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As already mentioned, the design of communication pro-
tocols for MANETs is a complex and critical task that
directly impacts on the network performance. As a result
of the unpredictable and highly changing topology, the
behaviour of the protocol is highly sensitive to small chesig
in the set of configuration parameters. Therefore, fine wnin
them for optimally configuring a communication protocol is
a difficult task. Moreover, in these self-organised network

Abstract—Mobile ad hoc networks are infrastructureless
communication networks that are spontaneously created by
a number of mobile devices. Due to the highly fluctuating
topology of such networks, finding the optimal configuration
of communication protocols is a complex and crucial task.
Additionally, different objectives must be usually considred.
Small changes in the values of the parameters directly affées
the performance of the protocol, promoting one objective wile
reducing another. Therefore, multi-objective optimisation is
needed for fine tuning the protocol. In this work, we propose

a novel parallel multi-objective local search that optimiges an
energy efficient broadcasting algorithm in terms of coverag,
energy used, broadcasting time, and network resources. The
proposed method looks for appropriate values for a set of 5
variables that markedly influence the behavior of the protool
to provide accurate tradeoff configurations in a reasonable
short execution time. The new proposed algorithm is validad
versus two efficient multi-objective evolutionary algorithms
from the state of the art, offering comparable quality resuts
in much shorter times.

Keywords-multi-objective optimisation; local search; commu-
nication protocol; energy efficiency; mobile ad hoc network

there is not a single goal to be satisfied but several (usually
in conflict) like network resources, QoS, energy used, etc.
We present AEDB-MLS, a novel parallel multi-objective
local search to look for the optimal configuration of
an energy efficient dissemination algorithm, namely the
adaptive enhanced distance based broadcasting algorithm
(AEDB) [13]. AEDB is an energy-aware broadcasting algo-
rithm that makes use of a cross-layer design to reduce the en-
ergy consumption. This protocol adapts its behaviour atcor
ing to five different parameters. For finding optimal AEDB
configurations, it was optimised in previous work [14] by

two well known multi-objective evolutionary optimisation
algorithms (MOEASs): CellDE [4] and NSGAII [3].

The optimisation process using those two MOEAs takes
too long, thus, the utilisation of highly parallel and eféiot

Mobile ad hoc networks, also called MANETS, are self-techniques is required. Results confirm that AEBD-MLS
organised networks spontaneously created between neighighly speeds up the configuration process of the dissemina-
bouring devices without the need of any existing infras-tion algorithm while finding competitive results. Moreoyer
tructures. Due to the intrinsic broadcast nature of wilesthe parallel local search is a useful technique to be incude
networks, broadcasting is considered one of the most suiin any MOEA for obtaining even more precise solutions.
able protocols for disseminating messages. Indeed, many The contribution of this paper is threefold. First, a sen-
high level applications and even other protocols assume thsitivity analysis is done for designing efficient heuristic
existence of broadcasting as a low level operation and reljocal search operators. Second, we design AEDB-MLS, the
on its service. In wireless networks, these disseminatiomovel parallel multi-objective local search algorithm ttha
algorithms are generally associated with the broadcaststo can also be used within EAs or any other metaheuristics.
problem [12], when all nodes receiving a message resend iThird, we confirm that AEDB-MLS allows speeding up the

However, due to the recently appearance of MANETS, anaptimisation process, and finds competitive results.
all the drawbacks inherited from them, the main problem in The paper is organised as follows. Next section reviews
broadcasting is not only reducing the number of forwardingsthe most relevant works applying metaheuristics for opti-
but also overcoming all these undesirable aspects. Threrefo mising protocols. Sect. 11l describes the AEDB protocol and
most of the existing dissemination protocols have differenthe optimisation problem tackled in this work. The AEBD-
parameters for adapting to different network conditionsMLS method is introduced in Sect. IV. The experimental
and/or requirements. The performance of the algorithmanalysis is reported in Sect. V, just before the presented
highly depends on the setting used, that typically is chosenesults (Sect. VI). Finally, the conclusions and main lines
experimentally [2]. for future work are formulated in Sect. VII.

I. INTRODUCTION
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Il. RELATED WORK Figure 1. Pseudocode of the new Adaptive EDB.

We can find in the literature a few papers using meta- Data m: the incoming broadcast message.
heuristics for optimising protocols in MANETS. In all cases ~ Data: r: the node receiving broadcast message.
the optimisation is an offline process that (usually) loaks f ~ Data: s the node that sen.
the optimal configuration of the protocol to enhance some Data: p: the received signal strength of m sent oy
aspect of the network, such as QoS, the network use, or Data: pmin the minimum signal strength received
the energy used, as it is the case considered in our work. from anys. _ _ _

The first study in this line was probably the one proposed by Data: potentialForwarders# neighbors in the
Alba et al. [2], in which the DFCN broadcasting protocol for ~ forwarding area.
MANETs was optimised using multi-objective techniques. 1. if mis received for the first tim¢hen

Different metaheuristics have been applied to solve the 2: calculatep;
minimum energy broadcast (MEB) problem in wireless ad 3:  updatepmin
hoc networks (PSO, EAs, ACO, hybrid EAs) [9], [20]. All 4. if pmin> borders Thresholdthen
of them are offline techniques that are limited to static 5: r — drop messagen,
networks. 6: else

Abdou et al. [1] optimised a probabilistic broadcasting 7 waiting < true;
algorithm in terms of the local density. The multi-objeetiv 8 Vc;/fﬂ};t time rande [delay interva);

90 endi

optimisation focuses on minimising the channel utilisatio
as well as the broadcasting time. 10: else if waiting then
In [6], a study on the optimisation of the AODV routing ~ 11:  calculatep;
protocol for vehicular ad hoc networks is presented. And 12 if p> pmin.then
in [18], a parallel EA to optimise the energy used by 13 up_datepmm;
the OLSR routing algorithm subject to acceptable QoS 14: end if
requirements is proposed also for VANETSs. Both works deal 15 end if
with single-objective optimisation. 16: if pmin > borders Thresholdthen
Ruiz et al. [14] optimise the performance of AEDB using  17: [ — drop messagen,
two well known multi-objective algorithms, by maximising 18 elge ) .
the coverage achieved in the dissemination process and 19: if # potentialForwarders> neighborsThreshold

minimising both the time and the energy used. then _
20: estimate p to reach closest neighbor to
[1l. AEDB PROTOCOL OPTIMISATION borders Threshold
21:  else

The AEDB protocol [13] is a broadcasting algorithm that

d the t e for di i 22: discards from the one hop neighbors list.
reduces the transmission power for disseminating a message estimate p to reach furthest neighbor
aimed at saving energy in both sparse and dense networks. o end if
A pseudocode is provided in Fig. 1. As any distance based __. P

X . , 25:  transmitm;
broadcasting algorithm, nodes are candidates to forward 26 end if

the message if the distance to the source node is higher
than a predefined threshold. Thus, there exists a forwarding
area, and only nodes located in it are potential forwarders.
In this case, a crosslayer technique is used to inform the
upper layers about the signal strength of messages received In denser networks, the probability of having a node close
Therefore, the decision is not taken in terms of distancdo the transmission range limit is higher. This would highly
but power. This predefined value for the energy is callededuce the energy saved in such networks. Indeed, when the
the borders threshold Before forwarding, the node sets a network is very dense the connectivity is usually very high.
random delay. Thus, reducing the transmission power allowing the loss
AEDB tries to save energy by reducing the transmissiorof some one hop neighbours will save energy without any
power when forwarding the broadcasting message. The nedetriment in the performance of the broadcasting process.
transmission power is the one that reaches the furthest Contrary, when the network is sparse, the node must
neighbour. The energy needed is estimated according to thmaintain the network connectivity, as not doing so would
reception energy detected in the beacons exchanged (everyniake more difficult to spread a message through the whole
second). In order to be aware of the nodes mobility, an extraetwork. AEDB is able to adapt its behaviour to the network
fixed amount of energy, themargin threshold is added to  density. If many nodes located in the forwarding area are
the one estimated. detected (theeighboursthreshold, the transmission range

27: waiting <+ false;



is reduced and some one hop neighbours are discarded. TheThe optimisation problem is defined by functidn in

new furthest neighbor is the node located in the forwardingzq. 1, wheres is an AEDB configuration, simulated using

area that is the closest one to the source node. A morthe ns3 network simulator on 10 different networks, and

detailed explanation can be found in [13]. ¢, f, andbt stand for the average energy saved, coverage,
Next, we are describing the problem at hands. number of forwardings, and broadcasting time out of the 10

simulations, respectively.
A. Problem Description

min<e
The performance of a broadcasting algorithm in MANETSs F(s) = maxi{c}} s tbt <2 1)
is usually related to some standard metrics. We consider her min {f} ’

the most common ones: o .
B. Sensitivity analysis

1) coverage the number of devices that receive the q b q d th lationship b
broadcast message after the dissemination process; N Order to better understand the relationship between
the AEDB parameters and the objective function val-

2) energy usedy the broadcast process: the sum of the

energy every device consumes to forward the messagé'fes' we carried out a_sensitivity _analysis. This method
3) number offorwardings the amount of nodes that after IS based on decomposing t_he variance of thg_o_utput, as
receiving the broadcasting message decide to reseHHtrOduced in _[15]. The Fourier Amplltudg Sensitivity Test
it: Fast99 [16] is used to compute the first order effects

4) broadcast timethe time needed to spread a message mand interactions for each parameter. Parameters intenacti

the network, since the source node sends the messa&@curs when the effe_ct 9f the parameters on the output
until the last node receives it. is not a sum of their linear effects. We considered a

. . , . wide range of values for every parameter in the sensitiv-
From the point of view of the broadcasting algorithm ity analysis: min_delay € [0,5], maz_delay € [0,5]
designer, the higher the number of objectives the mMore 1o threshold e [0.0 95_6], margz.‘n threshold’ c
complex the optimisation process and the decision makin 0.0 16_2] andneighbor tl;reshold o 160]

Therefqre, as It was previously done |n_[14], |n. this work = 5, example of the results obtained from the sensitivity
AEDB Is opt|m|seq in terms of three objectives: Coverag?'analysis for the 300 devices network is shown in Figure 2.
r}umb.er .Of ll‘o(rjwzrdlngs, and e“?rgy used. lTh.e brc;}adcasktlnghe influences of the variables on the different objectives
ltlme 1S rllncuz N asda _constlralnt. an);_dso ution that takes, e presented. We can see that the broadcast time is mainly
onger than 2 seconds Is no longer valid. influenced bymax_delay and min_delay. The coverage

The main goal of this work is to tune the main AEDB , nieved is markedly affected by theighbor threshold.
parameters Korders threshold margin forwarding delay, While bothneighbor_threshold andborder_threshold are

and neighborsthresholq using multi-objective techniques o parameters that influence most in the energy used and
based on Pareto dominance in order to obtain the besto number of forwardings

possible protocol behavior, considering the three objesti Generally  speaking, we notice  that the
explained and the constraint. The parameters are explainergmgm threshold has the lowest direct influence on
next: any objective or density.Thedelay interval strongly
« borders thresholdsets the size of the forwarding area. affects the broadcast time in any density. For the
The higher the threshold, the higher the number of ponumber of forwardings, theorder_threshold and the
tential forwarders, the coverage, the network resourcegeighbor_threshold show the highest direct influence. The
and the number of collisions; energy used is affected mainly by therder_threshold
« margin forwarding is related to both the energy saved and the neighbor_threshold and then by thedelay, in
and the coverage achieved. The higher the margifhat order, but the importance of therder_threshold
value, the higher the coverage reached as well as th@ecreases with density, while:ighbor_threshold becomes
energy used; more prominent. The same behavior is shown in case of the
« thedelayinterval sets the waiting time and also affects coverage, but for the densest network it is mainly affected
the behavior of the protocol. If the delay is very high, by the neighbor_threshold.
the time used to spread the message will be high, butif Table | summarises our main findings (symbdisand
it is very small, the number of collisions will probably <7 indicate whether the variable should be increased or

increase; decreased, respectively, to optimise the corresponding ob
« neighborsthreshold fixes the minimum number of jective; 0 stands for no interaction found).

neighbors in the forwarding area needed to discard

some nodes. It affects the use of the network and the IV. L OCAL SEARCH

energy used: the lower the value, the lower the energy AEDB-MLS is a multi-start population-based local search
used and the higher number of forwardings. algorithm that maintains several distributed populatidhs
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Figure 2. Influence of the parameters on the different obstfor the 300 devices network

Table |
SUMMARY OF THE PARAMETER SENSITIVITY ANALYSIS
objective
coverage forwardings  energy used broadcast time
parameter maximise minimise minimise constraint
border threshold A yes A yes A yes O few
delay v few A few v few Avy yes
margin threshold A very few A no A\ no O no
neighbors threshold A yes A yes A yes v few

is a massively parallel algorithm in which every solution in archive, each solution will be preserved only if it is a non-
every population is simultaneously improved by the pafralledominated solution.

application of an iterative local search procedure. When
improving a solution in a given population, each local skarc

procedure makes use of the other solutions in the SamI%borating with other populations. After a given number of

population in order to guide the search. The best SOIUtionﬁerations each population is reinitialised by using @méy

fqun_d by all the local s_earch procedgres are stqred N Zelected solutions from the external archive. This meamani
distributed external archive of non-dominated soluticsee(

Sect. IV-A). After each iteration, the best solutions inrgve generates population diversity for the local search proed

. . . . grovides a collaboration mechanism between the distribute
population are stored into the external archive; once in th . . : -
populations, and helps to avoid stagnation conditions.

The solutions in each population are improved in an
isolated fashion for a fixed number of iterations, without co



The algorithm follows a non-hierarchical schema in which —~

all parallel local search procedures are peers and no proce- " Population
dure performs a master role. Figure 3 presents the logic of o L External
the parallel local search procedure that iteratively inpso [y T replace ~ B archive
each solution in the AEDB-MLS algorithm. (s v 2\
current \ l - store
Figure 3. Pseudocode of the local search procedure in theBAED ‘ solution BLX"%:F"f\\ 3 ‘\

MLS algorithm crossover ) i
1: s « initialise_solution() - ‘ 7N W reinitialization
2: evaluate(s) ) "/ procedure

3: store_in_archive(s) ~

4: synchronise threads() \ fandom

5. while stopping conditioris not metdo i

6: t < random_solution(population

7. § « local_search operator(s,t)

8:  evaluatgs) _ ) _

9 if 3 is feasiblethen Figure 4. General overview of the AEDB-MLS algorithm

10: store_in_archive(s)

11: s=25§ .

120 end if A. External archive

13: if reinitialise conditionis metthen In this work, we use the Adaptive Grid ArchivinhGA

14: s + receive_from_archive() algorithm as the archiving method. The elite population in
15: synchronise threads() AEDB-MLS is limited in size, so an archiving technique
16:  end if must be applied to discard solutions when the maximum size
17: end while of the archive is exceeded. The AGA algorithm was initially

proposed as the density estimator for the Pareto Archived
Initial feasible solutions are randomly initialised in Bac E.V(.)Il.mon Strategy_I?Al_ES algonth_m [10]. It conS|st§ n

. S : . . dividing up the objective space into hypercubes with the
population. Each local search initialises its assignedistp oal of balancing the density of non-dominated solutions
solution s (line 1), evaluates it, and stores it to the external? the h ercubgs Then whyen inserting a non-dominated
archive (lines 2-3). Then, all the local search procedure olution )rr? the Paréto fror,1t its grid Iocati%n in the sabuti
working on the same population are synchronised with each . . 159 X
other in order to wait until the local population is fully space is determined. If the Pareto front is already full and
initialised. Once this happens, the main loop is repeatéitl un the grid location of the new solutio_n does not_match with the
the stopping conditions met. In it, the local search operator mast crowded hyper_cube, a solution bglong!ng to that most

crowded hypercube is removed before inserting the new one.

is iteratively applied to the currently assigned solutian . i
In order to apply the operator to the solutien another The AGA Stfate.gy gua.rantegs three very des_wgble pr.opertle
for multi-objective optimisation algorithms: i) it mairites

solutiont is randomly selected from the local population and X o L S
y pop solutions at the extremes of all objectives; ii) it maingin

;Jhs:cioa::salr e;::;zﬁe(:ﬁlg:agfg thisp:;ﬁ;?sggnispggi??&é solutions in all of the Pareto occupied regions, and iii) it

If the perturbed solutions is feasible (i.e., it complies dist_ributes the remaining solutions evenly among the Baret

with the time constraint), ther is replaced withs and regions.

the new solution is stored in the external archive (lines

9-12). When thereinitialise conditionis met, the whole B. Local search operators

local population is discarded and replaced with randomly The local search operators were designed based on the

selected solutions form the external archive, restartivy t sensitivity analysis study presented in Sect. Ill-A. From

local search procedures from a new location in the searcthis study we conclude that there are three different search

space (lines 13-15). Figure 4 shows a general overview dfriteria that can be applied when modifying a solution, de-

the AEDB-MLS algorithm. pending on the objective to be improved: i) if thrergy used
The AEDB-MLS algorithm follows a hybrid parallel objective orforwardingsobjective are targeted for improve-

model: message-passing is used for the collaboration benent, then theborder_threshold and neighborsthreshold

tween the distributed populations and the external archiveparameters should be modified; ii) if tlteverageobjective

and shared-memory is used in the collaboration betweeis to be improved, then theeighborsthresholdparameter

solutions in the same population. should be tuned; and iii) if theroadcast timeconstraint is to



Optimization algorithm Solution evaluation

square area of 500 m side. The speed of the nodes can

i | sotuion ) (TTTT ™ vary from 0 to 2m/s (i.e., between 0 and 7.2km/h). We study
& ;"’:o“’? f"égs L i three different network densities in the optimisation s
configuration . .
Rty @é“;f with 100, 200, and 300 devices/RmAll the parameters are
e S vy b summarised in Table II.
F y
| SRS | | ns-3 .
\:ED:D _ evaluation result | gmulation ‘ AEDB protocol | Table I
N — CONFIGURATION OF NS3

Figure 5. Search and solution evaluation procedure in ABMDES Devices/km 100, 200, 300
Speed [0, 2 m/s
be i d. th hein del d del Size of the area 500 m x 500 m
€ improve ,_t en thein_de ayandmax ae ayparameters Default trans. power 16.02 dBm
should be adjusted. Dir. & speed change every 20 s

The local search operator uses the BbXeperator, a

recombination operator for real-coded EAs [5], which has |n the simulations, the network evolves for 30 seconds in
been successfully used on a wide range of problems [8Jprder to have the nodes uniformly distributed in the area.
[17]. Each iteration, one of the three aforementioned $earcThen, after these 30 seconds, a node starts the broadcasting
criteria is randomly selected and it is applied to the currenprocess. The simulation stops after 40 seconds.

solution s. The BLX-oo operator is independently applied |y order to limit the search space, we defined reasonably

to each of the corresponding parametérsiefined by the  |arge intervals for each of the parameters we are optimising
selected search criterion. The value of the paramete®”  They are shown in Table III.

in solutions is modified by BLX« as shown in Equation 2.

Table 1l
R DOMAIN OF THE VARIABLES
Sp=38p+ ¢ x[(3xp)—2] ) _

¢ =ax|s,—tp) minimum delay 0,1s
P P maximum delay 0,5 s
wheret is an auxiliary solution randomly selected from border Threshold - [-95, -7q dBm
. . margin_Threshold [0, 3 dBm
the current populationp € [0,1) is a randomly selected neighbors Threshold [0, 50 devices

number,s,, is the value of the parametgrin the solutions,
ands, is the value of the parametgrin the solutions. The The goal of this work is tcefficiently solve the AEDB

additional parameter < (0, 1) represents the perturbation y,ning problem, thus a fixed limit of 250 solution evaluation

magnitude of the BLXa operator, the higher the-value  horthread is used as a stopping criterion for the AEDB-MLS
the more perturbed is thg-value during the crossover. The 4qqrithm. Each execution is performed using 8 distributed
parametery was empirically tunned during the experimental populations with 12 threads per population, the maximum

analysis presented in Sect. V. o number of cores per computing node available in the com-
Figure 5 shows a general overview of the iterative searchy ;ing platform. This gives us a total of 24000 evaluations
AEDB-MLS performs, and the evaluation procedure. per algorithm execution.

A configuration analysis was performed using the less
dense network in order to find the best values for the

The quality of each solution found by the AEDB-MLS parameter used in the BLX-operator, and the number of
is measured in terms of the different objectives explainegierations needed to meet theset conditiorin the AEDB-
before: (1) coverage achieved, (2) energy used and (3YILS algorithm. The candidate values for the parameter
network resources. The value of the broadcast time is alsgettings study werey € {0.1, 0.2, 0.3, andreset condition

needed to verify the validity of the solution. For evalugtin < {15, 25, 5Q. The best results were obtained using
the solutions, we rely on the well-known ns3 [11] network o, — (.2, and reset condition= 50. These are the values

simulator. It is an event driven simulator written in C++, we adopted for AEDB-MLS.
highly realistic for wireless networks.
In order to have confident results, the quality of the VI. RESULTS
solution is not tested in one single network but in 10 difféere = We proceed to analyse the solutions obtained by the
networks, and the fitness value of each objective is definedEDB-MLS algorithm, and compare them to those reported
as the average value of the 10 runs. These 10 networks aie [14], found with the NSGAII [3] and CellDE [4] MOEAs.
always the same for evaluating every solution. We build the Pareto front approximation of AEDB-MLS
Regarding the configuration of ns3 for the simulation ofwith the best non-dominated solutions found in 30 inde-
the broadcasting algorithm, the mobility model used is thependent executions (according to the AGA method) for
random walk [7]. The simulation environment used is aevery network density. They are displayed in Figure 6, and

V. EXPERIMENTAL ANALYSIS



compared versus &eferencePareto front approximation
built from the best results found by the two MOEAs in

30 independent runs for every density (AGA was used in
this case too). For a more detailed information about the
configuration of the evolutionary algorithms, please refer

to [14].

Results show that the MOEAs and AEDB-MLS obtain
similar Pareto front shapes. As stated in [14], there exis
two clearly differentiated set of solutions. One with veswl
values of energy approximately betweler20, 20] dBm and

Table IV
COMPARISON OF THE ALGORITHMS ACCORDING TONILCOXON TEST

Spread
CellDE AAA A——
NSGAII A%
Inverted generational distance
CellDE vV — AAA
NSGAII AAA
Hypervolume
t CelDE VvV TYVY
NSGAII AAA
NSGAIl AEDB-MLS

similar values for the coverage and the number of forward-
ings, and another with higher energy values and coverage

growing much faster than the number of forwardings. The

latter region of the front is the one in which we are more
interested, since it is providing high coverage at a redslena
number of forwardings and energy requirements.

We can see that AEDB-MLS solutions are very close
to the best solutions found by the MOEAs. Additionally,

it can be seen that AEDB-MLS provides a set of diverse

solutions, well spread along the Pareto front approxinmatio

We compared the Pareto fronts obtained by the three al-

gorithms in terms ofspread (to quantify the diversity of

solutions),inverted generational distand¢hat measures the
accuracy of solutions), antlypervolume(accounting for

both, accuracy and diversity). They are defined next:

« Inverted generational distancét measures the average

Hypervolume This indicator calculates the volume, in
the objective space, covered by members of a non-
dominated set of solutiong, for problems where all
objectives are to be minimised [21]. Mathematically,
for each solution € @, a hypercube); is constructed
with a reference point¥/ and the solutioni as the
diagonal corners of the hypercube. The reference point
can simply be found by constructing a vector of worst
objective function values. Thereafter, a union of all
hypercubes is found and its hypervolum&Y) is
calculated as:

1]

Iy = volume U v;
i=1

(®)

euclidean distance from the found solutions to the

Pareto-front. It was presented in [19] and defined in
Eqg. 3:

k 2
ie1 d;

2

IGD = )

whered; is the Euclidean distance from poinin the

)

The higher the value ohypervolumethe better the
approximated Pareto front is.

Before applying these metrics, all fronts were normalised
because these indicators are not free from arbitrary gralin
of the objectives. An approximation of the true Pareto front
built from the best solutions found by the three considered
algorithms (after 30 independent executions) was useckin th

Pareto front approximation found to the closest onenormalisation process.

in the optimal Pareto front, and is the number of
solutions in the front.

Fronts with smalinverted generational distanc@lues
are desirable. It takes value when all solutions are
actually on the Pareto front.

Spread It quantifies the diversity of solutions in the

The results of the pairwise comparison of all the three
algorithms according to the three metrics is summarised in
Table 1V, where symbol4’ indicates that the algorithm in
the row is better than the algorithm in the corresponding col
umn, with95% statistical confidence according to Wilcoxon
unpaired signed rank test. On the contrary, eans that it

front by means of how well they are spread along thelS worse, and ‘-’ represents those cases when no statistical

front. It is defined as:

Cdpt+di+ N di - d]

I
8 df +d;+ (N —1)d

(4)

3

significance was found. The three symbols in every column
represent the result of the comparison of the corresponding
algorithms for 100, 200, and 300 devicesAkimstances, in
that order.

According tospread CellDE outperformed NSGAII for

whered; is the Euclidean distance between consecutivehe three instances (with statistical confidence), while it

solutions,d is the mean of these distances, ahdand
d; are the Euclidean distances to teeremesolutions

can only outperform AEDB-MLS for the sparsest density.
AEDB-MLS is significantly better than NSGAII for the

of the optimal Pareto front in the objective space. Thistwo biggest problem instances (no statistical confidence wa

indicator takes value zero for an ideal distribution,
which has a perfect spread of the solutions in the Paret
front.

found for the sparse networks). Regarding batlerted
generational distancandhypervolumeAEDB-MLS is out-
performed by the two MOEAs for the three instances.
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Figure 6. TheReferencePareto fronts obtained for the studied densities and thet®#&monts obtained with the local search

We graphically show in Fig. 7 the boxplots of the valuesconfiguration, AEDB-MLS dominates 15 solutions and is
obtained by the three algorithms in the 30 runs for thedominated 17 times. The results obtained demonstrate that
three considered metrics. We can see that, as mentionalde quality of the solutions found using the local search is
before, AEDB-MLS is highly competitive with the MOEAs competitive compared to the MOEASs. Please, notice that we
according to thespread metric for the three networks. are comparing here our local search versus the best results
The goodspread values provided by the proposed local of the two MOEAs. Therefore, we foresee that enriching
search algorithm, better than NSGAII, show its capability t the MOEAs with the proposed local search algorithm could
effectively explore the search space to provide a divedksifie significantly improve the quality of the obtained results.
set of solutions. However, regarding the accuracy of the al-
gorithms, it is visible that AEDB-MLS is not so competitive
with the MOEAs.

We also checked how many solutions from fReference Regarding the execution time, AEDB-MLS requires, in
Pareto front (built from the solutions of the two MOEAS) average, 48, 188, and 417 minutes to find the Pareto front
are dominated by at least one solution of the AEDB-MLSapproximations for the three network densities: 100, 206, a
Pareto approximation and vice versa. We found out thaB00 devices/krfy respectively. The evolutionary algorithms
AEDB-MLS dominates 13 solutions of tHeeferencd’areto  take 32, 123, and 264 hours on the same server (Intel Xeon
front for the 100 devices density, while its solutions areL5640 under Debian 6.0). It means that the multi-objective
dominated by 54 solutions of thReferencePareto front. local research presented here is over 38 times faster than
For the 200 devices network, AEDB-MLS dominates 11any of the evolutionary algorithms, and it performs 2.4 sme
solutions and is dominated 40 times. Finally, for the deinseanore evaluations than the EAs.
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Figure 7. Boxplot comparison of the quality of the Paretmfsoobtained for the studied densities
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