f ( s e l f . i sRoot ) then

not ( s e l f . requestedBy . oc l I sUnde f ined ( ) )
else

s e l f . requestedBy . oc l I sUnde f ined ( )
endif

Fig. 3.20: Root business process must be associated with an event.

The keyword when is used to allow modellers to specify the event that lets the business process
be instantiated. Figure 3.21 shows how this keyword is used in the running example to model
the fact that every time a patient arrives (denoted by the event patientArrives -line 2) at the
diagnosis unit, a new instance of the diagnosis business process is created.

1 business process d i a gno s i s (out Pat ientSheet ps )
2 when( pa t i en tAr r i v e s ) { . . . }

Fig. 3.21: Event-trigger business process.

Time-related events are also considered as part of those events that can trigger a business
process. A time-related event is defined as one that occurs when the clock that measures the
passage of physical time reaches a certain value. Then, the expression when(clock(timeExp))
is used to indicate that an event is triggered when the clock reaches the time value indicated by
timeExp. The clock is assumed to measure the passage of physical time in the calendar format
YYYY-MM-DD:hh-mm, where each component is an integer value such that: (1) the years (i.e.
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YYYY) ranges between 1970 and 9999, the months (i.e. MM) between 01 and 12, the days (i.e.
DD) between 01 and 31, the hours (i.e. hh) between 00 and 23, and the minutes (i.e. mm)
between 00 and 59. Hence, the time value to be used with the primitive clock must follow the
same calendar format. The clock also provides operators to check whether a certain point in
time has been reached by specifying only a sub-part of the calendar format. In this manner, the
operators clock.time(hh-mm) check whether the clock has reach the time hh-mm regardless of
the year, month and day. This means that this operator can be used to trigger a daily event.
Other operators that work in a similar way are clock.minute(mm), clock.date(YYYY-MM-DD,
clock.month(MM, and clock.day(DD. Since every part of the calendar format is an integer, integer
expressions obtained by performing certain operations can be also used to specify each of them
(e.g. clock.date((2006+4)-12-15 ).

It is worth explaining that the triggering of the event does not imply the actual starting of the
process instance as it also depends on the availability of the resources it requires to be performed.
Thus, a business process will start its execution not only when the event is fired, but also when
the required resources for its execution are available.

3.4.2 Collaboration between participants

As stated earlier, a collaborative business process is defined as one that requires the interaction
of multiple participants to reach the process’s goal. Therefore, it is expected that definitions
of the targeted business processes will contain more than one participant. In the running ex-
ample, every business process involved in its definition has more than one participant, except
“makeDocument” and “diagnosis”, which is the outer most business process that encloses all the
others39. In the targeted business processes, the interaction among participants is expected to
be high in the sense that their progress depends on another’s progress. Therefore, operational
dependencies between collaborative participants are expected to exist.

3.4.2.1 Message exchange

The interaction between participants is achieved by sending and receiving messages. Both
sending and receiving a message are considered atomic statements performed within the context
of a participant. The reasons why a participant sends a message are:

1. to forward a message to another participant (aka send-no-wait),

2. to synchronise with another participant (aka send-wait), or

3. to request an action from another participant (aka send-receive).

The first case requires sending a message without needing to wait for the recipient to receive
the message (i.e send-no-wait)40. The second case requires sending a message and then blocking
activity until the recipient receives the message (i.e send-wait). The third case requires sending

39 As already mentioned, it is good modelling practice that the outer most business process includes only one
participant, since this allows the reader to have a quick aand simple overview of the business process being
modelled.

40 It is assumed that for any two different participants Pi and Pj , the messages sent from Pi to Pj are received
in the order they are sent. It is also assumed that every sent message is eventually received.
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a message and then blocking activity only when a reply is needed to continue its execution rather
than immediately after sending the message (i.e. send-no-wait-receive).

To address these cases, communication primitives are needed to allow sending and receiving
messages along with some optional blocking mechanism that can be attached to them. Obviously,
the notions of send and receive are the concepts that overcome these requirements.

• Send: the notion of send is used for the sending a message to a particular participant. The
sending of a message may or may not be synchronous. In case the sending is synchronous,
then the sender participant gets blocked until the receiver participant receives the message.
It is worth noting that messages can also be used to exchange information between two
different participants. So a message should be allowed to carry data. Thus, local objects
can be passed as arguments to the message being sent. The only kind of information
that is allowed to be passed as an argument with the message is a local object. This
is because this is the information that a participant may want to share with their peers
(other participants) that are enclosed with the same business process as all of them have
access to the business process’s parameters (the other kind of information available within
a business process). Last, but not least, a message can be sent to more than one participant
at once. In this case, it is said that the sender is broadcasting the message to a predefined
list of participants.

The concrete syntax for the sending primitive is:

send msg to participant [block],

where the optional clause block is used to determine whether the sending is synchronous
or not. When the send primitive is used to broadcast a message, more than one participant
can be specified as receiver. In case a message conveys local objects, the notation to be
used is msg(lObj1, ..., lObjn).

• Receive: the notion of receive is used for retrieving a message sent by a peer participant.
A Conversely to send, receive is always synchronous, so that it gets blocked until the
message arrives.

The concrete syntax for the sending primitive is:

receive msg from participant

Therefore, these concepts allow for achieving the (1) “send-no-wait” by using the send primitive
without the optional clause block, (2) the “send-wait” by using the send primitive along with
the clause block, and (3) the “send-received” by using the send primitive without the optional
clause block followed by a receive primitive.

As done thus far, the formalisation of the concepts send and receive as well as with their related
aspects is given by means of a meta-model. This formalisation is shown in Figure 3.22 and
it describes that the concepts of send and receive (modelled by the classes Send and Receive,
respectively). These kinds of statements a participant may own as a part of all the statements
it must execute. That is the reason why the classes Send and Receive extend from the abstract
class Execution, which extends from the abstract class Statement. The attribute msg (of type
String) is used to model the message to be sent or received, whereas the ordered association
named args is used to capture the local objects to pass as arguments when either sending or
receiving a message. Thus, the same message can be sent to multiple participants. That is
the reason why a Send statement is linked (by means of the association to to one or more
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Fig. 3.22: Sending and Receiving messages in DT4BP.

context Bus ines sProces s inv Part i c ipantsForSendRece ive :

i f ( s e l f . p a r t i c i pan t s−>s i z e ( ) = 1) then
s e l f . p a r t i c i pan t s−> f o rA l l (p : Pa r t i c i pan t |

p . stmts−>s e l e c t ( stmt : Statement |
stmt . oclIsTypeOf ( Send))−> s i z e ( ) = 0

and
p . stmts−>s e l e c t ( stmt : Statement |

stmt . oclIsTypeOf ( Receive))−> s i z e ( ) = 0
)

else t rue endif

Fig. 3.23: No send or receive statements in a business process with an unique participant.

participants). Conversely, a Receive statement is linked to only the participant that sends the
message (modelled by the association from).

This part of the meta-model is also used as the context to set OCL conditions that let the
modeller know whether the send and receive concepts are being properly implemented. Since
the send and receive concepts are used to exchange messages between peer participants, it must
be required that the business process owns at least two participants when such concepts are
used. Conversely, when a business process has only one participant, then it is forbidden that
the participant includes a send or receive clause in its statements, which is the OCL rule shown
in Figure 3.23. Since the context of this rule is the business process the reader may need to
consult the meta-model components described both in Figure 3.22 and Figure 3.14.

Another obvious control to be performed over any DT4BP model with respect to message
exchange is that every participant sends or receives a message from a different peer participant.
In other words, a participant cannot send or receive messages from itself. The OCL rule that
checks this condition in shown in Figure 3.24.
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context Bus ines sProces s inv NotSelfMsgExchange :

i f ( s e l f . p a r t i c i pan t s−>s i z e ()>1) then
s e l f . p a r t i c i pan t s−>

f o rA l l (p : Pa r t i c i pan t |
( l e t

sends : Sequence ( Send ) = p . stmts
−>s e l e c t ( stmt | stmt . ocl IsTypeOf ( Send ) )
−>c o l l e c t ( stmt | stmt . oclAsType ( Send ) ) ,

r e c e i v e s : Sequence ( Receive ) = p . stmts
−>s e l e c t ( stmt | stmt . ocl IsTypeOf ( Receive ) )
−>c o l l e c t ( stmt | stmt . oclAsType ( Receive ) )

in
sends−>f o rA l l ( s | s . to −> f o rA l l ( p1 | p1<>p ) ) and
r e c e i v e s−>f o rA l l ( r | r . from <> p)

)
)

else t rue endif

Fig. 3.24: No participant can send or receive messages from itself.

It must also be checked that the arguments carried by a sent message are well-typed with respect
to the parameters expected by the receiver of the message. The OCL condition shown in Figure
3.25 implements such rule.

context Bus ines sProces s inv TypeCheckingMsgs :

i f ( s e l f . p a r t i c i pan t s−>s i z e ()>1) then
s e l f . p a r t i c i pan t s−> f o rA l l ( p1 , p2 : Pa r t i c i pan t | p1<>p2 and

( l e t sends : Sequence ( Send ) = p1 . stmts
−>s e l e c t ( stmt | stmt . ocl IsTypeOf ( Send ) )
−>c o l l e c t ( stmt | stmt . oclAsType ( Send ) ) ,

r e c e i v e s : Sequence ( Receive ) = p2 . stmts
−>s e l e c t ( stmt | stmt . ocl IsTypeOf ( Receive ) )
−>c o l l e c t ( stmt | stmt . oclAsType ( Receive ) )

in sends−>
f o rA l l ( s | r e c e i v e s−>e x i s t s ( r |

( l e t
type send : Sequence (String ) =

r . args−>c o l l e c t ( a | a . type . name ) ,
t yp e r e c e i v e : Sequence (String ) =

s . args−>c o l l e c t ( a | a . type . name)
in

type send = typ e r e c e i v e ) ) ) ) )
else t rue endif

Fig. 3.25: OCL invariant for the type-checking of messages with data.

Going over the running example, Figure 3.26 shows how the send and receive clauses are used to
model the interaction between the secretary and the patient during the “registration” process.
This process starts by the secretary requesting the patient to provide his social security card. In
order to be sure that the patient receives the request, the actions are performed in a synchronous
manner. That is the reason why the send has a block clause at the end (line 3). Once the patient
has received the request (line 9), he provides his social security card to the secretary (line 12),
who is waiting for that information (line 5).
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1 business process r e g i s t r a t i o n (out Person p)
2 participant Sec r e ta ry {
3 send reqSSCard to Pat ient block ;
4 Soc ia lSecur i tyCard ssCard ;
5 receive reqSSCard ( ssCard ) from Pat ient ;
6 . . .
7 }
8 participant Pat ient {
9 receive reqSSCard from Sec r e ta ry ;

10 Soc ia lSecur i tyCard ssCard ;
11 searchSScard (out ssCard ) ;
12 send reqSSCard ( ssCard ) to Sec r e ta ry ;
13 . . .
14 }
15 }

Fig. 3.26: Message exchange in the Registration process.

3.4.2.2 Nested activities

It might be the case that a sub-set of the participants involved in a collaborative business process
need to perform some sub-collaborative work, seen as an “atomic action” (i.e. single logical unit
of work) by any other participant being left out of such sub-collaboration, but who is still
enclosed within the same business process. This means that those activities that are required
to be performed by every participant engaged in the sub-collaboration have to be scoped and
hidden such that participants not engaged in the sub-collaboration see them as a single activity
that provides a consistent outcome.

The solution is then to move those activities that define the sub-collaboration to another collab-
orative business process. Since this new collaborative business process encloses those activities
that determine the sub-collaboration, the kind of participants that perform such activities must
be also included in its definition. The notion of a nested activity is introduced to allow a partic-
ipant within a collaborative business process to “call” another participant of the same class (i.e.
both participant must have the same name), but defined in a different collaborative business
process. The call performed by a nested activity is semantically equivalent to the call performed
by a composite activity. Hence, when formalising the notion of nested activity by means of
the metamodelling principle (which is shown in Figure 3.27), an association named called is
placed between the class Nested and BusinessProcess in the same manner as was done between
Composite and BusinessProcess.

The called participant will start performing its activities once every other participant within the
same collaborative business process has also been called. Since the kind of called participant
must be the same (i.e. to have the same name) as the caller participant, an OCL invariant is
placed over the meta-model to ensure such condition (see Figure 3.28).

The resources that play each of the participants in the called collaborative business process
are the same as those engaged at the level of the caller. In this manner the availability of
the resources to run the nested collaborative business process is guaranteed. Furthermore, it
does make sense to use the same resource, since the called sub-collaborative business process
behaves as a context dependent sub-part of the enclosing collaborative business process (i.e. the
enclosing collaborative must have at least enough participants and of the same class to be able
to perform the nesting).

The caller participant will continue performing its activities once the called collaborative busi-
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Fig. 3.27: Nested activities in DT4BP.

context Bus ines sProces s inv NestingSameNameCallerAndCalled4 :

s e l f . p a r t i c i pan t s−>
f o rA l l ( p1 : Pa r t i c i pan t |

l e t
n e s t i n g s : Bag( Nested ) = p1 . stmts
−>s e l e c t ( stmt : Statement | stmt . oclIsTypeOf ( Nested ) )

in
nes t ings−> f o rA l l (n | n . c a l l . p a r t i c i p an t s
−>e x i s t s ( p2 : Pa r t i c i pan t | p2 <> p1 and

p2 . name = p1 . name ) )
)

Fig. 3.28: In the nesting, the names between caller and called participants must be the same.

ness process has completed its execution (i.e. every participant within the called collaborative
business process has performed all its activities). Therefore, those participants that are called
indirectly, using the concept of nested activity, synchronise their execution upon entry and exit
to the inner collaborative business process. It is also important to emphasise that a nested
business process must guarantee the achievement of a consistent outcome even when faced with
situations that lead to its goal not being reached. This is required since the overall behaviour of
the enclosing business process is dependent upon the outcome. Thus, nested business processes
are required to provide the isolation and consistency properties.

Such requirements can be fulfilled by making these kinds of business process behave as trans-
actions. As a nested business process is a just particular kind of collaborative business process,
the same principle (i.e. behave as transactions) can be applied to any collaborative business
process. It is worth noting that while the consistency property can be provided in the same
manner as is done in ACID-transactions, the isolation property can be achieved only partially
due to the long-lived nature of the targeted business processes. The isolation property can be
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applied only to those local elements that are not visible from outside of the business process. A
deeper analysis of considering business processes as transactions is deferred until Section 3.4.4
when dependability-related concepts are introduced. This is because transaction processing is a
well-know approach used to develop fault-tolerant software [GR92].

3.4.3 Time-related aspects

Considering both the requirements and the global time model defined in Section 3.1.3, it is
necessary to determine all possible time constraints that should be specified when modelling a
business process. The strategy for determining these time constraints consists of considering
every concept introduced thus far and deciding the kind of time-related information that can
be associated with it. Identifying the possible time constraints allows for establishing which
modelling concepts are required to capture this information. In addition, this process highlights
which concrete modelling elements should be provided to the language’s user such that they
may describe time constraints in an easy and direct manner.

3.4.3.1 Timing constraints over a business process

As explained in Section 3.4.1.5, a business process is initiated by a request. The request is either
an external event coming from the environment where it operates41 or a simple call (like the one
made by composite or nested activities).

The point in time when the request to a business process is performed (tr in Figure 3.29) can be
used as the temporal frame of reference when setting time constraints over the business process.
Another point in time that can be used as a frame of reference is the actual time at which the
business process begins its execution (ts in Figure 3.29). Both frames of references then are used
to analyse the time constraints that may be set over a business process.

• Starting: taking tr as the frame of reference, the actual initiation of a business process
could be constrained in the following way:

– the process starts ts time units after tr (ts is the delay),

– the process starts at least tsmin time units after tr (tsmin is the minimum delay),

– the process starts no later than tsmax time units after tr (tsmax is the maximum delay),

The concept start then is used to capture such potential time constraints. The keyword
start is proposed as the primitive to concretely specify constraints related to the start of
the business process. This primitive may be followed by either a single time value ts or
a pair of time values [tsmin , tsmax ]. Start followed by a single time value (i.e. start ts) is
used to specify the exact delay in starting the business process. Whereas if it is followed
by a pair of constraints (i.e. start [tsmin , tsmax ]), it is used to specify the minimum delay
([tsmin , ]), the maximum delay ([ , tsmax ]), or both ([tsmin , tsmax ]).

• Periodicity: in general, there is no information about how often the requests that initiate
a business process arrive (i.e. request patterns are not known in advance). An exception
to this rule is the periodic business processes. A periodic business process is performed

41 Time-related events are included in this consideration. These events are launched automatically by the
built-in clock that measures the passage of the time as observed in the physical world.
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Fig. 3.29: Timing constraints over a business process.

according to a recurring pattern, which specifies how often the business process is requested
and for how long the recurring patterns has to be applied (if any). However, it must be
noted that a periodic business process must be initially requested by a certain (either
internal or external) event. The point in time when the initial request takes place (i.e. tr )
is the frame of reference both for the periodicity (i.e. tP in Figure 3.29) and marks when
subsequent requests are made (i.e. tPuntil

in Figure 3.29).

The primitives every and until are used to specify information related the period of the
process and the end of the periodic sequence, respectively. Thus, while every tP is used to
specify how often the business process is requested, until tPuntil

specifies the termination
of the requests.

It is worth noting that (1) the timing constraints relative to the start of the business
process are considered in the first and every subsequent periodic request of the business
process; (2) periodic business process might last longer than the value specified using the
until primitive as it constrains the duration the periodic business process is requested,
and not its duration; and (3) the period of a business process (i.e. tP ) defines not only
the point in time at which the next business process is going to be requested, but also
the maximum elapsed time for the current business process under execution as a periodic
business process must complete its execution within the period.

• Duration: taking as the frame of reference the actual point in time at which the business
process starts its execution (i.e. ts in Figure 3.29), then the duration of the business
process can be constrained in the following way:

– the process lasts exactly tl time units (tl is the elapse time)

– the process lasts at least tlmin time units (tlmin is the minimum elapse time)

– the process lasts no more than tlmax time units (tlmax is the maximum elapse time)

In this case, the concept last is used to capture the constraints related to the duration of
the business process. The modeller has to use the primitive last to specify this information.
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In the same way as was done previously, this primitive followed by a single time value (tl )
specifies the exact duration of the process, whereas if it is followed by a pair ([tlmin , tlmax ])
it specifies the minimum and maximum elapse times for such process.

1 business process d i a gno s i s (out Pat ientSheet ps )
2 when( pa t i en tAr r i v e s ) last [ , 2 h s . ] { . . . }

Fig. 3.30: Constraining the duration of the Diagnosis process.

In the running example, the duration of the “diagnosis” process has to be constrained, as
it is required that “the patient should get its diagnostic in less than two hours”. Figure
3.30 shows how this requirement is modelled using the concept last.

name : String
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Fig. 3.31: Time concepts related to a business process.

Figure 3.31 shows the formalisation of these time-related concepts according to the metamod-
elling principle. This formalisation, thus, specifies that a business process (of type BusinessPro-
cess) may or may not have its starting time constrained. When this constraint exists, it is held
by the composite relationship start. Notice that only one start constraint may be associated
with a business process. In addition, the constraint (since Start extends from the abstract
class TimeRange) and may restrict the minimum delay (specified with themin attribute), the
maximum delay (specified with themax attribute), or both. The particular case in which the
attributes min and max have the same time values represents the modelling of an exact delay.
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It is worth noting that the time values these attributes may have are of type TimeExp. This
datatype defines a time value as a positive integer.

Regarding the duration of the business process, it is specified by means of the class Last, which
also extends from the TimeRange and the composite relationship last. When a business process
has its duration constrained, then the composite relationship must contain one (and only one)
instance of the class Last that has, at least one of the attributes min and max different from
zero. The min attribute contains the time expression that determines the minimum allowed
duration of the business process, whereas max represents the maximum allowed duration.

The remaining part of the meta-model is concerned with the formalisation of the business process
periodicity (if any). In case a business process is periodic, then it must have a period, which is
modelled by the composite relationship period. A period (of type Period) has two time values.
One time value, modelled by the composite relationship every, describes how often the business
process has to be requested (once it is started). The other time value, modelled by the attribute
until, describes the time up to which these requests have to be performed. Notice that the
instance held by the composite relationship every is an instance of one the classes that extends
from the abstract class Every.

context TimeRange inv ConsistentRange :
( s e l f . min > 0 or s e l f .max > 0)
and
( i f ( s e l f . min > 0 and s e l f .max > 0)

then s e l f . min <= s e l f .max else t rue endif )

context Bus ines sProces s inv Cons i s t entPer iod :
i f ( s e l f . pe r iod . every . va lue > 0) then

i f ( s e l f . s t a r t . min > 0) then
i f ( s e l f . l a s t . min > 0) then

s e l f . s t a r t . min + s e l f . l a s t . min <= s e l f . pe r iod . every . va lue
else

s e l f . s t a r t . min <= s e l f . pe r iod . every . va lue
endif

else
i f ( s e l f . l a s t . min > 0) then

s e l f . l a s t . min <= s e l f . pe r iod . every . va lue
else

t rue
endif

endif
else

t rue
endif

Fig. 3.32: Consistency between time-related values at the level of the business process.

Figure 3.32 shows the OCL conditions that ensure the values held by the previously mentioned
time-related concepts are such that there exist at least one process instance that meets these
conditions. Such OCL conditions are specified over the assumption that all time-related values
are in the same time unit. This assumption can be achieved by performing a normalisation of
the time-related information, that takes place during the parsing of the model.

The invariant ConsistentRange then not only ensures that every instance of the sub-type TimeRange
has at least one of its attributes with a value greater than zero (otherwise it does not make sense
to create an instance), but also that when both attributes are different from zero that max is
greater or equal to min (the case max=min represents an exact delay or duration of the business
process).
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On the other hand, the invariant ConsistentPeriod checks that period is greater than or equal
to the minimum delay (if any), the minimum elapse time (if any), and the sum of both in the
case that both minimums are greater than zero. Notice that this invariant will not hold in the
case that the business process has to (1) wait for a time that goes beyond the period, (2) last
longer than the period, or (3) wait and last for a time that exceeds the period. Since such cases
only describe invalid process instances they should not be model.

3.4.3.2 Timing constraints over a participant

The time a participant takes for completing its enclosed activities (including waiting times
between activities) may also be constrained 42 . The frame of reference for this time constraint
is determined by the point in time at which the business process starts its execution, ts in Figure
3.33. Notice that a business process starts executing only once all its required resources have
been allocated. It is assumed that the time taken to allocate the resources is negligible.

t i m e

start
BP

last
BP

Business Process

(start
t ime)

(last
t ime)

Participant i

t l

(request
t ime)

t r t s
min

t l max
t l

max
t smin

t s

period t P

Participant 1

Participant 2

Participant 3

work for
Participant i

(work for
t ime)

min
t

wf
t

wf
max

t
wf

Fig. 3.33: Timing constraints over a participant.

The notion of workFor is used to capture the minimum time (i.e. twfmin in Figure 3.33) and
maximum time (i.e. twfmax in Figure 3.33) a participant may be engaged in executing its en-
closed activities. The primitive that allows its modelling carries the same name. This primitive
followed by a pair of values [twfmin , twfmax ] specifies the minimum and maximum working times
the participant has to execute its enclosed activities. As usual, the symbol ‘ ’ is used to leave
without specifying one of the values.

Figure 3.34 shows how this primitive is used to specify the requirement that a doctor should
work in the examination of the patient for at least 15 minutes in order to ensure a certain level
of quality in the examination. Notice that the time information held by the workFor primitive
is concerned with the time the resource will be engaged for completing the activities enclosed

42 Actually, this time constraint has an effect on the resource that is assigned to the participant at runtime.



3.4. DT4BP: a detailed explanation 77

by the participant, whereas the primitive last is with the duration of “consultation” business
process.

1 business process c on su l t a t i on (
2 in Pat ientSheet ps , Temperature t , BloodPreasure bp ;
3 out Pat ientSheet ps ) last [ 15 min. , 1 h s . ]{
4

5 participant Pat ient {
6 . . .
7 }
8 participant Doctor {
9 . . .

10 }workFor [ 15 min. , ]
11 }

Fig. 3.34: Constraining the working time of Doctor participant.

Figure 3.35 shows the part of the meta-model that formalises the time-related concept workFor.
This formalisation indicates that a participant may or may not have its working time constrained.
This is modelled by the composite relationship workFor, which allows a particular participant
(of type Participant) to be bound with an instance of class WorkFor. Every instance of class
WorkFor has attributes min and max. These attributes own the time-related values that specify
the minimum and maximum times the participant is allowed to work, respectively.

max : TimeExp
min : TimeExp

TimeRange

name : String

ParticipantWorkFor
workFor

0..1 1

Fig. 3.35: Time concepts related to a participant.

Notice that the minimum time duration that participants may work should not exceed the
maximum elapse time of the business process where they are embedded, otherwise it is impossible
to create any valid process instance that meets both time constraints. In the case that the
participants are part of a periodic business process, their minimum workFor time should not
exceed the period of the business process (i.e. tP in Figure 3.33). The OCL invariants that
ensure the consistency between these time-related values are shown in Figure 3.36. The invariant
PartWorkForMinElapseMax checks the minimum workFor time is always lower than or equal to
the maximum elapsed time. Whereas PartWorkForMinPeriod does the same but for the period.

3.4.3.3 Timing constraints over an activity

Taking as the frame of reference the point in time at which an (whether composite, nested or
Atomic) activity ends (finish of act1 in Figure 3.37) or, by default, the initiation of its enclosing
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context Par t i c i pan t inv PartWorkForMinElapseMax :
i f ( s e l f . workFor . min > 0 and s e l f . bp . l a s t .max > 0) then

s e l f . workFor . min < s e l f . bp . l a s t .max
else t rue endif

context Par t i c i pan t inv PartWorkForMinPeriod :
i f ( s e l f . workFor . min > 0 and s e l f . bp . per iod . every . va lue > 0) then

s e l f . workFor . min < s e l f . bp . per iod . every . va lue
else t rue endif

Fig. 3.36: Consistency between Participant and Business Process time-related values.

business process, an activity may be constrained such that it has to wait for at least tactdelay time
units (aka delay) before starting its execution. It is worth explaining that both composite and
nested activities are considered as starting immediately in spite of the business processes these
kinds of activities refer to may not start their execution immediately (e.g. the business process
holds a delay).
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Fig. 3.37: Timing constraints over an activity.

As it is assumed that the execution of certain activity takes time, the actual time it takes to
execute is called the activity duration. This duration can be explicitly constrained by specifying
the minimum amount of time (i.e. tactlmin

in Figure 3.37) the activity must be under execution
(aka earliest deadline) and/or the maximum allowed time (i.e. tactlmax

in Figure 3.37) to be
spent performing this activity (aka latest deadline).

According to the previous analysis, it may be required to specify (1) in which point in time the
activity has to start and (2) the point in time within which the activity should finish. While
the former is used to capture the information related to the delay in requesting the activity, the
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latter captures the activity’s deadlines.

The formalisation in terms of the metamodelling of the in and within concepts is shown in Figure
3.38. The composite relationships in and within owned by the class Activity (by inheriting from
class Execution) allow an activity to capture the information regarded as its delay and duration,
respectively. Notice that the duration of an activity is defined by a range of time values, whereas
the delay is defined by only one. Hence, the duration of an activity (modelled as an instance of
class Within) has two time values (i.e. attributes min and max ), whereas the delay (modelled
as an instance of class In) has only one time value (i.e. attribute delay).

Activity

max : TimeExp
min : TimeExp

TimeRange

delay : TimeEx

In
Execution

Within

within

0..1 1

in

0..1 1

Fig. 3.38: Time concepts related with the notion of Activity.

Primitives with the same name are provided to allow the language’s user to describe such
information. In this manner, in allows the modeller to describe information related to the start
of an activity. This primitive must be followed by a single time value tactDelay

which specifies
the delay in starting the activity. On the other hand, the primitive within is used to allow
the modeller to specify the time information that constrains the duration of the activity: i.e.
its earliest and latest deadlines. Following the same strategy when minimums and maximums
need to be specified, a pair of time values following the primitive within is used to constrain
the duration of the activity. Thus, the pair [tactlmin

, tactlmax
] indicates that the activity executes

for at least tactlmin
time units and it does not take more than tactlmax

time units. As used so far,
the ‘ ’ symbol means that no constraint is set over the time value where this symbol is used.
Figure 3.39 shows how this primitive is used to model the duration of the activity “consultation”
according to the given requirement: “consultation’ has to take less than 1 hour, but more than
15 minutes.

It is worth noting that time constraints set over composite or nested activities, i.e. values
specified with within, must be consistent with those time constraints that might have been
set in the definition of the business processes they refer to, e.g. last values. Thus, in the
case that a composite or nested activity has its maximum allowed duration constrained (i.e.
within[ , tactlmax

] ) and the business process being referred to is either (1) periodic (i.e. business
process bp every tP until) tPuntil

or (2) its minimum elapse time is constrained (i.e. business
process bp last [ , tlmax ]), then:
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1 business process d i a gno s i s (out Pat ientSheet ps ) when( pa t i en tAr r i v e s ) last [ , 2 h s . ] {
2

3 participant Diagnos i sUnit {
4 . . .
5 composite c on su l t a t i on [ p , ] ( in ps , t , bp ; out ps ) within [ 15 min. , 1 h s . ] ;
6 . . .
7 }
8 }

Fig. 3.39: Constraining the duration of the activity consultation.

• for case (1): the maximum allowed duration of the composite or nested activity has to be
greater than or equal to the sum of the duration of the periodic execution of the business
process and its period (i.e.tP + tPuntil

≤ tactlmax
)

• for case (2): the maximum allowed duration of the composite or nested activity has to be
greater than or equal to the sum of minimum delay (i.e. start[tsmin , ]) set at the start
of the referred business process (if any) and its minimum elapse time (i.e. tsmin + tlmax ≤
tactlmax

)

The OCL invariants that ensure these conditions are shown in Figure 3.40. The reader should
notice that no consistency is required between the time constraints defined by the concepts in
(at the level of composite or nested activities) and start (at the level of the referred business
process). The concept in is used to constrain the request to start executing the activity, whereas
start is used to constrain the actual starting of the business process.

context Composite inv ConsistencyWithinLastPer iod :

i f ( s e l f . wi th in .max > 0 and s e l f . c a l l . pe r iod . every . va lue > 0) then
i f ( s e l f . c a l l . pe r iod . u n t i l > 0) then

s e l f . c a l l . pe r iod . u n t i l + s e l f . c a l l . pe r iod . every . va lue <= s e l f . with in .max
else

s e l f . c a l l . pe r iod . every . va lue <= s e l f . with in .max
endif

else t rue endif

and

i f ( s e l f . wi th in .max > 0 and s e l f . c a l l . l a s t . min > 0) then
i f ( s e l f . c a l l . s t a r t . min > 0) then

s e l f . c a l l . s t a r t . min + s e l f . c a l l . l a s t . min <= s e l f . with in .max
else

s e l f . c a l l . l a s t . min <= s e l f . with in .max
endif

else t rue endif

Fig. 3.40: Consistency between within, last and period time-related values for a composite
activity.

Another condition that may be checked at modelling time is that the sum of the activities’
minimum delays and/or durations (if any have been specified) has to be lower than or equal to
(1) the maximum allowed working time of the participant that encloses the activities (if any),
(2) the maximum allowed elapse time of the business process (if any), and (3) the period of the
business process (if any). Figure 3.41 shows the OCL conditions that perform these checks.



3.4. DT4BP: a detailed explanation 81

context Par t i c i pan t inv MinGuaranteedET :
l e t

execs :Sequence ( Execution ) = s e l f . stmts−>c o l l e c t ( s | s . oc l I sKindOf ( Execution ) ) ,
minWithinET : Integer= execs−>c o l l e c t ( e | e . with in . min > 0)−> sum( ) ,
minInET : Integer= execs−>c o l l e c t ( e | e .max . min > 0)−>sum( )

in

i f ( s e l f . workFor .max > 0) then
minWithinET + minInET <= s e l f . workFor .max

else t rue endif

and

i f ( s e l f . bp . l a s t .max > 0) then
minwithinET + minInGET <= s e l f . bp . l a s t .max

else t rue endif

and

i f ( s e l f . bp . per iod . every . va lue > 0) then
minwithinET + minInGET <= s e l f . bp . per iod . every . va lue

else t rue endif

Fig. 3.41: Consistency of the sum of activities’ max/min delays with respect to their enclosing
context.

3.4.3.4 Timing constraints when exchanging messages

The exchange of messages between participants is captured by the send and receive concepts
(see Section 3.4.2 for details about these concepts). Time constraints over these concepts may
be set to specify:

1. how long a (blocking) sending participant is willing to wait for the recipient to get the
message,

2. how long the recipient is willing to wait for a message to arrive,

3. how long the recipient executes their activities to produce a reply after a message has been
received, and

4. how soon a reply should arrive to a sending participant after a message has been sent.

The timing constraints (1) and (2) can be modelled using the concept within introduced in
the previous section. More precisely, a participant psender holding the statement send msg to
preceiver block within[ ,t] describes the condition that the psender is willing to wait for the
preceiver to get the message msg for t time units, maximum. On the other hand, the participant
preceiver holding the statement receive msg from psender within[ ,t] describes the fact that
preceiver is willing to wait for message msg to arrive at t time units, maximum.

However, with the concepts introduced so far, it is not possible to model constraints (3) nor (4).
For capturing such timing constraints, a new concept is required that allows for the combination
of a set of activities within a common block such that one timing constraint can be bound to
a group of activities act1, ..., actn , rather than only one. The notion of block is introduced to
set a common timing constraint over a set of activities. Since an activity is a statement (see
the part of the meta-model shown in Figure 3.8), in order to be more precise without loosing
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generality, the concept of block is used as a structuring means to join a set of statements rather
than activities. In this manner, the notion of block allows for the definition of an activity43

within a participant that actually is composed of a a set of statements.

The formalisation of the timing constraints over the concepts send and receive, as well as the
notion of block are shown in Figure 3.42. The approach taken for the formalisation of the timing
aspects with regard to the send and receive concepts is exactly the same followed to formalise
the time aspects of the activity concept. In this manner, the classes Receive and Send are
inherited from the abstract class Execution such that the composite relationships in and within
are part of their definition. The same is done for the concept block to allow a set of activities be
constrained using the notions of In or Within. Hence, the class Block also extends from class
Execution. It is worth noting that the ordered set of statements owned by a particular block,
which is modelled by the ordered composite relationship stmts, may not only contain activities,
but also any other kind of statement such as sends, receive, or even control-flow operators.

delay : TimeEx

InWithin

msg : String

ReceiveActivity

Execution

block : boolean
msg : String

Send

Statement

max : TimeExp
min : TimeExp

TimeRange

Block

within

0..1

1

stmts
 {ordered}

1..*

1

in

0..1 1

Fig. 3.42: Time concepts related to the notions of Activity, Block, Send and Receive.

The concrete representation of the block concept is achieved by the primitive do{...}. In this
way, assuming that a1, ..., an are all the activities that a participant must execute to produce
the expected reply, the statement do{a1, ..., an} within[ ,t]44 allows constraint (3) to be mod-
elled. In the same way, assuming that a1, ..., an

1 now represents the activities that follow a (no
blocking) send, the constraint (4) can be modelled. Figure 3.43 shows how the primitives do
and within are used within the running example to model the constraint “the parallel activities
“examination” and “makeDocument” should execute in less than 30 minutes”.

43 In the BPMN language, this activity is known as an embedded process.
44 This statement means that t is the maximum allowed time for executing the activities a1, ..., an .
1 The activity an must be the one in charge of receiving the message.
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1 business process d i a gno s i s (out Pat ientSheet ps ) when( pa t i en tAr r i v e s ) last [ , 2 h s . ] {
2

3

4 participant Diagnos i sUnit {
5 . . .
6 do{ sp l i t composite examination [ p , , ] ( out t , bp ) ,
7 composite makeDocument ( in prs ; out ps )
8 }within [ , 30 min. ] ;
9 . . .

10 }
11 }

Fig. 3.43: Constraining a block of activities.

3.4.3.5 Timing constraints over data

The information carried by an object might be valid for only a limited time after its last update
(e.g. the object that holds the patient’s temperature). This type of time-related information
associated with objects is aimed at specifying a property p that determines for how long the
object’s information will be valid. This time-related information then defines a deadline for the
information being carried for that particular object, which is relative to the last time it was
updated.

A timing constraint over an object (if given) is meant to define a time frame which determines
the validity of the information placed within the object. Since this validity time frame is relative
to the moment at which the object was last updated, its specification is given by providing the
duration of the time frame. As this timing constraint is associated with an object, it must
be given at the same time the object is declared using the concept ObjDecl. This issue points
out that the only kinds of objects that may own a duration are local objects. In this manner,
when declaring a local object its duration (captured by the attribute with the same name) can
be defined as well. The formalisation of the notion of duration as a means to place a timing
constraint over a particular local object is shown in Figure 3.44.

duration : TimeExp

LocalObject

...

Parameter

name : String

Object

ObjDecl
Statement var

11

Fig. 3.44: Duration of the local object’s data.

The concrete modelling of this time constraint is achieved using the primitive expire (i.e.
typeName localObject expire(timeExpr)). Once again, the running example is used as a means
to show how the primitive is used. The patient’s measured temperature and blood pressure are
considered as valid until one hour after they have been taken. The modelling of this requirement
using the primitive expire is shown in Figure 3.45.
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1 business process d i a gno s i s (out Pat ientSheet ps ) when( pa t i en tAr r i v e s ) last [ , 2 h s . ] {
2

3

4 participant Diagnos i sUnit {
5 . . .
6 Temperature t expire (1 h s . ) ;
7 BloodPressure bp expire (1 h s . ) ;
8 . . .
9 }

10 }

Fig. 3.45: Modelling time constraints over data elements.

3.4.3.6 Timing constraints over resources

Time constraints over resources are used to specify their availability. Absolute time constraints
would be the rule rather than the exception when specifying the availability pattern for certain
resources.

The last kind of time constraint that could be required to be modelled are those used to specify
the availability of a resource. Such time constraints determine the availability of a resource by
means of temporal patterns (e.g. Mondays and Fridays, or Week days from 8:00 to 16:00, etc.)
combined with valid periods (i.e. each pattern is valid only for certain period of time (e.g. from
2009-01-01 to 2011-12-31). Since these patterns may be very different, the time constraints used
to model them are complex, and not easy to read or understand. Furthermore, many different
primitives should be given in order to allow such patterns to be modelled. The way to cope
with this modelling issue is to rely on the notion of calendar45 as the means to describe the
availability of a resource. In this manner, instead of using patterns to model the time frames
for which a particular resource is available, this information is now explicitly included46 in a
calendar. Therefore, the availability of a particular resource can be known by means of its
associated calendar (if any). Figure 3.46 shows the part of the meta-model that formalises this
association, which is modelled as a composite relationship named availability. It is worth noting
that a resource without an associated calendar is considered as the one that is always available.

name : String

Resource Calendaravailability

0..11

Fig. 3.46: Calendar as means to specify the availability of a resource.

3.4.3.7 Control flow operators

The remaining concepts to be analysed are: control flow operators and event. As it is assumed
that a control flow operator does not take time to be performed, it does not make sense to set
time constraints over them.

45 Dates and times are represented using the Gregorian calendar as it is the international standard.
46 The way in which information is set in a calendar is beyond the scope of this work.
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3.4.3.8 Events

An event is used to specify the circumstances that make a business process start its execution.
Thus, a time constraint set over an event can be see as a constraint over the start of the
business process that such an event triggers. Therefore, rather than attaching time constraints
to an event, the approach is to use such events as frames of reference for the time constraints
that can be set over the start of a business process (i.e. exact, minimum, and maximum starting
delay).

3.4.4 Dependability

A dependable business process has been defined as one that either (preferably) does not miss its
goal unacceptably frequently or, if it does, the consequences are not unacceptably severe. This
section introduces those concepts that allow modellers to derive explicit dependability when
modelling business processes.

3.4.4.1 Pre- and post-conditions

A business process that misses its goal is considered as one that has failed. Without having a
precise definition of the business process’s goal, to judge whether it has failed or not may lead to
ambiguous answers. Since precision is needed, a business process goal has to be described using
certain formal notation. As done so far, OCL is the chosen notation to meet this requirement.
It is also important to state clearly under which conditions such goal is expected to be reached
by the business process. These conditions are expected to be fulfilled by the “client” that
requests the business process. The relationship between the business process and its clients
can be considered as a contract in the same sense as Meyer does in the “Design by Contract”
approach [Mey97]. The pre-condition of the contract defines what every client must satisfy to
achieve the business process’ goal. Thus, the goal is the post-condition of the contract. A process
instance that satisfies the business process pre-condition is expected to achieve its post-condition
(or business process’ goal), eventually.

The notion of contract also helps in separating the responsibilities in case the contract is broken
(i.e. either the pre-condition or the post-condition is not satisfied). A business process that is
called without satisfying its pre-condition represents a fault of the client. Conversely, a business
process that, once started, does not achieve its post-condition represents a fault of the business
process provider. It is worth noting that a process instance is created only if the business process
pre-condition is met. For the case when the contract is broken due to a fault of the provider,
represents a process instance failure as the goal (i.e. the post-condition) is not achieved.

Figure 3.47 shows the part of the meta-model that formalises the notions of pre- and post-
condition. Both a pre- and a post-condition are considered as first-order logical formulas written
in OCL. Each condition then is modelled as a class that contains an attribute called predicate of
type OclConstraint, which are aimed at storing the logical formula the condition represents. The
composite relationships pre and post model the fact that each business process must have both
a pre- and post condition. As already stated, the post-condition describes the business process
goal. Hence, this post-condition is what the business process has to achieve to be considered
as having had provided a normal outcome to the client that requests such business process.
That is the reason why the business process post-condition has been modelled with a class
termed Normal that extends from the abstract class Outcome. Further explanations regarding
the business process outcome are given in the next section.
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predicate : OclConstraint

Precondition

predicate : OclConstraint

Normal

isRoot : boolean
name : String

BusinessProcess

Outcome

post

1 1

pre

1

1

Fig. 3.47: Pre- and post-condition in a business process.

The context for pre- and post-conditions is determined by the input and output parameter ob-
jects of the business process. The pre-condition expression may only refer to input parameter
objects as it specifies the applicability of the business process, whereas the post-condition ex-
pression may only refer to output parameters as it describes the effects upon the completion of
the business process.

Figure 3.48 shows, through the running example, how the notion of pre- and post-condition are
put in practice. The client is the patient that arrives at the diagnosis unit with the intention
of being diagnosed and getting a treatment to deal with the reported disease. This, as already
explained in Section 3.4.1.5, is the event (modelled in line 1) that triggers the business process.
Since the diagnosis business process has been engineered to satisfy the client’s demands, its goal
(or post-condition) then is to diagnose the patient (attribute d of the output parameter ps) and
provide him with a treatment (attribute p of the output parameter ps). This post-condition then
(modelled in OCL as shown in line 21) specifies that the attributes d and p should be defined
to consider the process instance achieving the business process goal. It is worth mentioning
that the diagnosis unit personnel assume that a person would only come to the diagnosis unit
because he believes he is ill. Hence, there is not any special pre-condition to be fulfilled by the
person to be diagnosed at the unit. That is the reason why the business process pre-condition
is always true (line 2).

A business process instance is assumed to meet its post-condition if the (1) activities are executed
according to the order prescribed in the process definition and (2) each activity performs in a
correct manner. The order in which the activities of a business process must be executed is
modelled using the control flow operators introduced in Section 3.4.1.2. Having specified the
activities’ execution order, then it is possible to judge whether a process instance has adhered
or not to the allowed execution paths prescribed in the process definition. Conversely, there is
not a means to model what a particular activity has to perform. Since this is not modelled, then
it cannot be judged whether the activity has been properly performed by a particular process
instance.

This gap is bridged by using the notion of pre- and post-condition. Thus, a post-condition is
used to describe what are the expected results of having executed the activity. The pre-condition
describes what is assumed by the activity in order to achieve the expected results. An activity
for which its pre-condition does not hold cannot be executed. An activity that ends its execution
without holding its associated post-condition is considered as one that has not been performed
properly (i.e. it has failed). A failing activity produces a deviation in the process instance
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1 business process d i a gno s i s (out Pat ientSheet ps ) when( pa t i en tAr r i v e s ) last [ , 2 h s . ]
2 pre [ true ]{
3

4 participant Diagnos i sUnit {
5 . . .
6 Person prs ;
7 composite r e g i s t r a t i o n [ , p = al loc (new Pat ient ) ] ( out prs ) within [ , 15 min. ] ;
8

9 Temperature t expire (1 h s . ) ;
10 BloodPressure bp expire (1 h s . ) ;
11

12 do{ sp l i t composite examination [ p , , ] ( out t , bp ) ,
13 composite makeDocument [ ] ( in prs ; out ps ) ;
14 }within [ , 30 min. ] ;
15

16 composite c on su l t a t i on [ p , ] ( in ps , t , bp ; out ps ) within [ 15 min. , 1 h s . ] ;
17 . . .
18 composite g ive In fo rmat ion [ p , ] ( in ps ) within [ , 15 min. ] ;
19 . . .
20 }
21 } post [ not p s . d . o c l I sUnde f i n ed ( ) and not p s . p . o c l I sUnde f i n ed ( ) ]

Fig. 3.48: Pre- and post-conditions for the Diagnosis Business Process.

execution that leads it to miss its goal if no corrective actions are taken. Therefore, a deviation
in the process instance execution can be detected when a post-condition associated with one of
its prescribed activities evaluates to false. Associating a post-condition to an activity not only
eases its judgement about correctness, but also provides a means to detect a deviation in the
process instance execution. The context for pre- and post-conditions are the input and output
parameter objects of the activity, respectively. Notice that composite and nested activities do
not need to have pre- and post-conditions as these kinds of activities are actually references to
business processes, which have their own pre- and post-conditions. This means that the pre-
and post-condition of a composite or nested activity are held by the business process to which
they refer. In this manner, pre-conditions and post-conditions must be provided for atomic
activities, only. This is formalised by the part of the meta-model shown in Figure 3.49. The
composite relationships pre and post model the fact that an atomic activity (modelled by the
class Atomic) has a pre- and a post-condition, respectively. Conversely, nested and composite
activities do not have a pre- nor a post-condition.

Once again, the running example is used to show how pre- and post-conditions at the level
of atomic activities are put into practice. Figure 3.50 shows part of the consultation business
process definition. This business process specifies that the atomic activities diagnosePatient,
prescribeTreatment and fillPatientSheet need to be performed in sequence by the participant
Doctor. The atomic activity diagnosePatient is considered as properly executed when a diagnosis
(here modelled by the local object d) is obtained. Obtaining a diagnosis means that the local
object contains a valid value as defined by its datatype. The OCL condition described in
line 12 specifies this condition. Similar OCL conditions are specified for the atomic activities
prescribeTreatment (line 16) and fillPatientSheet (line 20).

Recall that, in a business process, pre- and post-conditions are being used as a means to assess the
execution of a particular process instance under the assumption that a certain initial condition
holds. This means that if this initial condition (aka pre-conditions) holds, then the process
instance is allowed to be executed. However, the actual execution of the process instance also
depends on the existence and availability of the resources the instance requires to be performed.
This underlines the fact that, from the perspective of a state transition system, the state of the
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predicate : OclConstraint

Postcondition
predicate : OclConstraint

Precondition
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Fig. 3.49: Associating pre- and post-conditions with an activity.

mechanism used to execute a particular process instance is not only defined by the information
held in the pre- or post-conditions, but also for the status of the resources that allow it to be
played. Moreover, the state must also hold information regarding the life cycle of the activities
such that they are executed in the specified order.

Pre- and post-conditions on atomic activities and business processes then provide clarity regard-
ing the circumstances in which a particular business process is expected to reach its goal, and
what conditions must be met to achieve the goal. It can, thus, be concluded that their inclusion
in a process definition is a way to increase its dependability since either a deviation or failure of
the process can be assessed without ambiguities.

3.4.4.2 Transactional behaviour

A business transaction [Pv07] is defined as a consistent change in the state of the business
process that is driven by a well-defined activity. Business processes usually are composed of
several business transactions. Business transactions exhibit the following characteristics:

1. they provided a result that is critical to the overall success of the business process in which
they are embedded,

2. they involve two or more participants, which interact in a coordinated manner to achieve
a mutually desired outcome

3. they run over long periods of time, behaving as open nested transactions [GR92] (i.e. sub-
business transactions can abort or commit independently of the status of the final outcome
of the parent business transaction),

4. they provide consistency and durability as ACID-transactions, but relax isolation (limited
to those parts of the business process’ state that are local to the business transaction) and
atomicity (limited to guarantee consistency during the business transaction progress).
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1 business process c on su l t a t i on (
2 in Pat ientSheet ps , Temperature t , BloodPreasure bp ;
3 out Pat ientSheet ps ) last [ 15 min. , 1 h s . ]{
4

5 participant Pat ient {
6 . . .
7 }
8 participant Doctor{
9 . . .

10 Diagnos i s d ;
11 d iagnosePat i ent (out d)
12 post [ not d .o c l I sUnde f i n ed ( ) ] ;
13

14 Pre s c r i p t i on p ;
15 prescr ibeTreatment (out p)
16 post [ not p .o c l I sUnde f i n ed ( ) ] ;
17

18 . . .
19 f i l l P a t i e n t S h e e t ( in ps , p , d ; out ps )
20 post [ p s .d = d and ps .p = p ]
21 }
22 }post [ not p s . d . o c l I sUnde f i n ed ( ) and not p s . p . o c l I sUnde f i n ed ( ) ]

Fig. 3.50: Pre- and post-conditions on Atomic activities within the Consultation Business Pro-
cess .

Business processes belonging to the domain of interest (i.e. DCTC) share the following proper-
ties: they include multiple collaborative participants; they are expected to last for hours, days
or longer; and, the special interest in making them dependable, is evidence of the importance
in providing the expected business result. Furthermore, as explained in Section 3.4.2 when
the notion of nested business process was introduced, (reduced) isolation and consistency are
transactional properties that any business process should hold.

It can be concluded then that the assumption of considering a business process as a business
transaction does not over-constrain the domain of interest. The motivation to consider business
processes as business transactions (or transactions, for short) resides in exploiting the features
provided by the transaction paradigm to increase the dependability of business processes. In
other words, the nice features (i.e. ACID properties) that make transactions an approach to
achieve fault-tolerant software can be borrowed and adapted to the context and needs driven in
this thesis. Next, the tuned transactional properties that a DCTC business process provides are
detailed.

• Outcomes
There are four kind of outcomes a business process may produce: normal, degraded,
aborted and failed. The meta-model depicted in Figure 3.51 formalises these outcomes
by means of the classes with the same names. The classes are specialisations of the class
Outcome.

A Normal outcome is produced when the business process reaches its goal, i.e. its as-
sociated post-condition holds. When the business process’ goal cannot be reached, a
dependable business process should strive to provide a partial service that potentially sat-
isfies every participant [MKB08]. This partial service represents a Degraded outcome with
respect to the initially agreed upon business objective. In the same manner as used for the
normal outcome, the degraded outcome must specify the condition (modelled by the at-
tributed predicate) that makes the business process outcome to be considered as degraded
with respect to the original expected outcome.
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predicate : OclConstraint

Degraded

predicate : OclConstraint

Normal

AbortedFailed

Outcome

Fig. 3.51: Business process outcomes.

In the running example, a degraded outcome arises when the doctor requests that the
patient remains in the hospital for some time because the patient’s current health status
does not allow the doctor to determine a clear diagnostic. The doctor then prescribes a
preliminary treatment to be followed by the patient during his stay in the hospital such that
he can eventually be diagnosed. Figure 3.5247, (line 5) shows how the degraded outcome
is modelled. Notice that what makes it degraded with respected to the expected normal
outcome (Figure 3.52, line 3) 1) the patient has to remain at the hospital longer than
expected and 2) the business process ends without providing a diagnostic to the patient,
i.e. ps.d.oclIsUndefined(). Nonetheless, the patient does receive a preliminary treatment
(i.e. not ps.p.t.oclIsUndefined()).

1 business process d i a gno s i s (out Pat ientSheet ps ) when( pa t i en tAr r i v e s ) last [ , 2 h s . ]{
2 . . .
3 } post [ not p s . d . o c l I sUnde f i n ed ( ) and not p s . p . o c l I sUnde f i n ed ( ) ]
4 . . .
5 }degraded [ p s . d . o c l I sUnde f i n ed ( ) and not p s . p . t . o c l I sUnd e f i n e d ( ) ]

Fig. 3.52: Degraded outcome in the Diagnosis Business Process .

In the case that it is not possible to provide any partial service (i.e. Degraded outcome), the
business process should be Aborted. Aborting a business process might imply performing
business-specific activities to clean-up the effects of having executed non-reversible activ-
ities. Thus, an abort outcome specifies that the effects of executing a business process are
undone, i.e. the pre-condition of the business process holds, regardless of the side effects
remaining at the end of the business process.

All objects are considered as manually recoverable, which implies that specific knowledge
has to be given for objects to recover their status when aborting the business process.
Objects for which there is no such information, are considered as automatically recoverable.
This means that “somehow”48 they are rolled-back to the status they had before starting
the business process.

47 The reader is encouraged to review Section C.1 of the Appendix C to see the complete example.
48 The recovery may be carried out for some underlying transactional system on which the business process

relies on.
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A Failed outcome occurs when the business process faced with problems that made it
impossible not only to achieve its expected outcome or a degraded one, but also to be
aborted.

A business process then relaxes the all-or-nothing outcome, i.e. the atomicity property,
that (ordinary) transaction processing offers. This is because it is allowed to obtain partial
results from its execution. It is worth noting that while normal and failed outcomes rep-
resent the best and worst cases that a business process can produce, respectively, degraded
outcomes can vary from very close to the optimal expected result, to very far off. An
aborted outcome can be considered as an extremely degraded outcome. However, the fact
that it is the only outcome that is guaranteed to satisfy the business process pre-condition,
makes it different.

• Consistency
A business process is guaranteed to produce a consistent result if it satisfies any of the
following conditions: it satisfies the business process’ post-condition, a normal outcome;
it satisfies one of the degraded post-conditions, a degraded outcome; or it satisfies its
associated pre-condition when it aborts, an aborted outcome. The only situation where
the business process does not offer a guarantee is when the business process fails entirely,
afailed outcome.

It is important to emphasise here that while a process definition always includes a normal
outcome, it may or may not include degraded, aborted or failed outcomes. Including
degraded, aborted or failed outcomes in the business process definition, implies extending
the results it provides to its enclosing context.

• Isolation
Due to the long-lived nature of a business process, only local information (i.e. local objects)
can be isolated from the outside. This means that any change made over a non-local object
would be seen from the outside. It is important to emphasise here that changes on both
local and parameter objects are made by atomic activities only, since composite and nested
activities are just references to business processes.

• Locking
An object, regardless of whether it is a parameter or a local object, can only be accessed, i.e.
read or written, within an atomic activity. As different atomic activities might attempt to
access the same object concurrently, a locking mechanism is required to avoid smuggling
information. The locking mechanism proposed is one that works at the level of atomic
activities by locking those objects that are being passed as output arguments (as these
variables are the ones being modified, only). These objects remain locked for the time the
atomic activity performs, which is expected to be much shorter than the time required
by a composite activity (i.e. long-running business process). An atomic activity needs to
gain access over all objects being passed as output arguments before starting its execution,
otherwise it remains waiting, i.e. it is blocked, until such a condition is met.

3.4.4.3 Exception handling

It is assumed that a process instance that has deviated from its prescribed paths, i.e. the process
definition, eventually misses its goal if no corrective activities are executed. Thus, to avoid this
ultimate failure the process must first detect that it has deviated from the prescribed path
defined in the process definition. Second, the process must perform the necessary corrective
activities that will recover return the execution to one of its prescribed paths.
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Since detection and recovery are the bases of fault tolerance (see Section 2.2), techniques involved
in fault tolerance should be considered as a means to model dependable business process. One of
the techniques that allows fault tolerance to be attained, and has strong and direct connection
with the features49 that lead to the business process failure, is exception handling. Therefore, in
order to attain dependable business processes, the concepts of exception and handler embodied
by such a technique are borrowed and adapted in the following way: an exception denotes the
notification of a deviation; a handler represents the set of corrective activities required to recover
from such a deviation.

• Deviations and Exceptions
It has been said that a deviation during the execution of a process instance can be detected
when the post-condition associated with one of its prescribed activities evaluates to false.
Since an exception is used as a means to signal the occurrence of a deviation, that is
precisely what has to happen when a post-condition evaluates to false.

An activity (either composite, nested or atomic) that ends its execution without holding
its associated post-condition50 represents a failed activity. While it is simple to know when
an activity fails (i.e. the post-condition is false), it may not be obvious to realise what was
the cause of the failure. There may be multiple reasons that the post-condition becomes
false. Knowing the details of the activity failure helps to define the recovery measures that
need to be put in place in order to mitigate the negative effects of these situations.

DataDurationDeviation

predicate : OclConstraint

Predicate

ActivityDeviation

duration : TimeExp

LocalObject

FailureDeviation

name : String

Exception

ActivityDeviation

AbortDeviationDataExpired

Condition

TimeEx Abort

raise

1 1

deviations

0..*

1

obj

1..*

1

condition

1

1

Fig. 3.53: Using deviation as means to detect activity failures.

The proposal to cope with this issue is that each activity has information about every
expected deviation that may occur during its execution. In this manner, while the activity

49 These features are: (1) detection of the deviation during the business process execution, and (2) handling
the deviation after the deviation has been detected.

50 For composite and nested the post-condition is the one held by the business process they refer to.
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post-condition describes the expected result to be achieved when it performs successfully,
an expected deviation describes the condition that allows detecting the failure of such
an activity. An expected deviation then is modelled by providing (1) the condition that
allows it to be detected and (2) the exception being raised in order to notify the actual
occurrence of the deviation.

The meta-model shown in Figure 3.53 shows the formalisation of these concepts. The
composite association deviations captures the different ways in which an activity (of type
Activity) may deviate. Each of these deviations, ActivityDeviation, must have a condition
of type Condition. The deviation is affiliated with the exception through the association
named raise.

The keyword deviation is the element that lets modellers specify deviations in a process
definition. The syntax for using this keyword is:

deviation[exName|deviationCondition]),

where deviationCondition is the condition (written using the OCL language) that allows
the deviation to be detected. exName is the exception raised as soon as the condition
exists. This means that a deviation might be detected not only upon completion of the
activity, but also during its execution.

The conditions that make a deviation detectable may be very specific. These kinds of
conditions are described as a predicate written in OCL. The class Predicate, which is a
specialisation of the class Condition, along with the attribute of the same name captures
this concept within the meta-model. It is worth noting that there may exist multiple
deviations for the same activity such that their condition is of type Predicate. In that
case, the conditions owned by each deviation have to be mutually exclusive with each
other and with respect to the post-condition of the activity.

In the running example, deviations that may arise during the examination of the patient
are shown in Figure 3.54. At this step in the process, a nurse and an assistant check
the temperature (line 6) and blood pressure of the patient (line 14), respectively. With
regard to the activity of checking the temperature, a value over 40 (line 8) or a problem in
the thermometer (line 9) represent deviations with respect to the expected result of this
activity (line 7). Regarding the assistant activity of checking the patient blood pressure,
deviations with respect to the expected result (line 15) arise when the value of the blood
pressure is over 200 (line 16) or the blood pressure monitor does not work properly (line
17).

A deviation that occurs because either (1) at least one of the activity’s input parameters
has expired, i.e. its associated duration time has passed, (2) the activity has been aborted,
or (3) the activity has failed deserves special attention. These particular deviations are
modelled using special conditions and exceptions.

The notion of the DataDurationDeviation is used to detect a late access to at least one of
the input parameter objects of the activity that has its data value duration constrained by
time (see Section 3.4.3 for a review of the time constraints over data). This condition must
go along with the exception DataExpired, which is the means for signaling the occurrence
of this type of deviation. It must be noted that since an object, regardless of whether it is
a parameter or a local object, may only be accessed within an atomic activity (see 3.4.4.2
for more information), this kind of deviation may only take place during the execution of
this kind of activity. The OCL invariants that ensure that both a DataDurationDeviation
is associated only with an AtomicActivity (invariant DataDurationDev). The exception
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1 business process examination (out Temperature temp , BloodPressure bp)
2 last [ , 30 min. ]{
3

4 participant Pat ient { . . . }
5 participant Nurse{
6 . . .
7 checkTemp ( )
8 post [ temp | temp.oclIsNew ( ) and temp < 4 0 ] ;
9 deviation [ EX HighTemp | ( temp | temp.oclIsNew ( ) and temp > 40 ) ]

10 deviation [ EX MalfunctionThermometer | temp.oc l I sUnde f ined ( ) ]
11 . . .
12 }
13 participant Ass i s t an t {
14 . . .
15 checkBP ( )
16 post [ bp | bp.oc l IsNew ( ) and bp < 2 0 0 ] ;
17 deviation [ EX HighBP | ( bp | bp.oc l IsNew ( ) and bp > 200 ) ]
18 deviation [ EX MalfunctionBPMonitor | bp .oc l I sUnde f ined ( ) ]
19 . . .
20 }
21 }post [ not temp.oc l I sUnde f ined ( ) and not bp .oc l I sUnde f ined ( ) ]

Fig. 3.54: Deviations that may arise in the Examination Business Process.

raised when this occurs is DataExpired (invariant DataExpiredException) is shown in Fig-
ure 3.55. Notice on the same Figure that the OCL invariant DurationGTZero ensures that
the duration of each object being referred to by DataDurationDeviation is greater than
zero, otherwise the deviation would never take place.

context Act iv i ty inv DataDurationDev :
Act i v i t y . a l l I n s t a n c e s ()−> f o rA l l ( act |

act . dev ia t i ons−>e x i s t s ( dev | dev . oclIsTypeOf ( DataDurationDeviation )
implies act . oc lIsTypeOf (Atomic ) ) )

context Act iv i tyDev ia t i on inv DataExpiredException :
i f ( s e l f . c ond i t i on . oclIsTypeOf ( DataDurationDeviation ) ) then

s e l f . r a i s e . oc lIsTypeOf ( DataExpired )
else t rue endif

context DataDurationDeviation inv DurationGTZero :
s e l f . obj−>f o rA l l ( o | o . durat ion > 0)

Fig. 3.55: Invariants related with the DataDurationDeviation concept.

The concrete modelling of a DataDurationDeviation is achieved using the same primitive
deviation with the special condition dataExpired(obj1, ..., objn)

51, and an exception of
type DataExpired.

Regarding a deviation that occurs because the activity has been aborted or failed, the
modelling distinguishes between atomic, composite and nested activities. Both the abor-
tion or failing of an atomic activity is modelled by a deviation (ActivityDeviation) that
has a condition of type Predicate. This means that a condition (written using the OCL
language) and an exception has to be provided. However, it must be noted that an activity
is considered as having deviated due to an abortion only if the exception used to notify
its occurrence is of type Abort.

51 The objects obj1, ..., objn are the atomic activity input parameters that have their data duration constrained
by time.
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The case is different for composite or nested activities, as they must capture the different
deviations the business process may produce. For the sake or simplicity, the analysis here
is performed only for composite activities, however it is also valid for nested activities. As
explained in Section 3.4.4.2, a business process produces four different kinds of outcomes:
normal, degraded, aborted and failed. A composite activity captures the degraded outcome
(i.e. degraded[cond]) by means of a deviation dev that has a condition of type Predicate
(i.e. dev .condition.isTypeOf (Predicate)) such that the condition of the deviation is the
same as the degraded outcome dev .condition. predicate = cond . However special condi-
tions are required to capture the outcomes aborted and failed52. The particular concepts
AbortDeviation and FailureDeviation are introduced to achieve their modelling. In this
manner, a composite activity relies on the notion of AbortDeviation to model the condition
that captures the aborted outcome of the referred business process, whereas FailureDevi-
ations is the condition that captures the failed outcome. The OCL invariants that ensure
that the special conditions Abortdeviation and FailureDeviation are only used in deviations
associated with composite or nested activities are shown in Figure 3.56.

context Act iv i ty inv AbortDev :
Act i v i t y . a l l I n s t a n c e s ()−> f o rA l l ( act |

act . dev ia t i ons−>e x i s t s ( dev | dev . oclIsTypeOf ( AbortDeviat ion )
implies ( act . oc lIsTypeOf ( Composite ) or ( act . oc lIsTypeOf ( Nested ) ) ) ) )

context Act iv i ty inv Fai lureDev :
Act i v i t y . a l l I n s t a n c e s ()−> f o rA l l ( act |

act . dev ia t i ons−>e x i s t s ( dev | dev . oclIsTypeOf ( Fa i lu r eDev ia t i on )
implies ( act . oc lIsTypeOf ( Composite ) or ( act . oc lIsTypeOf ( Nested ) ) ) ) )

Fig. 3.56: Invariants related with the AbortDeviation and FailureDeviation concepts.

The keywords aborted and failed let the modeller capture the deviation conditions of
the composite activity that represent the abortion and failure of the business process,
respectively.

An activity may also fail when one of its time constraints is not met. The time constraints
that can be associated with an activity are those determined by the concepts In and
Within. The concept In is used to constrain the start of the activity, whereas Within
determines the duration of the activity (see Section 3.4.3.3 for more details about these
time-related concepts).

Before going further with the explanation of missing time constraints there is a point with
regard to the concept In that needs to be clarified. The notion of In can be used to
constrain the start time of an activity. This means that the activity has to be delayed
for a certain time before starting its execution. It is assumed that the delay set by using
the concept In is always met. Therefore, such time constraints cannot be missed. Hence,
the time constraints that can be missed regarding an activity are those modelled with the
concept Within.

The fact that one of the time constraints modelled with the concept Within is not met
represents a deviation in the execution of the activity. Time-related deviations are for-
malised in terms of metamodelling as instances of the class TimeDeviation, which extends
from the abstract class Deviation. The composite relationship named timeout is aimed at
modelling the time-related deviations that may be associated with the time constraints

52 More details about the relationship between the composite’s outcome and the business process’ outcomes is
given at the end of this Section.
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set by means of the concept Within. Figure 3.57 shows the part of the meta-model that
formalises these concepts.

TimeoutMaxBPLastTimeoutMinBPLast

kind : TimeoutType

TimeDeviation

TimeEx

name : String

Exception

Deviation

max : TimeExp
min : TimeExp

TimeRange

delay : TimeEx

InWithin

min_max
max
min

´«enumeration´»

TimeoutType

WorkForStart Last

timeout

0..2

1

timeout

0..2

1

timeout

0..2

1

Fig. 3.57: Time-related deviations as a means to detect timeouts.

As time-related deviations are a specialisation of a Deviation, it must be used to explicitly
describe (1) the condition that detects a missed time constraint, and (2) the exception
that is then raised to signal its occurrence.

The missed time constraint may be due to either an early or late completion of the activity
with respect to the imposed time limit. An early finish of an activity is considered as
having the lower-bound missing, whereas late completion of the activity as having the
upper-bound missing. This points out that time-related deviations can be categorised
with respect to the way in which the time constraint is missed. Notice that knowledge
of whether it is the upper or the lower bound constraint that has been missed may be of
interest, in particular when the handling associated with each deviation is not the same53.
The class TimeDeviation has the attribute kind, which is of type TimeoutType. This
attribute is aimed at capturing the condition, i.e. point (1), that allows the deviation to
be detected. Hence, a time-related deviation for which this attribute has the value min

53 More information about the handling of a deviation is given in the next section.
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models the deviation of the activity when its lower bound is missed, whereas the value max
when its upper bound is missed. The case in which the attribute has the value min max
models the deviation of the activity regardless of whether it is the lower or upper bound
that is missed.

Regarding the concrete modelling of the conditions associated with time-deviation, special
predicates, which are not OCL expressions are used. The special predicate timeout.min
denotes that a lower-bound was missed whereas timeout.max indicates that an upper-
bound was missed. The special predicate timeout denotes that a time constraint was
missed without making any distinction as to whether the missed bound was the upper or
the lower one.

Regarding the signaling of a time-related deviation, i.e. point (2), an exception named
timeout is assumed to be raised. Hence, whenever a time-related deviation occurs (what-
ever the time-related deviation is), the timeout exception is raised. Time-related devia-
tions, thus, do not require the modelling of an exception to signal its occurrence.

The same principle of using a time-related deviation to denote that a time constraint
has been missed is extended to those time-related constraints that might be set over a
participant and/or a business process. However, there are certain points regarding the
exception of a deviation that merit further discussion.

As explained in Section 3.4.3.2, the notion of WorkFor can be used to place a time-
constraint over the duration of the actual participant, i.e. the resource, performing its
enclosing activities. A time-related deviation associated with the concept WorkFor then
represents that the maximum or minimum elapsed time constraints have been missed. The
occurrence of any of these deviations produces the implicit raising of a timeout exception,
in the same way as it is done when a time-constraint associated with Within is missed.

Regarding the business process, timing constraints can be set using the concepts Start
and Last (see Section 3.4.3.1 for more details). Timing constraints set with the concept
Start deserve special attention. First, the lower time bound, i.e. minimum delay, set over
a business process using the concept Start is assumed as always being met. Second, the
missing of the upper time bound defined by using the Start concept, represents the case
in which the process instance has not been able to start its execution on time. Since no
execution has happened, the behaviour of the process instance is equivalent to the one
that has aborted its execution. Therefore, the enclosing context of a process instance
that misses its starting time gets signaled by a deviation of type AbortDeviation. In this
manner, time-related deviations can be associated with the concept Last, only.

Time-related deviations are associated with the concept Last in the same manner as con-
sidered so far. When one of the deviations associated with this concept occurs, an implicit
exception is also raised. Conversely to deviations associated with Within and WorkFor,
the implicit exception raised when a deviation associated with Last occurs is dependent
of the time-constraint missed. This is due to the fact that the administration of such
deviations requires the involvement of every business process participant. Further, (as the
reader will see in the uncoming sections) the modelling of this of kind of handling needs
precise information regarding the exception to be handled. In this manner, the notion of
TimeoutMinBPLast is introduced to signal that the lower time bound associated with the
concept Last has been missed. Whereas TimeoutMaxBPLast is used to indicate that the
upper time bound has been missed.

• Handling model
When an exception is raised, indicating that a deviation has been detected, corrective
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actions have to be undertaken to avoid that the business process misses its goal. The set
of corrective actions defines a handler. A handler is meant to deal with one or more ex-
ceptions. The mechanism that determines how to find a handler for a particular exception
is known as a propagation mechanism. The propagation mechanism adopted in this work
adheres to the termination model [BM00]: once the handler completes, the control flow is
expected to continue as if the exception would not have occurred. However, the continua-
tion of the business process control flow will depend on the severity of the exception to be
administered. When the severity of the exception makes continuation of the execution of
the business process as originally planned impossible, its handling has to be designed to
terminate the business process execution in a safe way, i.e. the negative effects of missing
the goal should be mitigated as much as possible.

A raised exception can be handled either at the level where it has occurred, or at any other
higher level that can be reached as a result of the propagation of the exception. During the
execution of a business process, an exception is initially raised when an activity deviation
is detected. Unless handled, this raised exception is propagated up to the level of the
business process. Thus, an activity deviation defines the lowest of hierarchical levels that
an exception can go through once it is raised. The business process is the highest level.
A handler meant to deal with an exception at the level of the activity deviation is termed
participant handler. A hander that deals with an exception at the level of the business
process is termed business process handler. In the following, both kinds of handlers are
explained:

1. Participant handler
The scope of an exception being raised due to the deviation of an activity is the partic-
ipant that encloses such activity. Hence, once the exception is raised, the propagation
mechanism searches for a handler at the level of the participant.

The aim of a participant handler, simplified to p-handler from here on out, is to
deal with the exception that indicates the detection of a deviation. The existence of
a p-handler is determined by the activity to which it is associated in order to deal
one of its possible deviations. This existential relationship is formalised by means
of metamodelling using the class PHandler and the composite relationships named
localHandlers and handlers (see Figure 3.58 for the description of the meta-model
that shows this formalisation). The class PHandler captures the modelling of the
different p-handlers that can be created, whereas the composite relationships bind
the p-handlers with the activities they belong to. The composite relationship local-
Handlers contains those p-handlers aimed at dealing with logic-related deviations,
i.e. deviations of type ActivityDeviation, whereas handlers contain p-handlers aimed
at dealing with time-related deviations, i.e. deviation of type TimeDeviation.

Thus, whenever a p-handler exists, it must be associated with one deviation. The
relationship between a p-handler and a deviation is formalised by the association
named handles. Notice that a same p-handler may be used to deal with more than
one deviation. This fact makes the handles association have a cardinality 1..∗.
Notice that each of the corrective activities enclosed within a p-handler, captured as
the statements owned by the p-handler - ordered composite relationship named stmts,
may have associated deviations and/or time-constraints. Thus, attaching p-handlers
to these activities in order to deal with deviations is also permitted. Therefore, p-
handler may contain nested p-handlers. Once a p-handler has completed its execution,
the control flow of the participant continues as the activity would not have faced a
deviation.
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Fig. 3.58: Handling deviations within a Participant.

The concrete modelling of a p-handler is achieved by (1) enclosing the corrective ac-
tivities it performs between the “{” and “}” brackets, and (2) placing them next to the
exception they are meant to handle (i.e. deviation[ex | condition]{acthnd1 , ..., acthndn}).
Figure 3.59 shows the p-handlers defined within the Examination Business Process
(lines 10-12 and 20-22) to deal with the deviations “malfunction of the thermometer”
(line 10) and “malfunction of the blood pressure monitor” (line 20), respectively. In
the case of a malfunction of the thermometer, the corrective action to be undertaken
is to find a new thermometer (line 11). To find a new blood pressure monitor is the
corrective action prescribed when a the malfunction is detected in that kind of device
(line 21).

It has been stated that the same p-handler can be used to handle different deviations
occurring within the same activity. The concrete modelling of this is achieved by
using the disjunction operator or, which allows for the joining of either (1) the differ-
ent deviations, i.e. deviation[ex1 | condition1] or...or deviation[exi | conditioni ]
{acthnd1 , ..., acthndn}, or (2) the different conditions that produce each deviation, i.e.
deviation[ex | condition1 or ... or conditioni ] {acthnd1 , ..., acthndn}.
Notice that a p-handler is considered as executing within the context of the activity
it is associated with. Hence, a p-handler has access to the same input parameters of
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1 business process examination (out Temperature temp , BloodPressure bp)
2 take [ , 30 min. ]{
3

4 participant Pat ient { . . . }
5 participant Nurse{
6 . . .
7 checkTemp(out temp)
8 post [ temp | temp.oclIsNew ( ) and temp < 4 0 ] ;
9 . . .

10 deviation [ EX MalfunctionThermometer | temp.oc l I sUnde f ined ( ) ] {
11 findNewThermometer ( ) ;
12 }
13 . . .
14 }
15 participant Ass i s t an t {
16 . . .
17 checkBP (out bp)
18 post [ bp | bp.oc l IsNew ( ) and bp < 2 0 0 ] ;
19 . . .
20 deviation [ EX MalfunctionBPMonitor | bp .oc l I sUnde f ined ( ) ] {
21 findNewBPMonitor ( ) ;
22 }
23 . . .
24 }
25 }post [ not temp.oc l I sUnde f ined ( ) and not bp .oc l I sUnde f ined ( ) ]

Fig. 3.59: Deviations being handled locally by p-handlers in the Examination Business Process.

its associated activity.

For a deviation that does not hold an associated p-handler, the exception being raised
when the deviation occurs is propagated to the p-handler’s enclosing context. This
context is either another p-handler, or the participant that owns the deviated activity.
Once the exception has reached the context of the participant, it is propagated to the
level of the business process. Eventually, the exception is expected to be handled.
This means that, at a minimum, a handler at the level of the business process to deal
with the deviation has to be defined.

2. Business Process handler
As just stated, when there is not p-handler associated with an activity deviation,
the exception is propagated to the level of the business process. Propagating the
exception to the entire collaborative business process has the effect that (1) every
participant stops executing its current activities and (2) the propagation mechanism
starts searching for a handler at the level of the business process to deal with the
exception.

The aim of a business process handler (bp-handler from here on out for simplicity)
is to administer an exception in a collaborative manner. A bp-handler involves all
the participants enclosed within the same collaborative business process. Hence, each
participant taking part in a particular business process, is also involved within a bp-
handler. In this manner, a bp-handler is formalised by means of metamodelling (see
Figure 3.60) as an instance of class BPHandler, such that (1) it is composed of a
set of participants (modelled by the composite relationship hndParticipants), and (2)
once it completes its execution it produces an outcome modelled by the composite
relationship outcome.

The activities performed by a participant when dealing with a particular deviation
within the context of a bp-handler are those contained by the ordered composite
relationship named stmts.
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predicate : OclConstraint
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predicate : OclConstraint

Degraded

HandlerParticipant

name : String
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Fig. 3.60: Handling deviations in a collaborative way.

Note that there must exist one participant of type HandlerParticipant within a bp-
handler for each participant of type Participant held by the BusinessProcess 54. The
association named participant between classes HandlerParticipant and Participant,
along with the OCL condition shown in Figure 3.61 ensures this property. The
association ensures that a handler participant is associated with one and only one
participant, whereas the OCL condition checks that the number of participants within
the bp-handler and the business process are the same.

context Bus ines sProces s inv OneHandlerPartic ipantForEachBPPartic ipant :
s e l f . cooperat iveHandler s−>

f o rA l l ( bpHandler : BPHandler |
bpHandler . hndPart ic ipants−>s i z e ( ) = s e l f . p a r t i c i pan t s−>s i z e ( )

)

Fig. 3.61: Consistency between the number of HandlerParticipant ’s and the number of Par-
ticipant ’s.

The fact that a business process may own none or many bp-handlers is modelled by
the composite relationship named cooperativeHandlers.

A bp-handler produces an outcome (of type Outcome). This outcome indicates that
the business process has either (1) fully reached its goal. i.e. normal outcome, (2)
partially reached its goal, i.e. degraded outcome, (3) aborted its execution, i.e. aborted
outcome, or (4) failed in a graceful way, i.e. failed outcome. The kind of outcome
to be provided depends in great part on the severity of the exception being handled.

54 See Figure 3.10 for the relationship BusinessProcess-Participant.
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However, it must be noticed that a bp-handler always produces an outcome as it is
assumed to fully complete its execution.

When the severity of the deviation does not allow the business process goal to be
reached either fully or partially, the business process, as a last alternative, should
be aborted, i.e. abort outcome. By default, the abortion of a business process is
achieved by simply raising the exception Abort. This points out that it is assumed
the implicit execution of a bp-handler whenever a deviation notifies its occurrence by
raising the Abort exception. However, it must be noticed that the modeller still has
the chance to explicitly model the required activities that make a business process
abort. This may be usually the case when dealing with long-live business processes
in which objects are modified by non-reversible effects.

To avoid overloading the Process Model with information related to the collaborative
handling of exceptions, a new model called Dependability Model is defined to include
such information. Therefore, the concrete modelling of a bp-handler is defined within
the Dependability Model, in the recovery section. Figure 3.62 shows part of the
Dependability Model related to the Examination business process. The recovery
section of this model includes the handlers Undress (lines 2-11) and CardiacUnit (lines
14-27). These handlers are meant to deal with the exceptions EX HighTemp and
EX HighBP, which are used to notify the occurrence of the deviations “temperature
over 40” and “blood pressure over 200”, respectively (the raising of these exceptions
can be found in Figure 3.54, on lines 9 and 17, respectively). Both bp-handlers are
expected to deal with these exceptions such that the business process fully reaches its
expected goal. Hence, the outcome produced for each of these bp-handlers is Normal
(lines 11 and 27).

1 recovery{
2 Undress (out Temperature temp , BloodPressure bp) {
3 participant Pat ient {
4 receive reqUndress from Nurse ;
5 Undress ( ) ;
6 }
7 participant Nurse{
8 send reqUndress to Pat ient block ;
9 }

10 participant Ass i s t an t {}
11 }Normal
12

13

14 CardiacUnit (out Temperature temp , BloodPressure bp) {
15 participant Pat ient {
16 receive reqChangeRoom from Ass i s t an t ;
17 goToSpecia lUnit ( ) ;
18 }
19 participant Nurse{
20 receive reqChangeRoom from Ass i s t an t ;
21 takePat i entToSpec ia lUni t ( ) ;
22 }
23 participant Ass i s t an t {
24 send reqChangeRoom to Patient , Nurse ;
25 notifyNewRoomPatient ( ) ;
26 }
27 }Normal
28 }

Fig. 3.62: Business Process handlers in the Dependability Model of Examination Business Pro-
cess .
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A bp-handler executes within the context of the business process it is attached to.
Hence, participants collaborating in a bp-handler not only have access to the business
process input data (i.e. parameter objects), but also to the local data (i.e. local
objects) produced up until the moment the exception was raised in the case of the
deviated participant or received (or participants being notified about the occurrence
of the deviation. This semantics allows every participant to use, in the handling of
the exception, the work performed during its normal execution within the business
process until the occurrence or notification of such exception.

Thus, a handler, whether it is a p-handler or a bp-handler, is the feature that allows
a business process to produce a consistent outcome. i.e. normal, degraded or abort
even when confronted with deviations. When the deviation is very severe and the
failure of the business process is unavoidable, the last thing that can be done is
try to reduce the harm as much as possible before notifying the process users of
the failure. A dependable business process is assumed to include a handler for each
defined deviation. This handler can be at the level of the participant, by providing a
p-handler, or at the level of the overall business process by a bp-handler.

• Parallel exceptions
Multiple exceptions may arise simultaneously. This is possible not only because partici-
pants execute their activities in parallel, but also because the same participant may execute
multiple activities in parallel: the split and spawn control flow operators allow the parallel
execution of activities by the same participant. Therefore, a participant that performs in
parallel at least two composite activities55 may face with this situation. Another source
of multiple parallel exceptions takes place when an activity has a time-related constraint
defined by the primitive within: in this case, the time-related constraint could be missed
along with an activity deviation. When multiple parallel exceptions take place, whatever
the case is, the propagation mechanism must determine what is the exception to be handled
before it starts searching for an appropriate handler.

The resolution mechanism proposed in this thesis to determine what is the chosen exception
to be handled when multiple exceptions are raised in parallel is based on the approach
described by Campbell and Randell in [CR86]. The principle followed by the authors is
that all multiple exceptions being raised simultaneously, in conjunction, constitute a new
exception that is symptomatic of a different and more complicated deviation than those
reported by each exception individually. Therefore, when multiple exceptions are raised
in parallel (i.e. ex1, ..exn), the propagation mechanism will look for a handler (whether p-
handler or bp-handler) with the capabilities to deal with the exception that the conjunction
of all raised exceptions (i.e. ex1and...exn−1andexn) defines.

In large and complex collaborative business process, such as those being targeted, the
number of potential exceptions that may arise in parallel grows exponentially. In line
with the principle of explicit modelling dependability adopted in the context of this thesis,
every potential combination of parallel exceptions that could be raised and that need to
be handled, must be explicitly determined in the business process definition. Parallel
exceptions that are not explicitly included in the business process definition are assumed
(by the stakeholders) as impossible to occur56

55 It is impossible to get raised multiple exceptions when a participant is prescribed to perform in parallel atomic
activities only, since all these activities are to be performed by the same actual resource. In this scenario,
the resource performs the parallel activities in a time-sharing fashion.

56 Of course, the occurrence of any of these exceptions will make the business process fail.
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Both the definition of a set of parallel exceptions and its binding with a handler can
be done at the participant and business process level. Parallel exceptions at the level
of the participant are modelled in a concrete manner using the conjunction operator
and. This operator allows several deviations to be combined into a joint deviation, i.e.
deviation[ex1 | condition1]and...and deviation[exi | conditioni ], such that this joint de-
viation is detected if and only if the conjunction of all the conditions holds. The handling
of a set of parallel exceptions within the context of the participant is achieved by defining
a p-handler next to the definition of such set of parallel exceptions. As already explained,
parallel and ordinar) exceptions for which no p-handler has been defined are propagated
to the level of the business process.

Parallel exceptions at the level of the business process along with the handler in charge
of dealing with it are defined using the concept resolution. This concept is meant to map
a set of parallel exceptions with a bp-handler. Since a single raised exception can be
considered as a particular case of parallel exceptions, i.e. a set with only one element,
the concept resolution is used as a means to statically define the binding between an
exception and its associated handler, regardless of whether the exception is defined as the
conjunction of parallel exceptions or it is just a simple exception. The formalisation of this
concept is shown in Figure 3.63, where it is specified that a resolution, Resolution, must be
created within a business process every time a particular set of exceptions modelled by the
association of name left wants to be handled by a bp-handler, captured by the association
of name right. Since a bp-handler is defined to deal with at least one exception, there
should exist at least one resolution that refers to it. Figure 3.64 shows the OCL condition
that ensures this property over DT4BP models.

Resolution

name : String

BusinessProcess

name : String

BPHandler

name : String

Exception

cooperativeHandlers

0..*

1

left

1..* 1

right

11

resolution

0..*

1

Fig. 3.63: Definition and handling of parallel exceptions.

context Bus ines sProces s inv BPHandlerInResol i t ion :
s e l f . cooperat iveHandler s−>

f o rA l l ( bpHandler : BPHandler |
s e l f . r e s o l u t i o n −> e x i s t s ( r e s : Reso lut ion | r e s . r i g h t = bpHandler )

)

Fig. 3.64: A BPHandler is referred to at least once for a Resolution.

The primitive resolution is the concrete element introduced to define a section within the
Dependability Model where all the bindings between a set of exceptions and the bp-handler
in charge of its handling are defined. An arrow (− >) is used to define the binding between
a set of parallel exceptions (left part) and the respective bp-handler (right part). Figure
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3.65 shows how these concrete primitives are used in the Examination business process of
the running example.

A parallel exception that may arise during the examination of the patient is that both
his temperature and blood pressure are over the expected values, i.e. over 40 and 200,
respectively. A specific handler called UndressANDCardiacUnit is defined to deal with
such parallel exception (lines 16 and 18). The binding between this parallel exception and
its associated handler is shown on line 4. The bindings EX HighTemp-Undress (line 2)
and EX HighBP-CardiacUnit (line 3), which are considered when each exception is raised
alone, are also included in this section.

1 resolution{
2 EX HighTemp −> Undress ;
3 EX HighBP −> CardiacUnit ;
4 EX HighTemp and EX HighBP −> UndressANDCardiacUnit ;
5 }
6

7 recovery{
8 Undress (out Temperature temp , BloodPressure bp) {
9 . . .

10 }Normal
11

12 CardiacUnit (out Temperature temp , BloodPressure bp) {
13 . . .
14 }Normal
15

16 UndressANDCardiacUnit (out Temperature temp , BloodPressure bp) {
17 . . .
18 }Normal
19 }

Fig. 3.65: Binding single and parallel exceptions with their respective bp-handlers in the De-
pendability Model of Examination Business Process .

• Binding between possible business process’ outcomes and composite activity’s
results
Since a composite activity57 is a container for a business process, there must exist a clear
connection between the different results returned by the composite activity, i.e. normal
and deviated, and the outcomes produced by the referring business process (i.e. normal,
degraded, aborted and failed).

Since a composite activity is considered as having executed successfully when the business
process it refers to has correctly performed, the normal result achieved by a composite
activity is determined by the correctness of the referred business process.

A deviated composite activity is one whose execution is considered as improperly done.
This means that the business process encapsulated by the composite activity has produced
an outcome that is not normal. A degraded outcome produced by a business process,
degraded[condition], becomes a deviation at the level of the composite activity. Note
that the condition described by the deviation at the level of the composite activity must
be the one used to model the degraded outcome at the level of the business process.

The aborted and failed outcomes become special kinds of deviations at the level of the
composite activity. What make them special is that their names are used to describe the

57 It is worth noticing that the following analysis is also valid for nested activities.
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deviation condition since their implicit semantics are enough to understand the kind of
outcome produced by the encapsulated business process.

Figure 3.66 relies on the BPMN-like notation to depict the relationship between the pos-
sible composite activity’s results and the possible business process’ outcomes in a graphic
manner.

Fig. 3.66: Relationships between the outcomes of a business process and its view as composite
activity.

3.5 Comparison with existing business process modelling
languages

This section compares DT4BP with the existing business process modelling languages described
in Section 3.2. The comparison criteria is based on those key concepts that govern the targeted
business processes (i.e. collaboration, time and dependability) including the relevant factors
that should be considered when modelling a business enterprise (i.e. function, organisation,
information and resource [Toh99, LZRT08]). This comparison allows the reader to identify, in a
compact manner, not only the modelling concepts that DT4BP supports, but to compare the
current support of some existing business process languages with respect to these concepts.

The metric used to evaluate the support a particular business process modelling language offers
for a certain concept is defined as follows: (+) indicates direct support for the concept, (+�−)
indicates partial support, and (−) indicates that the concept is not supported at all. Direct sup-
port means that there exist constructs in the language that allow certain concepts to be captured
effectively in accordance with its semantics. Partial support means that a modelling language
is able to capture a concept by combining or extending (if possible) some of its constructs, de-
spite the fact that these constructs are aimed at capturing different concepts. It is important
to underline that a modelling language may provide partial support for a concept for which it
was originally not targeted. The proposed workaround should correlate relatively closely with
the concept being addressed. A modelling language that requires either complex workarounds
to capture a particular concept or significant conceptual reorganisations of its constructs is
considered as one that does not provide support to capture such concept.

Table 3.5.1 lists the results of applying the assessment criteria to both the existing business
process modelling languages as well as to DT4BP. This table also displays the individual aspects
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Concept UML-AD BPMN YAWL EPC DT4BP

Modelling viewpoint
Control-flow + + + + +
Data − − + − +
Resource − − + − +
Exception handling − − + − +

Collaboration
Multi-participants +�− + − − +
Choreography +�− + − − +

Time
Business process min. delay + + − − +
Business process max. delay − − − − +
Business process min. duration − − − − +
Business process max. duration − + − − +
Periodic business process − + − − +
Participant working time − − − − +
Activity min. delay + + +�−a − +
Activity max. delay − − − − +
Activity min. duration − − − − +
Activity max. duration − + +�−b − +
Object duration − − − − +

Dependability
Pre-condition − − + − +
Post-condition − − + − +
Transaction − + − − +
Deviation + + + − +
Deviation handling + + + − +
Multiple parallel deviations − − − − +
Cooperative handling +�− +�− − − +

Tab. 3.5.1: Comparison between existing business process modelling languages and DT4BP.

aOnly for Atomic Automatic Activities.
bOnly for Atomic Manual Activities.

that determine each concept. Regarding the concept modelling viewpoint, the attributes that
determine this concept are the different types of perspectives oriented toward the description of
a business process. Russell [Rus07] identifies control-flow, data, resource and exception handling
as the four dimensions that provide the basis for modelling the business processes. DT4BP, by
its Process, Data, Resource and Dependability models provides explicit support that allows the
modeller to address each of these perspectives. The only comparable existing business process
modelling language that also provides explicit support for these perspectives is YAWL.

The features related to the collaboration concept are those that define not only the different
participants required to take part in the business process, but also the interactions (collaborative
efforts) between such participants (aka choreography) required for achieving the business process
goal. DT4BP, by its built-in constructs participant, send and receive provides direct support
for these aspects.



108 3. The DT4BP business process modelling language

One of the characteristics that represents an advancement of DT4BP with respect to existing
business process modelling languages, is its powerful set of time-related primitives for con-
straining the temporal behaviour of the business processes. The fact that the primitives for
constraining the business process are different from those used to constrain activities, results in
clearer semantics, thus, avoiding misconceptions about the time frame of reference associated
with each primitive. Furthermore, time primitives for constraining (1) the time a participant is
able to work, as well as (2) the duration of the value stored by a object, are novel means that
have never been considered by any other notation.

Another aspect that makes DT4BP a superior language, is the feature that allows for considering
the occurrence of multiple parallel exceptions as a new exception combined with its respective
handling so as to avoid the failure of the business process. This feature combined with the
ability to consider business processes as long-lived transactions, and the explicit handling of
deviations, whether at the level of the participant or the business process, represent support for
the dependability concept that goes beyond the one given by existing languages.

Last, but not least is the fact that DT4BP is a business process modelling language that provides
support for every listed aspect in a integrated manner. The Process Model works as a pivot
element where the data types defined in the Data Model are used to determine the data objects
required to perform the different activities that compose the business process. The same principle
applies between the resources defined in the Resource Model and the allocation policies defined
in the Process Model used to select the actual resources in charge of performing the business
process activities. On the other hand, the Dependability Model represents a complementary
dimension for the Process Model that is used to drive the collaborative handling of simple and
parallel deviations that take place during the enactment of the business process.



4. THE TIMED-CAAFWRK CONCEPTUAL

FRAMEWORK

Abstract

This chapter describes a new version of the Coordinated Atomic Actions concep-
tual framework that includes real-time extensions, Timed-CaaFWrk. Here is also
presented an implementation framework meant to support the development phase
aimed at achieving an implementation that is compliant with certain designs given in
terms of the Timed-CaaFWrk. Section 4.1 introduces the role of the Time-CaaFWrk
conceptual framework within this thesis, and explains why it was chosen. Section
4.2 describes the ideas that characterise the conceptual framework considered in this
thesis. The description of these concepts is done in terms of metamodelling, and thus
contributing to the formalisation of the conceptual framework. Section 4.3 presents
the real-time extensions given to the conceptual framework to make it possible to
design dependable distributed software systems that contain time constraints. In Sec-
tion 4.4, an implementation framework aimed at supporting the programmers’ tasks
during the development phase is described. The chapter closes with Section 4.5,
describing the use of Model Driven Engineering techniques to obtain automatically
generated code from a software system design adhering to the Timed-CaaFWrk con-
ceptual framework.

4.1 Motivation

The DT4BP modelling language introduced and described in Chapter 3 has been defined to
ease the description of DCTC business processes. Let MDT4BP be a business process definition

modelled using the DT4BP language, and let < s1
act1−−→ s2 → ...

actk−−→ sn > be a trace generated
by the execution of a process instance of MDT4BP . Then the semantics of MDT4BP is defined as
the set of all possible traces (named TracesMDT4BP

) that can be generated for the model. These
traces are generated by executing a Java program, MJava , obtained by translating the MDT4BP

into Java. Hence, the translation that maps expressions and statements of the DT4BP language
into sequences of Java instructions is part1 of the semantic mapping required when defining a
language. In this case, the semantic domain is the Java Virtual Machine, which must also be
provided when defining a language (see Chapter 2, section 2.3.2 for more information about the
elements of a language definition).

1 The other part of the mapping translates Java instructions into a binary Java class file suitable for a Java
runtime system. Since this translation is provided by any Java compiler, it is considered as implicit and thus
not considered further.
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It is important to note that the Java program MJava is not a general program. MJava complies
with the principles defined by the Timed Coordinated Atomic Actions conceptual framework
(Timed-CaaFWrk), which was used as the reference to define the DT4BP modelling language.
In this manner, since there exists a close relationship between DT4BP and Timed-CaaFWrk
concepts, the latter is used as a pivot in the translation process to ensure that the resulting
Java program explicitly captures the concepts introduced in the DT4BP models. Figure 4.1
sketches out how this translation process takes places. Reaching a MJava model from a MDT4BP

model is a two step process: 1) the MDT4BP model is translated into a model, MTCaa , that
is compliant with Timed-CaaFWrk; 2) the MTCaa model is then translated to obtain the Java
program MJava .

Fig. 4.1: Translation process of DT4BP models into Timed-CaaFWrk-compliant Java pro-
grams.

This chapter describes Timed-CaaFWrk and the facilities to obtain, both manually and semi-
automatically. Java programs that comply with this conceptual framework. The translation
that results in a MTCaa model, compliant with Timed-CaaFWrk, from a given MDT4BP model
is explained in Chapter 5.

4.2 The CaaFWrk

The Coordinated atomic actions conceptual framework (CaaFWrk) was defined to encircle the
concepts of conversations [Ran75], transaction processing [GR92], and exception handling [Cri89]
around the notion of atomic action2 ([BW01], pages 321-322). This results in a new abstraction,
Coordinated Atomic Action (CAA), which represents the CaaFWrk’s central concept and thus
gives the name to the conceptual framework.

The CaaFWrk has been evolving since its first definition [XRR+95], leading to different schemes
with their own semantics. (For a complete list of previous works on CAAs, please to see [Rom07]).
This section covers not only how the CaaFWrk is considered in the context of this thesis, but

2 Atomic actions have been also called multiparty interactions [EFK89].
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also what are the new extensions that have been introduced to fulfil the usage of the CaaFWrk.
As has been done thus far, the formalisation of the concepts is given by the metamodelling
principle.

4.2.1 Fundamentals

A CAA specifies the orchestration of a set of instructions3 spread over a group of (one or
more) roles. The instructions owned by a particular role will be executed concurrently with the
instructions owned by the other peer roles enclosed within the same CAA. The actual execution
of a particular role is made by a participant. Conceptually, this means that a participant
is any entity that has the capacity of executing a set of instructions. Thus, a role specifies
the instructions to be executed, while a participant is the entity in charge of performing the
instructions at run-time. A participant can be a process, a thread, an active object or any
mechanism with processing power [CRR09]. Each participant is assumed to have its own features
(e.g. number or processors or size of the memory, in the case the participant is a process).
Figure 4.2 shows the standard informal way of graphically representing a CAA along with its
constitutive parts, which are detailed in the next subsections.

Fig. 4.2: A simple CAA

Figure 4.3 shows the part of the meta-model that formalises the concepts introduced above. The
starting point of this formalisation is the class CAA, which states that a CAA is composed of
an ordered set of roles, captured by the roles composite relationship. A Role has a name, which
is its identifier within the context of the CAA where it belongs. Hence, roles within the same
CAA must have different names. The OCL invariant shown in Figure 4.4 ensures this condition.
Furthermore, a role is associated with one and only one CAA, which is ensured by the named
caa. The instructions owned by each role are captured by the instrs composite relationship.
Note that a role may be modeled with no instructions. The characteristics each participant has
(which range from one to many) are modelled with the composite relationship features. Each
characteristic (of type Feature) is modelled as a pair (name, value), where the name is the

3 An instruction is also known as an operation, statement or a method call.
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identifier of the participant’s characteristic, which is unique, and the value is an integer number
that quantifies the characteristic for that participant.

name : String

Role

name : String

Participant

name : String
value : Integer

Feature

Instruction

...

CAA

instrs {ordered}

0..* 1

play

0..* 1

roles {ordered}

1..*

1

caa

1

1

features

1..*

1

Fig. 4.3: Fundamental parts of a CAA.

context Role inv Uniqueness :
Role . a l l I n s t a n c e s ()−> f o rA l l ( r1 , r2 | r1<>r2 implies r1 . name<>r2 . name)

Fig. 4.4: Uniqueness of the role’s name.

As already indicated, a role is expected to be played by a participant. Every participant is
considered to be unique, so that its name represents the participant’s identifier within the CAA
design where it is being used. The OCL invariant that ensures this condition is very similar
to the one shown in Figure 4.4 and thus it is obviated. Those number of roles that a certain
participant is ready to play may range from none4 to many. However, a participant is allowed
to play only one role at a time.

The instructions prescribed for a role within certain CAA are meant to collaborate with the
instructions prescribed for the other roles of the same CAA in order to achieve a common goal.
This common goal can be seen as the service (or functionality) the CAA offers to the enclosing
context where it is embedded and computed atomically, i.e. from the CAA user’s viewpoint,
there is not an intermediate state. The following principles govern the manner in which the
service offered for certain CAA is provided at run-time:

4.2.1.1 Agreement upon entry

To execute a CAA, there must exist a group of participants such that each of them agrees
to perform one (and only one) role of the CAA. The agreement to take on a certain role is
defined as the satisfaction of the pre-condition owned by the role. Using metamoddelling, this is
formalised in Figure 4.5. The composite relationship named pre captures the role’s condition the
participant that wants to play this role has to satisfy. These conditions are assumed to be first-
order logical expressions written using the OCL language [WK03], which are both decidable5

4 The fact that a participant is not required to be associated with at least one role upon its definition allows
for the association between them to be defined later.

5 There exists a Turing machine that always halts given any finite input string.
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and computed within a reasonable amount of time. The type OclConstraint captures this kind
of OCL expression. For the case in which the role does not hold a condition, the participant is
assumed to satisfy the trivial condition, i.e. true.

predicate : OclConstraint

AgreementUponEntry

name : String

Rolepre

0..1 1

Fig. 4.5: A role may have an associated pre-condition.

Once every participant has agreed to take on a certain role, the CAA is said to be ready to
start its execution. Participants in charge of executing certain CAA are assumed to enter and
leave such CAA synchronously [XRR+02]. In Figure 4.2, the pre-condition area represents
the checking of the pre-conditions owned by the CAA’s roles. This pre-condition checking
is conceptually considered as happening without any delay. It is worth mentioning that the
conjunction of the pre-conditions owned for each role is considered as the pre-condition of the
CAAs, which is expected to be met by those participants that come together to execute the
CAA. It is assumed that a CAA executes only if its pre-condition is satisfied.

4.2.1.2 Internal execution

A CAA starts its execution when every participant starts its associated role. Playing a role
means that the participant executes the set of instructions prescribed to the role. A role may
contain three kinds of instructions: execution, control or declaration (see formalisation in Figure
4.6).

• execution: instructions of this kind allow a role to (1) execute and operate, e.g. perform
a computation or assign a value to a variable, (2) send/receive information to/from a
different role, (3) call another CAA, or (4) enclose instructions into a block such that
they are considered as a single instruction. The concept Execute allows the execution
of an operation to be modelled . The operation, captured by the attribute of the same
name, is described in a declarative manner using the notions of pre-condition and post-
condition, captured by the attributes pre and post, respectively. Roles belonging to the
same CAA are allowed to freely communicate amongst themselves, but not with any other
roles not owned by the CAA. The concepts Send and Receive are the means to model the
communication (by information exchange) between roles. A role may communicate with
one or more peer roles. This is modelled by the association to. Whereas a role is allowed
to receive information from only one peer. This modelled by the association from. The
instruction that allows a role to call other CAA is captured by the concept CallCAA. The
Block instruction encloses an ordered sequence of none or many instructions as if they
were a single instruction.

• control: instructions of this kind are those that allow a role to control the execution flow
of instructions. The flow can be controlled by the concept of If. If defines an alternative
between the branches then and else and is based on the condition captured by the attribute
cond of type OclConstraint. The other control instruction are While and Repeat, which
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Fig. 4.6: Instruction set.

loop the execution of an ordered sequence of instructions (captured by the composite
relationship instrs) only while their respective conditions hold.

• declaration: there exists only one instruction of this kind, ObjDeclaration. It is meant to
capture the modelling of an object declaration. Objects declared using this instruction are
referred to as internal or local objects. The concept that captures this kind of object is an
InternalObj (see Figure 4.7). Notice (1) that the instruction ObjDeclaration may declare
one or more internal objects, captured by the composite relationship internalObjs), and
(2) that when declaring an internal object its type must be provided since every object
is associated with a type. This is captured by the association type that links the classes
Type and Object from which InternalObj extends.

A Type is either a Primitive datatype (i.e. DString, DInteger, DFloat, or DBoolean) or a
structured DataType. A DataType is defined as a set of attributes (described by the composite
relationship attrs) or as an ordered sequence of literals (described by the ordered composite
relationship enum) such that it defines an enumerated datatype. DataType may also include an
invariant, which is captured by the attribute of the same name. Invariants are first-order logical
formulas written in OCL under the previously states assumptions. Regarding the attributes,
each attribute is also associated with a Type, which is either Primitive or DataType.

Please recall that roles enclosed within a same CAA are allowed to freely communicate amongst
themselves by exchanging information. The information they are allowed to exchange are inter-
nal objects previously declared in each role. As shown in the formalisation of Figure 4.7, a role
may send a message, msg, to another role along with one or more internal objects. Whereas a
role is allowed to receive a message along with only one internal object. Regardless of whether
a role sends a message or not, the real communication between peer roles is achieved through
the information carried by the internal objects sent. That is the reason why it is claimed that
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roles cooperate amongst themselves by sharing information.

Other objects that may take place within the CaaFWrk are those declared outside the boundaries
of a particular CAA. These objects are referred to as external objects. The external objects,
ExternalObj, that are required by a CAA to attain its goal are passed as parameters upon its
call. The ordered composite relationship named params captures those external objects to be
used by the CAA to fulfill its execution. It must be noted that (1) every CAA’s external object
is also associated with a Type, either Primitive or DataType, that is associated with the CAA
by the association dttps.

The CAA’s external objects are reachable from every CAA’s role. The instructions these roles
prescribe over the CAA’s external objects are executed according to the transaction processing
principles: 1) either all instructions are completed or none are completed (atomicity), 2) con-
current instructions are free from interference6(isolation), once all the instructions have been
executed the external objects 3) are in the correct state (consistency) and 4) they will survive
failures (durability). Therefore, a CAA guarantees the ACID properties over its external objects.

It is worth noting that certain external objects can be accessed concurrently (aka competitive
concurrency) by different CAAs at the same time. Hence, depending on the kind of access (i.e.
read only, or read and write) the CAA’s roles allow over a particular external object, the CAA
may gain exclusive access over the external object. The attribute access owned by each external
object determines how the object is accessed. However, assigning a value to this attribute,
which changes from one CAA to another, is managed by the transactional system on which
the CaaFWrk relies on to achieve the ACID properties. Therefore this topic is not considered
further in this thesis.

4.2.1.3 Agreement upon exit

To determine whether a CAA has performed acceptably, the participants in playing the CAA’s
roles have to agree that the result is acceptable. This agreement is defined by an acceptance
test, i.e. a first-order logical expression without side effects, owned by each role and captured by
the composite relationship named post - see Figure 4.8). The acceptance must be satisfied by
the participant before leaving the CAA. The conjunction of all role acceptance tests determines
the global acceptance of the CAA (aka CAA’s post-condition). A role that is not assigned an
acceptance test, is assumed has its trivial logical expression as true.

As was assumed for the pre-condition checking, the evaluation of the acceptance tests are con-
sidered to happen without any delay. A global acceptance test that evaluates to false, i.e. at
least one of the role’s acceptance test fails, represents an erroneous condition. As will be ex-
plained in the following discussion, the detection of an error condition initiates the CAA recovery
mechanism.

4.2.1.4 Exception handling

As explained in Chapter 2, Section 2.2.2, fault-tolerance is achieved by error detection and
recovery. The CaaFWrk makes use of the principles coming from exception handling [Goo75,
Cri89, BM00] to achieve error detection and recovery, and thus to include fault tolerance as the
means to attain dependability.

6 Their execution is equivalent to some serial order of execution. Thus, it is said that they satisfy the serialis-
ability property.
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Fig. 4.7: Kinds of objects.

1. Detection: within the CaaFWrk, an exception is raised to indicate that an error condition
occurred. An exception, e.g. a division by zero, can be raised by any of the CAA software
or hardware layers that execute at run-time, or by the particular CAA itself when a
certain condition is detected, e.g. when an acceptance test does not hold. In any case, the
semantics of a raised exception is always the same: an error has been detected. The error
signaled by anexception is always the same regardless of where it takes place. For example,
the semantics of the division by zero exception is always the same whether it is raised in
one CAA or in an other. Each exception has a name (see Figure 4.9), which is unique
within the CAAs (the OCL invariant named Uniqueness, which is shown in Figure 4.10
ensures this condition). The name of a particular exception thus is its identifier within the
entire CAA design being carried out.

The an exception in a CAA always occurs in one of its roles. The case in which a role
detects an error condition deserves special attention, since the subsequent procedure it is to
notify the peer roles of the error. In order to fulfill this requirement, the special instruction
Raise is introduced. This instruction is used in all instances to model an exception by a
role. It is worth noticing that this instruction may only be used within a role. The OCL
invariant named onlyInRoles, shown in Figure 4.10, ensures this condition.

2. Concurrent exceptions: because participants play out their roles concurrently within a
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Fig. 4.8: A role may have an associated post-condition.

Control Raise

Instruction

name : String

Exception

exception

1

1

Fig. 4.9: Raise of an exception.

CAA, multiple exceptions might be raised simultaneously. This set of concurrently raised
exceptions represents a different and more complicated exception.

Xu et al. [XRR98] propose the notion of exception graph to define at design time the po-
tential concurrent exceptions that may be raised within a CAA and that must be handled.
This exception graph is defined as follows:

• there exists a node ei for each single exception that (1) may be raised within the
CAA and (2) requires handling

• there exists a node ej for each set of ESj exceptions eki (i = 1..n, with n > 2) such
that may be concurrently raised within the CAA and need to be handled,

• there exists a directed edge from ej to eki for each eki ∈ ESj , which represents an
exception ej raised when exceptions eki (i = 1..n) are raised concurrently,

• there exists a unique node µ, and

• there exists a directed edge from µ to ej for each node ej with degreein(ej ) = 0, where
degreein(ej ) is defined as the number of edges entering to the node ej .

Hence, considering the number of edges that enter into a node (i.e degreein(ei)) and the
number of edges that leave from it (i.e. degreeout(ei)), an exception graph is composed of
three kinds of nodes: (1) nodes with degreeout(ei) = 0, which represent primitive exceptions
that cover no other exceptions; 2) nodes with degreein(ei) 6= 0 and degreeout(ei) 6= 0, which
resolving exceptions and cover other exceptions, and (3) one node with degreein(ei) =
0 (i.e. node µ), named the root of the exception graph and representing the so-called
universal exception. This universal exception is assumed to cover every concurrent or
single exception that is not modelled at design-time in the exception graph but, that may
occur at run-time. Hence, any raised exception, regardless of whether it is a single or



118 4. The Timed-CaaFWrk conceptual framework

context Exception inv Uniqueness :
Exception . a l l I n s t a n c e s ()−> f o rA l l ( e1 , e2 | e1<>e2 implies e1 . name<>e2 . name)

context Raise inv on lyInRoles :
Raise . a l l I n s t a n c e s ()−> f o rA l l ( r a i s e I n s t r | Role . a l l I n s t a n c e s ()−>

e x i s t s ( r o l e | r o l e . i n s t r s−>i n c l ud e s ( r a i s e I n s t r ) ) )

Fig. 4.10: Uniqueness of the exception’s name, and the correct use of the instruction Raise.

a concurrent exception, that has not been explicitly modelled in the exception graph is
resolved with the universal exception.

Figure 4.11 shows an example of a simple exception graph for a certain CAA. In this
example, the CAA may raise the single exceptions ei (i = 1..5), and the concurrent
exceptions e1 ∧ e2 ∧ e3, e3 ∧ e4 and e1 ∧ e2 ∧ e3 ∧ e4. The figure also shows the node that
represents theuniversal exception along with the directed edges that make it the root of
the graph and indicating that it resolves every exception that is not part of the exception
graph. Hence, the concurrent exceptions e1 ∧ e2, e2 ∧ e3, e1 ∧ e3, e1 ∧ e4, or e4 ∧ e5 (among
others) are resolved as the universal exception.

Fig. 4.11: Exception graph.

The part of the meta-model that allows for the capture of the exception graph is shown in
Figure 4.12. The relationship named madeOf is devised to capture the directed edges that
associate an exception ej with the exceptions eki (with i = 0..∗). This information specifies
that the exception ej is the resolving exception for the concurrently raised exceptions
eki . The particular case in which an exception ej is not made of any exception (i.e.
ej .madeOf .isEmpty() in OCL terms) models the fact that ej is a single exception.

The exception graph for each CAA is used at run-time by the exception resolution mecha-
nism to identify the exception raised and subsequently handled by the recovery mechanism
of the CAA. The recovery mechanisms is explained in the following discussion.

To handle multiple concurrent exceptions [CR86, CR86] and [XRR98] propose that the
exception resolution mechanism will raise the exception at the root of the smallest subtree
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Fig. 4.12: Meta-model component for capturing the representation of an exception graph.

containing all the exceptions as the one to be handled by the recovery mechanism. Notice
that the root must exactly cover the exceptions raised concurrently. Thus, for the exception
graph shown in Figure 4.11, the exception resolution mechanism will signal the exception
e1 ∧ e2 ∧ e3 for the case when exceptions e1, e2 and e3 are raised concurrently. However,
the exception resolution mechanism will raise the universal exception µ in the case that
the exceptions e1 and e2 are raised concurrently as there is no node in the exception graph
that exactly covers all of these exceptions. It is worth mentioning that the case when
only one exception is raised represents a particular case, since every single exception is
considered as covered by itself. Thus, the exception resolution mechanism works when
multiple exceptions are raised concurrently as well as when only one exception is raised.

Due to the way in which the exception graph is modelled, the exception resolution mech-
anism used in the context of this thesis is different. Instead of finding the root of the
smallest subtree containing all the exceptions raised concurrently, the mechanism looks
for an exception such that its madeOf association contains exactly those exceptions that
were raised concurrently. In the case that no exception exists the mechanism has to raise
the universal exception. The OCL condition shown in Figure 4.13 ensures that every
resolving exception ej (i.e. ej .madeOf− > size() > 0) is made of different exceptions.
Otherwise, the graph is ambiguous since there exist two different resolving exceptions for
the same set of concurrent exceptions.

context Exception inv UniqueResolvingException :
Exception . a l l I n s t a n c e s ()−> f o rA l l ( e1 , e2 | e1<>e2 and

e1 . madeOf−>s i z e ()>0 and e2 . madeOf−>s i z e ()>0 implies
e1 . madeOf<>e2 . madeOf )

Fig. 4.13: Uniqueness of the resolving exceptions.

3. Recovery: once an exception has been raised, a recovery mechanism should be used
to mask or mitigate the impact of the situation on the CAA. The recovery mechanism
provided by the CaaFWrk is based on the notion of exception handling. This means that
the CaaFWrk recovery mechanism includes support to replace the normal CAA execution
by an exceptional execution when an exception is raised. The exceptional execution that
is put in place when an exception occurs is known as the Handler associated with such an
exception (see formalisation in Figure 4.14). The general aim of a handler is to restore the
normal computation by putting the software system into a correct, i.e. error-free state.
Whether a handler is able to restore the normal computation or not, depends on the
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severity of the raised exception. As shown in the formalisation by the association named
handles, the same handler can be used to deal with different exceptions.
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Instruction

isRoot : boolean
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CAA
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instrs

{ordered}

0..* 1
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1..*1
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1
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0..*
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Fig. 4.14: Cooperative handling of an exception.

Depending on what the correct state is, handlers can be classified as performing forward
error recovery (FER) or backward error recovery (BER). A handler is said to perform FER
when it puts the software system into a usually non-visited correct state. This is done by
analysing the detected exception, e.g. looking at its type or the parameters it carries, and
using redundant information. Conversely, a handler performs BER when the correct state
is that which the software system was executing before the exception occurrence. Hence,
BER is a particular case of FER.

In the context of the CaaFWrk, performing a BER over a CAA is equivalent to restoring
every CAA external object to the state they had before execution of CAA began. The
operations necessary to undo the effects of the CAA onits external objects, i.e. the nothing
part in the all-or-nothing property provided by Atomicity, are provided by the external
transactional support on which the CaaFWrk relies to ensure the ACID properties on the
external objects. Therefore, BER is considered as a built-in component that every CAA
has, and, thus, its modelling is not required.

Conversely, the designer of the CAA must define the instructions executed by a handler
that performs a FER. This behaviour (captured in the meta-model shown in Figure 4.14
by the ordered composite relationship instrs) depends on the specific characteristics of the
software system under development, and the severity of the exceptions to be handled. The
FER of a particular CAA is defined as a set of handlers (i.e. FER = {hnd1, ..., hndn}).
Each handler hndi is meant to administer at least one of the exceptions the CAA is
supposed to deal with, i.e. each exception that belongs to the exception graph, excluding
the universal exception.

Each handler hndi ∈ FER is defined as a set of cooperative handlers (i.e. hndi =
{coopHnd1, ..., cooprHndk}). More exactly, there must exist one cooperative handler coopHndi
for each role rolei (i = 1..k) in the CAA. This is because of the cooperation principle: if
a set of roles cooperate to reach the CAA’s goal, then they also have to cooperate when
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handling an exception. Thus, when an exception e (of type Exception, according to the
formalisation shown in Figure 4.14) is is detected by one of the roles rolei (of type Role) in
the CAA, the other roles rolej (j = 1..k and j 6= i) are informed. Subsequently, each role
rolei starts executing its cooperative handler coopHndi (of type CooperativeH ). Therefore,
for each exception ei the CAA is supposed to deal with, a hndi ∈ FER must be defined,
such that the number of cooperative handlers, hndi , is equal to the number of roles in the
CAA. The OCL condition shown in Figure 4.15 checks that this condition holds for every
CAA.

context CAA inv bindingRoleCooperativeHnd :
l e t

except i on s : Set ( Exception)= Exception . a l l I n s t a n c e s ()−> s e l e c t ( e |
l e t

coopHnds : Set ( CooperativeH)= CooperativeH . a l l I n s t a n c e s ()−>
s e l e c t ( coopH | coopH . r o l e . caa=s e l f )

in
coopHnds−>e x i s t s ( coopHnd | coopHnd . handles=e )

)
in

except ions−>f o rA l l ( e |
l e t

nRoles : Integer=s e l f . r o l e s−>s i z e ( ) ,
nCoopHnds : Integer=CooperativeH . a l l I n s t a n c e s ()−>

s e l e c t ( coopH | coopH . r o l e . caa=s e l f and coopH . handles=e)−> s i z e ( )
in

nRoles=nCoopHnds )

Fig. 4.15: Soundness between the number of roles and cooperative handlers for each exception
handled within a CAA.

Note that the binding between a role and its respective handler is captured by the as-
sociation role, whereas the composite relationship named handlers captures the different
cooperative handlers owned by a role to administer each of the different exceptions.

The CaaFWrk recovery mechanism combines FER and BER when handling an exception.
The statecharts [Har87, HN96] shown in Figure 4.16 describe the life cycle of the recovery
mechanism at run-time. The statecharts initially set the CAA in the state Service, which
represents the execution of its service. It may happen that either:

(a) a set ES of one or more exceptions are raised while the CAA is still executing (rep-
resented by the event Exception(ES)), or

(b) the CAA completes its execution, which is represented by the event caaDone. How-
ever, its post-condition, i.e. global acceptance test, does not hold and is represented
by he predicate not(postCond). A non-holding post-condition is an erroneous situa-
tion. A CAA post-condition does not hold when at least one of the role acceptance
tests is false. Each role rolei for which its acceptance test does not hold raises an
exception ExAcceptanceTestrolei such that ES = {ExAcceptanceTestrolei}.

Both cases activate the resolution mechanism to initiate the search for the resolving excep-
tion e in the set of raised exceptions ES . Depending of the exception found, the recovery
will be either FER or BER.

(a) if the resolving exception e found by the resolution mechanism is not the universal
exception, represented by the predicate Resolution(ES)=e, then the FER to handle
exception e is initiated (represented by the state FER(e)). In case that either:



122 4. The Timed-CaaFWrk conceptual framework

Exception(ES) 
[Resolut ion(ES)=e]

Exception(ES’)
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FER(e)BER

Service

Fig. 4.16: CaaFWrk recovery mechanism life cycle

i. one (or more) exceptions are raised during the execution of the FER (represented
by the event Exception(ES’)), or

ii. the FER completes its execution (represented by the event ferDone(e)), but its
post-condition, which may or not be equal to the CAA post-condition, does not
hold (represented by the predicate not(PostCond’)),

then the BER is started.

(b) if the resolving exception e found by the resolution mechanism is the universal excep-
tion (represented by the predicate Resolution(ES)=UE ), then the BER (represented
by the state BER) is started.

4.2.1.5 Outcomes

It has been said that (1) the CAA’s goal is the service or functionality it offers to the enclosing
context where the CAA is embedded, and (2) from the CAA’s user viewpoint this service is
provided atomically, i.e. there is not any visible intermediate state between a CAA request and
its returned outcome. However, the outcome a CAA returns to its user depends on not only
whether the CAA is faced or not with an exception, but also whether the recovery mechanism
succeeds or not in dealing with such an exception. Thus, the raising of an exception and the
behaviour of the recovery mechanism in dealing with it are the key elements that determine the
outcome the CAA returns to its enclosing context.

In the same manner as done in the previous section, a statecharts is used to describe the CAA
life cycle and the different outcomes that are returned to the enclosing context depending on
the final state that is reached. The statecharts that describes the CAA life cycle is shown in
Figure 4.17. Notice that this statecharts is an extension of the one shown in Figure 4.16, which
describes the life cycle of the recovery mechanism. This is because, as was previously stated,
the behaviour of the recovery mechanism is one of the key elements that determines the overall
internal behaviour of the CAA.
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Fig. 4.17: CAA life cycle and outcomes

The enclosing context is assumed to be initially in a certain state S0, from which a request to
the CAA is performed (represented by the event runCAA. The CAA will start executing its
service, state Service, only if the pre-condition holds, the predicate preCond.

The specification says that the state S1 is reached when the event caaDone occurs and the
predicate postCond holds. This state transition represents the best possible scenario in the
CAA life cycle. This scenario corresponds to the completion of the CAA without any exceptions
and holding its associated post-condition. In this case, the outcome provided by the CAA to
the enclosing context is referred to as normal. This outcome is described in the specification by
the broadcast event7 Normal, which is generated due to the transition from state Service to S1.

The other possible scenarios arise when an exception occurs. As explained in the recovery part of
Section 4.2.1.4, when an exception is raised the resolution and recovery mechanisms have to be
activated, in that order. In this situation, the life cycle of the CAA is defined by the behaviour
of these two mechanisms. However, depending of the success of the exception handler, different
outcomes can be produced.

When the recovery is carried out by means of the FER, the outcomes are either normal or
exceptional. The outcome normal is produced when the FER is able to both mask the raised
exception and to meet the expected post-condition. Thus, the CAA provides to its enclosing
context the service as originally expected, returning a normal outcome. The case in which the
FER is able to mask the raised exception, but a degraded version of the originally expected ser-
vice (specified by the logical formula postCond’ ) is achieved, produces the exceptional outcome.
This outcome is described in the specification by the broadcast event Exceptional(e), where e is
the exception that carries information about the degraded outcome having been achieved. This
event is generated due to the transition from state FER(e) to S2. It is worth noting that despite
the fact that the state S2 is not the state originally expected, it is still sufficient to allow the
software system to continue executing.

7 Event with the line above.
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In case the recovery is carried out by means of BER, either because the resolution mech-
anism resolved to the universal exception (specified in the statecharts by the event Excep-
tion(ES)[Resolution(ES)=UE]), or an exception was raised during execution (specified in the
statecharts by the event Exception(ES’)), the produced outcomes are either abort or failure. The
CAA returns abort when the BER succeeded in undoing the effects over the CAA’s external
objects and moving the software system to the same state it had before the CAA was requested,
i.e. state S0. In case the BER fails in reaching such a state, the CAA is considered as having
failed. This is the worst case scenario, since the software system has been left in a corrupted
state (in the statecharts, the grey-colour state S3 represents this kind of state).

Having explained the different possible outcomes a CAA may produce, their formalisation in
terms of the metamodelling principle is given in the Figure 4.18. This formalisation describes the
four possible outcomes a CAA may reach by specialising the abstract class Outcome in Normal,
Exceptional, Aborted, and Failed. Notice that both Normal and Exceptional include an attribute
that is meant to capture the first-order logical expression that describes the acceptance test to
be passed such that the respective outcome can be returned. It is worth noticing that while
a role may only produce Normal outcomes, i.e. what the composite relationship post models,
a cooperative handler is allowed to return one of the four different outcomes, i.e. what the
composite relationship outcome models.

acceptanceTest : OclConstraint

Normal

acceptanceTest : OclConstraint

Exceptional

Handler

name : String

Role

name : String

CooperativeH Outcome

Failed Aborted

outcome

11

handlers
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1

Fig. 4.18: Metamodelling formalisation of the CAA outcomes.

There is an important point that deserves special attention. An Exceptional outcome, which
determines a degraded response from the CAA to its caller, is achieved by signalling an exception.
This points out that part of the internal behaviour of the FER may include an instruction to
signal the exception. The special instruction Signal allows an exception to be signalled to the
CAA enclosing context. The formalisation of this instruction is shown in Figure 4.19. The Signal
instruction is considered as a kind of Control instruction since its execution not only signals the
exception (that is captured by the association with of the same name), but also transfers the
flow control from the CAA to its caller. The instruction Signal is allowed to be used only within
a cooperative handler coopHndi of type CooperativeH. The OCL condition shown in Figure 4.20
checks this constraint.
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Fig. 4.19: Instruction to signal an exception.

context S igna l inv onlyInCooperativeHnds :
S i gna l . a l l I n s t a n c e s ()−>

f o rA l l ( s i g n a l I n s t r | CooperativeH . a l l I n s t a n c e s ()−>
e x i s t s ( coopHnd | coopHnd . i n s t r s−>i n c l ud e s ( s i g n a l I n s t r )

)
)

Fig. 4.20: The Signal instruction may only be used within a cooperative handler.

4.2.1.6 Nested and composite CAAs

Another important characteristic of a CAA is that it can be designed in a structured way using
the notion of nested and composite CAA. Using the classic informal notation introduced at
the beginning of this section, Figure 4.21 depicts a CAA named CAA1 that is structured by one
nested CAA named CAA2, and one composite CAA named CAA3. This figure can be used to
explain the characteristics of these structuring facilities.

Both nested and composite CAA’s are designed to be embedded into another CAA. Their
differences are (1) in the participants that play each of the roles they are made of, and (2)
the way in which they are invoked. A nested CAA, e.g. CAA2, is played by a subset of the
participants (e.g. P1 and P2) that carry out the roles of its enclosing CAA, e.g. CAA1. A
nested CAA starts its execution once every role in the enclosing CAA (e.g. R1 and R2) has
passed control over to one of the roles of the nested CAA (e.g. R

′
1 and R

′
2) . This distinction

points out that each role in the nested CAA is explicitly called by a role of the enclosing CAA.
Once all these calls have been performed, the nested CAA starts. The activities carried out by
each of the participants within the nested CAA are hidden to both the other roles being played
by participants that that did not enter into the nesting (e.g. R3), and to any other nested or
composite CAA (e.g. CAA3) being executed by the enclosing CAA at the same time.

Composite CAAs [TLIR] (e.g. CAA3) are more flexible than CAAs, since their use does not
require any participant already engaged in the execution of the roles of the enclosing CAA.
The participants required to play a composite CAA role (e.g. P

′
1,P

′
2 and P

′
3) are assumed to

be assigned upon the call of the composite CAA. A composite CAA starts executing its roles
(e.g. R

′′
1 ,R

′′
2 , and R

′′
3 ) once it is invoked by a role in the enclosing CAA (e.g. R3). This role

synchronously waits for the outcome of the composite CAA. Then, the calling role resumes its
execution according to the outcome of CAA3. The execution being performed by the composite
CAA is hidden from the enclosing CAA. The effects of having executed a composite CAA are



126 4. The Timed-CaaFWrk conceptual framework

Fig. 4.21: Nested and composite CAAs.

known only by the changes it makes to those objects that were passed to it as parameters, e.g.
O5 and O7.

The a nested CAA differs from a composite CAA by the participants that play them as well
as by the way they are invoked. Thus, there is nothing preventing the use of the CAA in one
instance as nested and at another as composite within the same design. It is the caller of the
CAA who decides whether it is nested or composed. When nesting a CAA, roles of the enclosing
CAA must use the instruction CallNested to invoke the nested CAA (see the part of the meta-
model shown in Figure 4.22). This instruction indicates which CAA is to be nested. (This is
captured by the association named callCAA that is inherited from the abstract class CallCAA.)
In addition, the instruction also indicates the role to be played by the participant carrying out
the invocation. (This is captured by the association named callRole.) The case in which a role
invokes a composite CAA is achieved by using the instruction CallComposite. This instruction
only requires knowledge of which CAA is to be invoked. Each CAA has a unique name within
the design. The OCL invariant named Uniqueness that ensures this condition is shown in Figure
4.23.

It is assumed that in each CAA design there exists an outer most CAA, which defines the
boundaries between the software system structured in terms of CAAs, and the environment
where the software system is meant to be deployed [ZRX+99]. This outer most CAA, which is
referred to as root CAA, is assumed to be (1) unique (the invariant checks this condition), and
(2) started by an event coming from the environment, whereas the other CAAs (i.e. nested and
composite CAAs) are started by explicit (either CallNested or CallComposite) calls. It must be
noted that recursive calls are not allowed (the invariant nonSelfReference checks this condition).

An important consideration regards the objects that are passed as arguments over a CAA
(regardless it is a nested or a composite) from its enclosing context (e.g. O1). Objects passed
as arguments over a CAA are always considered as external for such a CAA. Hence, an internal
object belonging to the caller CAA that is passed as an argument becomes external for the
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CAA. This shows that the notions of external and internal objects are relative to the CAA
where they are used. Of course, the type of each object being passed as an argument when
calling a CAA must match the type of the parameter expected by the called CAA (the invariant
CheckTypesOnParams checks this condition).

...

ExternalObj

CallCAA

isRoot : boolean
name : String

CAA

name : String

Event

name : String

Role

CallNested

CallComposite

name : String

Object

callCAA

1

1

roles {ordered}

1..*1

caa

1 1

params
{ordered}

0..*

1

args
{ordered}

0..*

1

callRole

1

1

requestedBy

0..1

1

Fig. 4.22: Nested and Composite CAAs.

There are several points that apply both to nested and composite CAAs worth noting.

• In the case that an exception is raised within a CAA while an inner CAA is executing, then
the inner CAA will receive a notification to abort its current execution such that those
roles being involved in its execution can join with other peer roles of the enclosing CAA
to deal with the raised exception. This means that the adopted model is the pre-emptive
CAA scheme described in [RRS+97, XRR98].

• In the case that an inner CAA signals an exception, i.e. its outcome is either Exceptional,
Aborted or Failed, every role involved in the calling of the inner CAA (it will be only one
in the case of having called a composite CAA, and many in the case of a nested CAA)
propagates the signaled exception to all its peer roles to start the recovery mechanism.

• Each participant playing a particular role within a CAA can only enter into one inner
CAA at a time.

• A CAA may terminate only after all its inner CAAs have terminated.
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context CAA inv Uniqueness :
CAA. a l l I n s t a n c e s ()−> f o rA l l ( caa1 , caa2 | caa1<>caa2

implies caa1 . name<>caa2 . name)

context CAA inv eventOnlyForRootCAA :
i f ( s e l f . i sRoot ) then

not ( s e l f . requestedBy . oc l I sUnde f ined ( ) )
else

s e l f . requestedBy . oc l I sUnde f ined ( )
endif

context Role inv nonSe l fRe f e r ence :
Role . a l l I n s t a n c e s ()−> f o rA l l ( r : Role |

( l e t
c a l l s :Sequence (CallCAA)= r . i n s t r s−>

s e l e c t ( i n s t r : I n s t r u c t i o n | i n s t r . oc l IsTypeOf (CallCAA))−>
c o l l e c t ( stmt | stmt . oclAsType (CallCAA ) )

in
c a l l s−>f o rA l l ( c : CallCAA | c . callCAA <> r . caa )

)
)

context CallCAA inv CheckTypesOnParams :
l e t

args : Sequence ( Object ) = s e l f . args−>asSequence ( ) ,
prms : Sequence ( ExternalObj ) = s e l f . callCAA . params−>asSequence ( )

in
args−>c o l l e c t ( e | e . type ) = prms−>c o l l e c t ( e | e . type ) and
args−>c o l l e c t ( e | e . type . name) = prms−>c o l l e c t ( e | e . type . name)

Fig. 4.23: OCL invariants for ensuring structural consistency among CAAs.

4.2.2 Extensions

Since the CaaFWrk was conceived, several extensions were proposed to make it workable in
different contexts, e.g. client/server paradigm [RE01, RPZ03], or simply deal with issues that
were not initially considered. In the following, the extensions to the original CaaFWrk that are
considered within the context of this thesis are presented. These extensions not only enhance
the application of the conceptual framework when designing dependable software systems, but
also make its use as a semantic domain in the definition of the DT4BP modelling language more
suitable. It is worth mentioning that time-related extensions are addressed in a separate section
(see Section 4.3) as time is one of the main dimensions of interest considered in this thesis.

4.2.2.1 Non-reversible external objects

Originally, the CaaFWrk assumes that every external object provides its own error recovery
mechanism [XRR+95]. In this manner, when a CAA has to abort, i.e. to perform BER -
see Section 4.2.1.4, it may rely on the support provided by each external to undo the effects
of its execution. This recovery support given for each external is considered as part of the
transactional support on which a CAA relies to achieve the ACID properties over the external
objects it accesses.

However, sometimes the designer/programmer may want to or may have to use an external
object that does not provide any recovery mechanism due to cost or physical constraints [AL81,
pp. 146-149]. Designers or programmers then have to provide tailored hand-made recovery
mechanisms for this kind of external object. Hence, depending on whether an external object
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has or does not have its own recovery mechanism it can be categorised as AutoRecoverable (AR)
if it does, or ManuallyRecoverable (MR) if it does not. Figure 4.24 shows the part of the meta-
model that formalises these concepts. Both AR objects, captured by the class Autorecoverable,
and MR objects, captured by the class ManuallyRecoverable, are kinds of external objects and
thus a reason why these classes extend from class ExternalObj. This means that the parameters
of a CAA may be both AR or MR objects.

The hand-made recovery designed for each MR object has to be placed within the BER of the
CAA. The BER performance is divided into the activities designed by the programmer to undo
the effects and those provided by each AR object. To allow the BER of a CAA to be split into
two parts, i.e. one concerned with the recovery of MR objects, and other for the AR objects -this
automatically supported, the notion of Compensator is introduced. A compensator is a kind of
handler that contains the specific recovery actions needed for dealing with MR objects such that
the CAA is considered as having been restored to its initial state in case of an abortion. These
recovery activities are assumed to affect all the participants involved in the execution of the
CAA, as the cooperation of other peer participants may be required to undo the effects of the
operations having been executed over the different AR objects. Hence, a compensator, cpmi ,
can be seen as a kind of handler that is made of several, i.e. one for each role rj , j = 1..n the
CAA has) cooperative handlers cmphndj . Thus, a compensator is a kind of cooperative handler
(thus of the class Compensator and extending from CooperativeH ) that is meant only to recover
MR objects, in the case when the CAA has to abort. This points out that every cmphndj (of
type Compensator is only allowed to produce an Aborted outcome. The OCL invariant shown
in Figure 4.25 checks this conditions.

Autorecoverable

ManuallyRecoverable

...

ExternalObj

AbortedCompensator

Outcome

name : String

Role

name : String

CooperativeH

isRoot : boolean
name : String

CAA

handlers

0..*1

role

1 1

outcome

11

caa

1

1

roles
{ordered}

1..*

1

params
{ordered}

0..*

1

Fig. 4.24: AR and MR objects, and compensators for recovering MR objects.

context Compensator inv onlyAbortedOutcome :
Compensator . a l l I n s t a n c e s ()−> f o rA l l (cmp | cmp . outcome . oclIsTypeOf ( Aborted ) )

Fig. 4.25: A compensator may only return an Aborted outcome.

It is worth mentioning that a compensator may be required in the case when a CAA (e.g. CAA1
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in Figure 4.22) encloses a composite CAA, e.g. CAA3. This is due to the fact, that when the
CAA, e.g. CAA1, needs to abort, special activities that may be required to undo the effects of
the composite CAA, e.g. CAA3, once it has committed. These special activities enclosed within
the compensator may include a second calling to the composite CAA, but this time for undoing
the effects of its former execution.

4.2.2.2 Fixed and potential participants

In [RE01], Romanovsky and Ezhilchelvan introduced the new “conversation” [Ran75] scheme
in order to bring flexibility to the way in which participants can join or enter into the same
conversation. The authors come out with the notions of fixed and potential participants. A
fixed participant, is defined as a participant that may invite other participants to join to a
conversation that is currently underway. Those participants that may join a conversation upon
request are defined as potential participants. Within this scheme, it is assumed that run-time
support provides the operations that allow a participant pi (1) to request another participant
pj to join the conversation, and (2) to register which conversations it is willing to enter upon
invitation. This new scheme allows (potential) participants to join a conversation “on-the-fly”,
without the need of fixing which participants are required to join a particular conversation at
modelling time.

Inspired by this new scheme for the conversation paradigm, the notion of participant allocation
policy is introduced into the CaaFWrk as a flexible means for selecting the participants that
may play a particular CAA. However, there are certain points that deserve more explanation
before going further. First, it must be noted that any allocation policy applies only to the call
of composite CAAs as it is (1) the only kind of CAA for which its request can be modelled
within a CAA design (it is a duty of the environment to provide the participants in charge
of playing the root CAA), and (2) there exists freedom in the participants that may play its
roles (a nested CAAs is played by a subset of participants being engaged in the execution of
the enclosing CAA). Second, the willingness of a participant in playing certain roles of different
CAAs is modelled by the association named play (see Figure 4.26), which specifies what are
the roles a particular participant may play at run-time. As already mentioned, at run-time a
participant may only play a role a time. The notion of Availability is used to capture whether
a participant is already engaged or not in the execution of a role.

In this manner, when calling a composite CAA, achieved by using the instruction CallComposite
(see Figure 4.26), the modeller must specify what participants are required to play such a CAA.
There exist four different kinds of participant allocation policies:

1. Static: used to select a particular participant among the pool of available potential par-
ticipants,

2. Dynamic: used to select a subset of participants among all the pool of available potential
participants. This subset is defined for all the participants that satisfy the first-order logic
formula (written in OCL) specified by the allocation policy and captured by the attribute
predicate,

3. Reference: used when the participant to be used must be the same used in the execution
of a formerly called composite CAA. The reference to this already used participant is
recorded by a variable of type ParticipantVar created when the former call was made.
Tthis is what the composite relationship named var allows the modeller to capture when
calling a composite CAA), and
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predicate : OclConstraint
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Participant
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Fig. 4.26: Allocation of participants upon calling a composite CAA.

4. Dynamic: used to create a new participant “on-the-fly”, which is different from any other
participant defined at modelling time. This allocation policy allows the modeller to create
participants at run-time for playing a particular CAA. It is assumed that once the CAA
is completed, the participant is no longer available for re-use, unless a reference to it has
been saved. In other words, there exists a variable of type ParticipantVar that saves a
reference to the participant.

4.2.2.3 Split and Spawn instructions

Vachon in [Vac00] proposes to enlarge the set of instructions to a role by including the notion
of Spawn. The aim of this instruction is to allow a role to open a new branch of execution, i.e.
thread or process, such that the role may execute its internal instructions in a concurrent manner.
It is assumed that a role ends its execution once all the spawned execution branches have also
ended. Adhering to the idea of allowing a role perform its internal instructions in a concurrent
manner, the notion of Spawn as well as the notion of Split is introduced in the allowed set of
instructions to a role. While the instruction Spawn (concrete syntax spawn{instr1, ..., instrn})
is meant to create new branches, i.e. one for each instri , that will execute in a concurrent
manner not only amongst themselves, but also with the current branch used to start them.
Conversely, the instruction Split (concrete syntax split{instr1, ..., instrn}) allows the modeller
to specify the creation of new branches, i.e. one for each instri , that will execute in a concurrent
manner amongst themselves, but the branch used for their creation waits until all instructions
have ended to continue its execution. The formalisation, in terms of metamodelling, of these
two new control-kind of instructions is shown in Figure 4.27.
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Fig. 4.27: Split and Spawn instructions.

4.2.2.4 Local handling

Collaboration is a central concept within the CaaFWrk. It is used not only during the normal
execution of a CAA when roles collaborate between themselves to achieve the CAA’s goal, but
also during the recovery phase. As explained in Section 3, once (at a minimum) one exception
is raised during the execution of the CAA roles, a recovery mechanism is started. This recovery
mechanism involves all the current participants being engaged in the execution of the CAA.
Hence, as soon as an exception is raised within a role, all the other peer roles are (1) notified
about the exception and interrupt their current execution, and then (2) join the recovery phase.

It may be the case that a role has all the required information to deal with a raised exception
during its execution. In that case, it is not only unnecessary to interrupt the other peer roles,
but also a disadvantage with respect to the time it takes the CAA to complete its execution8.
The proposal then is to allow roles to deal with an exception in a local manner, before notifying
its peer roles of the exception. A local handler (formalised by the class LocalH in Figure 4.28)
can be created to deal with one or more exceptions (the association handles captures these
exceptions) that may be raised during the execution of certain instructions enclosed within a
role (the composite relationship intrs of the class Role). The ordered sequence of instructions
to be executed by a local handler are those captured by the composite relationship instrs owned
by the abstract class Handler from which LocalH extends.

4.3 The Timed-CaaFWrk

The CaaFWrk has been introduced as a design method to structure the software system activities
to meet the user requirements (specifications). Concurrent object-oriented software systems with
high levels of dependability are mainly the kind of software system for which the CaaFWrk was
conceived to be used as design method.

8 Interrupting the execution of all the peer roles, and then restarting the execution of their respective cooper-
ative handlers introduces an extra overhead in the runtime system that may not necessarily be negligible in
contexts where every second counts, e.g. real-time systems.
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Fig. 4.28: Handling exceptions within a role.

Real-time software systems are either inherently or imposed concurrent and very often have
dependability requirements ([BW01], pages 7-12). In the context of this thesis a real-time
software system is considered as a software system that has within its requirements specification
at least one time requirement. A time requirement is one that falls into one of the following
categories [XR97]:

• Event timing constraints:

– if event e1 occurs, event e2 must occur within time t

– no two consecutive events must occur within time t

– predicate C must remain true for at least a length of time t before process p can
start

• Sporadic timing constraints: when event e occurs, if predicate C is true, trigger process p
with deadline D

• Periodic timing constraints: while predicate C is true, execute process p with period T
and deadline D

• Data timing constraints: each data has a valid time interval

Real-time software systems are an example of the type of systems to be designed using the
CaaFWrk. However, the timing requirements imposed by most real-time software systems are
not easily or impossible to be modelled by the original version of the CaaFWrk. Therefore,
extensions to make it available for designing real-time software systems are required.
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4.3.1 Fundamentals

Romanovsky et al. in [RXR99]9 were the first authors to propose time extensions for the
CaaFWrk. These time-related extensions were meant to allow designers deal with time require-
ments belonging to the categories of event, sporadic, and periodic at the level of CAAs. For
timing constraints belonging to the category of data, this new version of the CaaFWrk with time
extensions ( Timed-CaaFWrk from here on out) is assumed to rely on existing real-time object
models like those described in [KK94] and [KS97]. This points out that the Timed-CaaFWrk
was conceived to be combined, if necessary, with a real-time object model to cover all kinds of
timing constraints.

4.3.1.1 Time constraints

As just discussed, time-related extensions are addressed at the level of the CAA abstraction.
These time-related extensions10 allow for the description of (1) the moment at which a CAA has
to start, (2) the point in time at which the CAA is expected to be complete, (3) the minimum
required and/or maximum allowed elapse time since the CAA started its execution, (4) the
maximum time the CAA can spend executing, and (5) of the frequency with which the CAA
must be executed. The informal concrete syntax shown in Figure 4.29 is aimed at giving an
idea of how to express such time-related information over a particular CAA, tCaa1. Figure 4.30
shows how these timing constraints look in the classic graphical representation used to describe
CAAs:

CAA tCaa1 ( formal parameters )
period (Te ,Tu) , start [ t0 , t1 ] , f in ish [ t2 , t3 ] elapse [ E1 , E2 ]

role R1 { . . . } exec C1
role R2 { . . . } exec C2
role R3 { . . . } exec C3

Fig. 4.29: Informal concrete syntax to model time constraints over a CAA and its roles.

This indicates that the CAA named tCaa1 has to: (1) start11 between times t0 and t1, (2) finish
between t2 and t3, (3) complete its activities in more than E1, but in less than E2 time units, and
(4) be executed every Te time units, its period, until the point in time Tu is reached. Since the
CAA activities are performed by its roles, it makes sense to assign maximum execution times
(represented as C) on each role. In this example, R1,R2 and R3 have C1, C2 and C3 time units
as maximum to perform their activities, respectively.

Please note, t0, t1, t2, t3,Te and Tu are relative to the point in time when tCaa1 is requested to
start its execution, i.e. request time trq), whereas E1 and E2 are relative to the point in time
when tCaa1 starts its actual execution, i.e. release time trl . In theory, when no delay of the
CAA start is specified, i.e. t0 is not specified, no difference between trq and trl should exist . In
practice, however, the difference between trq and trl depends on the operations of the underlying
layers, e.g. scheduler, middleware, O.S., needed to effectivly the execute the CAA once it is
requested. Obviously, the main goal is to make the difference between trq and trl negligible.

9 Similar and extended information can be found in [RXR98, BRR+98].
10 Due to variations between the proposed extensions reported in [RXR99, RXR98] and [BRR+98], an unified

and consolidated view of these extensions is considered within this thesis.
11 A CAA is considered to have started its execution once all the participants have started playing their respec-

tive roles.
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Fig. 4.30: Possible timing constraints over a CAA

As explained in Section 4.2.1.6, a CAA is started by either an event coming from the environment
where it is enclosed or an explicit (nested or composite) call performed by an enclosing CAA.
Hence, the point in time at which the CAA is requested to start, trq , is defined by the moment at
which the event is raised, or the call is performed. Notice that the underlying software system,
which would be used to manage the execution of both timed and non-timed constrained CAAs
(aka the run-time support layer) is considered as part of the environment. Thus, the event that
leads towards the execution of a CAA may also be generated for this run-time support layer.
A real-time clock that generates an event due to having reached certain wall clock time12 is
an example of an event triggered by this run-time support layer. In this case, it is up to the
run-time support layer to create the required participants to play the CAA’s roles, as well as to
remove/release them once the CAA has completed its execution. Obviously, this layer has to
create and remove such participants in order to start and end the CAA execution in accordance
with the specified timed constraints on the CAA.

The formalisation of the time-related extensions is shown in Figure TimedCAA-MM-timedCAA.
This part of the meta-model shows that the composite relationships delay, deadline, and elapse
are meant to allow the modeller to capture the time constraints related to the start (i.e. t0, t1),
finish (i.e. t2, t3) and elapse (i.e. E1,E2) times of the CAA. The notions of start, finish and
elapse are captured by the classess StartT, FinishT and ElapseT, respectively. These classes
extend from the abstract class TimeRange. The attributes min and max of type TimeExp (i.e.

12 Time as seen in the physical world
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an abstract data type aimed at capturing valid time values) owned by the class TimeRange allow
for modelling the minimum and maximum boundaries for each of the time constraints that can
be held by a CAA.
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Fig. 4.31: Time constraints over a CAA and its roles.

Nothing forbids a CAA to have its start, finish and elapse times constrained, and be also periodic.
As shown in Figure 4.29, the period of a CAA is defined by the two values Te and Tu . The value
Te determines how often the CAA has to be executed. Whereas the value Tu defines the time
elapsed since the last periodic call of the CAA. These concepts are captured in the meta-model
of Figure 4.31 by the classes Period and Every, and the composite relationships of the same
name. The composite relationship owned by the class CAA captures whether a CAA is periodic
or not. Whereas the composite relationship every captures the information related to Te . In
fact, the attributes until in class Period, and value in class Every capture the values Te and Tu ,
respectively. It must be noted that until is expected to own a time expression (explaining why
it is of type TimeExp), whereas value is simply an integer that together with its type of class,
i.e. Second, Day, Month, etc., define how often the CAA must be executed.

The remaining time constraint to be fomalised is the one regarding the execution time of a role.
This concept is captured by the class ExecutionT. In the original work, the authors only consider
the maximum allowed execution time as a constraint to be set over a role. However, in order
to be more complete and general, a lower bound regarding the role execution time could be
set. Following this general and complete view, the meta-model allows the modeller to constrain
both the minimum and maximum execution time of a role. That is the reason why the class
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ExecutionT extends from TimeRange.

Obviously, the time constraints that may be set over a CAA must be consistent such that at
least one instance of the modelled CAA may be created. Figures 4.32 and 4.33 show the OCL
conditions that ensure the values held by the above-mentioned time constraints are such that at
least one CAA instance that meets them. Such OCL conditions are specified over the assumption
that all time-related values are in the same time unit13.

context TimeRange inv ConsistentRange :
( s e l f . min > 0 or s e l f .max > 0) and
( i f ( s e l f . min > 0 and s e l f .max > 0) then

s e l f . min <= s e l f .max
else t rue endif )

context CAA inv Cons i s t en tF in i sh :
i f ( s e l f . d ead l ine .max > 0) then

i f ( s e l f . de lay . min > 0) then
i f ( s e l f . e l ap s e . min > 0) then

s e l f . de lay . min + s e l f . e l ap s e . min <= s e l f . d ead l ine .max
else

s e l f . de lay . min <= s e l f . dead l ine .max
endif

else
i f ( s e l f . e l ap s e . min > 0) then

s e l f . e l ap s e . min <= s e l f . dead l ine .max
else t rue endif

endif
else t rue endif

context CAA inv Cons i s t entPer iod :
i f ( s e l f . pe r iod . every . va lue > 0) then

i f ( s e l f . de lay . min > 0) then
i f ( s e l f . e l ap s e . min > 0) then

s e l f . de lay . min + s e l f . e l ap s e . min <= s e l f . pe r iod . every . va lue
else

s e l f . de lay . min <= s e l f . pe r iod . every . va lue
endif

else
i f ( s e l f . e l ap s e . min > 0) then

s e l f . e l ap s e . min <= s e l f . pe r iod . every . va lue
else t rue endif

endif
else t rue endif

context CAA inv ConsistentFinishAndPer iod :
i f ( s e l f . d ead l ine .max > 0 and s e l f . pe r iod . every . va lue > 0) then

s e l f . d ead l ine .max <= s e l f . pe r iod . every . va lue
else t rue endif

Fig. 4.32: Consistency between time constraints set over a CAA.

The invariant ConsistentRange is meant to ensure that time ranges are always valid. In other
words, this invariant checks that a minimum value is always lower than or equal to its respective
maximum. Otherwise, the time range is considered inconsistent. The other invariants shown
in Figure 4.32 are meant to check the consistency between time constraints set at the level of
a CAA. In this manner, the invariant ConsistentFinish checks that the minimum guaranteed
time a CAA takes to execute does not go beyond its maximum deadline (i.e. t3 or Finish.max ).
The invariant ConsistentPeriod performs the same check, but with respect to the period of the
CAA, as it is assumed that a CAA completes its execution before starting again. Finally, the

13 Technically, this assumption can be implemented by performing a pre-processing of the model.
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invariant ConsistentFinishAndPeriod checks that a periodic CAA completes its period greater
or equal than the time it takes to complete its execution (i.e. t3 or max. deadline).

context Role inv ConsistentRoleExecAndMaxElapse :
i f ( s e l f . exec . min > 0 and s e l f . caa . e l ap s e .max > 0) then

s e l f . exec . min < s e l f . caa . e l ap s e .max
else t rue endif

context Role inv ConsistentRoleExecAndMaxFinish :
i f ( s e l f . exec . min > 0 and s e l f . caa . dead l ine .max > 0) then

s e l f . exec . min < s e l f . caa . dead l ine .max
else t rue endif

context Role inv ConsistentRoleExecAndPeriod :
i f ( s e l f . exec . min > 0 and s e l f . caa . per iod . every . va lue > 0) then

s e l f . exec . min < s e l f . caa . per iod . every . va lue
else t rue endif

Fig. 4.33: Consistency between time constraints set over a CAA and its roles.

The invariants shown in Figure 4.33 check the consistency of the constraints regarding the exe-
cution time of a role with respect to those time constraints being set over the CAA enclosing the
role. Hence, the invariant ConsistentRoleExecAndMaxElapse ensures that the minimum execu-
tion time of a role does not go beyond the maximum allowed elapse time of the CAA, otherwise
it is always impossible to complete the CAA execution on time. Invariants ConsistentRoleEx-
ecAndMaxFinish and ConsistentRoleExecAndPeriod perform similar checks, but regarding the
maximum deadline of the CAA, and its period, respectively.

4.3.1.2 Time-related exceptions

According to the previous information, a CAA with time constraints, a timed-CAA, is a simple
way to describe the launching, ending and duration (both in units of time and processing) of
a group of jointly concurrent activities. Any violation of these timing constraints is seen as a
time-related exception. The time-related exceptions that may take place during the execution
of a timed-CAA are the following:

• Late starting of the CAA: Occurs when at least one participant does not start its role
before the maximum allowed delay (t1 in Figure 4.31) allowed to start a CAA. The raised
exception is MaxCAAStartT ;

• Early finish of the CAA: Occurs when all the participants have ended their roles before
the minimum deadline (t2 in Figure 4.31). The raised exception is MinCAAFinishT ;

• Late ending of the CAA: Occurs when at least one participant has not completed its role
before either (1) the maximum deadline (t3 in Figure 4.31), or in the event the CAA
is periodic, (2) the period of the CAA (Te in Figure 4.31). The raised exceptions are
MaxCAAFinishT and CAAPeriodT , respectively;

• Short elapse time: Occurs when all the participants have ended their roles before the min-
imum required elapse time (E1 in Figure 4.31). The raised exception is MinCAAElapseT ;



4.3. The Timed-CaaFWrk 139

• Long elapse time: Occurs when at least one participant has not completed ts role be-
fore the maximum allowed elapse time (i.e. E2 in Figure 4.31). The raised exception is
MaxCAAElapseT ;

• Short role execution time: Occurs when the participant completes the execution of its role
using less than the minimum required execution time (i.e. Cmin)). The raised exception
is MinRoleExecT ;

• Long role execution time: Occurs when the participant exceeds the maximum allowed
execution time (i.e. Cmax ) for executing its role. The raised exception is MaxRoleExecT ;

It must be noticed that the time constraint related to the minimum required delay (i.e. t0)
is assumed as always being met. Hence, as this kind of time constraint cannot be missed, no
exception is required to signal this type of time constraint violation.

In the case that a time-related exception is raised, and following the same principles of the
original CaaFWrk, a recovery phase is started to handle the exceptional situation. The kind
of recovery, i.e. FER or BER, to be performed depends on the time-related exception being
raised. The time-related exception MaxCAAStartT signals the unsuccessful start of the CAA.
In this case the CAA must return the Aborted outcome of its enclosing context since the effects
are the same as having applied a BER. In other words, the fact that the CAA did not execute
is equivalent to having executed and then applied BER. Notice that the Aborted outcome is
propagated to all the participants that should have entered into the CAA.

The time-related exceptions MaxCAAStartT indicate that the CAA has run out of time to
complete its execution. Since it is too late to perform any complex activity, the recovery phase
is meant to abort the CAA execution by performing a BER. It is assumed that aborting a CAA
is a much faster process that any FER.

The time-related exceptionsMinCAAFinishT andMinCAAElapseT signify the early completion
of the CAA. Since there is still time to perform certain activities, it is allowable to use an FER
to deal with any of these time-related exceptions.

Despite the exception MaxCAAElapseT (denoting a late completion of the CAA) it is also allow-
able to use an FER to handle it. The hypothesis of using an FER to handle theMaxCAAElapseT
exception is provided on the assumption that the maximum allowed elapse time is a means to
detect a timing problem in the execution of the CAA earlier than the ”hard” deadline t3 that
the CAA is not allowed to overpass. Therefore, the elapse time can be considered as an internal
check for controlling the temporal evolution of the CAA, giving the modeller an opportunity to
put into place specific recovery activities (FER) to fix the problem in time as defined by the
time constraint t3.

The time-related exceptions MinRoleExecT and MaxRoleExecT indicate problems regarding
the execution time of a role. Relying on the notion of local handling introduced in Section
4.2.2 as part of the proposed extensions to the CaaFWrk, a recovery phase can be placed
within the role to deal with any of these exceptions such that the other peer roles are unaware
that an exception and its recovery have taken place. It is worth noting, that in the case that
these exceptions are not handled within the context of role where they may be raised, their
propagation to the other peer roles enclosed within the same CAA leads to the abortion of the
CAA. Hence, the time-related exceptions MinRoleExecT and MaxRoleExecT are allowed to be
handled by a local handler, only. The OCL invariant shown in Figure 4.35 ensures this condition.
Notice that this OCL invariant relies on the part of the meta-model being shown in Figure 4.34,
which formalises the time-related exceptions previously introduced. The time-related exceptions
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MaxCAAStartT , MinCAAFinishT and MinCAAElapseT are not part of the formalisation since
they are not allowed to be handled; their flagging leads the abortion of the CAA.

MinCAAElapseT

MinRoleExecT

TimeEx

MinCAAFinishT

LocalH

name : String

CooperativeH

name : String

Exception

MaxCAAElapseTMaxRoleExecT

Handler
handles

1..*1

Fig. 4.34: Time-related exceptions for which may exist a handler.

context Handler inv localHandlerForMaxRoleExecT :
Handler . a l l I n s t a n c e s ()−>

c o l l e c t (h | h . handles . oc lIsTypeOf (MaxRoleExecT))−>
f o rA l l (h | h . oclIsTypeOf ( LocalH ) )

context Handler inv localHandlerForMinRoleExecT :
Handler . a l l I n s t a n c e s ()−>

c o l l e c t (h | h . handles . oc lIsTypeOf (MinRoleExecT))−>
f o rA l l (h | h . oclIsTypeOf ( LocalH ) )

Fig. 4.35: Consistency between time constraints set over a CAA and its roles.

4.3.1.3 Concurrent time-related and value-related exceptions

Some of the time-related exceptions, i.e. an exception that signals the absence of a time con-
straint, presented in the previous section may be raised concurrently with one or more value-
related exception, i.e. an exception that notifies a logical problem. In the following discussion,
the different cases that may lead to concurrent time and value-related exceptions are analysed.
As a vehicle to support this analysis and ease its explanation, Figure 4.36 shows the exception
graph used in Section 4.2.1.4 along with all possible time-related exceptions that may also oc-
cur during the execution of a timed-CAA. All time-related exceptions hang on the universal
exception. This means that every time-related exception can be raised during the execution of
a timed-CAA, but not in a concurrent manner with any other time-related exception.

The first time-related exception to be considered is MaxCAAStartT . Since this exception flags
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Fig. 4.36: Exception graph with all possible time-related exceptions.

the late start of the CAA, it may raised in an isolated manner as none of the CAA’s roles have
been started by its respective participant. Other time-related exceptions that may only occur
in an isolated manner are MinCAAElapseT and MinCAAFinishT as all the participants have
ended their roles completing the execution of the CAA, however earlier than expected. In the
unusual, but still possible situation in which the time constraints t2, the minimum required
deadline and E1, the minimum required elapse time specify the same values, t2 = E1, it is
assumed that only the exception MinCAAFinishT is raised as this exception is considered as
having a higher precedence than MinCAAElapseT .

The time-related exceptions MaxCAAElapseT , MaxCAAFinishT , and CAAPeriodT might be
raised concurrently with one or more value-related exceptions. The overlapping colored nodes
depicted in Figure 4.34 show the potential concurrent occurence of these time-related exceptions
with any of the value-related exceptions e1..5, e1∧e2∧e3, e3∧e4, and e1∧e2∧e3∧e4. However, only
one time-related exception can be raised concurrently with one or more value-related exceptions.
In the unusual, but still conceivable case where the time constraints t3, the maximum allowed
deadline, E2, the maximum allowed elapse time, and Te , the period of the CAA, all specify the
same values, i.e. t3 = E3 = Te , only one exception will be raised according to the following
(ascendant) order of precedence: MaxCAAElapseT < MaxCAAFinishT < CAAPeriodT . Thus,
one or more value-related exceptions can be raised concurrently with either MaxCAAElapseT ,
MaxCAAFinishT , or CAAPeriodT .

The cases in which a value-related exceptions is raised concurrently with MaxCAAFinishT , or
CAAPeriodT deserves special attention. As was explained previously, both MaxCAAFinishT
and CAAPeriodT lead to the BER, since the CAA has run over time completing its tasks and its
termination is the last opportunity to leave the software system in a consistent state. Hence, once
MaxCAAFinishT or CAAPeriodT are raised the CAA has to be aborted, regardless of whether
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these time-related exceptions were raised concurrently or not with a value-related exception.
In this manner, the only time-related exception (1) that may be raised concurrently with a
value-related exception, and (2) that leads to a FER process is MaxCAAElapseT . However,
Romanovsky et al. in [RXR99] argue that time-related exceptions should not be included in the
directed graph since handlers for these time-related exceptions are not suitable for concurrent
value and timing exceptions. Therefore, if a time-related exception is raised concurrently with
one or more value-related exceptions, then the former is not considered during the exception
resolution phase. Hence, the resolution graph of a timed-CAA implicitly contains those time-
related exceptions that may be handled by means of FER. Figure 4.37 shows how what the
resolution graph used during this analysis should look, where implicit exceptions are depicted
as grey nodes.

Fig. 4.37: Resolution graph of a timed-CAA.

The authors, in the work (i.e. [RXR99]) cusorily introduce two alternatives for dealing with
concurrent time-related and value-related exceptions. The first alternative solution is that every
node in the directed graph holds the worst case execution time for its associated handler. The
exception to be handled, then, is such that its associated handler takes less or equal time than
that allowed for the recovery phase14. The second alternative solution is to design two handlers
for each value-related exception: one to be used when this value-related exception has been
raised concurrently with one of the time-related exceptions, and the other to be used when no
timing constraint has been violated.

14 For example, the informal syntax “within T” can be used to fix the maximum duration allowed for the
whole CAA recovery phase. Whereas “exec C” can be used to set the maximum execution time allowed by
a handler.
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4.3.2 Extensions

In the same manner as was done for the CaaFWrk, extensions to the Timed-CaaFWrk are
proposed such that time constraints not considered thus far can be modelled. These new time
constraints are not only meant to ease the capture of the user requirements. They are also to
be used by the modeller as a means to have better control over the temporal evolution of CAA
such that time-related errors can be detected earlier providing the opportunity to either spend
more time in recovery, or a faster outcome to the CAA enclosing context.

4.3.2.1 Time constraints within a role

For a CAA with time constraints such as E2 or t3 it is important to recognise any problems as
soon as they arise in order to start the recovery process with the maximum allowed time. Then
the recovery does not miss any of these time constraints.

In the current version of the Timed-CaaFWrk, a CAA will start its recovery process before
reaching the time constraints E2 or t3 when (1) a value-related exception has been raised, or
(2) the maximum allowed execution time for any of the roles has been exceeded. Raising a
value-related exception represents an incorrect functional progress of the role with respect to
the expected CAA goal. Exceeding the maximum execution time allowed is a sign that the
timing progress of the role was unexpected. While a value-related exception is evidence that the
role was executing its instructions, the raising of the exception MaxRoleExecT may be due to
the fact that (1) the execution time assigned to the role is very high for the instructions that it
had to perform, or (2) the role gets blocked15 either more often or longer than expected. For the
first case, the only way to prevent this time-related exception from being raised is to increase
the time constraint. For the second case, the role may be monitored such that when certain
instructions are not executed after a certain period of time, then the role is not progressing with
its execution as expected.

The proposal, then, is to let the designer include time constraints within the role. These time
constraints are aimed at working as internal checkpoints that provide some idea about the
progress of the tasks performed by a role. As soon as an internal time constraint is missed, the
appropriate recovery phase may be called to handle the situation. This recovery phase may be
either the usual cooperative handling, or it may take place within the role, without engaging the
other peer roles enclosed within the same CAA. In any case, the goal is to recognise the slow
progress of a role early enough so that appropriate actions can be taken that allow the issue to
be resolved without violating E2 or t3.

Note that if a designer wants to cope with this situation using the current Timed-CaaFWrk, he
has to add specific time-related instructions for measuring the progress of the role. In the case
where that the role does not progress as expected, then the role has to be designed to raise an
exception to allow the recovery to take place. Therefore, these time-related instructions would
be in-line with the tasks to be performed by the role in the context of the CAA. However, these
issues make the design much more difficult to read, interpret and maintain.

The formalisation of the proposed extension is shown in Figure 4.38. This part of the meta-model
describes any executable instruction, i.e. any instruction that is sub-type of Execution, enclosed
within a role that may have a deadline. This deadline represents the maximum allowed time an
instruction may take to execute. Notice that for completeness, it is also allowable to constrain

15 A role gets blocked when waiting for either (1) receiving a message, or (2) getting access to an external
object.
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the minimum required time of an instruction. Thus, the composite relationship deadline may
have a time constraint (of type ElapseT ), which captures the lower and/or upper bound of an
instruction regarding its elapses time.

duration : TimeExp

InternalObj

name : String

Role

Instruction

ElapseT

max : TimeExp
min : TimeExp

TimeRange

Execution

StartT ExecutionT

delay

0..1

1

deadline

0..1

1

exec

0..1 1

instrs {ordered}

0..*

1

Fig. 4.38: Time constraints over instructions within a Role, and internal objects.

Other extensions are aimed at allowing the modeller to include delays within a role in the same
manner as deadlines are included. Despite many programming languages with real-time support
for the notion of delay in a native way, the idea is to include this time-related facility at the
level of Timed-CaaFWrk to be consistent and complete with respect to the concepts being dealt
with at the level of the CAA. In other words, since the notion of delay is considered at the level
of the CAA, it makes sense to include this concept at the level of the role. The formalisation
of the notion of delay at the level of a role is captured by the composite relationship of the
same name. This relationship allows the modeller to specify how much time an instruction
must be delayed before executing. Despite the fact that a delay is modelled as an instance of
the class StartT, which allows for the specification of a minimum and a maximum value, it is
assumed that both attributes hold the same value. The OCL shown in Figure 4.39 ensures this
condition. It is worth noting that this delay is relative to either (1) the point in time at which
the previous instruction completed its execution, or (2) the starting of the CAA in the case that
the instruction is the first one in the ordered sequence of instructions, instrs, to be performed
by the role.

The last proposed extension is aimed at allowing the modeller to impose a time constraint over
an internal object16. This time constraint determines the time interval for which the internal
objects’s value is valid. Hence, the time constraint works as a kind of expiration timestamp for

16 A time constraint that is closed to this approach is briefly mentioned in [BRR+98].
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context Execution inv sameValuesForMinMaxAttr :
Execution . a l l I n s t a n c e s ()−> f o rA l l ( e | e . delay−>notEmpty ( )

implies e . de lay . min=e . de lay .max)

Fig. 4.39: Attributes min and max have the same value when modelling an instruction delay.

the value held in the object. The attribute duration of the class InternalObj is the means used
to capture this time constraint.

An instruction that misses its deadline (regardless of whether it is the lower or upper bound),
or tries to access an internal object beyond its duration time leads to a time-related exception
within the role. (The delay of an instruction is assumed to be always satisfied.) These time-
related exceptions are (shown in Figure 4.40.):

• MinInstrExecElapseT : this exception is raised when an instruction completes its execution
before the minimum deadline. This exception may be handled within the role where it
takes place. Otherwise, its propagation leads to the CAA being aborted.

• MaxInstrExecElapseT : this exception is raised when an instruction does not complete its
execution before the maximum deadline. This exception may be handled within the role
where it occurs. Otherwise, its propagation leads to the CAA being aborted.

• DataExpired : this exception is raised when there is an attempt to read an internal object
once its duration has expired. This exception may be handled within the role where it
takes place. Otherwise, its propagation leads to the CAA being aborted.

MinInstrExecElapseTDataExpired

TimeEx

MaxInstrExecElapseT

Fig. 4.40: Time-related exceptions that may be raised within a role.

4.4 The Timed-CAA-DRIP implementation framework

Within the context of this thesis, a conceptual framework is considered as a set of concepts
with a particular semantics. The Timed-CaaFWrk is a conceptual framework aimed to support
the design of dependable distributed and concurrent real-time object-oriented (OO) software
systems. However, since this is simply a conceptual framework, the implementation of every
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software system that is designed by means of the Timed-CaaFWrk has to be carried out without
any support and relying on the knowledge and experience of the programmers involved in such
process.

In this thesis, an implementation framework is any kind of support that eases the programmers
implementation of a particular design. The Timed-CAA-DRIP implementation framework pre-
sented in this Section is aimed at supporting programmers in the implementation of software
systems being designed with the Timed-CaaFWrk. This implementation framework is composed
of a collection of Java [Jav] classes and interfaces customised by the programmer to fit the soft-
ware system needs. The main reasons for having chosen Java to develop the implementation
framework are (1) it is considered the de-facto programming language in the research field,
and (2) it is a further development of the CAA-DRIP implementation framework presented in
[CGP+06], also developed in Java. The latest version of Timed-CAA-DRIP, along with examples
can be downloaded from [DT410].

4.4.1 Design overview

An implementation framework providing support for the CaaFWrk must allow participants
(within Timed-CAA-DRIP they are implemented as threads) to enter synchronously, perform
the collaborative work specified in the roles of the CAA aimed at providing certain service, and
then finish their execution in a synchronised manner. Furthermore, this expected behaviour
must be achieved even in the presence of failures, for which the implementation framework
must also provide support. This support is achieved by putting alternative behaviours in place
when faced with certain abnormal situations. Hence, the CAA’s service is still reached either as
initially planned, or in a degraded version (but still good enough to continue with the execution
of the software system).

The implementation framework is divided into two parts. One part is concerned with the support
provided at run-time for synchronising participants upon entry into the CAA, for letting the
participants playing the CAA’s roles, and synchronising them upon exit from the CAA. The
run-time support also includes the synchronisation between the collaborative work performed by
the participants once they are enclosed within the CAA, as well as the resolution and recovery
mechanisms that occur when one (or more) exceptions occur during the execution of the CAA.
This run-time support has been designed and implemented as a Java library that runs on top of
the Java Runtime Environment (JRE). Details regarding the role of this library during execution
of a software system that implements a particular CAA design are given in Section 4.4.2.

The second part is concerned with the facilities given to the programmers to use the imple-
mentation framework. Interfaces, and ways of extending the implementation framework are
the means programmers must use to achieve the Java code that implements the CAA Design.
These interfaces and extensible classes were designed to let programmers deal with the same
concepts that appear at the design level. Hence, there exist classes named CAA, Role, Handler
and Compensator such that the way of using them is similar to the manner they are employed
during the design phase. Thus, the gap for reaching the actual implementation for a given CAA
design is shortened with respect to implementation being developed without any kind of sup-
port. The implementation framework, from the programmer’s viewpoint, is structured into eight
components: caa, caa.time, exceptions, exceptions.time, allocator, instructions, datatypes, and
util. These components along with the classes and interfaces belonging to them are presented
in Section 4.4.3.

Figure 4.41 gives a general overview of the Timed-CAA-DRIP framework. This figure shows
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how a software system, implemented according to a certain CAA design, interfaces with either
the JRE (when using native Java code) or the Timed-CAA-DRIP (when using CAA’s concepts).

Fig. 4.41: Timed-CAA-DRIP implementation framework overview.

4.4.2 Run-time support

Once the software system has been deployed and started, the main objective of Timed-CAA-
DRIP is to give run-time support to allow the CAAs composing the software system behave
as expected. This section describes the internal executions performed by the implementation
framework to achieve this expected behaviour. It is worth noting that the way the executions
are performed depend not only on whether the CAA has time constraints or not, but also if
an exception takes place in one of its roles during the execution. Hence, the description of the
Timed-CAA-DRIP internal executions are divided among those required to execute a (normal
or non-timed) CAA, a timed CAA and those that take place when dealing with an exception.

4.4.2.1 CAA execution

The activation of a CAA is considered as the process that begins when at least one participant
enters into the CAA to play one of its roles. This process (i.e. the activation of the CAA) is
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completed once all the required participants have entered into the CAA, and the latter is ready
to play their respective roles.

There exist two ways of requesting the activation of a CAA: the composite and nested ways.
When calling a CAA in a composite manner, a single participant is required to achieve both the
activation and execution of this CAA, since the implementation framework will, according to
the allocation policy specified, locate the necessary participants. This activation is achieved by
calling the method executeAll of the particular CAA that wants to be executed.

Conversely, when calling a CAA in a nested manner, such an allocation does not take place,
since the participant to be used is the same that requests the activation of the CAA. Notice
that in the case of nesting, a participant requests the activation of the CAA that wants to be
executed by calling the method execute(r,caa), where r is the role to be played by the calling
participant into the CAA of name caa. To succeed in the activation of this CAA, there must be
as many participants requesting the activation of the CAA caa as roles it has.

Hereafter, the explanation is only focused on the activation and execution of a composite CAA.
The Sequence Diagram shown in Figure 4.42 is used as a vehicle to support (and ease) the
explanation of the internal operation performed by the implementation framework.

A participant, which is considered the client of the CAA being called, executes the method
executeAll to request the activation of the CAA. Once the participant has executed this method,
the control of the execution is passed to the Timed-CAA-DRIP framework (server side), which
takes charge of the complete execution of the requested CAA. Notice that the CAA to be
executed (according to the Sequence Diagram named caa) is assumed as properly defined by
the client. Details about how to define a CAA are given in the following section.

Once the CAA has taken control of the execution it starts the activation process by executing
the internal method runCAA. The first step within the activation process is to gather the needed
participants to play each of its roles. The method assign participants looks for the specified
participants and then allocates them to each of the roles. Once the allocation has completed,
a thread is created for each participant such that they can play their respective roles. This is
achieved by the method executeAll of the class Role. This method, after having created the
thread, passes control (by the method controller) to the manager of the role, which is the entity
that leads its execution. A manager, then starts the execution of the role by calling the method
run. Once this method has completed, the execution of the CAA life cycle starts. Notice that
there exists a manager (named mgri in the Sequence Diagram) for each role (named rolei) to be
played.

The CAA life cycle is coded in the Manager class as a sequence of operations that it executes
after its activation. The first activity a manager executes is to synchronise itself with all other
managers that are taking place within the CAA. This is done by calling the syncBegin method.
This method gets blocked until all the managers have synchronised. Once the syncBegin method
returns, the manager checks if the pre-condition of the role is valid by calling the method
preCondition. If the pre-condition of the role is not satisfied, then an internal exception called
PreConditionException is raised, leading the CAA to its recovery phase, which is described at
the end of this section.

Once all the managers have checked that the roles’ pre-conditions are met, the activation process
of the CAA is considered as complete. Its status is changed to “start” by calling the method
of the same name. Starting the CAA leads each manager to execute the role that is under its
control by calling the bodyExecute method of the Role object. This method calls the method
body, which has been overridden by the programmer with the instructions the role is expected
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Thread B_i
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Fig. 4.42: Internal executions for starting a (non-timed) CAA.

to perform.

After all the roles have finished executing, the CAA status is changed to “finish”. It only remains
to check whether each role passes its post-condition or acceptance test. If the post-conditions
are satisfied, then the manager, once again, synchronises with all the other managers to finish
the CAA execution synchronously. Otherwise the internal exception PostConditionException is
raised, making the CAA recovery phase start.

Managers, after having synchronised upon exit, return control to the CAA (caa in the Sequence
Diagram). Notice that every time a manager returns control to the CAA, the thread that is
used to carry out the role execution is stopped17. The last step is concerned with the release of
the allocated participants. This is achieved by calling the method fre participants.

17 A stopped thread is eventually removed by the JRE.
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4.4.2.2 Timed-CAA execution

The run-time support provided by the implementation framework for launching a timed-CAA
differs not only (1) in the sequence of method calls taking place, but also (2) in the overhead
introduced due to the monitoring of the time constraints that can be set over the CAA. Details
about these differences are given in the following order: first, the sequence of method calls re-
quired to make a timed-CAA runnable are detailed, and then information regarding the overhead
introduced by the implementation framework is given.

The Sequence Diagram shown in Figure 4.43 describes the complete sequence of method calls
taking place during the execution of a Timed-CAA. This Sequence Diagram shows that the
mayor difference between launching a (non-timed) CAA and a timed-CAA is in the use of the
Java native interface ScheduledExecutorService, which is aimed at scheduling (Java) instructions
not only to run after a given delay, or to execute periodically, but also to check whether their
execution is completed within the expected deadlines.

After executing the method schedule, the sequence of method calls remains the same as for a non-
timed CAA. However, the behaviour between a non-timed and a timed-CAA is differentiated by
the number of threads involved in their execution. The method schedule is in charge of creating
new threads both to activate the requested timed-CAA, and to monitor the timing constraints
this CAA has to meet. Beside the thread used to activate and then execute the CAA, there may
exist threads to monitor (1) the maximum allowed delay in effectively starting of the CAA (i.e.
t1 in the Figure ?? shown in Section 4.3.1.1), (2) the minimum and maximum finish time or
deadlines (i.e. t2 and t3), (3) the minimum and maximum elapse time (i.e. E1 and E2), and (4)
the deadline imposed by its periodicity (i.e. Te), in case the requested timed-CAA is periodic.
For each kind of timing constraint, a new thread is created. This represents an extra overhead,
in terms of memory and processing power, with respect to a non-timed CAA. A performance
analysis similar to the one provided in [CGP+09] is planned to be carried out to quantitatively
assess the overhead introduced by monitoring the time-constraints. However, it is worth noting
that such an overhead is limited, since in the worst case, there will exist four extra threads
running in parallel with those threads required to execute each of the CAA’s roles.

Each of these threads is aimed at monitoring a particular time constraint. Each thread will
raise an internal time-related exception as soon as the watched time constraint is missed. The
raising of this time-related exception leads the timed-CAA to its recovery phase. Notice that
the recovery phase of a CAA is the same regardless of whether it is timed or not.

4.4.2.3 Recovery phase

The recovery phase of a CAA starts when an exception is raised during the execution of (at
least) one of its roles. This points out that the CAA has already started, since a role is able to
execute once all of the CAA’s roles have met their respective pre-condition. It is worth recalling
that an exception may be raised either by the role itself, or any of the underlying layers it relies
on to perform its execution. The Sequence Diagram shown in Figure 4.44 depicts the raising of
exception ex within the role rolei as a self-message taking place in such a role.

As was explained in Section 4.2.2, a role may include a local handler for dealing with some
exceptions. Hence, depending on whether there exists a local handler (first alternative), the
raised exception can be handled by the role itself in a single manner. Otherwise, the exception
must be handled in a cooperative manner by all the participants engaged in the execution of
the CAA (second alternative). In this situation (i.e. second alternative), the role where the
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scheduler : ScheduledExecutorService allocator : Allocator mgr_i : Managercaa : TimedCAA role_i : Role

Thread BThread A Thread C

Client

Creates
Thread C

Creates
Thread B

run7: 

syncBegin8: 

preCondition()9: 

start10: 

bodyExecute()11: 

syncEnd15: 

finish13: 

postCondition()14: 

runCAA2: 

schedule()3: 

assign_Participants()4: 

executeAll()5: 

free_participants()16: 

controller()6: 

body()12: 

executeAll()1: 

Fig. 4.43: Internal executions for starting a timed-CAA.

exception was raised, notifies its manager (named mgri in the Sequence Diagram). This is
achieved by propagating the exception using the Java native instruction throw.

Once the manager is notified about an exception, it starts the resolution mechanism by executing
the method exceptionResolution. This method includes a call to the method notifyException over
the leader18 manager. The aim of the notifyException method is: (1) to interrupt the execution
of all the other roles enclosed within the same CAA, and (2) to determine the resolving exception
to be handled. The second goal is achieved by calling the method getResultException. Once all
the managers have been informed as to which exception is to be handled, the recovery mechanism
is initiated.

18 Among all the existing managers used to lead the execution of each the CAA’s role, the first one created is
designated as the leader. The “leader” manager is the centralised point for performing commons tasks within
the CAA, such as interrupting the roles, or determining the common exception to be handled in the case
where concurrent exceptions are raised
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Fig. 4.44: Internal execution for recovering from an exception.

The recovery mechanism executed by Timed-CAA-DRIP is either FER or BER, depending
on whether there exists a cooperative handler for the exception. It is worth recalling that a
cooperative handler is defined as a set of handlers. Within Timed-CAA-DRIP, handlers used to
define a cooperative handler are instances of the class Handler.

In the case that a cooperative handler does exist (and then the CAA has as many instances of
class Handler as roles) for dealing with the exception ex , the handlerExecution method is called
to act over each handler instance. For the sake of simplicity, only one handler (named hndk ) is
shown in the Sequence Diagram. The aim of the handlerExecution is to collaboratively execute
with the other handlers, those instructions that allow the CAA to recover from the exception.
This is achieved by, first synchronising the handlerExecution’s initiation with the other peer
handlers (by calling the method syncBegin), and then calling the method bodyExecute. This
method is overridden by the programmer to include Java native instructions that allow certain
instructions to be handled.
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It must be noted, that the same manager used to lead the execution of the role, is also used to lead
the execution of the handler. Hence, once the handler completes the execution of bodyExecute,
the manager calls the post-condition method of the same handler to check whether it passes or
fails its acceptance test. In case all the handlers have passed their respective tests, the execution
follows the same sequence of method calls as in the case when no exceptions have been raised.
Otherwise, the BER is started in order to abort the CAA.

The BER occurs when a cooperative handler for the raised exception does not exist or when
an exception takes place during the FER. The BER performs the necessary steps to undo all
the effects of having executed the CAA thus far. This is achieved by (1) compensating the
execution of each role, and (2) calling the process abort. The compensation of the tasks done by
role rolei are performed by calling the method compensatorExecution. This method encodes the
instructions such that each manually-recoverable external object can be restored to a consistent
state, presumably a state similar to that that object had before initiating the CAA.

On the other hand, the method abort (belonging to the manager) interfaces with each auto-
recoverable external object by calling its implementation of the method abort. The abort method
implemented by each external object is part of the Transaction interface to be implemented.
(Details of this interface and its aim are given in the next section).

4.4.3 Classes and interfaces for Java

This section presents the interface for the programmer implementing a given CAA design. This
interface has been engineered to force programmers to adhere to the Timed-CaaFWrk concepts.
This fact indicates that the interface drives the work of the programmer during the implemen-
tation phase such that the final implementation is consistent with respect to the given design.
Consistency , in this case, is determined by the manner in which each CAA of the design is
implemented, i.e. as roles, handlers, compensators, external and internal objects, etc.. It must
be noted, however, that the interface is a means to ease the implementation phase. Further, its
use does not guarantee a correct implementation.

This section also includes information regarding the expected method for employing the different
elements of the interface. This section, then, can be considered as the programmer’s reference
manual.

The Timed-CAA-DRIP implementation framework is composed of eight components (or Java
packages). The Class Diagram that depicts these packages along with their contents is shown
in Figure 4.45. In the following, each of these packages is explained. The aim is to present the
interfaces and classes that must be implemented and extended by the programmers to achieve
the desired implementation.

4.4.3.1 Package caa

Package caa is the core package of the implementation framework. It provides implementation
support for the notions of caa, role, handler and compensator. The class CAA is the “facade”
(as described in [GHJV95]) that the programmer uses to combine all the parts of a CAA (i.e.
roles, handlers and compensators) to achieve its implementation. The class CAA (see Listing
4.1) has the methods that allow programmers to set up a CAA, perform its launching, define
internal objects within a role of the CAA, exchange messages between these roles to share
internal objects, and gather objects that were declared within the context of a same participant,
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Fig. 4.45: Timed-CAA-DRIP class diagram.
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but in the different phases it may go through (i.e. normal phase, implemented using the class
Role; and abnormal phase, implemented using the classes Handler and Compensator).

Listing 4.1: Methods of class CAA to be used by the programmer.�
public class CAA {

// Constructor
public CAA( St r ing name ) ;

// CAA se t up
public void add ro l e ( Role r o l e ) ;
public void add handler ( Handler handler , Role r o l e ) ;
public void add compensator ( Compensator comp , Role r o l e ) ;
public void bind ( Exception ex , Handler handler ) ;

// CAA launching
public void execute ( Role r o l e ) ;
public void executeA l l ( Pa r t i c i pan t [ ] [ ] pars ) ;

// In t e rna l o b j e c t d e c l a ra t i on
public Object objDec l ( Role ro l e , S t r ing objName , Object obj ) ;
public Object objDec l ( Handler handler , S t r ing objName , Object obj ) ;

// Gathering an i n t e rna l o b j e c t
public Object getObj ( S t r ing objName ) ;

// Gathering o f the CAA outcome
public Exception getExceptionalOutcome ( ) ;

// Message exchange
public void send message (Message msg , S t r ing fromRoleName , S t r ing toRoleNAme ) ;
public void send synchronous message (Message msg , S t r ing fromRoleName ,

S t r ing toRoleName ) ;
public Message r e c e i v e mes sage ( S t r ing ID , S t r ing fromRoleName ,

S t r ing receiverRoleName ) ;
}� �
The setting or construction of a CAA is defined by putting together not only its roles, but also the
handlers and compensators used during the recovery phase when exceptions are raised. Hence,
once a new instance of the class CAA has been created, it is used to add 1) roles (by the method
add Role), 2) handlers (by the method add Handler), and 3) compensators (by the method
add Compensator) that compose the CAA. When adding a handler and/or a compensator to a
CAA, the programer must indicate which role(s) they are related to. An example demonstrating
how these methods are employed is given in the Listing 4.6. In this example, the handlers hnd1
and hnd2 are associated with the roles role1 and role2, respectively. A similar association between
compensators and roles is shown.

It is worth pointing out, that while the existence of a CAA is determined by the roles that
compose it (i.e. the method add role must be always used when setting a CAA), its handlers
or compensators depend on the exceptions the CAA must deal with. In this manner, it is not
mandatory to use the methods add handler, and add compensator when setting a CAA.

The roles, handlers and compensators to be used when setting a CAA must be instances of
the classes created by the programmer. This is achieved by extending the implementation
framework classes Role, Handler and Compensator. For each of these classes, the programmer
has to override certain methods. The Listing 4.2 shows which methods are to be overridden by
the programmer when extending from the class Role, whereas the Listings 4.3 shows a (partial)
example of a role class (named Role1 ) as the programmer is expected to provide. In this example,
the methods preCondition and postCondition are overridden in a manner such that the value
they return depends on the value held in the boolean variables pre and post.
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Listing 4.2: Methods of class Role to be overridden by the programmer.�
public class Role {

public void body ( ) ;
public boolean preCondit ion ( ) ;
public boolean postCondit ion ( ) ;

}� �
Listing 4.3: Example that shows how the class Role can be extended.

1 package t e s t . caa .myCAA;
2

3 public class Role1 extends Role {
4

5 boolean pre , post ;
6

7 // Constructor
8 public Role1 ( S t r ing n , CAA caa ) {
9 super (n ) ;

10 setCAA( caa ) ;
11 }
12

13 public boolean preCondit ion ( ){
14 i f ( pre )
15 return true ;
16 else
17 return fa l se ;
18 }
19

20 public void body ( ) {
21 try{
22 System . out . p r i n t l n ( "Role 1 executing its body" ) ;
23 }catch ( Exception e ) {
24 throw e ;
25 }
26 }
27

28 public boolean postCondit ion ( ){
29 i f ( post )
30 return true ;
31 else
32 return fa l se ;
33 }
34 }

The methods of the classes extending from Handler and Compensator to be overridden by the
programmer are shown in the Listings 4.4 and 4.5, respectively. It must be noted, that in all
these classes, the method body has to be overridden with instructions that specify the behaviour
of the role, handler and compensator. However, only a role is expected to have an associated
pre-condition, since for both handlers and compensators, their pre-condition is always assumed
as trivial (i.e. true). In addition, a handler may have a post-condition which describes the
acceptance test to be passed by the participant when executing the handler. Whether the
condition is met or not will determine the kind of outcome to be returned by the overall CAA.
On the other hand, a compensator does not have a post-condition as its aim is to restore the
manually recoverable objects such that the CAA can be considered as aborted.

Listing 4.4: Methods of class Handler to be overridden by the programmer.�
public class Handler {

public void body ( ) ;
public boolean postCondit ion ( ) ;

}� �



4.4. The Timed-CAA-DRIP implementation framework 157

Listing 4.5: Method of class Compensator to be overridden by the programmer.�
public class Compensator {

public void body ( ) ;
}� �
A CAA knows which exceptions it is capable of dealing with once an exception is bound to
a particular handler. The method bind is the means the programmer uses a link a particular
exception to the handlers that replace the respective roles when such an exception occurs. In
the example of Listing 4.6, the handlers hnd1 and hnd2 are bound to the exception myException.
Hence, whenever this exception occurs during the normal execution of the CAA named MyCAA,
these handlers will takeover the roles role1 and role2, respectively, to execute the instructions
coded in their body methods.

Listing 4.6: Example that shows how to set up a CAA.
1 public stat ic void main ( St r ing [ ] a rgs ) {
2

3 try {
4 CAA caa = new CAA( "MyCAA" ) ;
5

6 // Creat ing r o l e s
7 Role r o l e 1 = new t e s t . caa .myCAA. Role1 ( "Role1" , caa ) ;
8 Role r o l e 2 = new t e s t . caa .myCAA. Role2 ( "Role2" , caa ) ;
9 // Adding r o l e s to the CAA

10 caa . add ro l e ( r o l e 1 ) ;
11 caa . add ro l e ( r o l e 2 ) ;
12

13 // Creat ing hand lers
14 Handler hnd 1 = new t e s t . caa .myCAA. hand le r s . Handler1 ( "Handler1" , caa ) ;
15 Handler hnd 2 = new t e s t . caa .myCAA. hand le r s . Handler2 ( "Handler2" , caa ) ;
16 // Binding each Handler with i t s r e s p e c t i v e Role
17 caa . add handler ( hnd 1 , r o l e 1 ) ;
18 caa . add handler ( hnd 2 , r o l e 2 ) ;
19

20 // Binding Handlers with the excep t i ons to be handled
21 EX MyException myException = new EX MyException ( ) ;
22 caa . bind (myException , hnd 1 ) ;
23 caa . bind (myException , hnd 2 ) ;
24

25 // Creat ing compensators
26 Compensator cmp 1 = new t e s t . caa .myCAA. compensators . Compensator1 ( "Cmp1" , caa ) ;
27 Compensator cmp 2 = new t e s t . caa .myCAA. compensators . Compensator2 ( "Cmp2" , caa ) ;
28 // Binding each Compensator with i t s r e s p e c t i v e Role
29 caa . add compensator ( cmp 1 , r o l e 1 ) ;
30 caa . add compensator ( cmp 2 , r o l e 2 ) ;
31

32 . . .
33 } catch ( Exception ex ) {
34 . . .
35 }
36 }

The methods concerned with the setting and gathering of internal objects, as well as with the
way the outcome of the executed CAA is known are detailed in the following subsections. Their
explanation requires the use of other interfaces which have not been introduced, yet.

4.4.3.2 Package caa.time

Package caa.time includes those classes related to the management of timed CAAs. A timed-
CAA has all the features of a CAA, plus the means to set any of the allowed time constraints a
CAA may own. Hence, the class TimedCAA (shown in the Listing 4.7) extends from the class
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CAA in order to capture the same methods that allow the programmer to interface with the other
components of the CAA. In addition the class TimedCAA also includes the methods for setting
the constraints regarding its starting time (by the method set start time), elapse time (by the
method set elapse time), finish time (by the method set finish time), and periodicity (by the
method set periodicity). The values (type long) to be passed to these methods are expected
to be in the time unit seconds. This is the time unit used by default by the implementation
framework.

Listing 4.7: Methods of class TimedCAA to be used by the programmer.�
public class TimedCAA extends CAA {

public TimedCAA( St r ing name ) ; //Constructor

public void s e t s t a r t t im e ( long t0 t ime , long t1 t ime ) ;
public void s e t e l a p s e t im e ( long t emin , long t emax ) ;
public void s e t f i n i s h t im e ( long t fmin , long t fmax ) ;
public void s e t p e r i o d i c i t y ( long t every , long t u n t i l ) ;

}� �
4.4.3.3 Package instructions

The programmer, when overriding the method body in the classes that extend from either Role,
Handler or Compensator uses Java native code to implement the behaviour described in the
design. At the design level, this behaviour is described by the instructions supported by the
conceptual framework CaaFWrk. These include: While, If, Repeat, Split, Spawn and others
(see Sections 4.2 and 4.2.2 for full details about the instructions supported by the conceptual
framework). For instructions such as Repeat, While, If, Raise and Signal, there exists direct
support in native Java code (keywords with the same semantics exist in the Java Language).
However, for the instructions Split and Spawn that are part of the CaaFWrk, there does not exist
Java Language equivalent that allows the programmer to implement them in a straightforward
manner.

The Timed-CAA-DRIP solves this problem by providing the programmers the package instruc-
tions, which contains the classes Split and Spawn. These classes are aimed at easing the im-
plementation of the conceptual-level instructions of the same name. The Listings 4.8 and 4.9
shows the methods being provided to the programmer to achieve the Split and Spawn behaviour,
respectively. Since the means to interface with both classes are the same, the explanations are
given only for the Split class. It is worth noting that despite the fact that both classes export
the same methods, their behaviour at run-time (supported by Timed-CAA-DRIP) is different
since a Split instruction is aimed at creating new execution processes (in this case implemented
as threads) that have to be joined at the end of their execution to allow the original execution
process that created them to continue (i.e. it gets blocked upon calling Split). Conversely,
Spawn creates new execution processes that (1) do not need to joined upon completion, and (2)
their creation does not block the execution of the original execution process (see Section 4.2.2
for details about their behaviour).

The class Split gives the programmer two methods: add and start. The first method is used to
define instructions, whereas the second one to create new execution branches. Those instructions
defined using the method add are executed in one of the new branches created upon calling the
method start. An example demonstrating the use of these methods, is given in the Listing 4.10.
In this example, the class Split is used to create two new execution processes or branches, as is
commented in the sampled code. The method add must receive an object of type Callable. An
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object callable is one that implements the interface Callable. Implementing this interface means
the method call, which must return a result, is overridden. (In this example, the result returned
by the method call is an Integer. The instructions to be executed by each of these branches
are those coded within the method call (lines 8-11 for the first branch, and lines 17-20 for the
second branch).

Listing 4.8: Methods of class Split to be used by the programmer.�
public class Sp l i t {

public void add ( Ca l l ab l e obj ) ;
public void s t a r t ( ) ;

}� �
Listing 4.9: Methods of class Spawn to be used by the programmer.�

public class Spawn {

public void add ( Ca l l ab l e obj ) ;
public void s t a r t ( ) ;

}� �
Listing 4.10: Example that shows how to use the class Split.

1 public void body ( ) {
2 try{
3 . . .
4 Sp l i t s = new Sp l i t ( ) ;
5

6 // Branch 1
7 s . add (new Ca l l ab l e ( ) {
8 public I n t eg e r c a l l ( ) throws Exception {
9 System . out . p r i n t l n ( "Branch 1 - Instruction 1" ) ;

10 System . out . p r i n t l n ( "Branch 1 - Instruction 2" ) ;
11 return 0 ;
12 }
13 } ) ;
14

15 //Branch 2
16 s . add (new Ca l l ab l e ( ) {
17 public I n t eg e r c a l l ( ) throws Exception {
18 System . out . p r i n t l n ( "Branch 2 - Instruction 1" ) ;
19 System . out . p r i n t l n ( "Branch 2 - Instruction 2" ) ;
20 return 0 ;
21 }
22 } ) ;
23

24 // Launching the branches
25 s . s t a r t ( ) ;
26

27 . . .
28 }catch ( Exception e ) {
29 . . .
30 }
31 }

Once the branches have been created and added (in the above example the creation of the
branches is done at the same time they are added), all that remains is to call the method
start to make the creation of the new execution processes effective. The Timed-CAA-DRIP
implementation framework, when executing this code at run-time, will create a new thread
for each branch, blocking the thread from where the call has been made, which waits for the
completion of the newly created threads.
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4.4.3.4 Package allocator

The package allocator includes those classes that are concerned with the creation and allocation
of the participants modelled at design-time. The class Participant (see Listing 4.11) by its
constructor allows the programmer to create the participants. Each participant has a name that
is used as its identifier. The methods get feature and add feature provide the means to set and
retrieve the features that characterise a particular participant. As previously explained, these
features can be used to decide which participant fits the needs of the CAA to be executed better.

Listing 4.11: Method of class Participant to be used by the programmer.�
public class Par t i c i pan t {

public Par t i c i pan t ( S t r ing name ) ; //Constructor
public I n t e g e r g e t f e a t u r e ( S t r ing key ) ;
public void add f ea tu r e ( S t r ing key , In t eg e r va lue ) ;

}� �
The creation of the participants must be followed by their subscription to the roles executed
within a CAA. The class Subscription (see Listing 4.12) allows the programmer to link partic-
ipants with roles of different CAAs. The method add participant (as shown in its interface) is
used to register a participant p, to play the role of name roleName in the CAA of name caaName.
Retrieving participants from the subscription table is achieved by the methods get participants
and get participant. The former returns an array of participants such that each element in the
array is a participant that has been subscribed for playing the role that was passed as a param-
eter along with the CAA it belongs to. On the other hand, get participant returns a participant
by indicating its name along with the role and the CAA is has been subscribed to.

Listing 4.12: Methods of class Subscription to be used by the programmer.�
public class Subsc r ip t i on {

public boolean add pa r t i c i pan t ( S t r ing caaName , S t r ing roleName , Par t i c i pan t p ) ;
public Par t i c i pan t [ ] g e t p a r t i c i p a n t s ( S t r ing caaName , S t r ing roleName ) ;
public Par t i c i pan t g e t p a r t i c i p a n t ( S t r ing caaName , S t r ing roleName , S t r ing partName ) ;

}� �
The example shown in Listing 4.13 gives an idea of how these methods are to be used by the
programmer after having set a CAA and before its launching. In this example, a private method
named setParticipants implements the subscription of the participants to be used for executing
the CAA named MyCAA. These participants (named Participant1,2,3) are subscribed such that
the role Role1 may be played by the participant Participant1,3, whereas the role Role2 may be
played by Participant2,3.

Listing 4.13: Example that shows how to use the classes Participant and Subscription.
1 public class Main {
2

3 stat ic Subsc r ip t i on sub s c r i p t i on = Subsc r ip t i on . In s tance ( ) ;
4

5 private stat ic void s e tPa r t i c i p an t s ( ) {
6 Par t i c i pan t p1 = new Par t i c i pan t ( "Participant1" ) ;
7 Par t i c i pan t p2 = new Par t i c i pan t ( "Participant2" ) ;
8 Par t i c i pan t p3 = new Par t i c i pan t ( "Participant3" ) ;
9

10 s ub s c r i p t i on . add pa r t i c i pan t ( "MyCAA" , "Role1" , p1 ) ;
11 s ub s c r i p t i on . add pa r t i c i pan t ( "MyCAA" , "Role2" , p2 ) ;
12 s ub s c r i p t i on . add pa r t i c i pan t ( "MyCAA" , "Role1" , p3 ) ;
13 s ub s c r i p t i on . add pa r t i c i pan t ( "MyCAA" , "Role2" , p3 ) ;
14 }
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15

16

17 public stat ic void main ( St r ing [ ] a rgs ) {
18

19 try {
20 . . .
21 // Creat ing and su b s c r i b i n g p a r t i c i p an t s
22 s e tPa r t i c i p an t s ( ) ;
23 . . .
24 // Launching the CAA
25 caa . executeAl l (new Par t i c i pan t [ ] [ ]
26 {null , { s ub s c r i p t i on . g e t p a r t i c i p a n t ( "MyCAA" , "Role2" , "p2" ) } } ) ;
27

28 // Gathering CAA outcome
29 Exception r e s u l t = caa . getExceptionalOutcome ( ) ;
30

31 // Checking what kind o f outcome i t has returned
32 i f ( r e s u l t !=null ){
33 System . out . p r i n t l n ( "Not normal outcome!" ) ;
34

35 i f ( r e s u l t . g e tC la s s ( ) . i sAss ignableFrom (EX MyException . class ) )
36 System . out . p r i n t l n ( "The exceptional outcome of the CAA is EX_MyException" ) ;
37 i f ( r e s u l t . g e tC la s s ( ) . i sAss ignableFrom ( except i ons . EX AbortException . class ) )
38 System . out . p r i n t l n ( "The CAA has aborted" ) ;
39 i f ( r e s u l t . g e tC la s s ( ) . i sAss ignableFrom ( except i ons . EX Failure . class ) )
40 System . out . p r i n t l n ( "The CAA has failed" ) ;
41

42 } else
43 System . out . p r i n t l n ( "Normal outcome!" ) ;
44 . . .
45 } catch ( Exception ex ) {
46 . . .
47 }
48 }

This example is also useful for demonstrating how the methods executeAll and getException-
alOutcome, which are part of the class CAA (see Listing 4.1). The method executeAll is used
by the programmer to start composite CAAs, only19. Lines 25-26 in the example show how the
method is used. Notice that this method must receive as an input parameter a multidimensional
array. The i − th element of the array is also an array, which contains those participants willing
to play the i − th role of the CAA. At run-time, the Timed-CAA-DRIP implementation frame-
work will select, for each role, one (and only one) participant among those passed as parameters
willing to play it. In the example, it is indicated that Role2 has to be played by Participant2,
whereas for Role1 the implementation framework will choose one from those that have been
subscribed to play the role Role1.

Once the CAA is launched by means of the method executeAll, the caller may want to check the
result of its execution. The class CAA gives the programmer the method getExceptionalOutcome
(see line 29 in the Listing 4.13) to check whether execution ended normally. i.e. its outcome is
normal, or in a degraded manner. An exceptional outcome that returns a null value presents
the normal execution of the CAA. Conversely, when the value is not null, the CAA has either
completed its execution in a degraded manner (lines 35-36), aborted (lines 37-38), or failed (lines
39-40). Notice that the exception returned by the method is used as a means to identify not only
whether the CAA has completed normally or not, but also to determine the nature of degraded
result.

The Sequence Diagram depicted in Figure 4.46 merges the examples presented in the Listing
4.6 and 4.13 to give the reader a complete view of the sequence of calls that are required to set
up and launch a CAA when using Timed-CAA-DRIP.

19 For starting nested CAAs, the programmer has to used the method execute, which receives as its input
parameter the role to be started by the caller upon execution of the method.
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Interface calls

cmp_i : Compensator

hnd_j : Handler

ex : Exception

role_i : Role

Client

caa : CAA

[caa:TimedCAA]

opt

exception to be 
handled by the 
CAA. There may
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the CAA is 
ready to handle

J=1..m, where 
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handlers to be 
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of the CAA
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available only 
for timed-CAAs
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by the CAA
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is the number 
of roles owned 
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2: 

1: 

4: 

8: 

6: 

add_role(role_i)3: 

add_handler(hnd_j,role_i)5: 

bind(ex,hnd_j)7: 

add_compensator(cmp_i,role_i)9: 

executeAll()15: 

set_start_time(t0, t1)10: 

set_elapse_time(E1, E2)11: 

set_finish_time(t2, t3)12: 

set_Periodicity(period, until)13: 

getExceptionalOutcome()16: 

setParticipants14: 

Fig. 4.46: Setting up and launching of a CAA.
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4.4.3.5 Package util

The package util includes classes aimed at supporting the implementation of time-constraints
within roles and the definition of messages to be used when exchanging information between
participants during the normal and abnormal phases.

According to the proposed time-related extensions to the Timed-CaaFWrk, time constraints may
be set within a role (see Section 4.3.2 for details about this extension). Implementing this time
constraint in a role imposes in-line instructions within the body method, as this is the method
that implements the role behaviour as defined at the design phase. These in-lines operations
embedded within a role are aimed at either delaying the execution of a set of instructions or
monitoring whether some executed instructions actually execute within certain time frame.

To release the programmer from the burden of engineering and implementing the code that fufils
these needs, the Timed-CAA-DRIP has been enhanced with features to make the implementation
of time constraints within a role much easier. The class Timer is the means provided by the
implementation framework to let the programmer set the delay and (minimum and maximum)
deadlines over some coded instructions within a role. The Timed-CAA-DRIP will ensure that at
run-time the delay is respected. Further, it will monitor whether the instructions are executed
within the time frame defined by the deadlines.

Listing 4.14: Methods of class Timer to be used by the programmer.�
public class Timer {

public void s e t s t a r t t im e ( long t0 t ime ) ;
public void s e t e l a p s ed t ime ( long t emin , long t emax ) ;
public void s t a r t ( Ca l l ab l e obj ) ;

}� �
The setting of the delay and deadline is achieved by using the methods set start time and
set elapse time (see Listing 4.14). Both methods expect time value (of type long) represented
in seconds. Once the time constraints have been set, the remaining tasks for the programmer
is to start the execution of the instructions concerned with these constraints. This is achieved
by the method start, which receives as its input a Callable object. This Callable object encodes
the instructions to be executed. The example shown in the Listing 4.15 is aimed at detailing
how these methods are to be used by the programmer. In this example, a timer is created to
set a delay of 10 seconds for the instruction that print out to the console, which is expected to
be completed in less than 30 seconds.

Listing 4.15: Example that shows how to use the classes Timer within the implementation of
a role.

1 public void body ( ) {
2 try{
3 . . .
4 Timer t imer = new Timer ( ) ;
5 t imer . s e t s t a r t t im e ( 5 ) ;
6 t imer . s e t e l a p s ed t ime (−1 , 3 0 ) ;
7

8 t imer . s t a r t (new Ca l l ab l e ( ) {
9 public I n t e g e r c a l l ( ) throws Exception {

10 System . out . p r i n t l n ( "Executing this statement" )
11 return 0 ;
12 }
13 } ) ;
14 . . .
15 }catch ( Exception e ) {
16 . . .
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17 }
18 }

Roles within the same CAA are expected to collaborate. This collaboration is achieved by
message exchange. A message may carry data as part of the information being conveyed. The
class Message is the means programmers use to deal with the notion of message as considered
at the design phase. Depending on whether a message carries data or not, an object must be
passed as a parameter as well upon constructor invocation. The two different constructors to be
used by the programmer when creating a message are shown in the Listing 4.16. Please note,
that the objects to be conveyed with a message are expected to be internal objects, since these
objects are local to the role where they are declared.

Listing 4.16: Methods of class Message to be used by the programmer.�
public class Message {

public Message ( S t r ing key ) ;
public Message ( S t r ing key , Object obj ) ;

}� �
An example that shows how messages are declared using these constructors and how messages
are exchanged using the methods send message and receive message, which are part of the class
CAA, is given in the Listing 4.17. In the example it is shown how a role named currentRoleName,
first sends three different messages (SendMsg1,2,3) to a peer role named receiverRoleName, and
second receives two messages (ReceiveMsg1,2) from the peer roles senderRole1,2, respectively.

Listing 4.17: Example that shows how to exchange messages between roles.
1 public void body ( ) {
2 try{
3 . . .
4 /∗
5 ∗ Sending messages SendMsg1 , SendMsg2 and SendMsg3 .
6 ∗ Notice t ha t Msg1 goes a long with the i n t e r na l o b j e c t c a l l e d ” ob j ” ,
7 ∗ whereas SendMsg3 i s sent synchronous ly .
8 ∗/
9 caa . send message (new Message ( "SendMsg1" ) ,

10 "currentRoleName" , "receiverRoleName" ) ;
11

12 MyDataType obj = (MyDataType) caa . objDec l ( this , "obj" , new MyDataType ( ) ) ;
13 caa . send message (new Message ( "SendMsg2" , obj ) ,
14 "currentRoleName" , "receiverRoleName" ) ;
15

16 caa . send synchronous message (new Message ( "SendMsg3" ) ,
17 "currentRoleName" , "receiverRoleName" ) ;
18 . . .
19 /∗ Receiv ing message ReceiveMsg1 and ReceiveMsg2 from ro l e s
20 ∗ senderRole1 and senderRole2 , r e s p e c t i v e l y .
21 ∗ Notice t ha t upon r e c e i v i n g message ReceiveMsg2 the i n t e r na l
22 ∗ o b j e c t ” ob j2 ” i s crea ted
23 ∗/
24 caa . r e c e i v e mes sage ( "ReceiveMsg1" , "senderRole1" , "currentRoleName" ) ;
25

26 MyDataType obj2 = (MyDataType) caa . objDecl ( this , "obj2" ,
27 caa . r e c e i v e mes sage ( "ReceiveMsg2" , "senderRole2" , "currentRoleName" ) . ge t data ( ) ) ;
28 . . .
29 }catch ( Exception e ) {
30 . . .
31 }
32 }

The role currentRoleName asynchronously sends the message SendMsg1 (lines 9-10). Notice
that that this message does not convey an object. The second message (i.e. SendMsg1) is also
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sent asynchronously (lines 13-14), but it conveys the object obj , which is declared using the
method objDecl belonging to the class CAA. This method is aimed at giving the programmer
explicit support for declaring internal objects within a role. Finally, the third message is sent
synchronously (lines 16-17), meaning the sender gets blocked until the recipient acknowledges
receipt of the message.

Regarding the reception of messages, it is always made in a synchronous manner. Hence, the
received gets blocked till the message is obtained, means that another peer role has sent it.
The role named currentRoleName receives the first message ReceiveMsg1 from the role named
senderRole1. This message does not convey any object, as does the second message received,
i.e. ReceiveMsg2. The role, upon receiving the second message, creates a new internal object,
obj2, with the data conveyed by the message.

4.4.3.6 Package datatypes

The Package datatypes package includes those classes that are related to the management of the
called external and internal objects that the implemented CAAs must deal with. As explained
in Section 4.2.1, the existence of a transactional system is assumed to ensure the consistency,
isolation, and durability, i.e. the CID properties, of the external objects that a particular CAA
accesses during its execution. The atomicity, i.e. the A in the ACID acronym, of the external
objects is directly supported by the framework as it has its own semantics for achieving this
property. Since the conceptual framework does not set any constraint over the transactional sup-
port to be used to achieve the CID properties, the Timed-CAA-DRIP implementation framework
cannot assume any technical characteristic of the transactional mechanism employed by the pro-
grammer, except that it exists. Hence, the implementation framework provides the interfaces
Concurrency (see Listing 4.18) and Transactional (see Listing 4.19), which must be implemented
by the programmer to allow Timed-CAA-DRIP to interface with the chosen locking technique
for ensuring isolation and transactional support for ensuring consistency and durability.

Listing 4.18: Interface Concurrency to be implemented by the programmer.�
public interface Concurrency {

public void setLock ( ) ;
public void l o ckRe l ea s e ( ) ;

}� �
Listing 4.19: Interface Transaction to be implemented by the programmer.�

public interface Transact ion {

public void begin ( ) ;
public void commit ( ) ;
public void abort ( ) ;

}� �
Notice, that while all the objects regardless of whether they are internal or external may be
concurrently accessed. But external objects are required to be persistent. Thus, objects that are
used as external in the CAA must be of a datatype that implements both interfaces. Conversely,
internal objects are datatypes that implement the Concurrency interface only. That is the reason
why there exists one interface for dealing with concurrency and another interface for handling
the transactional support.
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4.4.3.7 Packages exceptions and exceptions.time

The packages exceptions and exceptions.time contain those pre-defined exceptions (non-timed
and timed-related, respectively) that may take place at run-time during the execution of the im-
plementation framework. Pre-defined exceptions are divided between those that can be handled
by the programmer, i.e. there may exist a handler associated to deal with it, and those that are
only handled within the framework and are not visible to the programmer. The latter exceptions
are referred to as internal exceptions. The Class Diagram shown in Figure 4.45 clearly depicts
what the internal exceptions in both packages are. Hence, those that are not internal can be
associated using the method bind of the class CAA with the handlers in charge of recovering
the CAA when they occur.

4.5 Automatic code generation

Timed-CAA-DRIP represents a clear advantage for programmers implementing software systems
designed according to the Timed-CaaFWrk paradigm. The advantage to programmers using
Timed-CAA-DRIP is the high level of abstraction between the terminology used in the design
description and the interface elements of the implementation framework.

Despite the improved facility of implementing design descriptions using Timed-CAA-DRIP,
which is very similar to the high-level design-description/implementation framework correspon-
dence in Timed-CaaFWrk, programmers still have to invest time to learn it. This means that
programmers need to go through a training process that implies learning its interface and try-
ing it out several times untll enough experience and confidence is attained. In order to make
the implementation phase easier and faster, the goal would be to increase the correspondence
between the design description and the implementation framework even further such that the
implementation phase is as automated as possible. The formalisation of the Timed-CaaFWrk
according to the metamodelling principles allows programmers to exploit the MDE approach;
in particular, model transformation techniques and tools meant for code generation.

A model transformation is defined as a set of rules. These rules determine how a target model
can be obtained from a source model. Despite the fact that rules are used to automatically
generate the target model from a given source model, their definition is given in terms of the
constructs used to define both the source and target models. Hence, each rule describes how
one or more constructs in the source language can be transformed into one or more constructs
in the target language.

Considering the left hand side (LHS) of a rule as the part of the rule description that contains
information related to the source model, and the right hand side (RHS) as the part that owns
information related to the target model, the description of a rule can be seen as a function20

R : LHS → RHS . Depending of the complexity and structure of the rule’s LHS, it would be
desirable to decompose its definition into sub-rules to make it tractable. It is said that a rule R
has a compositional definition when it is defined in terms of sub-rules Rsub1 , ...,Rsubn .

Model transformations aimed at generating textual artifacts from a given model are known
as Model-to-Text (M2T) transformations. Those aimed at generating a model are known as
Model-to-Model (M2M) transformations[Ecl10].

The aim of the required model transformation is to generate Timed-CAA-DRIP -compliant
(Java) source code from a given Timed-CaaFWrk -compliant model. This Java source code is

20 It is assumed that rules are not ambiguous.
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considered as a textual artifact. Hence, the model transformation technique required to achieve
the Java source code from a given Timed-CaaFWrk -compliant model generator has to support
the notion of M2T transformation.

4.5.1 The Kermeta metamodelling language

The implementation of the transformation that allows the programmer to generate Java code
from a given Timed-CaaFWrk -compliant model is given in Kermeta [Tri10a]. Kermeta is an
open source object-oriented metamodelling language that was initially created to describe op-
erations at the level of the meta-model. Hence, the specification of a meta-model comprises
both a structural component defined by the structural relationships between the concepts and a
behavioural component defined by the operations enclosed by each concept. The compliance of a
model is determined by its adherence to the structural relationships specified by the meta-model,
whereas its semantics is determined by the result that is obtained by executing the meta-model
operations. Therefore, Kermeta can be seen as a language for specifying the behaviour of a
domain-specific language (DSL), which is defined in a metamodelling fashion.

The definition of Kermeta is given in terms of the metamodelling principles. This means that
there exists a meta-model that defines its (abstract) syntax. This meta-model is an extended
version of the EMOF21 meta-model with concepts that introduce the concepts of control struc-
tures, inheritance, operation overriding, as well as convenient constructions derived from the
Object Constraint Language (OCL), such as closures, e.g. each, collect, select. A complete list
of the extensions can be found in [MFJ05]. It is worth mentioning that the action language
defined by the extensions introduced to the EMOF’s is imperative and object-oriented.

The Listing 4.20 shows an example of an operation described in Kermeta. This operation, step,
is aimed at checking whether there exists at most one element of type Transition that has as
a name the value (named c and of type String -line 1) passed as input parameter. In the case
that there exists more than one element with the value passed as the input parameter (line 7),
then an exception of type nonDeterminism is raised (line 8). Otherwise, the name of the fired
transition (line 11) is returned.

Listing 4.20: Step operation in Kermeta (Taken from [BNT07]).�
1 operation s tep ( c : String ) : String i s do
2

3 var va l i dT ran s i t i o n s : Collection<Trans i t ion>
4

5 va l i dT ran s i t i o n s := ou t g o i n gT r an s i t i o n . s e l e c t { t | t . i n p u t . e q u a l s ( c ) }
6

7 i f v a l i dT r a n s i t i o n s . s i z e > 1 then
8 raise NonDeterminism.new
9 end

10

11 result := v a l i dT r a n s i t i o n s . o n e . f i r e
12

13 end� �
According to the expected shape a rule in a model transformation should have, and in spite of
considering an operation as a rule, it is very difficult to identify the LHS and RHS of a rule,
when it is specified in Kermeta. This is because Kermeta was not originally thought to be a
transformation language. However, due to the way it is defined and due to its expressiveness

21 EMOF stands for “Essential MOF [Obj06]”.
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and features it can be used to such a purpose. However, the main reasons a programmer to
chooses Kermeta as the tool to implement the M2T transformation are:

• Its compatibility with the Eclipse Modelling Framework (EMF) [Ecl10, BBM03], which
allows the Eclipse Development Environment to be used as a workbench to edit, store,
and visualise models; and

• above all, the existence of the Kermeta Emitter Template (KET) [Tri10b] facility, which
is specifically meant to ease the development process of an M2T transformation.

This KET facility, which is part of the Kermeta tool set, allows the programmer to specify
within a template an overall sketch of the source code to be generated. This template, which is
known as a KEt template, is made up of the text that should be written in the output, and tags
that are interpreted to generate string values from some computation. There exist three kinds
of tags:

• “< %−−” and “−−% >”: to define comments within the template,

• “< % =” and “% >”: to embed Kermeta expressions within the template. The result of
the expression is placed within the resulting generated text, and

• “< %” and “% >”: to embed Kermeta statements or blocks within the template. Each
block or set of Kermeta statements is known as a scriptlet . There is not any limitation
on the number of scriptlets a template may contain. Moreover, a scriplets may reference
elements that have been defined in other scriptlets.

The interpretation of the tags take place during the compilation of the template. The compilation
of a KET template, performed by the template engine, produces a Kermeta file. It must be
noted that the KET template may also be embedded in-line Kermeta statements, which remain
once the template is compiled. So far, the compilation of a KET template must be manually
performed before launching the M2T transformation. This M2T transformation is made of
Kermeta files, only.

The Listing 4.21 shows some parts of the KET template used to generate the Java source code
corresponding to a Role element in a Timed-CAA-DRIP -compliant implementation.

Listing 4.21: KET template for a Timed-CAA-DRIP Role class implementation.�
1 <%@ket
2 package=”TimedCAAFWrk”
3 require=”kermeta http : //timedCAAFWrk/1.0 . . / u t i l s /Helper.kmt InternalFunGenerator.kmt”
4 using=”TimedCAAFWrk kermeta : : standard kermeta : : u t i l s ”
5 isAspectClass=”true ”
6 class=”Role”
7 ismethod=” f a l s e ”
8 operation=”generate ”
9 parameters=””

10 %>
11

12 <%var instr : Set<I n s t ruc t i on> i n i t s e l f . i n s t r u c t i o n s ( s e l f . i n s t r s )%>
13 <%i n s t r . s e l e c t { i | i . i sK indOf ( Execute ) } . each { i | %>
14 <%=i.asType ( Execute ) . ˜ operation%>
15 <%}%>
16

17 package l u . u n i . l a s s y .<%=s e l f . c o n t a i n e r . c o n t a i n e r . a sTyp e (CAADesign ) . name%>
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18 . caa .<%=se l f . c a a . n ame%>;
19

20 import java.rmi .RemoteExcept ion ;
21 . . .
22

23 public class <%=se l f . name%> extends RoleImpl {
24 . . .
25

26 public <%=se l f . name%>(String n , CAA caa ) throws RemoteException {
27 super (n ) ;
28 setCAA( caa ) ;
29 }
30

31 public void body ( ) throws Exception {
32 . . .
33 }
34 }� �
The first part of the template (lines 1-9) corresponds to the mandatory header that every KET
template must have. This header contains information regarding the generation of the Kermeta
file. This information is provided by eight directives [Cyr10]:

• package: specifies the root package of the Kermeta file,

• require: set of requires that the Kermeta file should contain,

• using: declares the external Kermeta files that need to be imported,

• class: main class of the Kermeta file,

• isAspectClass: true if the main class is an aspect,

• operation: name of the main operation,

• isMethod: true if the main operation is a redefinition of an existing operation, and

• parameters: parameters of the generate(...) method. These parameters can be used in
KET tags to gather data from outside the generator.

Directives like package, require, using, class, and parameters are mandatory, whereas isAspect-
Class, operation and isMethod are optional.

The remaining part of the example shows how kermeta expressions (lines 14, 17, 18, 23 and 26)
and scriptlets (lines 12-13 and 15) are embedded within the template.

4.5.2 Transforming Timed-CaaFWrk models into Java source code

The layout of the M2T transformation that allows a programmer to generate Java source
code compliant with the Timed-CAA-DRIP implementation framework from a given Timed-
CaaFWrk -compliant model is shown in Figure 4.47. This figure shows both the native Kermeta
files and those automatically obtained from the compilation of a KET template. The binding
between a KET template (double-border rectangle) and the Kermeta file, the single-border
rectangle, that is obtained from its compilation is shown in the figure by a curly arrow. The
straight arrow is used to denote the “use” (or inclusion) of a Kermeta file by another one. The
Kermeta file that does not hold any incoming straight arrow represents the entry point or the
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main file of the transformation. This file is M 2T .kmt , and it is called by the user to obtain the
generated code. This file receives as input a model that is expected to be compliant with the
Timed-CaaFWrk meta-model, and generates a set of Java files into the a directory called output .
There exist other two Kermeta files that form part of the model transformation: Helper .kmt and
Persistance.kmt (rounded-corner rectangle). The Helper .kmt contains general purpose functions
that are required from different files, whereas Persistence.kmt centralises the operations that
deal with the load and store the model and Java source files, respectively. The full set of files
that compose this M2T transformation can be downloaded from [DT410].
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Fig. 4.47: Layout of the M2T transformation.

It is worth emphasising that this M2T transformation is general purpose. This means that
the generated source code may be used as a prototype to evaluate whether the modeller has
captured the requirements properly or to be deployed and released as the software to be used “in
production”. Notice that in this case the modeller has described the requirements according to
the Timed-CaaFWrk paradigm. Thus, the specification of the requirements, which are given in
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CAA terms, will usually describe the design of the software system to be developed. However,
nothing forbids describing the user’s requirements directly in terms of CAAs.
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5. DT4BP SEMANTICS

Abstract

This Chapter describes the semantic mapping that relates each DT4BP concepts
with a concept in the Timed-CaaFWrk semantic domain. The chapter opens by pro-
viding an overview of the expected information to be provided by a semantic mapping,
and the particular notation being used to describe the mapping. This is followed by a
description of the semantic mapping. The chapter closes describing how this seman-
tic mapping is combined with other model-driven artifacts to achieve the execution
of DT4BP models, and how to use this approach for validation purposes.

5.1 Overview

A language L consists of a concrete syntax (or syntactic notation, which defines the legal elements
of L), an abstract syntax (or abstract version of L suitable for its manipulation by computer
tools), a semantic domain (used to provide meaning to the legal elements of L), and a semantic
mapping (used to bind each legal element with its respective meaning) [HR04]. Hence, when
defining a language, these four elements, i.e. concrete and abstract syntax, semantic domain,
and semantic mapping, must be explicitly defined.

Regarding the definition of the DT4BP modelling language, its abstract syntax is described in
Chapter 3 using the metamodelling principles, whereas the complete list of BNF1 rules that
define the concrete syntax is given in the Appendix A. The Timed-CaaFWrk conceptual frame-
work presented in Chapter 4 is the semantic domain used to assign meaning to DT4BP syntactic
expressions. What remains to be provided is the semantic mapping that makes explicit the as-
sociation of each DT4BP syntactic element with its meaning as an element over the semantic
domain.

Making explicit the definition of the semantic mapping implies relying on a notation that is
able to manipulate both the language under definition (aka source language) and the semantic
domain (aka target language). As explained in Chapter 2 Section 2.3.2 and Chapter 4 Section
4.5, within the context of MDE and more precisely within the area of metamodelling, the
technique on which this thesis relies on when formalising concepts, exists the notion of model
transformation, whose aim is to provide support in specifying the way in which a “target” model
may be obtained from a “source” model. Hence, considering the abstract syntax of the language
under definition as the source model, and the core concepts of the semantic domain used to
give meaning to the elements of the source language as the target model, the notion of model
transformation is a suitable means for specifying the semantic mapping.

1 Backus-Naur Form [AU77].
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5.1.1 The ATLAS model transformation language

The semantic mapping element that corresponds to the definition of the DT4BP modelling
language is described by means of the ATLAS model transformation language (ATL) [ATL10a,
JK06, JABK08]. ATL is not a general purpose metamodelling language as Kermeta, since it
has been engineered to deal with model transformations, and in particular with Model-to-Model
(M2M) transformations.

In ATL, the notion of module is used to define a model transformation. A module contains a
header and a set of rules that determine the transformation. The header defines the name of the
transformation and the variables used to refer to the source and target models. The variables
used to refer to the source and target models are typed by the meta-models to which these models
must conform. The variable that refers to the target model is defined using the keyword crate,
whereas the keyword from is used to define the variable that refers to the source model. The
Listing 5.1 shows the header of the M2M transformation that defines how DT4BP -compliant
models are transformed into Timed-CaaFWrk -compliant models. This transformation is named
DT4BP to TimedCaaFWrk (line 1), and the variables used to refer to the source and target
models are named IN and OUT, respectively (line 3)

Listing 5.1: Header of the DT4BP to Timed-CaaFWrk transformation.�
1 module DT4BP to TimedCaaFWrk ;
2

3 create OUT : TimedCAAFWrk from IN : DT4BP;� �
It is worth mentioning that during the execution of an ATL transformation, the source model
may be navigated, but it cannot be changed (i.e. it is loaded as read-only). Conversely, the target
model is available as write-only, but is cannot be navigated. ATL requires that both models
and meta-models are expressed in the XMI OMG serialisation format. Notice that regarding
meta-models, in the context of this thesis both the DT4BP and Timed-CaaFWrk meta-models
have been implemented as Ecore meta-models [BBM03].

The way in which the target model is created from the source model is specified by the set of rules
enclosed within the module. A rule, defined by the keyword of the same name, is composed of
two mandatory parts referred to as the source pattern and target pattern. The source pattern is
defined using the keyword from. The target pattern is defined by the keyword to. Both keywords
allow the programmer to specify a typed variable. For the source pattern, the variable type must
correspond to a concept of the source meta-model. For the target pattern, the variable type
must correspond to a concept of the target meta-model.

The aim of source pattern is to specify the matching type an element of the source model has to
conform to, thus allowing the rule be triggered. Every time the rule is triggered, a new element
of the target model is created according to the specification given by the target pattern. The
Listing 5.2 shows the definition of the rule named Exception. This rule specifies that for each
instance of type Exception in the DT4BP -compliant source model (line 3), an instance of type
Exception in the Timed-CaaFWrk -compliant target model is to be generated (line 5). Moreover,
the rule also states that the attribute name of the instance (of type Exception) to be created in
the Timed-CaaFWrk -compliant target model is initialised with the value of the attribute name
owned by the instance in the DT4BP -compliant source model that triggers the execution of the
rule. This is defined in the binding part of the target pattern (line 6).
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Listing 5.2: Transformation rule for the Exception concept.�
1 rule Exception {
2 from
3 s : DT4BP! Exception
4 to
5 t : TimedCAAFWrk! Exception (
6 name <− s.name
7 )
8 }� �

The binding part of a target pattern is aimed at specifying how the features (i.e. attributes
and association) of the target type have to be initialised. The symbol ‘< −’ is used to assign
the initialisation expression to the target type feature. Notice that it is usually the case that
the initialisation expressions are defined in terms of the source type feature. In that case, the
variable defined in the source pattern are the means to access the value of the element belonging
to the source model that caused the triggering of the rule.

It is worth noting that the evaluation of an expression may (or may not) lead to the triggering
of another rule before assigning the evaluated value to the target type feature. Whether a rule
is triggered or not depends on the type of the resulting value that must be assigned to the target
type value. If the type is either a primitive type (i.e. Boolean, Integer, Real or String) or a
type defined in the target meta-model, then the value is simply assigned to the corresponding
target type feature. Otherwise its type is either a source meta-model type or a Collection type
(i.e. Set, OrderedSet, Bag or Sequence) in which case the evaluation has to go on until either
a primitive or target meta-model type is found. This resolution algorithm then not only allows
the elements of the target model to be associated with each other simply navigating the source
model, but also eases the definition of compositional rules due to its automatic rule chaining.

A module may also contain a helper section, which is used to define “functions” that can be
called from different rules. These functions may or may not be included within the same module
where they are used. In the case that they are placed in a different file from that where they are
called, the caller must include the file. The inclusion of one or more files is achieved by making
use of the import section, which enables to declare the ATL libraries that must be imported.

Since this section was aimed at providing a short introduction of ATL so that the reader is able
to understand the DT4BP to Timed-CaaFWrk M2M transformation that is presented in the
next Section, more details about the helper and import sections, as well as the transformation
language in general can be found in the ATL User Guide [ATL10b].

5.2 Translating DT4BP models in Timed-CaaFWrk models

This section describes how when given a determined DT4BP -compliant source model, the major
rules that allow the programmer to automatically obtain a Timed-CaaFWrk -compliant target
model. The complete set of rules is given in the Appendix E. It is worth recalling that rules
are described in ATL, and the source and target meta-models, which they rely on to accomplish
their execution, are extended versions of the DT4BP and Timed-CaaFWrk meta-models shown
in Appendices B and D, respectively. The extensions introduced in the original meta-models
are those required to make them implementable as Ecore models. Hence, new concepts were
introduced such that both meta-models adhere to a tree structure when considering the composite
relationship as a means to bind two different concepts. The extended Ecore version of these meta-
models are also shown in the Appendix E, beside the description of the M2M transformation
rules.
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The rules are presented in the order in which they are “expected” 2 to be triggered. This order
is determined by the tree-structure of the source meta-model to which the source model adheres
due to its compliance with the respective meta-model. Hence, the first rule to be described
is the one whose source pattern is related to the root concept of the source meta-model. The
definition of this rule, then, can be considered as the “main” rule of the transformation, since its
triggering leads to the subsequent triggering of the other rules that compose the transformation.
Thus, in the following, this main rule and some that are subsequently called are described.

5.2.1 Main

Let mDT4BP be a model that is compliant with the DT4BP source meta-model. Due to this
compliance, the model mDT4BP contains one instance of type Enterprise. This instance will
lead to the triggering of the rule named Enterprise, whose description is shown in the Listing
5.3. The triggering of this rule is the first step in the generation of a model mTimed−CaaFWrk

compliant with the target meta-model Timed-CaaFWrk.

The target pattern of the rule Enterprise specifies that a target element of type CAADesign3

is created every time the rule is triggered (line 6). Hence, for every element of type Enterprise
in the source element, an element of type CAADesign is generated in the target model. The
binding part of the rule specifies that the name of the target element is initialised with the
attribute name value of the source element (line 7). A similar binding between the source and
target elements is performed for the events, dttps and basicTypes attributes (line 8, 23, and 24),
respectively. However, it must be noted that the resources and business processes (bps) of the
source element are used to initialise the participants and caas of the target element (line 22 and
25), respectively.

Therefore, a business process is semantically defined as a CAA, whereas a resource as a partici-
pant. The fact that a business process is considered as a CAA is due to their similar structural
properties. i.e. one or more enclosed parties each with its own set of activities that are expected
to be executed. In addition, the properties they do have, i.e. synchronisation upon entry/exit,
message exchange between the enclosed parties, and concurrent exception resolution and han-
dling, also support the concept of a business process as a CAA. On the other hand, semantically
considering a resource as a participant is due to the the role they play to execute the business
process or CAA, respectively. The actual execution of a business process is performed by the
assigned resources. Similarly, the actual execution of a CAA is performed by the participants
that are assigned to play the roles that make up the CAA.

The way the attribute exceptions is initialised deservers further explanation (line 9). This at-
tribute is initialised by the set that results of joining 1) the exceptions held by the source
element with 2) the exceptions maxIntrsExecElapseT, minInstrExecElapseT, maxRoleExecT,
minRoleExecT, and 3) the exceptions appearing in the resolution part of each business process
owned by the source element (lines 15-21). It should be noted that the exceptions maxIntrsEx-
ecElapseT, minInstrExecElapseT, maxRoleExecT and minRoleExecT are generated by calling
the rules tMaxIntrsExecElapseT, tMinInstrExecElapseT, tMaxRoleExecT and tMinRoleExecT
(lines 27-37). This semantic mapping explicitly defines that the set of exceptions a particular
CAA design is going to handle is determined by the combination of exceptions handled by each
business process and the pre-defined exceptions of type Abort, DataExpired, TimeoutMinBPLast
and TimeoutMaxBPLast.

2 Rules are defined without any assumption about the order in which they are triggered, as ATL is a declarative
language.

3 The type CAADesign is the root concept in the target Timed-CaaFWrk meta-model.
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Listing 5.3: Rule Enterprise.�
1 rule Ente rp r i s e {
2 from
3 s : DT4BP! Ente rp r i s e
4

5 to
6 t : TimedCAAFWrk! CAADesign(
7 name <− s.name ,
8 events <− s . ev en t s ,
9 except i on s <− OrderedSet {

10 s . e x c ep t i on s ,
11 tMaxInstrExecElapseT ,
12 tMinInstrExecElapseT ,
13 tMaxRoleExeT ,
14 tMinRoleExeT
15 }−>union (
16 let r e s : Set (DT4BP! Reso lut ion ) =
17 s .bps−>col lect ( e | e . r e s o l u t i o n )−>f latten ( )
18 in
19 res−>iterate ( e ;
20 excs : OrderedSet (TimedCAAFWrk! Exception ) =
21 OrderedSet{} | excs .append ( e ) ) ) ,
22 pa r t i c i p an t s <− s . r e s o u r c e s ,
23 predef inedTypes <− s .bas i cTypes ,
24 dttps <− s . d t tp s ,
25 caas <− s . bp s
26 ) ,
27 tMaxInstrExecElapseT : TimedCAAFWrk! MaxInstrExecElapseT (
28 name <− ’ maxInstrExecElapseT ’
29 ) ,
30 tMinInstrExecElapseT : TimedCAAFWrk! MinInstrExecElapseT (
31 name <− ’ minInstrExecElapseT ’
32 ) ,
33 tMaxRoleExeT : TimedCAAFWrk!MaxRoleExecT(
34 name <− ’maxRoleExecT ’
35 ) ,
36 tMinRoleExeT : TimedCAAFWrk! MinRoleExecT (
37 name <− ’minRoleExecT ’
38 )
39 }� �

Excluding the evaluation of the expression required to initialise the target attribute name, the
remaining evaluations lead to the triggering of different rules. The next rule to be presented
here is related to the transformation of business processes into caas, which is triggered due
to evaluation of the source attribute bps in order to initialise the target attribute caas. The
transformations defined by the rules triggered when evaluating the source attributes events,
basicTypes and dttps are straightforward, and, thus, are not considered further in this section.

5.2.2 Business Process

As previously mentioned, a business process is semantically defined as a CAA. The rule named
BusinessProcess, which is shown in the Listing 5.4 defines the semantic mapping between these
concepts. The target pattern of this rule specifies that a target element of type CAA is created
(line 5) every time a source element of type BusinessProcess is found in the source model (line
3).

The binding part of the rule specifies that 1) the name (line 6), 2) the event that requests its
execution (line 7), 3) the executing period (line 10), 4) the parameters (line 11) and 5) the data
types (line 13) of the target element are initialised with the values held by the same attributes of
the source element. Moreover, the target element will have the same position in the hierarchical
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CAA structure as the source element in the business process structure. Hence, a root CAA is
generated only by a root business process (line 14).

Listing 5.4: Rule BusinessProcess.�
1 rule Bus ines sProces s {
2 from
3 s : DT4BP! Bus ines sProces s
4 to
5 t : TimedCAAFWrk!CAA(
6 name <− s.name ,
7 requestedBy <− s . requestedBy ,
8 delay <− s . s t a r t ,
9 e l ap s e <− s . l a s t ,

10 per iod <− s . p e r i od ,
11 params <− s.params ,
12 r o l e s <− s . p a r t i c i p a n t s ,
13 dttps <− s . d t tp s ,
14 i sRoot <− s . i sRoo t
15 )
16 }� �

Regarding the time-related information, the binding specifies that the delay and elapse attributes
of the target element are initialised according to the start and last attributes of the source
element (lines 8 and 9), respectively. Hence, the time boundaries related with the start and
duration of a business process CAA are semantically defined as the CAA time boundaries that
constrain its start and duration.

The binding part also specifies that participants enclosed within a business processes are mapped
to roles of the CAA. This semantic mapping between a business process participant and a CAA
role is due to their having similar structural properties. Both define a grouping are for a set of
tasks that are required to be executed by a same entity. In the DT4BP domain, this entity is
the resource assigned to the business process participant, whereas in the semantic domain (i.e.
TimedCaaFWrk) the entity is the participant in charge of playing the role. The following rule
specifies this semantic mapping in detail.

5.2.3 Participant

First, recall that participants that compose a business process are assumed to be ordered. This
is formally specified in the DT4BP meta-model (see Appendix B).

The specification of the semantic mapping between a business process participant and a CAA
role comprises two different rules: 1) ParticipantFirst, that corresponds to the first participant
enclosed within the business process; 2) ParticipantNonFirst) for the other participants enclosed
within the same business process. This section focuses on the rule ParticipantFirst since it is
an extended version of the other rule.

The target pattern of the rule ParticipantFirst (shown in the Listing 5.6) specifies that a target
element of type Role is created (line 5) every time a source element of type Participant is found
in the source model and this source element is the first in the ordered composite relationship
participants (line 3). While the type matching is specified in the source pattern, the ATL helper
named isFirstParticipant (shown in the Listing 5.5) defines a predicate that checks whether the
current source element of type Participant is the first or not. Therefore, the triggering of the
rule requires that the source element satisfiies both the type matching and predicate defined by
the helper.
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Listing 5.5: Helper for Participant.�
1 helper context DT4BP! Par t i c i pan t def : i s F i r s t P a r t i c i p a n t ( ) : Boolean =
2 let
3 f i r s t : DT4BP! Par t i c i pan t = s e l f . b p . p a r t i c i p a n t s −>f i r s t ( )
4 in
5 s e l f = f i r s t
6 ;� �

The binding part of the rule specifies that the name of the target element is initialised with
the same name as the source element (line 6). The enclosing CAA of the role is initialised with
the enclosing business process of the participant that led to the rule to being triggered (line 7).
The pre-and post-condition of the business process that encloses the source element are used to
initialise the pre- and post-condition of the target element (line 8 and 11), respectively.

The way in which the pre- and post conditions of a business process are semantically mapped
over the pre- and post-conditions of a CAA is the key component that led to splitting the
mapping into two mutually exclusive rules. Thus, this mapping deserves further explanation.
As was discussed in Chapter 4 Section 4.2.1, the pre(post)-condition of a CAA is defined as
the conjunction of the pre(post)-conditions owned by each enclosed role. Since the pre(post)-
condition of the business process is semantically defined as the pre(post)-condition of a CAA, the
mapping between the former over the latter implies selecting one single role where the pre(post)-
conditions of the business process are set. In this manner, the pre(post)-condition of a business
process bp is semantically mapped as the pre(post)-condition of a role ri enclosed within a CAA
caa such that caa is the CAA to which bp has been semantically mapped. Any role ri enclosed
within caa can be select to fullfil this requirement. The semantic mapping defines the first
role created during the model transformation as the role where the pre(post)-condition of the
business process is placed. Since a role is created in the target model every time a participant
element is found in the source element, it is important to discriminate whether the participant
is the first or not. In the case that it is the first, the both the pre- and the post-condition
have to be mapped as this is specified in the binding part of the rule. Otherwise, the pre- and
post-condition of the business process do not have to be considered in the semantic mapping
between a participant and a role. This situation is specified by the rule ParticipantNonFirst.

The remaining part of the binding specifies that the statements (line 9) enclosed within the
source element (of type Participant) are used to initialise the instructions of the target element
(of type Role). In addition, the minimum and maximum allowed working times (line 10) of
the source element are used to initialise the maximum and minimum allowed execution time
of the target element. The bp-handlers4 of a particular business process bp are semantically
defined as the collection of cooperative handlers enclosed within the CAA caa that semantically
define bp. Hence, the attribute handlers of a role target element is initialised by the collection
of cooperative handlers associated with the participant source element (lines 13-15).

Listing 5.6: Rule ParticipantFirst.�
1 rule Pa r t i c i p an tF i r s t {
2 from
3 s : DT4BP! Par t i c i pan t ( s . i s F i r s t P a r t i c i p a n t ( ) )
4 to
5 t : TimedCAAFWrk! Role (
6 name <− s.name ,
7 caa <− s .bp ,
8 pre <− s . bp .p r e ,

4 See Chapter 3, Section 3.4.4.3 for details about bp-handlers and p-handlers.
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9 i n s t r s <− s . s tmts ,
10 exec <− s.workFor ,
11 post <− s . bp .po s t ,
12

13 hand le r s <− s . bp . coope ra t i v eHand l e r s−>
14 col lect ( e | e .hndPar t i c i pan t s)−>
15 f latten ()−> select ( e | e . p a r t i c i p a n t=s ) ,
16

17 handlersExecT <− i f (not s .workFor . o c l I sUnde f in ed ( ) ) then
18 OrderedSet { s .workFor .hand l e r s }
19 else
20 OrderedSet {}
21 endif
22 )
23

24 }� �
The time constraints concerning the minimum and maximum allowed working time of a par-
ticipant may have up to two associated p-handlers aimed at dealing with the absence of any
of these time constraints. This kind of handler is semantically defined as a role local handler
within the semantic domain. In the case that there exists at least a p-handler associated with
the workFor time constraint (lines 17-21), then it is used to initialise the role local handler that
will occur at run-time when any of the role execution time constraints is absent.

The next sections provide details about the semantic mapping of DT4BP statements, deviations
and exception handling both at the level of the business process, as well as at the level of the
participant.

5.2.4 Statements

The statements enclosed within a business process are semantically defined as the instructions
of a role. The set of statements a participant may contain are classified as control, execution
and declaration. Statements such as If, Repeat and While belong to the first type of statement,
whereas Receive, Send and Activity belong to the second. The only statement that forms
the third kind of statement is ObjDecl. For each statement, regardless of its classification,
a transformation rule is provided to specify its semantic definition in terms of instructions
belonging to the Timed-CaaFWrk semantic domain. Among all these transformation rules, the
one that provides the semantic definition for the Atomic statement is shown since it is probably
the most complex among all statement-related rules. Furthermore, the description of this rule
helps in understanding other rules like those that provide the semantic definition for Composite
and Nested statements.

5.2.4.1 Atomic

The semantic definition of the statement Atomic comprises two rules. One rule that applies over
atomic activities that hold a post-condition, and other for those activities that do not. Depend-
ing on whether an atomic activity holds a post-condition or not, a different semantic definition
is achieved in terms of instructions belonging to the Timed-CaaFWrk semantic domain.

The rule named AtomicWithPost, which is shown in the Listing 5.7, specifies the semantic
definition for atomic activities that hold a post-condition. The target pattern of the rule specifies
that a target element of type Block (line 5) is created every time a source element of type Atomic
with a post-condition is found in the source model (line 3). The target element being created is



5.2. Translating DT4BP models in Timed-CaaFWrk models 181

composed of an ordered set of two instructions (line 6) such that the first one is a target element
of type Execute, and the second of type If (lines 9 and 26, respectively).

Listing 5.7: Rule AtomicWithPost.�
1 rule AtomicWithPost {
2 from
3 s : DT4BP! Atomic (not s . p o s t . o c l I sUnd e f i n e d ( ) )
4 to
5 t : TimedCAAFWrk! Block (
6 i n s t r s <− OrderedSet { t2 , t3 } ,
7 i sTry <− f a l s e
8 ) ,
9 t2 : TimedCAAFWrk! Execute (

10 opera t i on <− s.name ,
11 args <− s . a r g s−> col lect ( e | e . o b j ) ,
12 delay <− s . i n ,
13 dead l ine <− s .w i th in ,
14 pre <− i f (not s . p r e . o c l I sUnd e f i n e d ( ) ) then
15 s . p r e . p r e d i c a t e
16 else
17 ’ true ’
18 endif ,
19 post <− s . p o s t . p r e d i c a t e ,
20 hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then
21 OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
22 else
23 OrderedSet { s . l o c a lHand l e r s }
24 endif
25 ) ,
26 t3 : TimedCAAFWrk! I f (
27 cond <− ’not ( ’ . concat ( s . p o s t . p r e d i c a t e . t o S t r i n g ( ) . concat ( ’ ) ’ ) ) ,
28 then <− OrderedSet { s . d e v i a t i o n s , t4 }
29 ) ,
30 t4 : TimedCAAFWrk! Execute (
31 opera t i on <− ’ Sys t em.ex i t ( ) ’ ,
32 pre <− ’ true ’ ,
33 post <− ’ true ’
34 )
35 }� �

The binding part of the rule t2 specifies how the execute target element attributes are initialised
(lines 10-25). This binding specifies that the operation attribute is initialised with the name of
the source element (line 10), whereas the arguments (line 11), pre-condition (lines 14-18), and
post-condition (line 19) attributes of the source element are used to initialise the attributes of the
same name in the target element. The time-related attributes in and within, which correspond
to the delay and deadline boundaries of the atomic activity are used to initialise the delay and
deadline attributes of the target element (lines 12 and 13, respectively). An atomic activity may
have one or more p-handlers associated with it, which are meant to deal with certain deviations
that may occur during its execution. It must be noted that among these potential deviations,
those that may arise due to a missing time constraint set over the activity are also included.
These p-handlers are used to initialise the role local handlers of the execute target element (lines
20-24).

The rule t3 upon calling, creates a target element of type If, which is aimed at defining the
semantic of a deviation that occurs due to the violation of the post-condition. The reason why
it is important to know whether the atomic activity holds a post-condition not, because those
that do not are assumed to always execute without deviating from their expected behaviour.
The binding part of this rule specifies that the condition attribute of the if target element is
initialised as the negation of the post-condition of the source element (line 27), and the then
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attribute is initialised as an ordered set of instructions. The last instruction in this ordered set
is generated by calling the rule t4. This role generates an execute instruction in the target aimed
at interrupting the execution of the role. This instruction is executed only when an exception
has been raised for which there do not exist any handler. This situation, at the DT4BP domain
represents the occurrence of an unexpected event that leads towards the failure of the business
process, and results in its abrupt interruption.

An atomic activity that does not hold a post-condition is one that is assumed to always execute
without deviating from its expected behaviour. The semantic definition of this kind of atomic
activity is given by the rule AtomicWithoutPost, which is shown in the Listing 5.8.

Listing 5.8: Rule AtomicWithoutPost.�
1 rule AtomicWithoutPost {
2 from
3 s : DT4BP! Atomic ( s . p o s t . o c l I sUnd e f i n e d ( ) )
4 to
5 t : TimedCAAFWrk! Execute (
6 opera t i on <− s.name ,
7 args <− s . a r g s−> col lect ( e | e . o b j ) ,
8 delay <− s . i n ,
9 dead l ine <− s .w i th in ,

10 pre <− i f (not s . p r e . o c l I sUnd e f i n e d ( ) ) then
11 s . p r e . p r e d i c a t e
12 else
13 ’ true ’
14 endif ,
15 post <− ’ true ’ ,
16 hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then
17 OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
18 else
19 OrderedSet { s . l o c a lHand l e r s }
20 endif
21 )
22 }� �

The target pattern of the rule specifies that an element of type Execute is created in the target
model (line 5) every time an element of type Atomic that does not hold a post-condition is found
in the source model (line 3). The binding part of this rule specifies the same semantic mapping
as the rule t2 shown in the Listing 5.7. Since this semantic mapping was already explained
when describing the rule AtomicWithPos, no further description of the rule AtomicWithoutPos
is required.

5.2.5 Deviations

A deviation, according to the DT4BP meta-model, is defined as either an ActivityDeviation
or a TimeDeviation. An ActivityDeviation is used to specify the potential deviation of an
Activity with respect to its expected behaviour. This kind of deviation is specified by giving
the condition that determines whether the Activity to which it is associated has deviated or not
from its expected behaviour, and (2) the exception to be raised in case the deviation takes place.

On the other hand, a TimeDeviation is used to specify the potential absence of a timing con-
straint. This kind of deviation is specified by signaling that the time bound may be only missing,
since the exception to be raised flag its occurrence is always the same: timeout. Hence, as for a
TimedDeviation none condition or exception form part of its description. Its semantic definition
is given in terms of a handler (placed either at the level of the business process or at the level
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of the participant) meant to handle such an exception. As a result of this fact, this section only
shows details about the semantic definition of an ActivityDeviation.

The semantic definition of an ActivityDeviation is given by the rule of the same name, which is
shown in the Listing 5.9. The target pattern of the rule specifies that a target element of type If
(line 5) is created every time a source element of type ActivityDeviation is found in the source
model (line 3). The initialisation of the condition attribute of the target element depends on
the type of condition held by the source element. As specified in the DT4BP meta-model, the
condition of an ActivityDeviation may be of type Predicate, AbortDeviation, FailureDeviation
or DataDurationDeviation.

Listing 5.9: Rule ActivityDeviation.�
1 rule Act iv i tyDev ia t i on {
2 from
3 s : DT4BP! Act iv i tyDev ia t i on
4 to
5 t : TimedCAAFWrk! I f (
6 cond <− i f s . c ond i t i on . o c l I sTypeO f (DT4BP! Pred i cate ) then
7 s . c o n d i t i o n . p r e d i c a t e . t o S t r i n g ( )
8 else
9 i f s . c ond i t i on . o c l I sTypeO f (DT4BP! AbortDeviat ion ) then

10 ’ outcome=aborted ’
11 else
12 i f s . c ond i t i on . o c l I sTypeO f (DT4BP! Fa i lu r eDev ia t i on ) then
13 ’ outcome=f a i l e d ’
14 else
15 ’ dataExpired ’
16 endif
17 endif
18 endif ,
19 then <− t2
20 ) ,
21 t2 : TimedCAAFWrk! Raise (
22 except ion <− s . r a i s e
23 )
24 }� �

The binding part of the rule specifies that in the case when the condition attribute of the source
element is of type Predicate its value is used to initialise the condition attribute of the if target
element (lines 6-7). Otherwise, it is initialised either with the value outcome=aborted (lines
9-10), outcome=failed (lines 12-13), or dataExpired (line 15) in the cases where the type of
the condition attribute is either AbortDeviation, FailureDeviation or DataDurationDeviation,
respectively.

Initialising the condition attribute of the target element with the value outcome=aborted or
outcome=failed may only be possible if the source element is an Activity of type Composite or
Nested as they are the only types of activities that may have deviations with these kinds of
conditions. Conversely, to initialise the condition attribute of the target element with the value
dataExpired it is possible when the source element is of type Atomic only as it is the unique place
from where a data element may be accessed (regardless it holds a temporal constraint or not).
Conversely, initialising the condition attribute of the target element with the value dataExpired
is possible when the source element is of type Atomic only as this is the unique place from which
a data element may be accessed (regardless of whether it holds a temporal constraint or not).

The initialisation of the then attribute of the target element (of type If), includes a called rule
named t2 (line 21). This rule specifies that a target element of type Raise is created in the target
model every time it is called (line 21). The binding part of rule t2 specifies that the attribute
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exception of this target element (of type Raise) is initialised with the value of the attribute raise
owned by the source element (line 22)

In summary, a (DT4BP) deviation is semantically defined as an (Timed-CaaFWrk) If-then
statement such that the then part makes use of the Raise instruction as a means to signal
the deviation of the business process during its execution. The remaining part of this section
describes the rules that semantically define the DT4BP handlers meant to deal with every
potential deviation included within the business process definition.

5.2.6 Exception Handling

The occurrence of a deviation during the execution of a business process is signaled by raising
an exception. For each potential deviation being considered in the business process definition,
a handler aimed at dealing with the exception must be included within the business process
definition. As previously mentioned, there exist two kinds of handlers for dealing with exceptions:
business process handlers, which are referred to as bp-handlers; and participant handlers referred
to as p-handlers. The former involves every single participant enclosed within the business
process in the handling process, whereas the latter is defined within the context of a particular
participant involving one or more of its statements. More detail regarding these kinds of handlers
can be found in Chapter 3, Section 3.4.4.3. The rules explained in this section are those that
address the semantic definition of bp-handlers and p-handlers.

5.2.6.1 Business Process Exception Handling

The semantic definition of a bp-handler is divided into two mutually exclusive rules depending
on whether the exception the handler is aimed at dealing with is of type Abort or not. The
rule that provides the semantic definition for the for the bp-handlers that deal with non-Abort
exceptions is named HandlerParticipant. This rules is shown in the Listing 5.10.

The target pattern of the rule specifies that a target element of type CooperativeH (line 5) is
created every time a source element of type HandlerParticipant that does not deal with an Abort
exception is found in the source model (line 3). The ATL helper named dealsWithAbort (shown
in the Listing 5.11) defines the predicate that checks whether the current source element deals
with an exception of type Abort or not (line 3). The way in which this helper determines whether
a HandlerParticipant deals or not with an Abort exception deserves further explanation.

According to the DT4BP meta-model, a BPHandler is defined as a collection of one or more
handler participants (i.e. attribute hndParticipants in the meta-model) and one single outcome.
Every BPHandler that belongs to a certain business process bp, is expected to be placed at the
right part of the resolution element of the business process bp. The case in which a business
process may potentially be faced with an Abort implies the existence of a BPHandler to deal
with such an exception. Thus, the business process definition must hold a Resolution that binds
an Abort exception to the BPHandler element intended for dealing with such an exception.

In this manner, to know whether a particular HandlerParticipant is part of a BPHandler aimed
at dealing with an Abort exception requires inspection of the left side part of the resolution
element to which the BPHandler is associated. In the helper definition, the res element defined
in the let part (line 3, in Listing 5.11) is defined to gather all the resolution elements of the
BPHandler that enclose the current HandlerParticipant source element. The in part of the
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helper (line 6) checks whether there exist at least one resolution element in the res set, whose
type is Abort5

Listing 5.10: Rule HandlerParticipant.�
1 rule Handle rPart i c ipant {
2 from
3 s : DT4BP! Hand le rPart i c ipant (not s .dea lsWithAbort ( ) )
4 to
5 t : TimedCAAFWrk! CooperativeH (
6 name <− s .ac t s In .name ,
7 r o l e <− s . p a r t i c i p an t ,
8 outcome <− s . a c t s In .outcome ,
9 i n s t r s <− s . s tmts ,

10 handles <− let r e s : Set (DT4BP! Reso lut ion ) =
11 s . ac t s In . r e f Immed ia teCompos i t e ( ) . r e s o l u t i on−>
12 select ( r | r . r i g h t = s . a c t s I n )
13 in
14 res−>iterate ( e ; excs :OrderedSet (TimedCAAFWrk! Exception ) = OrderedSet {} |
15 i f ( res−>exists ( ex | e x . l e f t . s i z e ( ) > 1) ) then
16 excs .append ( thisModule .resolveTemp ( e , ’ t ’ ) )
17 else
18 excs .append ( res−>col lect ( ex2 | e x 2 . l e f t ) )
19 endif ) ,
20 params <− s . pa r t i c i pan t . bp .pa rams−>
21 union ( s . p a r t i c i p an t . s tm t s−>
22 select ( e | e .oc l I sTypeOf (DT4BP! ObjDecl))−>col lect ( e | e . v a r ) )
23 )
24 }� �

Listing 5.11: Helper for HandlerParticipant.�
1 helper context DT4BP! Handle rPart i c ipant def : dealsWithAbort ( ) : Boolean =
2 let
3 r e s : Set (DT4BP! Reso lut ion )= se l f . a c t s In . r e f Immed i a t eCompos i t e ( ) . r e s o l u t i on−>
4 select ( r | r . r i g h t = s e l f . a c t s I n )
5 in
6 res−> exists ( r | r . l e f t −> exists ( ex | ex .oc l I sTypeOf (DT4BP! Abort ) ) ) ;� �

The binding part of the rule HandlerParticipant specifies that the attribute name of the target
element is initialised with the name of the BPHandler referred to by the source element (line
6). This BPHandler element is used also to initialise the outcome attribute (line 8). The
source element refers to a participant element, which is used to initialise the role attribute of
the target element (line 7). This participant element is also used to reach the parameters of
the business process that enclose the source element. These parameters along with the values
gathered from inspecting the variable var held by each instruction ObjDecl and contained by
the source element (lines 21-22) are used to initialise the attribute params of the target element
(line 20). The statements contained by the source element are used to initialised the attribute
instrs of the target element.

The initialization of the attribute handles of the target element deserves a detailed explanation
(lines 10-19). This attribute is expected to hold the exceptions the target element (of type
CooperativeH ) has to deal with. Since a HandlerParticipant is semantically defined as a Coop-
erativeH, then exceptions being handled by the former must be mapped to the exceptions the
latest handles. The exceptions handled by a HandlerParticipant hndPrt are those placed in the

5 In theory, for all the resolution elements contained in the set res, the type of the element placed on its left
side part must be the same, since all these resolution elements refer to the same BPHandler.
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left hand side of every resolution element, whose right hand side refers to the BPHandler that
encloses hndPrt .

Finding these exceptions is achieved by first gathering all the resolution elements of the BPHan-
dler that encloses the current HandlerParticipant source element. Notice that this results in a
set of resolution elements named res, in the same manner as the helper dealsWithAbort previ-
ously explained does (lines 11-12). Once these resolution elements are obtained, the next step
consists of extracting the exception that each of them holds in its left hand side. There may
exist more than once exception on the left hand side of a resolution element. In case the number
of exceptions a resolution element holds on its left hand side part is not higher than one (line
15), this exception is added to the ordered set of exceptions named excs (line 18). This set is
used to initialised the handles attribute of the target element. Otherwise, the exception to be
added to the set excs is the one that semantically corresponds to the concurrent flagging of the
exceptions placed at the left hand side of resolution element that has to be created (line 16).
Concurrent exceptions are generated by the rule ConcurrentExceptions, which is shown in the
Listing 5.12.

Listing 5.12: Rule ConcurrentExceptions.�
1 rule ConcurrentExceptions {
2 from
3 s : DT4BP! Reso lut ion ( s . l e f t −>s ize ( ) > 1)
4 to
5 t : TimedCAAFWrk! Exception (
6 name <− s . l e f t −>
7 iterate ( e ; r e s : String = ’CC EX’ |
8 r e s . c o n c a t ( ’ ’ . concat (
9 e .name . toSt r ing ( ) . r egexRep laceAl l ( ’EX |CC EX ’ , ’ ’ )

10 )
11 )
12 ) ,
13 madeOf <− s . l e f t
14 )
15 }� �

Notice that the rule ConcurrentExceptions is triggered every time a resolution source element
that holds more than one exception on its left hand side is found (line 3). Its execution generates
an element of type Exception in the target model (line 5). The binding part of this rule specifies
that the name attribute of the target model is initialised with the value that results from
concatenating the string “CC EX” with the names of all exceptions placed on the left hand side
of the resolution source element (lines 7-12), whereas the madeOf attribute is initialised with
the exact value held by the left hand side of the resolution source element (line 13).

5.2.6.2 Participant Exception Handling

A p-handler is aimed at dealing with a deviation that may arise during the execution of a state-
ment enclosed within certain participant. Whether the participant may complete its activities
as originally planned depends on the success of the p-handler in dealing with the deviation.
Not all statements enclosed within a participant may be confronted with a deviation during
its execution. According to the DT4BP meta-model, only statements that extend from the
type Execution will be faced with a deviation. Moreover, since a Deviation is refined between
TimeDeviation and ActivityDeviation, the statement Within may only confront the former,
whereas statements extending from Activity may only confront the latter.
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The semantic definition of a p-handler is divided into two mutually exclusive rules depending
on whether they are associated with a statement Activity or Within. The rule that semantically
defines a p-handler associated with an Activity statement is detailed first. The rule related with
Within statements is given subsequently.

For a p-handler associated with a statement Activity, its semantic definition is given by the rule
PHandlerForActivity. This rule is shown in the Listing 5.13. The target pattern of the rule
specifies that a target element of type LocalH is created every time a source element of type
PHandler enclosed in an Activity statement (line 5) is found in the source model. The binding
part of the rule specifies that the attribute instrs of the target element is initialised with the
statements owned by the source element (line 6), whereas the attribute handles is initialised
with the exceptions raised by the deviation it is associated with (line 7). It must be noted that
for an Activity statement, the deviation is of type ActivityDeviation.

Listing 5.13: Rule PHandlerForActivity.�
1 rule PHandlerForActivity {
2 from
3 s : DT4BP! PHandler ( s . re f ImmediateCompos ite ( ) . oclIsKindOf (DT4BP! Act i v i ty ) )
4 to
5 t : TimedCAAFWrk! LocalH (
6 i n s t r s <− s . s tmts ,
7 handles <− s .hand l e s−>col lect ( dev | d e v . r a i s e )
8 )
9 }� �

On the other hand, for a p-handler associated with a statement Within, its semantic definition
is given by the rule PHandlerForWithin. This rule is shown in the Listing 5.14. The target
pattern of the rule specifies that a target element of type LocalH is created every time a source
element of type PHandler enclosed in an Within statement (line 5) is found in the source model.
The binding part of the rule specifies that the attribute instrs of the target element is initialised
with the statement owned by the source element in its attribute stmts, whereas the initialisation
of the attribute handles depends on the kind of time-related deviation the source element is
designed to handle.

Hence, for a source element that is aimed at handling a time-related deviation that is raised
when a time bound is missed (regardless of whether it is the lower or upper time bound6), the
attribute handles is initialised with an ordered set (line 9) that contains an instance of type
MinInstrExecFinishT (lines 9-12) and an instance of type MaxInstrExecFinishT (lines 13-16).
Otherwise, the source element is aimed at handling a time-related deviation that is raised when
either the lower time bound is missed or the upper time bound is missed. In the former case,
the attribute handles is initialised with an instance of type MinInstrExecFinishT (lines 20-23),
whereas in the latter case with an instance of type MaxInstrExecFinishT (lines 24-27).

Listing 5.14: Rule PHandlerForWithin.�
1 rule PHandlerForWithin {
2 from
3 s : DT4BP! PHandler ( s . re f ImmediateCompos ite ( ) . oclIsTypeOf (DT4BP! Within ) )
4 to
5 t : TimedCAAFWrk! LocalH (
6 i n s t r s <− s . s tmts ,

6 The attribute kind of the deviation element is “min max” (line 8).
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7 handles <− i f ( s . re f ImmediateCompos ite ( ) . t imeout
8 −> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’min max ’ ) )
9 then OrderedSet {TimedCAAFWrk! MinInstrExecFinishT.

10 allInstances ( )
11 −> asSequence ( )
12 −> f i r s t ( ) ,
13 TimedCAAFWrk! MaxInstrExecFinishT.
14 allInstances ( )
15 −> asSequence ( )
16 −> f i r s t ( )}
17 else
18 i f ( s . re f ImmediateCompos ite ( ) . t imeout
19 −> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’min ’ ) )
20 then TimedCAAFWrk! MinInstrExecFinishT.
21 allInstances ( )
22 −> asSequence ( )
23 −> f i r s t ( )
24 else TimedCAAFWrk! MaxInstrExecFinishT.
25 allInstances ( )
26 −> asSequence ( )
27 −> f i r s t ( )
28 endif
29 endif
30 )
31 }� �

5.3 Validation of DT4BP models: putting it all together

In the introductory chapter (see Chapter 1, Section 1.1) it was stated that one of the aims
of this thesis was to provide, in addition to a new modelling language oriented toward DCTC
business process, a means to allow modellers check the correctness of the business model with
respect to stakeholder’s expectations. Thus, the goal is to develop the validation process that
allows the programmer to determine whether a particular business process model (or process
definition) is the right model from the stakeholder’s viewpoint. One way to achieve this objective
is by observing the dynamic behaviour of a particular business process model. This approach is
known as validation by simulation.

The behaviour of a particular DT4BP model is achieved by exploiting the executable semantics
owned by Timed-CaaFWrk (the semantic domain of DT4BP modelling language). As explained
in Chapter 4, the execution of a DT4BP model MDT4BP involves the M2M transformation
(used to specify the semantic mapping between DT4BP and Timed-CaaFWrk), and the M2T
transformation (used to generate Java source code from a given Timed-CaaFWrk -compliant
model). These two transformations are chained (see Figure 5.1) such that, given a particular
MDT4BP model, it is possible to automatically obtain its representation in terms of a set of Java
source code files.

Relying on an existing Java compiler, each Java source file belonging to this set can be trans-
formed into an executable Java file, i.e. .class file. From the MDE’s viewpoint, a compiler
is considered as a text-to-text (T2T) transformation. In this manner, and in line with the
MDE perspective, both the source model MJava , the Java source file, and the target model
MJavaBytecode , the Java binary file, are considered as compliant models with respect to the Java
programming language meta-model and the Java Virtual Machine meta-model, respectively.

The execution of the Java binary files results in a set of different traces, which can be considered
as the different behaviours allowed by the model. Each trace represents a different valid execu-
tion specified by the MDT4BP model. Hence, the existence of a single trace showing an undesired
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behaviour, e.g. the wrong execution order of two activities, or non-execution of an activity, is
sufficient to conclude the model has defects. Thus, validation by simulation allows the modeller
(with the stakeholder) to reveal defects in the model in the early stages of the development of
the software system to support the business process. However, this validation process does not
allow the modeller to absolutely establish that the model is free of defects.

Fig. 5.1: Validation process overview.

This validation approach requires as input the particular DT4BP model to be simulated, but also
some additional information that bounds the domain of interest of the model. This information
is specified in the so-called Simulation Selection model. Both input models, denoted as orange
squares on Figure 5.1, are expected to be provided by the modeller.
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Every Simulation Selection model is created to validate the MDT4BP model with respect to a
certain viewpoint. In this manner, the overall validation of a model involves many different
Simulation Selection models. However, every time the MDT4BP model is altered, either because
a mistake has been detected or the stakeholder has requested a new requirement, the validation
process must be restarted from the very beginning. In other words, every single Simulation
Selection model has to be (re-)inspected to confirm that it is still consistent with respect to the
new DT4BP model being validated. Then this new DT4BP model must be simulated using
each of these Simulation Selection models.

The different components that have been developed to build a tool (referred to as simulator)
for validating DT4BP models include:

• to provide the elements that comprise the definition of the DT4BP modelling language
such as the M2M transformation (explained in the Section 5.2 of this Chapter), which
specifies the semantic mapping of the language;

• to extend and enhance the Timed-CaaFWrk conceptual framework, chosen semantic do-
main of the DT4BP modelling language, like the M2T transformation and Timed-CAA-
DRIP implementation framework (explained in Chapter 3, Sections 4.5 and 4.4, respec-
tively)

This simulator, then, allows modellers to be abstracted from the internal processes that generate
the traces from a given DT4BP and a series of Simulation Selection models.

5.3.1 The validation process in practice

The patient diagnosis business process, the running example presented in Chapter 3, Section
3.3, is used here to demonstrate the validation process.

As shown in Figure 5.1, the simulator uses the DT4BP model of the patient diagnosis business
process to perform its first internal step. This consists of transforming the input model into a
Timed-CaaFWrk -compliant model. This resulting model then is used as input to the second
internal step that leads to the generation of the Java source files. As described in the figure,
these Java source files adhere to the Timed-CAA-DRIP implementation framework.

The complete list of Java source files7 generated for the patient diagnosis model are shown
in Table 5.3.1. These Java source files are grouped into different packages according to the
concern they address. Moreover, Java source files implementing a CAA are subdivided into
different packages according to the kind of behaviour, i.e. normal, forward error recovery, and
backward error recovery, each file addresses. Hence, Java source files implementing the roles, i.e.
normal behaviour, are grouped into one package. The handlers, i.e. forward error recovery, and
compensators, i.e. backward error recovery, are grouped into separate packages.

The compilation and execution of these Java source files (steps 3 and 4 of the internal process,
respectively) produce a set of traces. Each trace, as previously discussed, represents a valid
behaviour that is allowed by the patient diagnosis model in accordance with the constraints
specified in the Simulation Selection model. The Listing 5.15 shows four of the traces generated
by the simulator for the patient diagnosis business process using the Simulation Selection model
(partially) described in Listing 5.16.

7 Files related to the simulation of the patient diagnosis business process are available for downloading at
http://wiki.lassy.uni.lu/Projects/DT4BP.
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(a) Files corresponding to the CAAs.

Role Handler Compensator

package caa.diagnosis caa.diagnosis.handlers

DiagnosisUnit EvacuationDiagnosisUnit

package caa.registration caa.registration.handlers caa.registration.compensators

Patient FillSpecialFormPatient AdminOfficePatient
Secretary FillSpecialFormSecretary AdminOfficeSecretary

package caa.makeDocument

Nurse

package caa.examination caa.examination.handlers

Assistant CardiacUnitAssistant
Nurse CardiacUnitNurse
Patient CardiacUnitPatient

UndressAssistant
UndressNurse
UndressPatient

UndressANDCardiacUnitAssistant
UndressANDCardiacUnitNurse
UndressANDCardiacUnitPatient

package caa.consultation caa.consultation.handlers caa.consultation.compensators

Doctor HospitalAdmissionDoctort
Patient HospitalAdmissionPatient

package caa.giveInformation

Nurse
Patient

(b) Abstract Data Types and Exceptions used by the CAAs.

Abstract Data Type Exception

package datatypes exceptions

BloodPressure CC EX HighBP HighTemp
Calendar EX Fire
DBoolean EX HighBP
DFloat EX MalfunctionBPMonitor

Diagnosis EX NotSSCard
DInteger EX Admission
DString EX Foreigner

FireAlarm EX HighTemp
ForeignerForm EX MalfunctionThermometer
HealthStatus EX UndefHx

Hospital
MedicalHistory

Medicine
PatientSheet

Person
Prescription

SocialSecurityCard
Temperature
Treatment

Tab. 5.3.1: Generated Java source files.
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The first trace corresponds to the information that appears in Listing part with white back-
ground. The second trace is described by adding to the first trace the information that appears
in the Listing part with grey background. The third trace is described by adding the informa-
tion shown in the Listing part with yellow background. The fourth trace is the defined by the
sequential composition of the different Listings. It is worth noting that the first trace describes a
behaviour where the model is not confronted with a deviation. Conversely, the second and third
traces describe the simulation of the patient diagnosis business process when it is confronted
with the deviations arrising from the exceptions EX Foreigner and EX HighBP, respectively.
The fourth trace describes the simulation in which the business process is confronted with both
deviations during its execution.

Listing 5.15: Diagnosis business process trace.�
−−−−− DIAGNOSIS −−−−−
ALLOCATION >> Resource ’DU1’ has been as s i gned to execute the pa r t i c i p an t ’DiagnosisUnit ’

in BP ’Diagnosis ’

Diagnos i s . Diagnos i sUnit [DU1]>> COMPOSITE CALL BP ’Registration ’

−−−−− REGISTRATION −−−−−

ALLOCATION >> Resource ’Ann’ has been as s i gned to execute the pa r t i c i p an t ’Secretary ’

in BP ’Registration ’

ALLOCATION >> Resource ’Alfredo ’ has been as s i gned to execute the pa r t i c i p an t ’Patient ’

in BP ’Registration ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Message ’reqSSCard ’ r e c e i v ed from ’Secretary ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Message ’reqSSCard ’ sent to ’Patient ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Executing ’searchSScard ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Message ’ssCard ’ sent to ’Secretary ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Message ’ssCard ’ r e c e i v ed from ’Patient ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Executing ’checkSSCard ’� �
Trace 2�

Deviat ion detec ted in ’checkSSCard ’ , r a i s i n g except ion ’EX_Foreigner ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Message ’ssCard ’ sent to ’Secretary ’

Par t i c i pan t ’Patient ’ was i n t e r r r up t ed !
Reg i s t r a t i on . f i l l S p e c i a lFo rmSe c r e t a r y [Ann]>> Executing ’createForeignerForm ’

Reg i s t r a t i on . f i l l S p e c i a lFo rmSe c r e t a r y [Ann]>> Message ’askFillForm ’ sent to ’Patient ’

Reg i s t r a t i on . f i l l S p e c i a lFo rmPa t i e n t [ Al f redo ]>> Message ’askFillForm ’ r e c e i v ed from
’Secretary ’

Reg i s t r a t i on . f i l l S p e c i a lFo rmPa t i e n t [ Al f redo ]>> Executing ’fillOutForm ’

Reg i s t r a t i on . f i l l S p e c i a lFo rmSe c r e t a r y [Ann]>> Message ’filledForm ’ r e c e i v ed from
’Patient ’

Reg i s t r a t i on . f i l l S p e c i a lFo rmSe c r e t a r y [Ann]>> Executing ’registerPerson ’

Reg i s t r a t i on . f i l l S p e c i a lFo rmPa t i e n t [ Al f redo ]>> Message ’filledForm ’ sent to
’Secretary ’� �

Trace 1 - cnt’d�
Reg i s t r a t i on . Sec r e ta ry [Ann]>> Executing ’getPersonAddress ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Message ’reqAddress_and_City ’ r e c e i v ed from
’Secretary ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Message ’p_address ’ sent to ’Secretary ’

Reg i s t r a t i on . Pat ient [ Al f redo ]>> Message ’p_city ’ sent to ’Secretary ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Message ’reqAddress_and_City ’ sent to ’Patient ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Message ’p_address ’ r e c e i v ed from ’Patient ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Message ’p_city ’ r e c e i v ed from ’Patient ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Executing ’validatePerson ’

Reg i s t r a t i on . Sec r e ta ry [Ann]>> Executing ’registerPerson ’

ALLOCATION >> The r e sou r c e ’Ann’ i s f r e e now
ALLOCATION >> The r e sou r c e ’Alfredo ’ i s f r e e now

The BP ’Registration ’ has f i n i s h e d normally
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−−−−−−−−− Diagnos i s . Diagnos i sUnit [DU1]>> STARTING SPLIT MODE −−−−−−−−−

Diagnos i s . Diagnos i sUnit [DU1]>> COMPOSITE CALL BP ’Examination ’

Diagnos i s . Diagnos i sUnit [DU1]>> COMPOSITE CALL BP ’MakeDocument ’

−−−−− EXAMINATION −−−−−
ALLOCATION >> Resource ’Alfredo ’ has been as s i gned to execute the pa r t i c i p an t ’Patient ’

in BP ’Examination ’

ALLOCATION >> Resource ’Sue’ has been as s i gned to execute the pa r t i c i p an t ’Nurse’

in BP ’Examination ’

ALLOCATION >> Resource ’Jane’ has been as s i gned to execute the pa r t i c i p an t ’Assistant ’

in BP ’Examination ’

−−−−− MAKEDOCUMENT −−−−−
ALLOCATION >> Resource ’Rose’ has been as s i gned to execute the pa r t i c i p an t ’Nurse’

in BP ’MakeDocument ’

MakeDocument . Nurse [ Rose]>> Executing ’getHxPatient ’

MakeDocument . Nurse [ Rose]>> Executing ’makePatientSheet ’

Examination . Nurse [ Sue]>> Message ’reqProblemExplanation ’ sent to ’Patient ’

Examination . Pat ient [ Al f redo ]>> Message ’reqProblemExplanation ’ r e c e i v ed from ’Nurse ’

Examination . Pat ient [ Al f redo ]>> Executing ’explainWhatIsWrong ’

−−−−−−−−− Examination . Pat ient [ Al f redo ]>> STARTING SPAWN MODE −−−−−−−−−
Examination . Pat ient [ Al f redo ]>> Message ’getTemp ’ r e c e i v ed from ’Nurse’

Examination . Nurse [ Sue]>> Message ’getTemp ’ sent to ’Patient ’

Examination . Nurse [ Sue]>> Executing ’checkTemp ’

Examination . Pat ient [ Al f redo ]>> Message ’getBP ’ r e c e i v ed from ’Assistant ’

Examination . As s i s t an t [ Jane]>> Message ’getBP ’ sent to ’Patient ’

Examination . As s i s t an t [ Jane]>> Executing ’checkBP ’� �
Trace 3�

Deviat ion detec ted in ’checkBP ’ , r a i s i n g except ion ’EX_HighBP ’

Examination . c a rd i a cUn i tAs s i s t an t [ Jane]>> Message ’reqChangeRoom ’ sent to ’Patient ’

Examination . c a rd i a cUn i tAs s i s t an t [ Jane]>> Message ’reqChangeRoom ’ sent to ’Nurse’

Examination . c a rd i a cUn i tAs s i s t an t [ Jane]>> Executing ’notifyNewRoomPatient ’

Examination . ca rd iacUn i tPat i en t [ Al f redo ]>> Executing ’goToSpecialUnit ’

Examination . card iacUnitNurse [ Sue]>> Executing ’takePatientToSpecialUnit ’� �
Trace 1 - cnt’d�

ALLOCATION >> The r e sou r c e ’Rose’ i s f r e e now
ALLOCATION >> The r e sou r c e ’Alfredo ’ i s f r e e now
ALLOCATION >> The r e sou r c e ’Sue’ i s f r e e now
ALLOCATION >> The r e sou r c e ’Jane’ i s f r e e now

The BP ’Examination ’ has f i n i s h e d normally
−−−−− EXAMINATION −−−−−

The BP ’MakeDocument ’ has f i n i s h e d normally
−−−−− MAKEDOCUMENT −−−−−

−−−−−−−−− Diagnos i s . Diagnos i sUnit [DU1]>> LEAVING SPLIT MODE −−−−−−−−−

Diagnos i s . Diagnos i sUnit [DU1]>> COMPOSITE CALL BP ’Consultation ’

−−−−− CONSULTATION −−−−−
ALLOCATION >> Resource ’Alfredo ’ has been as s i gned to execute the pa r t i c i p an t ’Patient ’

in BP ’Consultation ’

ALLOCATION >> Resource ’Marc’ has been as s i gned to execute the pa r t i c i p an t ’Doctor ’

in BP ’Consultation ’

Consu l tat ion . Doctor [ Marc]>> Executing ’evaluateExaminationResults ’

Consu l tat ion . Pat ient [ Al f redo ]>> Message ’check ’ r e c e i v ed from ’Doctor ’

Consu l tat ion . Doctor [ Marc]>> Message ’ckeck ’ sent to ’Patient ’

Consu l tat ion . Doctor [ Marc]>> Executing ’checkPatient ’

Consu l tat ion . Doctor [ Marc]>> Executing ’diagnosePatient ’

Consu l tat ion . Doctor [ Marc]>> Executing ’prescribeTreatment ’
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Consu l tat ion . Pat ient [ Al f redo ]>> Message ’d’ r e c e i v ed from ’Doctor ’

Consu l tat ion . Doctor [ Marc]>> Message ’d’ sent to ’Patient ’

Consu l tat ion . Pat ient [ Al f redo ]>> Message ’p’ r e c e i v ed from ’Doctor ’

Consu l tat ion . Doctor [ Marc]>> Message ’p’ sent to ’Patient ’

Consu l tat ion . Doctor [ Marc]>> Executing ’fillPatientSheet ’

ALLOCATION >> The r e sou r c e ’Alfredo ’ i s f r e e now
ALLOCATION >> The r e sou r c e ’Marc’ i s f r e e now

The BP ’Consultation ’ has f i n i s h e d normally
−−−−− CONSULTATION −−−−−

Diagnos i s . Diagnos i sUnit [DU1]>> COMPOSITE CALL BP ’GiveInformation ’

−−−−− GIVEINFORMATION −−−−−
ALLOCATION >> Resource ’Alfredo ’ has been as s i gned to execute the pa r t i c i p an t ’Patient ’

in BP ’GiveInformation ’

ALLOCATION >> Resource ’Sue’ has been as s i gned to execute the pa r t i c i p an t ’Nurse’

in BP ’GiveInformation ’

GiveInformation . Nurse [ Sue]>> Executing ’checkTreatment ’

GiveInformation . Pat ient [ Al f redo ]>> Message ’treatmentDetails ’ r e c e i v ed from ’Nurse ’

GiveInformation . Nurse [ Sue]>> Message ’treatmentDetails ’ sent to ’Patient ’

GiveInformation . Nurse [ Sue]>> Executing ’checkMedicine ’

GiveInformation . Pat ient [ Al f redo ]>> Message ’medicineDetails ’ r e c e i v ed from ’Nurse’

GiveInformation . Nurse [ Sue]>> Message ’medicineDetails ’ sent to ’Patient ’

ALLOCATION >> The r e sou r c e ’Alfredo ’ i s f r e e now
ALLOCATION >> The r e sou r c e ’Sue’ i s f r e e now

The BP ’GiveInformation ’ has f i n i s h e d normally
−−−−− GIVEINFORMATION −−−−−

ALLOCATION >> The r e sou r c e ’DU1’ i s f r e e now

The BP ’Diagnosis ’ has f i n i s h e d normally
−−−−− DIAGNOSIS −−−−−� �
It is worth mentioning that the Simulation Selection model (partially depicted in Listing 5.16),
used along with the patient diagnosis model to generate the traces, constrains the simulation such
that (1) the resource that takes control of the activities enclosed by the participant Patient within
the business process Registration is named “Alfredo” (lines 9 and 27), and (2) the participant
Doctor within the business process Consultation concludes the patient’s health status is good (i.e.
hs = GOOD) after having performed the atomic activity checkPatient (lines). Thus, according
to the second constraint, there is no trace where the exception EX Admission is raised and
subsequently handled. The deviation that leads this exception to be raised is detected when the
patient’s health status is bad.

Listing 5.16: Simulation Selection model.�
1 <?xml ve r s i on="1.0" encoding="ASCII"?>
2 <S imu la t i on Se l e c t i on Mode l : Ente rp r i s e xmi : v e r s i on="2.0"
3 xmlns : xmi="http ://www.omg.org/XMI"
4 xmlns : x s i="http ://www.w3.org /2001/ XMLSchema -instance"
5 xmlns : S imu la t i on Se l e c t i on Mode l="http :// ssm"
6 x s i : schemaLocation="http ://ssm SSM.ecore" name="Hospital">
7 . . .
8 <bps name="registration">
9 <pa r t i c i p an t name="Patient" cand idats="// @resources .0"/>

10 . . .
11 </bps>
12 <bps name="consultation">
13 <pa r t i c i p an t name="Doctor">
14 <a c t i v i t y name="checkPatient">
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15 <va r i ab l e name="hs" type="// @dttps .0"/>
16 </a c t i v i t y>
17 </pa r t i c i pan t>
18 </bps>
19 . . .
20 <dttps x s i : type="Simulation_Selection_Model:HealthStatus" name="HealthStatus Good">
21 <enum value="GOOD"/>
22 </dttps>
23 <dttps x s i : type="Simulation_Selection_Model:HealthStatus" name="HealthStatus BAD">
24 <enum value="BAD"/>
25 </dttps>
26 . . .
27 <r e s ou r c e s name="Alfredo"/>
28 </S imu la t i on Se l e c t i on Mode l : Enterpr i s e>� �

5.3.1.1 Current limitations of the simulator

There exist certain technical limitations in the simulator that justify further discussion. First,
once the Java source files are generated as a result of having performed in sequence the M2M
and M2T transformation, a manual intervention is required to implement expressions of type
OclConstraint that take place in either a control statement as While, Repeat or If or a dynamic
resource allocation policy.

The second limitation is related to the Simulation Selection model, or more specifically, on
the information that it specifies. Rather than describing the boundaries that constrain the
domain space of the DT4BP model being simulated, the Simulation Selection model specifies
the instances to use when simulating the model.
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6. PERSPECTIVES

Abstract

This Chapter describes possible improvements and extensions to the contributions
of this thesis. Some of these extensions may be applied in the short term, whereas
others may require the exploration of entirely new research areas. This chapter is
divided into three parts: the first focuses on the extensions related to the DT4BP
modelling language; the second, is concerned with extending the Timed-CaaFWrk;
the third part of this chapter addresses enhancements of the Timed-CAA-DRIP im-
plementation framework.

6.1 The DT4BP modelling language

One of the main contributions of this thesis is the DT4BP modelling language. Its descrip-
tion here represents the “first” release of this modelling language. Depending on its use, new
extensions may be required to improve its “effectiveness” when capturing the domain-specific
concerns it addresses, and the role it will play within the software development process where
it will be used.

6.1.1 Modelling extensions

This section presents some ideas that should be considered when providing a new version of the
modelling language.

• Manual and automatic activities
By definition, a manual activity requires the participation of a human being. Conversely,
an automatic activity is one that can be performed without human intervention. The
current version of the language does not provide a means for capturing whether an activity
is either manual or automatic. It may be of interest to provide mechanisms that allow the
modeller to refine, if required, the kind of activity being modelled.

• Inter and intra-collaborations
The collaborations performed by the different participants enclosed within a same business
process are assumed to take part “physically” within the boundaries of organisation that
runs the business process, regardless of whether the resources that perform the activities
are formally related to the organisation or not . Hence, the third-party resources that
the organisation relies on to perform its activities are assumed to be physically within the
organisation’s structure when participating in the execution of certain business process.
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Thus, the DT4BP modelling language is suitable for “intra-organisational” business pro-
cesses. Making DT4BP suitable for modelling inter-organisational business processes will
required providing mechanisms to differentiate whether a participant “is” within the orga-
nization’s structure or not. This provision will allow both intra- and inter-collaborations
in the business process. Allowing inter-collaborations in the business processes increases
the potential range of relationships that may take place during the execution of inter-
organisational business processes. Subsequently, potentially abnormal events that have
not previously been considered make occur due to communication problems, mismatched
information formats or any other number of compatibility-related issues.

• Timing constraint over the “recovery” part of the business process
One of the main features of the DT4BP modelling language is its rich set of time-related
constructs that can be used to model many different types of time constraints. Hence, it
is possible to model, for example, the maximum allowed time an activity, a participant,
or the overall business process may take to complete. However, the language does not
include time-related constructs specifically oriented to handle the recovery components.
It may be necessary to explicitly model the time a business process may be allowed to
spend on the recovery of a certain deviation. Furthermore, this information may be useful
when performing off-line analysis of the business process in order to guarantee the goal
achievement.

• Deviation due to resource unavailability
The modelling language provides means to allow the explicit description of a vast number
of deviations. In this thesis, deviations are categorised as functional-related and time-
related. While the occurrence of the former depends on the specific activities enclosed
by the business process, the latter occurs when a time constraint is missed. However,
deviations resulting from missing resources have not been considered. It is assumed that
there are always enough resources to execute the business process. Hence, the language
does not provide a means to explicitly capture this kind of deviation. Extensions to cover
this kind of deviation may be of interest 1) for discriminating whether a business process
has aborted or failed due to either a lack of time or resources, and 2) for putting into place
appropriate recovery strategies.

• Data type constructors
The current version of the language allows the programmer to define both simple and
structured data types. While simple data types allows the programmer to capture the
basic concepts that underpin the domain of the business process, structure data types
allow the modeller to encapsulate the basic concepts that are required for a higher order
concept. However, the number of structured data types that may contain an encapsulated
data type is limited to one. Hence, let sd be a structured data type composed of d1, ..., dn
data types, an object of type sd contains just only one instance for each di data type.
Therefore, constructs like Sequence, Bag and Set should be provided to allow the definition
of data types aimed at containing a collection of instances. Notice that these constructs
can be used not only when defining a structured data types, but also when defining simple
data types.

6.1.2 Graphical concrete syntax

DT4BP has a textual concrete syntax. Since business analysts usually feel more comfortable
when dealing with a visual language rather a textual one, a desirable extension to the language
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would be to provide a graphical concrete syntax. As BPMN is currently considered by the
business process modelling community as the “de-facto” standard modelling notation, a good
strategy would be to extend the BPMN graphical syntax to support the full set of DT4BP
constructs. Making the graphical concrete syntax of DT4BP close to that of the BPMN’s not
only eases the ability of new users to adapt to the language, but also increases the chances of
getting tool support. Regarding this last point, for example, one possibility would be to take
any existing BPMN meta-model available for the Eclipse Modelling Framework (EMF) [BBM03],
which means that there exists an Ecore file that implements the BPMN meta-model, and extend
it with the specific constructs brought by the DT4BP language.

6.1.2.1 Position with respect to BPMN 2.0

Because BPMN is considered the “de-facto” standard modelling notation within the business
process management community, it was one of the modelling languages taken as reference for
the definition of DT4BP. Thus, there is a point that deserves further explanation.

During the development of this thesis, version 1.2 of the BPMN language was considered since
the release of the version 2.0 was only achieved in August of 2009. Almost simultaneously,
DT4BP was conceived. To the (pleasant) surprise of the author of this thesis, the latest version
of BPMN gave raise to (1) a major emphasis on the notion of collaboration, and (2) the use of
multiple diagrams to facilitate the separation of concerns when modelling a business process, in
a similar manner as addressed in DT4BP. Hence, these coincidences provide some evidence of
the suitability of DT4BP for the modelling of business processes.

6.1.3 Formalisation

The formalisation of a language is determined by the precision of its semantics. Hence, a language
is considered as formal when its semantics are founded on mathematical concepts. Using a
mathematically-based language as the semantic domain when defining a (source) language not
only brings rigour and precision to the (source) language, but also provides the potential to
use existing tools and techniques associated with the formal language chosen as the semantic
domain. These tools and techniques are a useful means for finding inconsistencies, ambiguities
and missing components over models, which are described in terms of the source language.

The most direct path to achieve the formalisation of the DT4BP modelling language would be
by making use of the COALA [Vac00] formal language as semantic domain. COALA is a formal
language oriented toward specifying the software systems designed according to the CaaFWrk
paradigm. Hence, most of the CaaFWrk concepts, as presented in this thesis, are natively
supported by this formal language. Extending COALA to fully cover not only CaaFWrk’s
concepts, but also those forming part of the Timed-CaaFWrk, is the first step. These extensions
will result in a Timed-COALA, making it possible to easily obtain a semantic mapping, i.e. a
model transformation, between DT4BP and COALA.

When validation must be performed, there does not exist any tool support associated with
COALA for such a purposes. Thus, a formal language different from COALA should be used
for validation. In this case, the formal language to be used as the semantic domain for DT4BP
has to match the concerns of interest, i.e. concurrency, dependability and time, but which also
comes with tool support for verification. i.e. a model checker, or automated theorem prover. At
the time of writing, no formal language with such characteristics was known to exist.
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6.1.4 Assessment

There does not exist a standard way for evaluating a business process’ modelling notation. How-
ever, the workflow patterns, as initially presented in [vtKB03] and latter revised and extended
by Rusell in [Rus07], define a commonly used benchmark for evaluating the suitability and
effectiveness of a particular notation with respect to the modelling of business processes.

Besides the assessment of DT4BP concerning other modelling notations (see Section 3.5), it
is also be important to asses the suitability and effectiveness of the language concerning the
workflow patterns.

It is also worth noting, that another manner of assessing DT4BP would be by putting it into
practice. Hence, its use to model both real and academic cases studies should also be consid-
ered as part of the assessment process of the language. Regarding this manner of assessing
DT4BP, there is some ongoing research being performed within the context of the REACT
project [REA10] already.

6.1.5 Use in the software development process

Since DT4BP has been engineered considering dependability as a major first-class concern, this
modelling language has great potential to be used as the notation in the software development
processes that consider dependability issues, particularly in the requirements elicitation phase.

An example of this kind of development process is DREP [MK09]. This development process
relies on the notion of exceptional use-case [SMK06, SMKD05], which is an extended use-case
template adapted to capture not only the expected environment-software system interactions
that lead the service being described to provide the expected goal, but also dependability-related
concerns such as service-related exceptions and their respective handling. Hence, one potential
research direction would be testing the suitability of DT4BP models within the DREP method-
ology as a notation to capture the requirements of the software system under development.
Furthermore, since DREP maps exceptional used-cases to DA-Charts and Markov chains to
perform dependability analysis by model transformations, part of this research direction would
also be to achieve a model transformation that allows the modeller to obtain the same kinds of
target models, but taken as input DT4BP models.

Another example of a development process that incorporates dependability concerns, is the one
presented by Lopatkin et al. in [LIR10]. In this approach, the authors propose a solution to
integrate fault tolerance (FT) in a systematic manner during the refinement-based formal stage
of the software development in the Event-B method. The proposal is to enrich an Event-B
model, which formally describes the requirements under the assumption that the system always
operate normally, with an FT view. An FT view describes fault tolerance features that allow the
software system under development to recover when faced with errors. Despite the strong basis
on which this methodology is founded, nothing is said about how the requirements that lead
to the description of Event-B models and FT views are obtained. Notice that this requirement
elicitation phase must be especially driven to obtain a clear separation between normal and
abnormal behaviour of the software system under development.

An interesting research direction would then be to set up a requirement elicitation phase as initial
step of the refinement-based software development process aimed at providing a document that
explicitly separates the information concerning the normal behaviour of the software system
from the abnormal. This document should be described using the DT4BP notation since it
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provides, among other features, explicit views for these concerns: the Process view captures
the requirements concerning with the normal behaviour, whereas the Dependability view those
related with the abnormal behaviour. The Process view would have the required information to
described the Event-B models; the Dependability view the information that allows modellers to
describe the FT view.

6.1.6 Tool support

The diffusion and acceptance of a software-related language is tightly related to the available
tool set that makes possible its use in a straightforward manner. Nowadays, it is common to find
editors with not only highlighting, but also with auto-completion and automatic spell checking
facilities that make the use of the software-related language very friendly.

The current DT4BP tool support, regarding the editing of models, is the dynamic instance
creation feature provided by the Eclipse Modelling Framework (EMF). Since this editor works
directly over the meta-model used to define the abstract syntax of the language, it is only possible
to create correct models. However, its use is very click-intensive, which makes the model creation
not only slow, but also hard to accomplish. The solution to this editing problem is to provide a
customised editor for the DT4BP modelling language. It is planed to develop an editor using the
Xtext language development framework [The10]. Once the language is enriched with a graphical
concrete syntax, a graphical editor could be obtained by means of the the Graphical Eclipse
Modelling (GMF) framework.

Regarding the validation of DT4BP models, the tool support is achieved by combining the M2M
and M2T transformations that allow to obtain Java Timed-CAA-DRIP-compliant code from a
given DT4BP model. As previously explained, this Java code, once compiled, is executed to
obtain the different traces that describe the behaviour allowed by the DT4BP model given as
input. It is worth recalling that a Simulation Selection model is also required to be provided
as input, along with the DT4BP model, in order to accomplish the validation process. This
Simulation Selection model defines the boundaries of the scenario to be simulated. However,
the current version of the simulator that supports the validation process of the DT4BP models
requires some extensions and enhancements to either reduce or ease the intervention of the
modeller in the validation process. Required extensions, as well as potential enhancements
include:

• Code generation for OclConstraint expressions
Currently, the modeller has to manually complete the generated Java source files as no code
is generated for expressions of type OclConstraint. The automatic code generation for this
kind of expressions may be accomplished by enhancing the M2T transformation. In this
case, the transformation must be extended to (1) parse expressions of type OclConstraints
in order to know how it is made, and (2) map OCL expressions to Java statements. An-
other solution, it is to extend the DT4BP model with built-in OCL primitives, such that
OclConstraints are defined in a native way, instead of assuming that they are properly de-
fined. Despite the fact that this alternative brings more control to the way OclConstraints
expressions are defined within a model, its main drawback is that it would lead towards
and overwhelming the definition of the DT4BP language, as a non-minor part of OCL
language would be required to be embedded within it.

• Automatic instance generator
The pre- and post-conditions associated with each atomic activity should be used along
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with the information placed within the Simulation Selection model in order to automat-
ically obtain the set of possible instances that satisfy the constraints, i.e. pre-condition,
post-condition and boundaries. One possibility would be to interface with the Alloy
tool [Jac06] as a way to obtain these instances. Hence, the pre-condition, post-condition
and boundaries related to a particular atomic activity should be used to generate an Alloy
model, which allows the modeller to generate the instances of the atomic activity. These
instances should be used at run-time when generating the traces that describe the allowed
behaviour of the DT4BP model according to the specified boundaries.

6.2 The Timed-CaaFWrk

When analysing the original extensions given by Romanosvky et al. [RXR99, RXR98, BRR+98]
to the CaaFWrk, a special interest concerning the scheduling of timed-CAAs arose as a means
to minimise the number of timing constraints that are missed and the effects of using the pre-
emptive recovery scheme over the timing behaviour of a CAA. The motivation of these topics,
as well as the potential extensions to the Timed-CaaFWrk allowing it to overcome these issues
are discussed here.

6.2.1 Scheduling

The abstract concurrent object-oriented (OO) computation model that underpins the CaaFWrk
is defined as a collection of interacting objects, where the processes (or threads) executing
concurrently, i.e. these processes may but need not overlap [BA06], corresponds to executions
of operations on a group of objects. It is assumed that each object executes just one of its
operations at time. This concurrent model leads to the design of a CaaFWrk-compliant software
system that may be implemented and deployed on both mono-processor or distributed systems.
Notice that, in this context, a distributed system is considered as one where the time interaction
between two different processes is not negligible [Lam78].

Let’s assume that a certain Timed-CaaFWrk-compliant design Dcaa is going to be implemented
and deployed on a mono-processor system. As every Timed-CaaFWrk-compliant design, Dcaa

is composed of several CAAs, then for the sake of simplicity, all these CAAs are assumed to be
timed.

The roles executing within a CAA perform their tasks concurrently. This means that there is no
need to specify the exact order in which the roles execute. If the CAA is properly designed, then
the functional out,put (i.e. CAA’s goal) will be the same regardless of the internal behaviour of
its roles. What indeed will vary considerable is the timing behaviour of the CAA depending of
how its roles are interleaved. Therefore, the issue is of special interest when CAAs start having
timing constraints like E or t3.

Roles within the same CAA use internal objects to share information. These internal objects
are passed by message exchange. When a certain role wants to execute some operations over an
internal object being shared with another peer role, there must exist a synchronisation between
the roles to make such operations appear as atomic. These instructions then define a critical
region within the role. The synchronisation required to protect a critical section is known as
mutual exclusion. It is known that the unrestricted use of shared variables, in this case internal
objects, is unreliable and unsafe. This is due to multiple update problems, since the update
of a variable is not executed as an atomic operation. Therefore, internal objects have to be
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protected to avoid multiple update problems. Any of the mechanisms used to reach this form
of protected shared data (like semaphores or monitors) leads to the possibility of a role being
suspended until some necessary future event occurs. Therefore, using synchronisation primitives
the internal behaviour of a CAA exhibits non-determinism, and as said in [BW01], page 465: a
real-time systems needs to restrict the non-determinism found within concurrent systems.

One way to restrict the non-determinism found in a concurrent software systems is by using
certain scheduling policies. In this case, i.e. interprocess communication by internal objects, a
possible solution could be the use of any of the existing priority ceiling protocols1 (PCP), which
were originally designed for single processor systems as a modification of the priority inheritance
protocol (PIP). As explained in [BW01] page 492, this protocol, which assumes a pre-emptive
dispatching2, is defined as follows:

• each process has a static default priority assigned according to a certain scheme, e.g. rate
monotonic priority assignment, which is based on the period of the process,

• each shared resource has a static ceiling value defined, this is the maximum priority of the
processes that use it,

• a process has a dynamic priority that is the maximum of its own static priority and the
ceiling values of any resources it has locked.

Now, let Caa1 be a CAA composed of ri (i = 1..n) roles, such that its roles exchange information
by ioj (j = 1..m) internal objects and the CAA accesses the external objects eok (k = 1..r),
which are resources shared with other CAAs (i.e. Caal (l = 2..w)), then to implement the PCP
into the Timed-CaaFWrk implies:

• to assign a unique priority to each role ri (i = 1..n) belonging to Caa1,

• to assign a ceiling priority to each internal object ioj (j = 1..m) used in Caa1 to exchange
information among its roles. The ceiling priority of the internal object ioj (j = 1..m) will
be the maximum priority of the roles ri (i = 1..n) that use it,

• a role has a dynamic priority that is the maximum of its own static priority and the ceiling
values of any local object it has locked

• to assign a unique priority to each CAA Caal (l = 1..w),

• to assign a ceiling priority to each external object eok (k = 1..r). The ceiling priority of
the external object eok (k = 1..r) will be the maximum priority of the Caal (l = 1..w)
that use it.

It must be noted that, on a single processor system, the simple fact of applying PCP, ensures
the mutual exclusion required over each shared resources ( every internal object used into the
CAA, and every external object accessed by the CAA). Thus, no synchronisation primitive
would be required to provide mutual exclusion to protect the shared resources. Under the same
conditions, i.e. single processor system, there is no possibility of being in deadlock, since the
ceiling protocols are a form of deadlock prevention.

1 This scheduling scheme is known as static, since priorities are assigned at pre-run-time.
2 In pre-emptive dispatching, when a high-priority process is released during the execution of a lower-priority-
process there is an immediate switch to the higher-process
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In a distributed system, to ensure such properties, the PCP must maintain a global view of the
acquired shared resources, which leads to high communication overhead. A solution to cope with
this problem is to use a distributed PIP built on top of a deadlock avoidance schema [SSGM06].

6.2.2 Recovery process

The current Timed-CaaFWrk uses a pre-emptive scheme (instead of a blocking scheme) for the
recovery process. According to the pre-emptive scheme a role has the right to interrupt any
other roles when it has detected an exception. Notice that in a blocking scheme, a role has
to reach the end of the CAA, or detect an exception and inform the other peer roles enclosed
within the same CAA. It is only afterwards that this role is ready to accept information about
the state of other roles. Thus, the pre-emptive scheme is a faster way of notifying the CAA roles
of an exceptional situation, which speeds up the recovery process.

Since CAAs can be nested, the pre-emptive scheme embedded in the Timed-CaaFWrk has to
provide special features. Let Caa1,2 be two different CAAs such that Caa2 is nested in Caa1.
Then according to the principles of the pre-emptive scheme, Caa2 can be interrupted by any
of the roles belonging to Caa1 when an exception has been detected in one of them. The
interruption of a nested CAA in this way represents its abortion. Therefore, it is up to the
pre-emptive scheme to raise the abort exception on each role of the nested CAA in order to
start the recovery phase. Once this is done, the nested CAA will follow the usual recovery path:
exception resolution and then exception handling. In the case that one of the roles does not have
a defined handler to deal with the abort exception, then a failure exception is returned by the
nested CAA to its enclosing context. Once the nested CAAs were aborted, the recovery phase
for the enclosing CAA has to be started, as usual. Thus, as argued in [RXR99], to abort the
nested CAAs rather than wait for their completion as is done in the blocking scheme, speeds up
the overall CAA recovery process, which is very important when CAAs have timing constraints.

However, the fact of aborting a nested CAA will not always speed up the recovery process of the
enclosing CAA where the exception took place. For example, consider the case where a nested
CAA has almost completed its execution and a role where an exception has been detected tries
to interrupt the nested CAA. The process required to abort this nested CAA can take longer
than the completion of the CAA. Thus, the right decision of whether a nested CAA has to
be aborted or kept running can only be made if the CAA timing information is available. All
the necessary timing information regarding the nested CAA and any other time-constrained
CAAs would be held by the scheduler that implements the PCP, as explained previously. Thus,
information about how much time is left to reach the deadline of the nested CAA (i.e. E or t3)
or how much execution time has consumed any of its roles can be gathered by the scheduler.

The proposal, then, is to extend the Timed-CaaFWrk with a scheme that combines the pre-
emptive and blocking schemes. In this case, a role no longer has the right to interrupt the
execution of any other roles when it has detected an exception. Instead, the role notifies the
scheduler of the event. Once the scheduler is notified of the exception, it will decide which
nested CAAs have to be aborted and which must be kept running until completion. Notice that
in this context, the scheduler has to be notified of only value-related exceptions since time-related
exceptions are automatically detected by the scheduler.
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6.3 Timed-CAA-DRIP

Some future plans related to the implementation framework either were already mentioned when
the framework was introduced in Section 4.4, e.g. performance analysis. Additional plans or can
be deduced from the extensions related to the Timed-CaaFWrk conceptual framework, for which
implementation support should be provided. Regarding this latest aspect, it should be mentioned
that the required extensions for supporting both the Priority Ceiling Protocol (PCP) protocol
and the new recovery scheme combines the blocking and pre-emptive approaches. However, there
exist other extensions or potential research directions related to the implementation framework
that may also be considered. They include:

6.3.1 Java Real-Time

The idea of including scheduling policies within the conceptual framework, and the fact that
the implementation framework is developed in the Java programming language make Java Real-
Time System (JRTS) [Ora10] an interesting option in the development of a new version of the
implementation framework. Features introduced by this real-time version of the Java platform
such as asynchronous transfer of control (ATC), high-resolution time (nanosecond accuracy) and
the notion of real-time threads (i.e. threads that cannot be interrupted by the garbage collector)
apply directly over Timed-CAA-DRIP since its implementation relies on such characteristics.
Hence, the features brought about by JRTS along with the lessons learnt during its development
should be exploited as much as possible when re-factoring Timed-CAA-DRIP to obtain a newer
version with a better programming interface and run-time performance.

6.3.2 Built-in transactional support

It is assumed that the existence of an external transactional support such that the transaction-
related properties brought by the CaaFWrk are achieved. The Timed-CAA-DRIP implemen-
tation framework has been developed using this hypothesis. Hence, engineers or programmers
must choose which transactional support must be used. Once such a decision has been made,
the next step is to insert the chosen transactional support into the implementation framework.

Despite the flexibility that this strategy brings, engineers and programmers may be interested
in getting an implementation framework with “out-of-the-box” support. Hence, extending the
Timed-CAA-DRIP to provide built-in transactional support is an improvement that would be
welcome by the community. It is worth noting that this built-in support should be incorporated
into the implementation framework in a way that it could be easily replaced by one chosen by
the customer.

6.3.3 Distributed support

In the current version of the implementation framework, the participants playing the roles of any
CAA execute within the same computer. This means that the whole software system has to be
deployed along with the Timed-CAA-DRIP on the same computer such that all the application’s
and implementation framework’s components share the same memory space.

In a distributed setting, both the roles and the objects (either external or internal) involved
in the execution of a CAA may reside in different processing nodes. Since the Java Remote
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Method Invocation (Java RMI) is the technology that allows Java-based applications to run
in a distributed fashion, one possibility is to extend Timed-CAA-DRIP by adding the RMI
support such that not only the roles but also the objects can be spread over potentially different
processing nodes.

Another alternative for achieving distribution could be to re-engineer the implementation frame-
work according to the Service Oriented (SO) paradigm. Some early attempts at combining the
CaaFWrk principles with the SO paradigm can be found in [TIR02, BCG08]. Following this
alternative, “web services” is the technological framework to be used as the means to attain
distribution. Hence, both the roles that compose a CAA, and access to the external objects can
be performed as web-services. However, it must be noted that nothing forbids using RMI also,
such that some parts of the distribution are achieved by RMI-related means, whereas others by
SO-related means. For example, the roles that compose a CAA may be distributed objects that
are accessed by the participants in charge of their execution by RMI means, whereas external
objects are accessed by a service-oriented interface.



7. CONCLUSION

This thesis has attempted to address the problems that arise when modelling business processes
that are composed of multiple participants, are required to fulflil certain time-related constraints,
and whose failures are not unacceptably frequent or severe from some stakeholders’ viewpoint.
Business process with these characteristics, within the context of this thesis, were referred to
as Dependable, Collaborative, Timed-constrained (DCTC) business processes. In particular,
the thesis investigated the problems that arise when describing information related to these
concerns in a way such that the resulting model is not only comprehensible both for those that
were involved in its creation (i.e. modellers), as well as for those who will make use of it later
(e.g. software engineers and programmers), but also accurate with respect to the stakeholders’
expectations.

In order to capture this domain-specific information such that the resulting model allows people
to retrieve the same insights it was meant to provide, a modelling language with primitives
that address the modelling of dependability, collaboration and time-related concerns both in
a single and integrated manner is required. Moreover, this modelling language should come
with tools that allow modellers to check the correctness of the business model with respect to
the customer’s expectations, i.e. to validate the model. Currently available business process
modelling languages fall short when modelling dependability, collaboration and time aspects
in an integrated way. While some of the existing languages fall short in considering at least
one of these dimensions, those that cover the three dimensions only do so only partially. For
this reason, a new a business process modelling language called DT4BP has been engineered to
model DCTC business processes.

Each of the dimensions that define the business process domain space were deeply reviewed to
extract the key concepts modellers need to manipulate during the business process description.
The DT4BP primitives used to represent these key concepts were carefully chosen such that
the business process definition remains easy to read and understand for people involved not
only in the modelling process, but also in its latter use. This is achieved by structuring a
business process definition as a set of different models, each of them targeting a specific concern.
The feasibility of DT4BP for modelling the targeted business processes has been assessed by
modelling a very simple (but complete) case study. Whether DT4BP is desirable for modelling
dependable collaborative time-constrained business processes can only be determined from future
practical experience gained by modelling more complex case studies.
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In particular, reviewing of the notion of dependability was considered using the Coordinated
Atomic Action conceptual framework (CaaFWrk) as a reference. This was done due to the fact
that those concepts brought by the CaaFWrk are, for a major part, abstractions of the concepts
included in collaborative business processes. The CaaFWrk however, had to be augmented with
time-related extensions such that all the concerns being addressed at the level of the modelling
language were included in a common conceptual framework, which could be used as the semantic
domain for defining the modelling language. These time-related extensions, along with the other
required extensions, were the result of using CaaFWrk as the semantic domain for the DT4BP
modelling language led to a new conceptual framework named Timed-CaaFWrk. This new
conceptual framework thus provides the opportunity of dealing with time-related aspects when
designing a software system following the Coordinated Atomic Actions paradigm.

Following the software development process, once a software system is designed it must be im-
plemented. Thus, an implementation framework named Timed-CAA-DRIP aimed at providing
support to implement software systems designed according to Coordinated Atomic Paradigm
has been developed. This implementation framework offers programmers a clear interface such
that those concepts brought by the paradigm could be implemented in an easier way and using
the same jargon. The support offered by this implementation framework is also at the run-time
level, since it plays an active role in accomplishing the software system execution.

In particular, the Timed-CAA-DRIP implementation framework has been used as the execu-
tional semantics to achieve the enactment of DT4BP models and then allows for their validation
by simulation. In fact, the enactment of theDT4BP models has been achieved by combining the
semantic mapping that allows DT4BP concepts to be mapped over Timed-CaaFWrk concepts,
with a model-to-text (M2T) transformation. This M2T transformation has been engineered
to automatically generate the Java source code that implements a particular Timed-CaaFWrk
design. It is worth underlining that the combinations of the semantic mapping with the M2T
transformation was not only possible, but also straightforward due to the alignment with the
Model-Driven Engineering principles followed along the development of this thesis.
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APPENDIX





A. DT4BP TEXTUAL CONCRETE SYNTAX

This Appendix provides the syntactic specification1 of the DT4BP business process modelling
language. The Context-free grammar or grammar, for short, is also sometimes called BNF
(Backus-Naur Form) [AU77]. The grammer is the common notation used to specify the syntax
of a language. Listed below is the grammar for the DT4BP language.

A.1 Notational conventions

1. boldface symbols such as if or do denote terminals

2. quoted symbols such as ‘+’ or ‘{’ denote terminals

3. plain symbols denote nonterminals

4. ε is a regular expresssion denoting the empty string

5. a is a regular expression denoting string a

6. a b is a regular expression denoting the string ab formed by appending b to a

7. (α | β) is a regular expression which denotes either α or β

8. (α)* is a regular expression which denotes zero or more instances of α

9. (α)+ is a regular expression which denotes one or more instances of α

10. [α] is a regular expression which denotes zero or one instance of α

11. the left side of the first production rule is the start symbol

A.2 Production rules

businessProcess → processModel resourceModel [dataModel] [dependabilityModel]

1 The rules that determine whether a string is a valid DT4BP business process or not.
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A.2.1 Process Model

processModel → business process procName ‘(’ [params] ‘)’
[start] [when] [last] [period] [pre] ‘{’
(participant)+

‘}’ [normal]

participant → participant partName ‘{’
stmts
‘}’ [workFor]

stmts → statement ‘;’ statement
| statement ‘;’ stmts

statement → execute [in] [within]
| control
| objDecl

execute → block [activityDeviations]
| activity
| send
| receive

control → ifThen
| ifThenElse
| while
| repeat
| split
| spawn

block → do statement
| do ‘{’ stmts ‘}’

activity → (composite | atomic | nested) ‘(’ [args] ‘)’
[activityDeviations]

composite → composite activityName [ ‘[’resourceAllocations‘]’ ]

atomic → activityName
[pre]
[normal]

nested → nested partName

send → send (msg | msg ‘(’ localObjects ‘)’ ) to partName [block]

receive → receive (msg | msg ‘(’ localObjects ‘)’ ) from partName

localObjects → objName
| objName ‘,’ localObjects
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ifThen → if oclConstraint then statement ’
| objDecl if oclConstraint then ‘{’ stmts ‘}’

ifThenElse → if oclConstraint then statement else statement
| if oclConstraint then ‘{’ stmts ‘}’ else statement
| if oclConstraint then statement else ‘{’ stmts ‘}’
| if oclConstraint then ‘{’ stmts ‘}’ else ‘{’ stmts ‘}’

while → while oclConstraint do statement
| while oclConstraint do ‘{’ stmts ‘}’

repeat → repeat statement until oclConstraint
| repeat ‘{’ stmts ‘}’ until oclConstraint

split → split activity ‘,’ activity
| split ‘{’ (activity ‘,’)+ activity ‘}’ ‘,’ ‘{’ (activity ‘,’)+ activity ‘}’

spawn → spawn activity ‘,’ activity
| spawn ‘{’ (activity ‘,’)+ activity ‘}’ ‘,’ ‘{’ (activity ‘,’)+ activity ‘}’

objDecl → localObject

localObject → (primitive | datatype) objName [expire ‘(’ timeExp‘)’]

primitive → dInteger | dString | dBoolean | dFloat

dInteger → Integer

dString → String

dBoolean → Boolean

dFloat → Float

datatype → typeName

params → in parameter
| out parameter
| in parameter ‘;’ out parameter

parameter → object
| object ‘,’ parameter

object → typeName objName

when → when ‘(’ eventName ‘)’

eventName → name
| clock ‘(’ calendarTime ‘)’
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start → start timeExp
| start ‘[’ timeExp ‘,’ ‘ ’ ‘]’
| start ‘[’ ‘ ’ ‘,’ timeExp ‘]’ [deviation ‘[’ timeout ‘]’]
| start ‘[’ timeExp ‘,’ timeExp ‘]’ [deviation ‘[’ timeout ‘]’]

last → last timeExp [timeDeviation]
| last ‘[’ timeExp ‘,’ ‘ ’ ‘]’ [timeDeviation]
| last ‘[’ ‘ ’ ‘,’ timeExp ‘]’ [timeDeviation]
| last ‘[’ timeExp ‘,’ timeExp ‘]’ [timeDeviation]

period → every timeExp until timeExp

pre → pre ‘[’ oclConstraint ‘]’

normal → post ’[’ oclConstraint ‘]’

in → in timeExp

within → within ‘[’ timeExp ‘,’ ‘ ’ ‘]’ [timeDeviation]
| within ‘[’ ‘ ’ ‘,’ timeExp ‘]’ [timeDeviation]
| within ‘[’ timeExp ‘,’ timeExp ‘]’ [timeDeviation]

workFor → workFor ‘[’ timeExp ‘,’ ‘ ’ ‘]’ [timeDeviation]
| workFor ‘[’ ‘ ’ ‘,’ timeExp ‘]’ [timeDeviation]
| workFor ‘[’ timeExp ‘,’ timeExp ‘]’ [timeDeviation]

resourceAllocations → resourceAllocation
| resourceAllocation ‘,’ resourceAllocations

resourceAllocation → [assignAlloc] (reference | dynamic | static | onDemand)

reference → alloc ‘(’ resourceVar ‘)’

dynamic → alloc ‘(’ oclConstraint | ‘ ’ ‘)’

static → alloc ‘(’ resourceName ‘)’

onDemand → alloc ‘(’ new partName ‘)’

assignAlloc → resourceVar ‘=’

activityDeviations → activityDeviation [pHandler]
| activityDeviation or activityDeviations
| activityDeviation and activityDeviations

timeDeviations → timeDeviation [pHandler]
| timeDeviation [pHandler] ‘,’ timeDeviation [pHandler]

activityDeviation → deviation ‘[’ exceptionName | condition ‘]’
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condition → FailureDeviation
| AbortDeviation
| Predicate
| DataDurationDeviation

FailureDeviation → failed

AbortDeviation → aborted

Predicate → oclConstraint

DataDurationDeviation → dataExpired ’(’ objNames ‘)’

objNames → objName
| objName ‘,’ objNames

timeDeviation → deviation ‘[’ timeoutType ‘]’

timeoutType → timeout.min
| timeout.max
| timeout

pHandler → ’{’ stmts ‘}’

args → in arg
| out arg
| in arg ‘;’ out arg

arg → objName
| objName ‘,’ arg

A.2.2 Resource Model

resourceModel → resources ‘{’ (resource)+ ‘}’

resource → partName ‘;’
| partName ‘=’ candidats

candidats → candidat ‘;’
| candidat ‘,’ candidats

candidat → resourceName
| resourceName ‘{’ capabilities ‘}’

capabilities → ‘(’ capability ‘)’
| ‘(’ capability ‘)’ ‘,’ capabilities

capability → name ‘,’ int
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A.2.3 Data Model

dataModel → (dataTypes)+

dataTypes → dataType
| dataType ‘;’ dataTypes

dataType → type typeName
| type typeName (‘{’ attributes [invariant] ‘}’ | enumerationLiteral )

attributes → attribute
| attribute ‘;’ attributes

attribute → typeName attrName

invariant → where oclConstraint

enumerationLiteral → ‘=’ enum ‘{’ literals ‘}’

literals → ‘=’ name
| name ‘;’ literals

A.2.4 Dependability Model

dependabilityModel → resolution recovery

resolution → resolution ‘{’ exceptionList ‘− >’ handlerName ‘}’

exceptionList → exceptionName
| exceptionName and exceptionList

recovery → recovery ‘{’ (handlers)+ ‘}’

handlers → handlerName ‘{’
(participant)+

‘}’ outcome

outcome → Normal | degraded | Failed | Aborted

degraded → degraded ’[’ oclConstraint ‘]’
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A.2.5 Extras

letter → ‘A’ | ‘B’ | ... | ‘Z’ | ‘a’ | ‘b’ | ... | ‘z’
digit → ‘0’ | ‘1’ | ... | ‘9’

symbol → ‘ ’ | ‘-’
name → letter ( letter | digit | symbol)∗

timeUnit → year | month | week | day | hs. | min. | sec.
timeExp → nat timeUnit

calendarTime → year ‘-’ month ‘-’ day ‘:’ hour ‘-’ min
year → [1970..9999]

month → [1..12]
day → [1..31]
hour → [0..23]
min → [0..59]

oclConstraint → string

procName → name
partName → name

activityName → name
typeName → name | Integer | Float | String | Boolean
objName → name

exceptionName → name
| Abort
| TimeoutMinBPLast
| TimeoutMaxBPLast

resourceName → name
resourceVar → name
attrName → name

handlerName → name
msg → name

Notes:

1. The terminal string represents a sequence of characteres of the ISO/IEC 8859-1:1998 [Int98]
(aka Latin-1) character encoding.

2. The terminal nat represents the possitive integers.

3. The predicate oclConstraint is written using the OCL language. Since the grammar rules
of the OCL language are not included in the DT4BP grammar, they are assumed to be
syntanctically compliant with the OCL language. Thus, the nonterminals oclConstraint is
defined as strings in the DT4BP grammar rules.
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B. DT4BP META-MODEL

This Appendix joins in one consolidated figure all the concepts and relationships that form part
of the DT4BP meta-model.
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Fig. B.1: DT4BP Meta-Model.



C. THE PATIENT DIAGNOSIS RUNNING

EXAMPLE IN DT4BP

C.1 Diagnosis business process definition

C.1.1 Process Model

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
business process d i a gno s i s (out Pat ientSheet ps ) when( pa t i en tAr r i v e s ) last [ , 2 h s . ] {
; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

participant Diagnos i sUnit {
FireAlarm fa ;
do{

Person prs ;
composite r e g i s t r a t i o n [ , p = al loc (new Pat ient ) ] ( out prs ) within [ , 15 min. ] ;

Temperature t expire (1 h s . ) ;
BloodPressure bp expire (1 h s . ) ;

do{ sp l i t composite examination [ p , , ] ( out t , bp ) ,
composite makeDocument [ ] ( in prs ; out ps ) ;

}within [ , 30 min. ] ;

composite c on su l t a t i on [ p , ] ( in ps , t , bp ; out ps ) within [ 15 min. , 1 h s . ]
deviation [ EX Admission | p s . d . o c l I sUnde f i n ed ( ) and

not p s . p . t . o c l I sUnd e f i n e d ( ) ] ;

composite g ive In fo rmat ion [ p , ] ( in ps ) within [ , 15 min. ] ;

}deviation [ EX Fire | f a = #ON) ] ;
}

} post [ not p s . d . o c l I sUnde f i n ed ( ) and not p s . p . o c l I sUnde f i n ed ( ) ]

C.1.2 Data Model

type Person{
String name ;
String surname ;
Calendar birthday ;
String address ;
String c i t y ;
String country ;
Integer ssn ;

}

type Calendar ;

type Temperature { Integer t where
(30 <= t ) and ( t <= 50)}

type BloodPressure { Integer bp where
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(50 <= bp) and (bp <= 250)}

type Treatment , Medicine , Diagnos is , Medica lHistory ;

type Pat ientSheet {
Integer ssn ;
String name ;
String surname ;
String address ;
String c i t y ;
String country ;
Medica lHistory mh;
Diagnos i s d ;
P r e s c r i p t i on p ;

}

type Pre s c r i p t i on {
Treatment t ;
Medicine m;

}

type FireAlarm = enum{ON,OFF}

C.1.3 Resource Model

resources{
Diagnos i sUnit = Unit1 ;

}

C.1.4 Dependability Model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Binding EXEC−HANDLER
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
resolution{

EX Fire −> Evacuation ;
EX Admission −> PatientAdmiss ion ;

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;HANDLER d e f i n i t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
recovery{

Evacuation ( ){
participant Diagnos i sUnit {

evacuateDiagnos i sUnit ( ) ;
}

}Failed

PatientAdmiss ion ( ){
participant Diagnos i sUnit {

admit ( in ps ) ;
}

}degraded [ p s . d . o c l I sUnde f i n ed ( ) and not p s . p . t . o c l I sUnd e f i n e d ( ) ]

}
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C.2 Registration business process definition

C.2.1 Process Model

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
business process r e g i s t r a t i o n (out Person p) last [ , 15 min. ]{
; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

participant Sec r e ta ry {
send reqSSCard to Pat ient block ;
Soc i a lSecur i tyCard ssCard ;
receive reqSSCard ( ssCard ) from Pat ient ;
Hosp i ta l h ;

checkSSCard ( in ssCard ; out h)
post [ s sCard .country = h.country ]
deviation [ EX Foreigner | s sCard .country <> h.country ] ;

String address , c i t y ;
getPersonAddress ( in ssCard ; out address , c i t y ) ;

post [ address <>‘’ and c i t y <> ‘ ’]

send reqAddress and City to Pat ient block ;
String p address , p c i t y ;
receive dataRequested ( p address , p c i t y ) from Pat ient ;

va l ida tePer son ( in p address , p c i ty , address , c i t y )
post [ p addres s=address and

p c i t y=c i t y ]
deviation [Abort | p address<>address or

p c i ty<>c i t y ]

r e g i s t e rPe r s on ( in address , c i ty , ssCard ; out p)
post [ p | p.oc l I sNew ( ) and

p.name = ssCard.name and
p.surname = ssCard.surname and
p .b i r thday = ssCard .b i r thday and
p .addre s s = address and
p . c i t y = c i t y and
p.country = ssCard .country and
p . s sn = ssCard.number ] ;

}

participant Pat ient {
receive reqSSCard from Sec r e ta ry ;
Soc i a lSecur i tyCard ssCard ;
searchSScard (out ssCard ) post [ not s sCard .o c l I sUnde f in ed ( ) ] ;

deviation [ EX NotSSCard | s sCard . o c l I sUnde f i ned ( ) ]

send reqSSCard ( ssCard ) to Sec r e ta ry ;
receive reqAddress and City from Sec re ta ry ;
String p address , p c i t y ;
send dataRequested ( p address , p c i t y ) to Sec r e ta ry ;

}
} post [ not p .o c l I sUnde f i n ed ( ) ]

C.2.2 Data Model

type Person{
String name ;
String surname ;
Calendar birthday ;
String address ;
String c i t y ;
String country ;
Integer ssn ;
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}

type Calendar ;

type Soc ia lSecur i tyCard {
Integer number ;
String name ;
String surname ;
Calendar birthday ;
Calendar exp i rat ionDate ;
Integer cardID ;
String country ;

}

type Hosp i ta l {
String name ;
String address ;
String c i t y ;
String country ;

}

type ForeignerForm{
String address ;
String c i t y ;
}

C.2.3 Resource Model

resources{
Sec r e ta ry = Ann ;
Pat ient ;

}

C.2.4 Dependability Model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Binding EXEC−HANDLER
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
resolution{

EX NotSSCard −> AdminOffice ;
EX Foreigner −> Fi l lSpec ia lForm ;
Abort −> AdminOffice ;

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;HANDLER d e f i n i t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
recovery{

AdminOffice {
participant Sec r e ta ry {

send goToAdminOffice to Pat ient block ;
}

participant Pat ient {
receive goToAdminOffice from Sec r e ta ry ;

}
}Aborted

Fi l lSpec ia lForm {
participant Sec r e ta ry {

ForeignerForm f f ;
createFore ignerForm (out f f )post [ f f | f f . o c l I sN ew ( ) ] ;
send askFi l lForm ( f f ) to Pat ient block ;
receive f i l l edForm ( f f ) from Pat ient ;
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r e g i s t e rPe r s on ( in f f , ssCard ; out p)
post [ p | p.oc l I sNew ( ) and

p.name = ssCard.name and
p.surname = ssCard.surname and
p .b i r thday = ssCard .b i r thday and
p .addre s s = f f . a d d r e s s and
p . c i t y = f f . c i t y and
p.country = ssCard .country and
p . s sn = ssCard.number ] ; ] ;

}

participant Pat ient {
ForeignerForm f f ;
receive askFi l lForm ( f f ) from Sec r e ta ry ;
f i l lOutForm ( in f f ; out f f )

post [ f f . a d d r e s s <> ‘ ’ and f f . c i t y <> ‘ ’ ] ;
send f i l l edForm ( f f ) to Sec r e ta ry block ;

}
}Normal

}



246 C. The patient diagnosis running example in DT4BP

C.3 Examination business process definition

C.3.1 Process Model

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
business process examination (out Temperature temp ,

BloodPressure bp)
last [ , 30 min. ]{

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

participant Pat ient {
receive reqProblemExplanation from Nurse ;
explainWhatIsWrong ( ) ;
spawn receive getTemp from Nurse ,

receive getBP from Ass i s t an t ;
}

participant Nurse{
send reqProblemExplanation to Pat ient ;
send getTemp to Pat ient block ;
repeat{

checkTemp(out temp)
post [ temp | temp.oclIsNew ( ) and temp < 4 0 ] ;
deviation [ EX HighTemp | ( temp | temp.oclIsNew ( ) and temp > 40 ) ]
deviation [ EX MalfunctionThermometer | temp.oc l I sUnde f ined ( ) ] {

findNewThermometer ( ) ;
}

until (not temp.oc l I sUnde f ined ( ) ) ;
}

participant Ass i s t an t {
send getBP to Pat ient block ;
repeat{

checkBP (out bp)
post [ bp | bp.oc l IsNew ( ) and bp < 2 0 0 ] ;
deviation [ EX HighBP | ( bp | bp.oc l IsNew ( ) and bp > 200 ) ]
deviation [ EX MalfunctionBPMonitor | bp .oc l I sUnde f ined ( ) ] {

findNewBPMonitor ( ) ;
}

until (not bp .oc l I sUnde f ined ( ) ) ;
}

}post [ not temp.oc l I sUnde f ined ( ) and not bp .oc l I sUnde f ined ( ) ]

C.3.2 Data Model

type Temperature { Integer t where
(30 <= t ) and ( t <= 50)

}

type BloodPressure { Integer bp where
(50 <= bp) and (bp <= 250)

}

C.3.3 Resource Model

resources{
Nurse = Sue , Rose ;
Pat ient ;
As s i s t an t = Jane ;

}
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C.3.4 Dependability Model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Binding EXEC−HANDLER
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
resolution{

EX HighTemp −> Undress ;
EX HighBP −> CardiacUnit ;
EX HighTemp and EX HighBP −> UndressANDCardiacUnit ;

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;HANDLER d e f i n i t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
recovery{

Undress {
participant Pat ient {

receive reqUndress from Nurse ;
Undress ( ) ;

}

participant Nurse{
send reqUndress to Pat ient block ;

}

participant Ass i s t an t {}

}Normal

CardiacUnit {
participant Pat ient {

receive reqChangeRoom from Ass i s t an t ;
goToSpecia lUnit ( ) ;

}

participant Nurse{
receive reqChangeRoom from Ass i s t an t ;
takePat i entToSpec ia lUni t ( ) ;

}

participant Ass i s t an t {
send reqChangeRoom to Patient , Nurse ;
notifyNewRoomPatient ( ) ;

}

}Normal

UndressANDCardiacUnit {
participant Pat ient {

receive reqChangeRoom from Ass i s t an t ;
goToSpecia lUnit ( ) ;
receive reqUndress from Nurse ;
Undress ( ) ;

}

participant Nurse{
receive reqChangeRoom from Ass i s t an t ;
takePat i entToSpec ia lUni t ( ) ;
send reqUndress to Pat ient block ;

}

participant Ass i s t an t {
send reqChangeRoom to Patient , Nurse ;
notifyNewRoomPatient ( ) ;

}

}Normal
}
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C.4 MakeDocument business process definition

C.4.1 Process Model

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
business process makeDocument ( in Person prs ;

out Pat ientSheet ps ) last [ , 30 min. ]{
; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

participant Nurse{
; ; Hx = abbr . Medical His tory

Medica lHistory hx ;
getHxPatient ( in prs ; out hx )

post [ not hx .oc l I sUnde f in ed ( ) ] ;
deviation [ EX undefHx | hx .oc l I sUnde f i n ed ( ) ] {

createtHx ( in prs ; out hx )
post [ hx | hx.oc l IsNew ( ) ] ;

}
makePatientSheet ( in hx , prs ; out ps ) ;

post [ p s . s s n = p r s . s s n and
ps.name = prs.name and
ps.surname = prs .surname and
ps . addre s = p r s . add r e s s and
p s . c i t y = p r s . c i t y and
ps . count ry = pr s . count ry and
ps.mh = hx ]

}
}

C.4.2 Data Model

type Person{
String name ;
String surname ;
Calendar birthday ;
String address ;
String c i t y ;
String country ;
Integer ssn ;

}

type Treatment , Medicine , Diagnos is , MedicalHistory , Calendar ;

type Pat ientSheet {
Integer ssn ;
String name ;
String surname ;
String address ;
String c i t y ;
String country ;
Medica lHistory mh;
Diagnos i s d ;
P r e s c r i p t i on p ;

}

type Pre s c r i p t i on {
Treatment t ;
Medicine m;

}

C.4.3 Resource Model

resources{
Nurse = Sue , Rose ;

}
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C.5 Consultation business process definition

C.5.1 Process Model

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
business process c on su l t a t i on (

in Pat ientSheet ps , Temperature t , BloodPreasure bp ;
out Pat ientSheet ps ) last [ 15 min. , 1 h s . ]{

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

participant Pat ient {
receive chek from Doctor ;

Diagnos i s d ;
P r e s c r i p t i on p ;
receive news (d , p) from Doctor ;

}

participant Doctor{
eva luateExaminat ionResul ts ( in t , bp , ps ) ;

send check to Pat ient block ;

HealthStatus hs ;
checkPat ient (out hs )

post [ hs = #GOOD]
deviation [ EX Admission | hs = #BAD] ;

Diagnos i s d ;
d iagnosePat i ent (out d)

post [ not d .o c l I sUnde f i n ed ( ) ] ;

P r e s c r i p t i on p ;
prescr ibeTreatment (out p)

post [ not p .o c l I sUnde f i n ed ( ) ] ;

send news (d , p) to Pat ient block ;

f i l l P a t i e n t S h e e t ( in ps , p , d ; out ps )
post [ p s .d = d and ps .p = p ]

}
}post [ not p s . d . o c l I sUnde f i n ed ( ) and not p s . p . o c l I sUnde f i n ed ( ) ]

C.5.2 Data Model

type Temperature { Integer t where
(30 <= t ) and ( t <= 50)}

type BloodPressure { Integer bp where
(50 <= bp) and (bp <= 250)}

type HealthStatus = enum{GOOD,BAD} ;

type Treatment , Medicine , Diagnos is , Medica lHistory ;

type Pat ientSheet {
Integer ssn ;
String name ;
String surname ;
String address ;
String c i t y ;
String country ;
Medica lHistory mh;
Diagnos i s d ;
P r e s c r i p t i on p ;

}
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type Pre s c r i p t i on {
Treatment t ;
Medicine m;

}

C.5.3 Resource Model

resources{
Pat ient ;
Doctor = Marc{( cost , 5 0 )} , Nick {( cost , 8 0 ) } ;

}

C.5.4 Dependability Model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; Binding EXEC−HANDLER
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
resolution{

EX Admission −> Hospita lAdmiss ion ;
}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ;HANDLER d e f i n i t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
recovery{

Hospita lAdmiss ion {
participant Pat ient {

receive reqAdmission from Doctor ;
}

participant Doctor{
send reqAdmission to Pat ient ;
no t i f yAdmin i s t ra t i on ( in ps ) ;
Treatment t ;
pre sc r ibeAdmiss ion (out t )

post [ not t . o c l I sUnde f i n ed ( ) ] ;
f i l l P a t i e n t S h e e t ( in ps ; out ps )

post [ not p s . p . t . o c l I sUnd e f i n e d ( ) ]
}

}degraded [ ps | p s . d . o c l I sUnde f i n ed ( ) and not p s . p . t . o c l I sUnd e f i n e d ( ) ]

}
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C.6 GiveInformation business process definition

C.6.1 Process Model

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
business process g ive In fo rmat ion ( in Pat ientSheet ps )

pre [ not p s . p . o c l I sUnde f i n ed ( ) ]
last [ , 15 min. ] {

; ; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
participant Pat ient {

receive t r ea tmentDeta i l s from Nurse ;
receive med i c ineDeta i l s from Nurse ;

}

participant Nurse{
checkTreatment ( in p s . p . t ) ;
send t r ea tmentDeta i l s to Pat ient block ;
checkMedicine ( ps.p.m ) ;
send med ic ineDeta i l s to Pat ient block ;

}
}

C.6.2 Data Model

type Pat ientSheet {
Integer ssn ;
String name ;
String surname ;
String address ;
String c i t y ;
String country ;
Medica lHistory mh;
Diagnos i s d ;
P r e s c r i p t i on p ;

}

type Treatment , Medicine , Diagnos is , Medica lHistory ;

type Pre s c r i p t i on {
Treatment t ;
Medicine m;

}

C.6.3 Resource Model

resources{
Nurse = Sue , Rose ;
Pat ient ;

}
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D. TIMED-CAAFWRK META-MODEL

This Appendix joins in one consolidated figure all the concepts and relationships that form part
of the Timed-CaaFWrk meta-model.



254 D. Timed-CaaFWrk Meta-Model

a
c
c
e

p
ta

n
c
e

T
e

s
t 

: 
O

c
lC

o
n

s
tr

a
in

t

E
x
c
e
p
ti
o
n
a
l

is
R

o
o

t 
: 

b
o

o
le

a
n

n
a

m
e

 :
 S

tr
in

g

C
A
A

a
c
c
e

p
ta

n
c
e

T
e

s
t 

: 
O

c
lC

o
n

s
tr

a
in

t

N
o
rm

a
l

n
a

m
e

 :
 S

tr
in

g

R
o
le

u
n

ti
l 
: 

O
c
lC

o
n

s
tr

a
in

t

R
e
p
e
a
t

c
o

n
d

 :
 O

c
lC

o
n

s
tr

a
in

t

If

S
p
a
w
n

S
p
li
t

R
a
is
e

c
o

n
d

 :
 O

c
lC

o
n

s
tr

a
in

t

W
h
il
e

S
ig
n
a
l

p
re

d
ic

a
te

 :
 O

c
lC

o
n

s
tr

a
in

t

D
y
n
a
m
ic

p
re

d
ic

a
te

 :
 O

c
lC

o
n

s
tr

a
in

t

A
g
re
e
m
e
n
tU

p
o
n
E
n
tr
y

M
a
n
u
a
ll
y
R
e
c
o
v
e
ra
b
le

in
v
a

ri
a

n
t 

: 
O

c
lC

o
n

s
tr

a
in

t

D
a
ta
T
y
p
e

P
ri
m
it
iv
e

M
a
x
In
s
tr
E
x
e
c
E
la
p
s
e
T

M
a
x
R
o
le
E
x
e
c
T

M
in
In
s
tr
E
x
e
c
E
la
p
s
e
T

P
a
rt
ic
ip
a
n
tA

ll
o
c
a
ti
o
n

D
a
ta
E
x
p
ir
e
d

M
in
C
A
A
F
in
is
h
T

M
in
R
o
le
E
x
e
c
T

M
a
x
C
A
A
E
la
p
s
e
T

M
in
C
A
A
E
la
p
s
e
T

d
u

ra
ti
o

n
 :

 T
im

e
E

x
p

In
te
rn
a
lO

b
j

v
a

lu
e

 :
 S

tr
in

g

E
n
u
m
e
ra
ti
o
n
L
it
e
ra
l

n
a

m
e

 :
 S

tr
in

g

E
x
c
e
p
ti
o
n

In
s
tr
u
c
ti
o
n

o
p

e
ra

ti
o

n
 :

 S
tr

in
g

p
o

s
t 

: 
O

c
lC

o
n

s
tr

a
in

t
p

re
 :

 O
c
lC

o
n

s
tr

a
in

t

E
x
e
c
u
te

n
a

m
e

 :
 S

tr
in

g

O
b
je
c
t

A
u
to
re
c
o
v
e
ra
b
le

C
o
m
p
e
n
s
a
to
r

n
a

m
e

 :
 S

tr
in

g

C
o
o
p
e
ra
ti
v
e
H

E
x
e
c
u
ti
o
n

O
b
jD

e
c
la
ra
ti
o
n

T
im

e
E
x

C
a
ll
C
o
m
p
o
s
it
e

a
c
c
e

s
s
 :

 A
c
c
e

s
s

E
x
te
rn
a
lO

b
j

n
a

m
e

 :
 S

tr
in

g

P
a
rt
ic
ip
a
n
tV
a
r

u
n

ti
l 
: 

T
im

e
E

x
p

P
e
ri
o
d

m
s
g

 :
 S

tr
in

g

R
e
c
e
iv
e

m
s
g

 :
 S

tr
in

g
s
y
n

c
 :

 B
o

o
le

a
n

S
e
n
d

B
lo
c
k

m
a

x
 :

 T
im

e
E

x
p

m
in

 :
 T

im
e

E
x
p

T
im

e
R
a
n
g
e

C
a
ll
C
A
A

n
a

m
e

 :
 S

tr
in

g
v
a

lu
e

 :
 I

n
te

g
e

r

F
e
a
tu
re

v
a

lu
e

 :
 I

n
te

g
e

r

E
v
e
ry

n
a

m
e

 :
 S

tr
in

g

P
a
rt
ic
ip
a
n
t

n
a

m
e

 :
 S

tr
in

g

A
tt
ri
b
u
te

n
a

m
e

 :
 S

tr
in

g

T
y
p
e

n
a

m
e

 :
 S

tr
in

g

E
v
e
n
t

H
a
n
d
le
r

L
o
c
a
lH

E
x
e
c
u
ti
o
n
T

O
n
D
e
m
a
n
d

S
L
O

C
K

X
L
O

C
K

´«
e

n
u

m
e

ra
ti
o

n
´»

A
c
c
e
s
s

S
ta
ti
c

R
e
fe
re
n
c
e

C
a
ll
N
e
s
te
d

A
v
a
il
a
b
il
it
y

O
u
tc
o
m
e

F
in
is
h
T

D
B
o
o
le
a
n

E
la
p
s
e
T

D
In
te
g
e
r

A
b
o
rt
e
d

S
ta
rt
T

C
o
n
tr
o
l

D
S
tr
in
g

F
a
il
e
d

D
F
lo
a
t

p
a

rt
ic

ip
a

n
t

1

1

d
tt

p
s

0
..

*

1

p
a

ra
m

s
 {

o
rd

e
re

d
}

0
..

*

1

p
a

ra
m

s

0
..

*

1

e
x
c
e

p
ti
o
n

1

1

in
s
tr

s
{o

rd
e

re
d

}

0
..

*

1

in
s
tr

s
{o

rd
e

re
d

}

0
..

*

1

e
ls

e
 {

o
rd

e
re

d
}

0
..

*

1

e
x
c
e

p
ti
o
n

1

1

th
e

n
 {

o
rd

e
re

d
}

1
..

*

1

a
rg

s
 {

o
rd

e
re

d
}

0
..

*

1

in
s
tr

s
 {

o
rd

e
re

d
}

0
..

*

1

in
te

rn
a

lO
b

js

1
..

*

1

p
o

s
t

0
..

1

1

d
e

la
y

0
..

1

1

c
a

llC
A

A

1

1
in

s
tr

s
 {

o
rd

e
re

d
}

0
..

*

1

d
e

a
d

lin
e

0
..

1

1

fr
o

m

1

1
to

1
..

*

1

c
a

llR
o

le

1

1

h
a

n
d
le

s
1

..
*

1

c
a

a

1

1

ro
le

s
 {

o
rd

e
re

d
}

1
..

*

1

h
a

n
d

le
rs

0
..

*

1

p
la

y

0
..

*

1

d
a

ta

1
..

*

1ro
le

1

1

d
a

ta

1
..

*

1

ty
p

e

1
1

h
a

n
d

le
rs

0
..

*
1

in
s
tr

s
 {

o
rd

e
re

d
}

0
..

*

1

e
n

u
m

 {
o

rd
e

re
d

}
0

..
*

1

o
u

tc
o

m
e

1
1

in
s
tr

s
 {

o
rd

e
re

d
}

0
..

*

1

re
q

u
e

s
te

d
B

y

0
..

1
1

p
e

ri
o

d

0
..

1
1

h
a

n
d

le
rs

E
x
e

c
T

0
..

2
1

a
rg

s
 {

o
rd

e
re

d
}

0
..

*

1

re
f

1

1

p
a

rt
ic

ip
a

n
ts

{o
rd

e
re

d
}

0
..

*

1

d
e

la
y

0
..

1

1

e
la

p
s
e

0
..

1

1

d
e

a
d

lin
e

0
..

1

1

ty
p

e
11

fe
a

tu
re

s

1
..

*

1

a
v
a

ila
b

ili
ty

0
..

1
1

a
tt

rs

0
..

*

1

m
a

d
e

O
f

0
..

*

1
e

x
e

c

0
..

1
1

p
re

0
..

1

1

e
v
e

ry

11

v
a

r

0
..

1

1

in
s
tr

s
 {

o
rd

e
re

d
}

0
..

*1

Fig. D.1: Timed-CaaFWrk Meta-Model.



E. ATL IMPLEMENTATION OF DT4BP TO

TIMED-CAAFWRK TRANSFORMATION

This Appendix provides the complete list of rules that compose the model-to-model (M2M)
transformation that allows the compliant DT4BP model to automatically obtain a compli-
ant Timed-CaaFWrk model. These rules have been implemented using the ATLAS Trans-
formation Language (ATL) [ATL10a, JK06, JABK08] (version: 3.1.0.v201005030322, build id:
201005030322).

The DT4BP and Timed-CaaFWrk meta-models on which this M2M transformation relies have
been implemented as Ecore models within the Eclipse Modelling Framework (EMF) [BBM03,
Ecl10] (version: 2.5.0.v200906151043, build id: 200906151043). The Ecore implementation of
DT4BP and Timed-CaaFWrk meta-models are shown in Figures E.1 and E.2 that appear at
the end of this Appendix.

To facilitate locating the different rules in this appendix, rules are grouped according to the
overall source meta-model concern they address. They are subsequently listed according to the
particular source meta-model concept each of them applys.

E.1 Header�
module DT4BP to TimedCaaFWrk ;

create OUT : TimedCAAFWrk from IN : DT4BP;� �
E.2 Main�
rule Ente rp r i s e {
from

s : DT4BP! Ente rp r i s e

to
t : TimedCAAFWrk! CAADesign(

name <− s.name ,
events <− s . ev en t s ,
excep t i on s <− OrderedSet {

s . e x c ep t i on s ,
tMaxInstrExecElapseT ,
tMinInstrExecElapseT ,
tMaxRoleExeT ,
tMinRoleExeT

}−>union (
let r e s : Set (DT4BP! Reso lut ion ) =

s.bps−>col lect ( e | e . r e s o l u t i o n )−>f latten ( )
in

res−>iterate ( e ;
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excs : OrderedSet (TimedCAAFWrk! Exception ) =
OrderedSet{} | excs .append ( e ) ) ) ,

p a r t i c i p an t s <− s . r e s o u r c e s ,
predef inedTypes <− s .bas i cTypes ,
dttps <− s . d t tp s ,
caas <− s . bp s

) ,
tMaxInstrExecElapseT : TimedCAAFWrk! MaxInstrExecElapseT (

name <− ’ maxInstrExecElapseT ’
) ,
tMinInstrExecElapseT : TimedCAAFWrk! MinInstrExecElapseT (

name <− ’ minInstrExecElapseT ’
) ,
tMaxRoleExeT : TimedCAAFWrk!MaxRoleExecT(

name <− ’maxRoleExecT ’
) ,
tMinRoleExeT : TimedCAAFWrk! MinRoleExecT (

name <− ’minRoleExecT ’
)

}� �
E.3 Business Processes

E.3.1 BusinessProcess�
rule Bus ines sProces s {

from
s : DT4BP! Bus ines sProces s

to
t : TimedCAAFWrk!CAA(

name <− s.name ,
requestedBy <− s . requestedBy ,
de lay <− s . s t a r t ,
e l ap s e <− s . l a s t ,
per iod <− s . p e r i od ,
params <− s.params ,
r o l e s <− s . p a r t i c i p a n t s ,
dttps <− s . d t tp s ,
i sRoot <− s . i sRoo t

)
}� �
E.3.2 Participant

E.3.2.1 Helper: check whether a participant is the first in the BP definition�
helper context DT4BP! Par t i c i pan t def : i s F i r s t P a r t i c i p a n t ( ) : Boolean =

let
f i r s t : DT4BP! Par t i c i pan t = s e l f . b p . p a r t i c i p a n t s −>f i r s t ( )

in
se l f = f i r s t

;� �
E.3.2.2 First Participant�
rule Pa r t i c i p an tF i r s t {

from
s : DT4BP! Par t i c i pan t ( s . i s F i r s t P a r t i c i p a n t ( ) )
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to
t : TimedCAAFWrk! Role (

name <− s.name ,
caa <− s .bp ,
pre <− s . bp .p r e ,
i n s t r s <− s . s tmts ,
exec <− s .workFor
post <− s . bp .po s t ,

hand le r s <− s . bp . coope ra t i v eHand l e r s−>
col lect ( e | e .hndPar t i c i pan t s)−>

f latten ()−> select ( e | e . p a r t i c i p a n t=s ) ,

handlersExecT <− i f (not s .workFor . o c l I sUnde f in ed ( ) ) then
OrderedSet { s .workFor .hand l e r s }

else
OrderedSet {}

endif
)

}� �
E.3.2.3 Non-First Participant�
rule Part i c ipantNonFi r s t {

from
s : DT4BP! Par t i c i pan t (not s . i s F i r s t P a r t i c i p a n t ( ) )

to
t : TimedCAAFWrk! Role (

name <− s.name ,
caa <− s .bp ,
i n s t r s <− s . s tmts ,
exec <− s .workFor

hand le r s <− s . bp . coope ra t i v eHand l e r s−>
col lect ( e | e .hndPar t i c i pan t s)−>

f latten ()−>select ( e | e . p a r t i c i p a n t=s ) ,
handlersExecT <− i f (not s .workFor . o c l I sUnde f i ned ( ) ) then

OrderedSet { s .workFor .hand l e r s }
else

OrderedSet {}
endif ,

)
}� �
E.3.3 Precondition�
rule Precond i t ion {

from
s : DT4BP! Precond i t i on ( s . re f ImmediateCompos ite ( ) . oclIsTypeOf (DT4BP! Bus ines sProces s ) )

to
t : TimedCAAFWrk! AgreementUponEntry (

p r ed i c a t e <− s . p r e d i c a t e . t o S t r i n g ( )
)

}� �
E.3.4 HandlerParticipant

E.3.4.1 Helper: check whether a HandlerParticipant deals with Abort exception
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�
helper context DT4BP! Handle rPart i c ipant def : dealsWithAbort ( ) : Boolean =

let
r e s : Set (DT4BP! Reso lut ion )= se l f . a c t s In . r e f Immed i a t eCompos i t e ( ) . r e s o l u t i on−>

select ( r | r . r i g h t = s e l f . a c t s I n )
in

res−> exists ( r | r . l e f t −> exists ( ex | ex .oc l I sTypeOf (DT4BP! Abort ) ) ) ;� �
E.3.4.2 Handler not dealing with Abort exception�
rule Handle rPart i c ipant {
from
s : DT4BP! Hand le rPart i c ipant (not s .dea lsWithAbort ( ) )

to
t : TimedCAAFWrk! CooperativeH (

name <− s .ac t s In .name ,
r o l e <− s . p a r t i c i p an t ,
outcome <− s . a c t s In .outcome ,
i n s t r s <− s . s tmts ,
handles <− let r e s : Set (DT4BP! Reso lut ion ) =

s .ac t s In . r e f Immed ia teCompos i t e ( ) . r e s o l u t i on−>
select ( r | r . r i g h t = s . a c t s I n )

in
res−>iterate ( e ; excs :OrderedSet (TimedCAAFWrk! Exception ) = OrderedSet {} |

i f ( res−>exists ( ex | e x . l e f t . s i z e ( ) > 1) ) then
excs .append ( thisModule .resolveTemp ( e , ’ t ’ ) )

else
excs .append ( res−>col lect ( ex2 | e x 2 . l e f t ) )

endif ) ,
params <− s . pa r t i c i pan t . bp .pa rams−>

union ( s . p a r t i c i p an t . s tm t s−>
select ( e | e .oc l I sTypeOf (DT4BP! ObjDecl))−>col lect ( e | e . v a r ) )

)
}� �
E.3.4.3 Handler dealing with Abort exception�
rule HandlerPart ic ipant4Abort {
from
s : DT4BP! Hand le rPart i c ipant ( s .dea lsWithAbort ( ) )

to
t : TimedCAAFWrk! Compensator (

name <− s .ac t s In .name ,
r o l e <− s . p a r t i c i p an t ,
outcome <− s . a c t s In .outcome ,
i n s t r s <− s . s tmts ,
handles <− let r e s : Set (DT4BP! Reso lut ion ) =

s .ac t s In . r e f Immed ia teCompos i t e ( ) . r e s o l u t i on−>
select ( r | r . r i g h t = s . a c t s I n )

in
res−>iterate ( e ; excs :OrderedSet (TimedCAAFWrk! Exception ) = OrderedSet {} |

i f ( res−>exists ( ex | e x . l e f t . s i z e ( ) > 1) ) then
excs .append ( thisModule .reso lveTemp ( e , ’ t ’ ) )

else
excs .append ( res−>col lect ( ex2 | e x 2 . l e f t ) )

endif ) ,
params <− s . pa r t i c i pan t . bp .pa rams−>

union ( s . p a r t i c i p an t . s tm t s−>
select ( e | e .oc l I sTypeOf (DT4BP! ObjDecl))−>col lect ( e | e . v a r ) )

)
}� �
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E.3.5 Resolution�
rule ConcurrentExceptions {

from
s : DT4BP! Reso lut ion ( s . l e f t −>s ize ( ) > 1)

to
t : TimedCAAFWrk! Exception (

name <− s . l e f t −>
iterate ( e ; r e s : String = ’CC EX’ |

r e s . c o n c a t ( ’ ’ . concat (
e .name . toSt r ing ( ) . r egexRep laceAl l ( ’EX |CC EX ’ , ’ ’ )

)
)

) ,
madeOf <− s . l e f t

)
}� �
E.3.6 Event�
rule Event {

from
s : DT4BP! Event

to
t : TimedCAAFWrk! Event (

name <− s.name
)

}� �
E.3.7 Resource�
rule Resource {

from
s : DT4BP! Resource

to
t : TimedCAAFWrk! Par t i c i pan t (

name <− s.name ,
f e a t u r e s <− s . c a p a b i l i t i e s ,
p lay <− s .mightPart i c ipateAs ,
a v a i l a b i l i t y <− s . a v a i l a b i l i t y

)
}� �
E.3.8 Capability�
rule Capab i l i ty {

from
s : DT4BP! Capab i l i ty

to
t : TimedCAAFWrk! Feature (

name <− s.name ,
va lue <− s . v a l u e

)
}� �
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E.3.9 Calendar�
rule Calendar {

from
s : DT4BP! Calendar

to
t : TimedCAAFWrk! Ava i l a b i l i t y (

d iary <− s .agenda
)

}� �
E.4 Objects

E.4.1 Object�
abstract rule Object {

from
s : DT4BP! Object

to
t : TimedCAAFWrk! Object (

name <− s.name ,
type <− s . t yp e

)
}� �
E.4.2 LocalObject�
rule LocalObject extends Object {

from
s : DT4BP! LocalObject

to
t : TimedCAAFWrk! Inte rna lObj (

durat ion <− s . du r a t i on
)

}� �
E.4.3 Parameter�
rule Parameter extends Object {

from
s : DT4BP! Parameter

to
t : TimedCAAFWrk! ManuallyRecoverable (

a c c e s s <− i f ( s . k i n d . t o S t r i n g ( ) = ’ in ’ ) then
’SLOCK’

else
’XLOCK’

endif
)

}� �
E.5 Statements

E.5.1 ObjDecl
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�
rule ObjDecl {

from
s : DT4BP! ObjDecl

to
t : TimedCAAFWrk! ObjDec larat ion (

in t e rna lOb j s <− s . v a r
)

}� �
E.5.2 Repeat�
rule Repeat {

from
s : DT4BP! Repeat

to
t : TimedCAAFWrk! Repeat (

u n t i l <− s . u n t i l . t o S t r i n g ( ) ,
i n s t r s <− s . do

)
}� �
E.5.3 While�
rule While {

from
s : DT4BP! While

to
t : TimedCAAFWrk! While (

cond <− s . c o nd . t o S t r i n g ( ) ,
i n s t r s <− s . do

)
}� �
E.5.4 If�
rule I f {

from
s : DT4BP! I f

to
t : TimedCAAFWrk! I f (

cond <− s . c o nd . t o S t r i n g ( ) ,
then <− s . then ,
else <− s . e l s e

)
}� �
E.5.5 Split�
rule Sp l i t {

from
s : DT4BP! Sp l i t

to
t : TimedCAAFWrk! S p l i t (

i n s t r s <− s . a c t i v i t i e s
)

}� �
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E.5.6 Spawn�
rule Spawn {

from
s : DT4BP! Spawn

to
t : TimedCAAFWrk! S p l i t (

i n s t r s <− s . a c t i v i t i e s
)

}� �
E.5.7 Block�
rule Block {

from
s : DT4BP! Block

to
t : TimedCAAFWrk! Block (

i n s t r s <− OrderedSet { s . s tmts , s . d e v i a t i o n s } ,
hand le r s <− s . l o c a lHand l e r s ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
i sTry <− t rue

)
}� �
E.5.8 Receive�
rule Receive {

from
s : DT4BP! Receive

to
t : TimedCAAFWrk! Receive (

from <− s . f rom ,
msg <− s.msg ,
data <− s . a r g s

)
}� �
E.5.9 Send�
rule Send {

from
s : DT4BP! Send

to
t : TimedCAAFWrk! Send (

to <− s . t o ,
msg <− s.msg ,
data <− s . a r g s ,
sync <− s . b l o c k

)
}� �
E.5.10 Atomic

E.5.10.1 Atomic with Postcondition
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�
rule AtomicWithPost {

from
s : DT4BP! Atomic (not s . p o s t . o c l I sUnd e f i n e d ( ) )

to
t : TimedCAAFWrk! Block (

i n s t r s <− OrderedSet { t2 , t3 } ,
i sTry <− f a l s e

) ,
t2 : TimedCAAFWrk! Execute (

opera t i on <− s.name ,
args <− s . a r g s−> col lect ( e | e . o b j ) ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
pre <− i f (not s . p r e . o c l I sUnd e f i n e d ( ) ) then

s . p r e . p r e d i c a t e
else

’ true ’
endif ,

post <− s . p o s t . p r e d i c a t e ,
hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then

OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
else

OrderedSet { s . l o c a lHand l e r s }
endif

) ,
t3 : TimedCAAFWrk! I f (

cond <− ’not ( ’ . concat ( s . p o s t . p r e d i c a t e . t o S t r i n g ( ) . concat ( ’ ) ’ ) ) ,
then <− OrderedSet { s . d e v i a t i o n s , t4 }

) ,
t4 : TimedCAAFWrk! Execute (

opera t i on <− ’ Sys t em.ex i t ( ) ’ ,
pre <− ’ true ’ ,
post <− ’ true ’

)
}� �

E.5.10.2 Atomic without Postcondition

�
rule AtomicWithoutPost {

from
s : DT4BP! Atomic ( s . p o s t . o c l I sUnd e f i n e d ( ) )

to
t : TimedCAAFWrk! Execute (

opera t i on <− s.name ,
args <− s . a r g s−> col lect ( e | e . o b j ) ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
pre <− i f (not s . p r e . o c l I sUnd e f i n e d ( ) ) then

s . p r e . p r e d i c a t e
else

’ true ’
endif ,

post <− ’ true ’ ,
hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then

OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
else

OrderedSet { s . l o c a lHand l e r s }
endif

)
}� �
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E.5.11 Composite

E.5.11.1 Composite with Postcondition�
rule CompositeWithPost {

from
s : DT4BP! Composite (not s . c a l l . p o s t . o c l I s U n d e f i n e d ( ) )

to
t : TimedCAAFWrk! Block (

i n s t r s <− OrderedSet { t2 , t3 } ,
i sTry <− f a l s e

) ,
t2 : TimedCAAFWrk! CallComposite (

callCAA <− s . c a l l ,
p a r t i c i p an t s <− s . r e s o u r c e s ,
a rgs <− s . a r g s−> col lect ( e | e . o b j ) ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then

OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
else

OrderedSet { s . l o c a lHand l e r s }
endif

) ,
t3 : TimedCAAFWrk! I f (

cond <− ’not ( ’ . concat ( s . c a l l . p o s t . p r e d i c a t e . t o S t r i n g ( ) . concat ( ’ ) ’ ) ) ,
then <− OrderedSet { s . d e v i a t i o n s , t4 }

) ,
t4 : TimedCAAFWrk! Execute (

opera t i on <− ’ Sys t em.ex i t ( ) ’ ,
pre <− ’ true ’ ,
post <− ’ true ’

)
}� �
E.5.11.2 Composite without Postcondition�
rule CompositeWithoutPost {

from
s : DT4BP! Composite ( s . c a l l . p o s t . o c l I s U n d e f i n e d ( ) )

to
t : TimedCAAFWrk! CallComposite (

callCAA <− s . c a l l ,
p a r t i c i p an t s <− s . r e s o u r c e s ,
a rgs <− s . a r g s−> col lect ( e | e . o b j ) ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then

OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
else

OrderedSet { s . l o c a lHand l e r s }
endif

)
}� �
E.5.12 Nested

E.5.12.1 Nested with Postcondition�
rule NestedWithPost {

from
s : DT4BP! Nested (not s . c a l l . p o s t . o c l I s U n d e f i n e d ( ) )
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to
t : TimedCAAFWrk! Block (

i n s t r s <− OrderedSet { t2 , t3 } ,
i sTry <− f a l s e

) ,
t2 : TimedCAAFWrk! Cal lNested (

callCAA <− s . c a l l ,
c a l lRo l e <− s . c a l l . p a r t i c i p a n t s −>

select (p | p.name=s.re f ImmediateCompos ite ( ) . name ) ,
args <− s . a r g s−> col lect ( e | e . o b j ) ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then

OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
else

OrderedSet { s . l o c a lHand l e r s }
endif

) ,
t3 : TimedCAAFWrk! I f (

cond <− ’not ( ’ . concat ( s . c a l l . p o s t . p r e d i c a t e . t o S t r i n g ( ) . concat ( ’ ) ’ ) ) ,
then <− OrderedSet { s . d e v i a t i o n s , t4 }

) ,
t4 : TimedCAAFWrk! Execute (

opera t i on <− ’ Sys tem.ex i t ( ) ’ ,
pre <− ’ true ’ ,
post <− ’ true ’

)
}� �
E.5.12.2 Nested without Postcondition�
rule NestedWithoutPost {

from
s : DT4BP! Nested ( s . c a l l . p o s t . o c l I s U n d e f i n e d ( ) )

to
t : TimedCAAFWrk! Cal lNested (

callCAA <− s . c a l l ,
c a l lRo l e <− s . c a l l . p a r t i c i p a n t s −>

select (p | p.name=s.re f ImmediateCompos ite ( ) . name ) ,
args <− s . a r g s−> col lect ( e | e . o b j ) ,
de lay <− s . i n ,
dead l ine <− s .w i th in ,
hand le r s <− i f (not s .w i t h i n . o c l I sUnd e f i n e d ( ) ) then

OrderedSet { s . l o c a lHand l e r s , s .w i t h i n . h and l e r s }
else

OrderedSet { s . l o c a lHand l e r s }
endif

)
}� �
E.6 Exceptions

E.6.1 Exception�
rule Exception {

from
s : DT4BP! Exception

to
t : TimedCAAFWrk! Exception (

name <− s.name
)

}� �
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E.6.2 TimeEx�
abstract rule TimeEx extends Exception {

from
s : DT4BP!TimeEx

to
t : TimedCAAFWrk! TimeEx ( )

}� �
E.6.3 DataExpired�
rule DataExpired extends TimeEx {

from
s : DT4BP! DataExpired

to
t : TimedCAAFWrk! DataExpired ( )

}� �
E.6.4 TimeoutMinBPLast�
rule TimeoutMinBPLast extends TimeEx {

from
s : DT4BP! TimeoutMinBPLast

to
t : TimedCAAFWrk!MinCAAElapseT ( )

}� �
E.6.5 TimeoutMaxBPLast�
rule TimeoutMaxBPLast extends TimeEx {

from
s : DT4BP! TimeoutMaxBPLast

to
t : TimedCAAFWrk!MaxCAAElapseT( )

}� �
E.7 Outcomes

E.7.1 Outcome�
abstract rule Outcome {

from
s : DT4BP! Outcome

to
t : TimedCAAFWrk! Outcome ( )

}� �
E.7.2 Normal
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�
rule Normal {

from
s : DT4BP! Normal

to
t : TimedCAAFWrk! Normal (

acceptanceTest <− s . p r e d i c a t e
)

}� �
E.7.3 Degraded�
rule Degraded extends Outcome {

from
s : DT4BP! Degraded

to
t : TimedCAAFWrk! Except iona l (

acceptanceTest <− s . p r e d i c a t e . t o S t r i n g ( )
)

}� �
E.7.4 Aborted�
rule Aborted extends Outcome {

from
s : DT4BP! Aborted

to
t : TimedCAAFWrk! Aborted ( )

}� �
E.7.5 Failed�
rule Fai l ed extends Outcome {

from
s : DT4BP! Fa i l ed

to
t : TimedCAAFWrk! Fa i l ed ( )

}� �
E.8 Deviations

E.8.1 PHandler

E.8.1.1 PHandler belonging to an Activity�
rule PHandlerForActivity {

from
s : DT4BP! PHandler ( s . re f ImmediateCompos ite ( ) . oclIsKindOf (DT4BP! Act i v i ty ) )

to
t : TimedCAAFWrk! LocalH (

i n s t r s <− s . s tmts ,
handles <− s .hand l e s−>col lect ( dev | d e v . r a i s e )

)
}� �
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E.8.1.2 PHandler belonging to a time-related constraint Within�
rule PHandlerForWithin {

from
s : DT4BP! PHandler ( s . re f ImmediateCompos ite ( ) . oclIsTypeOf (DT4BP! Within ) )

to
t : TimedCAAFWrk! LocalH (

i n s t r s <− s . s tmts ,
handles <− i f ( s . re f ImmediateCompos ite ( ) . t imeout

−> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’min max ’ ) )
then OrderedSet {TimedCAAFWrk! MinInstrExecFinishT.

allInstances ( )
−> asSequence ( )
−> f i r s t ( ) ,

TimedCAAFWrk! MaxInstrExecFinishT.
allInstances ( )
−> asSequence ( )
−> f i r s t ( )}

else
i f ( s . re f ImmediateCompos ite ( ) . t imeout

−> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’min ’ ) )
then TimedCAAFWrk! MinInstrExecFinishT.

allInstances ( )
−> asSequence ( )
−> f i r s t ( )

else TimedCAAFWrk! MaxInstrExecFinishT.
allInstances ( )
−> asSequence ( )
−> f i r s t ( )

endif
endif

)
}� �
E.8.1.3 PHandler belonging to a time-related constraint WorkFor�
rule PHandlerForWorkFor {

from
s : DT4BP! PHandler ( s . re f ImmediateCompos ite ( ) . oclIsTypeOf (DT4BP!WorkFor ) )

to
t : TimedCAAFWrk! LocalH (

i n s t r s <− s . s tmts ,
handles <− i f ( s . re f ImmediateCompos ite ( ) . t imeout

−> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’min ’ )
and

s . re f ImmediateCompos ite ( ) . t imeout
−> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’max ’ ) )

then OrderedSet {TimedCAAFWrk! MinRoleExecT.
allInstances ( )
−> asSequence ( )
−> f i r s t ( ) ,

TimedCAAFWrk! MaxRoleExecT.
allInstances ( )
−> asSequence ( )
−> f i r s t ( )}

else i f ( s . re f ImmediateCompos ite ( ) . t imeout
−> exists ( timeDev | t imeDev .k ind . toSt r ing ( ) = ’min ’ ) )

then TimedCAAFWrk! MinRoleExecT.
allInstances ( )
−> asSequence ( )
−> f i r s t ( )

else TimedCAAFWrk! MaxRoleExecT.
allInstances ( )
−> asSequence ( )
−> f i r s t ( )

endif
endif
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)
}� �
E.8.2 ActivityDeviation�
rule Act iv i tyDev ia t i on {

from
s : DT4BP! Act iv i tyDev ia t i on

to
t : TimedCAAFWrk! I f (

cond <− i f s . c ond i t i on . o c l I sTypeO f (DT4BP! Pred i cate ) then
s . c o n d i t i o n . p r e d i c a t e . t o S t r i n g ( )

else
i f s . c ond i t i on . o c l I sTypeO f (DT4BP! AbortDeviat ion ) then

’ outcome=aborted ’
else

i f s . c ond i t i on . o c l I sTypeO f (DT4BP! Fa i lu r eDev ia t i on ) then
’ outcome=f a i l e d ’

else
’ dataExpired ’

endif
endif

endif ,
then <− t2

) ,
t2 : TimedCAAFWrk! Raise (

except ion <− s . r a i s e
)

}� �

E.9 Resources

E.9.1 ResourceAllocation�
abstract rule ResourceAl locat ion {

from
s : DT4BP! ResourceAl locat ion

to
t : TimedCAAFWrk! Pa r t i c i p an tA l l o c a t i on (

var <− s . v a r
)

}� �
E.9.2 ResourceVar�
rule ResourceVar {

from
s : DT4BP! ResourceVar

to
t : TimedCAAFWrk! Part i c ipantVar (

name <− s.name
)

}� �
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E.9.3 Reference�
rule Reference extends ResourceAl locat ion {

from
s : DT4BP! Reference

to
t : TimedCAAFWrk! Reference (

r e f <− s . r e f
)

}� �
E.9.4 Dynamic�
rule Dynamic extends ResourceAl locat i on {

from
s : DT4BP! Dynamic

to
t : TimedCAAFWrk! Dynamic (

p r ed i c a t e <− s . p r e d . t o S t r i n g ( )
)

}� �
E.9.5 Static�
rule S t a t i c extends ResourceAl locat ion {

from
s : DT4BP! S t a t i c

to
t : TimedCAAFWrk! S t a t i c (

p a r t i c i p an t <− s . r e s o u r c e
)

}� �
E.9.6 OnDemand�
rule OnDemand extends ResourceAl locat i on {

from
s : DT4BP!OnDemand

to
t : TimedCAAFWrk!OnDemand( )

}� �
E.10 Data types

E.10.1 Type�
abstract rule Type {

from
s : DT4BP! Type

to
t : TimedCAAFWrk! Type (

name <− s.name
)

}� �
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E.10.2 DInteger�
rule DInteger extends Type {

from
s : DT4BP! DInteger

to
t : TimedCAAFWrk! DInteger ( )

}� �
E.10.3 DString�
rule DString extends Type {

from
s : DT4BP! DString

to
t : TimedCAAFWrk! DString ( )

}� �
E.10.4 DBoolean�
rule DBoolean extends Type {

from
s : DT4BP! DBoolean

to
t : TimedCAAFWrk! DBoolean ( )

}� �
E.10.5 DFloat�
rule DFloat extends Type {

from
s : DT4BP! DFloat

to
t : TimedCAAFWrk! DFloat ( )

}� �
E.10.6 DataType�
rule DataType extends Type {

from
s : DT4BP! DataType

to
t : TimedCAAFWrk! DataType (

−−name <− s.name ,
a t t r s <− s . a t t r s ,
enum <− s.enum ,
invar i ant<− i f not s . i n v a r i a n t . o c l I sUnd e f i n e d ( ) then

s . i n v a r i a n t . t o S t r i n g ( )
else

’ ’
endif

)
}� �
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E.10.7 EnumerationLiteral�
rule Enumerat ionLitera l {

from
s : DT4BP! Enumerat ionLitera l

to
t : TimedCAAFWrk! Enumerat ionLitera l (

va lue <− s . v a l u e
)

}� �
E.10.8 Attribute�
rule Attr ibute {

from
s : DT4BP! Att r ibute

to
t : TimedCAAFWrk! Att r ibute (

name <− s.name ,
type <− s . t yp e

)
}� �
E.11 Time

E.11.1 TimeRange�
abstract rule TimeRange {

from
s : DT4BP! TimeRange

to
t : TimedCAAFWrk! TimeRange (

min <− s.min ,
max <− s.max

)
}� �
E.11.2 Start�
rule Star t extends TimeRange {

from
s : DT4BP! Star t

to
t : TimedCAAFWrk! StartT ( )

}� �
E.11.3 Last�
rule Last {

from
s : DT4BP! Last

to
t1 :TimedCAAFWrk! FinishT (

min <− s.min ,
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max <− s.max
) ,
t2 :TimedCAAFWrk! ElapseT (

min <− s.min ,
max <− s.max

)
}� �
E.11.4 WorkFor�
rule WorkFor extends TimeRange {

from
s : DT4BP!WorkFor

to
t :TimedCAAFWrk! ExecutionT (
)

}� �
E.11.5 Within�
rule Within extends TimeRange {

from
s : DT4BP! Within

to
t : TimedCAAFWrk! ElapseT ( )

}� �
E.11.6 In�
rule In extends TimeRange {

from
s : DT4BP! In

to
t : TimedCAAFWrk! StartT (

min <− s . d e l ay ,
max <− s . d e l a y

)
}� �
E.11.7 Period�
rule Period {

from
s : DT4BP! Period

to
t : TimedCAAFWrk! Period (

un t i l <− s . u n t i l ,
every <− s . e v e r y

)
}� �
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E.11.8 Every�
abstract rule Every {

from
s : DT4BP! Every

to
t : TimedCAAFWrk! Every (

va lue <− s . v a l u e
)

}� �
E.11.9 Second�
rule Second extends Every {

from
s : DT4BP! Second

to
t : TimedCAAFWrk! Second ( )

}� �
E.11.10 Hour�
rule Hour extends Every {

from
s : DT4BP! Hour

to
t : TimedCAAFWrk! Hour ( )

}� �
E.11.11 Day�
rule Day extends Every {

from
s : DT4BP!Day

to
t : TimedCAAFWrk!Day ( )

}� �
E.11.12 Week�
rule Week extends Every {

from
s : DT4BP!Week

to
t : TimedCAAFWrk!Week( )

}� �
E.11.13 Month�
rule Month extends Every {

from
s : DT4BP!Month

to
t : TimedCAAFWrk!Month ( )

}� �
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E.11.14 Year�
rule Year extends Every {

from
s : DT4BP! Year

to
t : TimedCAAFWrk! Year ( )

}� �
E.11.15 Monday�
rule Monday extends Every {

from
s : DT4BP!Monday

to
t : TimedCAAFWrk!Monday ( )

}� �
E.11.16 Tuesday�
rule Tuesday extends Every {

from
s : DT4BP! Tuesday

to
t : TimedCAAFWrk! Tuesday ( )

}� �
E.11.17 Wednesday�
rule Wednesday extends Every {

from
s : DT4BP!Wednesday

to
t : TimedCAAFWrk!Wednesday ( )

}� �
E.11.18 Thursday�
rule Thursday extends Every {

from
s : DT4BP! Thursday

to
t : TimedCAAFWrk! Thursday ( )

}� �
E.11.19 Friday�
rule Friday extends Every {

from
s : DT4BP! Friday

to
t : TimedCAAFWrk! Friday ( )

}� �
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Fig. E.1: Ecore DT4BP meta-model used as input by the ATL transformation.
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Fig. E.2: Ecore Timed-CAA meta-model used as output by the ATL transformation.
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