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I. INTRODUCTION

The purpose of a heat engine is to transform an amount of
heat Qh, extracted from a hot reservoir at temperature Th,
into an amount of work W. The efficiency �=W /Qh for do-
ing so is at most equal to Carnot efficiency: ���c, with
�c=1−Tc /Th. Here Tc is the temperature of a second, cold
reservoir Tc�Th, in which the remaining energy Qh−W is
deposited. The equality is reached for reversible operation,
implying that the corresponding power output is zero. Cur-
zon and Ahlborn �CA� were among the first to study the
question of efficiency at maximum power �1�. By consider-
ing a simple modification of the Carnot engine and after
applying the so-called endo-reversible approximation �ne-
glecting dissipation in the auxiliary system�, they found the
following beautiful expression for the efficiency at maximum
power: �CA=1−�Tc /Th=1−�1−�c=�c /2+�c

2 /8+¯. While
this formula appears to describe rather well the efficiency of
actual thermal plants, and is close to the efficiency at maxi-
mum power for several model systems, it is neither an exact
nor a universal result, and it is neither an upper nor a lower
bound. It has therefore come as a surprise that a number of
universal predictions can be made about the expansion of the
efficiency at maximum power in terms of �c. In the regime
of linear response, i.e., at first order in �c, it is found that the
efficiency at maximum power is at most half of the Carnot
efficiency �2�. In other words, the CA efficiency is an upper
bound at the level of linear response. The proof was given
for systems operating under steady-state conditions. The up-
per bound is reached for so-called strongly coupled systems,
i.e., systems in which the heat flux and the work-producing
flux are proportional to each other. More recently, it has been
shown that the quadratic coefficient, equal to 1/8, is also
universal for strongly coupled systems in the presence of an
additional left-right symmetry in the system �3�. Further-
more, the universality of the coefficients is a direct conse-
quence of the time reversibility of the underlying physical

laws. The coefficient 1/2 derives from the symmetry of the
Onsager matrix. The coefficient 1/8 can be seen as the im-
plication of Onsager symmetry at the level of nonlinear re-
sponse.

The above universality predictions have been confirmed
in a number of steady-state model systems involving classi-
cal particles �4�, fermions �5�, and bosons �6�. Universality
has also been observed in variants of the CA model based on
Carnot cycles performed in finite time, even though finding
the optimal driving protocol maximizing work extraction can
be notoriously difficult �7–13�. The connection with the
steady-state analysis has been clarified by identifying the
Onsager coefficient for a finite-time Carnot cycle in the lin-
ear regime �11�. Furthermore, agreement with the universal
quadratic coefficient has also been observed in a Carnot
cycle based on a �classical� Brownian particle in a harmonic
trap �8�.

In this paper we provide a full analysis of a thermal en-
gine undergoing a Carnot cycle, with the auxiliary system
consisting of a single-level quantum dot that is switched be-
tween a hot and a cold reservoir. We show that the efficiency
at maximum power is again consistent with the above dis-
cussed universality. Furthermore, CA efficiency at maximum
power is obtained exactly at all orders in �c in the limit of
low dissipation, which is distinct but similar to the case con-
sidered in the original CA paper �1�.

II. MODEL

Our heat engine model consists of a single-level quantum
dot interacting with a metallic lead through a tunneling junc-
tion. The quantum dot is assumed to have a single energy
level � near the Fermi level of the lead while other levels in
the dot do not contribute to the processes described below.
The state of the system is specified by the occupation prob-
ability p�t� of having an electron in the dot. The lead plays
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the role of a thermal bath at temperature T and chemical
potential �. Electrons are assumed to thermalize instanta-
neously upon tunneling into the lead.

When the energy level � is modulated by an external
agent according to a given protocol, a certain amount of
energy, positive or negative, flows into the system in the
form of work and/or heat. In the case of an occupied level, an
amount of work equal to �� f −� f�− ��i−�i� is delivered to the
system, where the subscripts f and i refer to final and initial
values. When the electrons at energy-level � tunnel in �out�,
an amount of heat equal to Q=�−� �Q=−�+�� is extracted
from the bath.

The basic problem that we address is the finite-time per-
formance of this engine as it runs through the following four
standard stages of a Carnot cycle �also see Fig. 1�.

A. Isothermal process

The quantum dot is in contact with a cold lead at tempera-
ture Tc and chemical potential �c. The energy level is raised
from �0 to �1 according to a certain protocol during a time
interval of duration �c. Both work and heat are exchanged
during this process.

B. Adiabatic process

The quantum dot is disconnected from the cold lead, and
the quantum level is shifted from �1 to a new level �2. Since
the quantum dot is thermodynamically isolated, the popula-
tion of the level does not change during this process. Hence,
there is no heat exchange. However, the change of the energy
level releases a corresponding amount of work. We assume
that the operation time of this step is very short, in particular
negligibly small compared to that of the isothermal pro-
cesses.

C. Isothermal process

The dot is connected to the hot lead at temperature Th and
chemical potential �h. The energy level is lowered from �2 to
�3 based on another protocol during a time interval of length
�h. Just as in step I, both heat and work are exchanged.

D. Adiabatic process

The system is again disconnected from the lead and the
level is restored from �3 to the initial level �0, at the cost of
a corresponding amount of work. Afterwards, the dot is re-

connected to the cold lead. Again, we assume that the opera-
tion time of this process is negligibly small.

The above procedure defines one cycle of the thermal
engine, requiring a total time �c+�h. The protocols in steps I
and III must be designed in such a way that the thermody-
namic state of the system, in our case the occupation prob-
ability p of the quantum level, returns to the same initial
value after every cycle. Since there is no change in occupa-
tion probability during adiabatic stages II and IV, the change
in occupation probability from, say p0 to p1, during process
I, must necessarily be compensated by a change back from
p1 to p0 during process III.

The time evolution of the occupation probability p�t� for
the state of the quantum dot in contact with a lead at tem-
perature �−1 �kb=1� obeys the following quantum master
equation:

ṗ�t� = − �a�t�p�t� + �b�t��1 − p�t�� , �1�

where the �a and �b are transition rates. In the wide-band
approximation, these rates are given by

�a =
C

e−����t�−��t�� + 1
�2a�

�b =
C

e+����t�−��t�� + 1
, �2b�

where C is a rate constant. Noting that raising the energy
level is equivalent to lowering the chemical potential, we
introduce an effective energy level 	��−�. Master Eq. �1�
can now be rewritten as

ṗ�t� = − Cp�t� +
C

e�	�t� + 1
. �3�

The effective level varies along the Carnot cycle as 	0=�0
−�c→	1=�1−�c→	2=�2−�h→	3=�3−�h. Note that the
change in the chemical potential is included in the jump of
the effective level during processes II and IV.

We next turn to the thermodynamic description of the
model. We use the convention that heat entering the system
is �like work� positive. The internal energy of the system at
time t is

E�t� = U�t� − �N�t� = 	�t�p�t� , �4�

where

U�t� = ��t�p�t�, N�t� = p�t� . �5�

The rate of change in the internal energy, Ė, is the sum of two

parts, namely, a work flux Ẇ and a heat flux Q̇,

Ẇ � 	̇p = �̇p − �̇p �6a�

Q̇ � 	ṗ = �ṗ − �ṗ . �6b�

Note that the particle exchange contributes to the heat flux
�last term in Eq. �6b��. When the energy level is below the
chemical potential, the direction of heat flow is opposite to
the direction of tunneling.

FIG. 1. �Color online� A Carnot cycle of the model heat engine
consisting of a single-level quantum dot interacting with a lead
through a tunneling junction.
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The net total work and net total heat during the process of
duration � are obtained as functionals of the occupation prob-
ability,

W�p� · �� = �
0

�

	̇�t�p�t�dt �7a�

Q�p� · �� = �
0

�

	�t�ṗ�t�dt . �7b�

For cyclic processes, we have E�0�=E��� and hence W+Q
=0. For mathematical simplicity, we evaluate power using
net heat instead of net work,

P =
− W

�
=

Q
�

. �8�

III. OPTIMIZATION: GENERAL CASE

Our goal is to maximize the power output and to evaluate
the corresponding efficiency. Power is a complicated func-
tional of the time-dependent protocols in stages I and III, and
an exact analytical analysis looks difficult at first sight. The
optimization can however be done in two steps. First, we fix
parameter values, �c, �h, p0, and p1 and maximize the power
with respect to the functional space of 	�t�. Since the total
operation time is fixed, we just need to maximize the heat.
Next, we further maximize the power with respect to the
remaining degrees of freedom �c, �h, p0, and p1. The problem
of maximizing heat or minimizing work for a single-level
quantum dot moving between given initial and final energy
states has already been analyzed in detail in �14�. We repro-
duce the crucial steps of this analysis for self-consistency.

To find the protocol that maximizes the heat, we do not
search directly for the optimal schedule 	�t�, but identify the
optimal occupation probability p�t�. This is done by express-
ing 	�t� in terms of p�t� and ṗ�t�, and rewriting the heat, Eq.
�7b�, as a functional of p�t� and ṗ�t�,

�Q�p� · �� = �
0

�

L�p, ṗ�dt , �9�

where

L � ln� C

Cp�t� + ṗ�t�
− 1	ṗ�t� . �10�

The extremum is found via the standard Euler-Lagrange
method, leading, after integration, to

L − ṗ
�L
� ṗ

=
ṗ2

�Cp + ṗ��C�1 − p� − ṗ�
= K . �11�

Here K is the constant of integration. Solving the quadratic
equation for ṗ, we obtain two first-order ordinary differential
equations �ODEs�,

ṗ

C
=

K�1 − 2p� 
 �K2 + 4Kp�1 − p�
2�1 + K�

. �12�

The upper sign �−� should be used for upward processes in
which the quantum level is raised and the lower sign �+� for

downward processes. It is worth mentioning a useful sym-
metry between electrons and holes. We are using the state of
an electron, 	�t� and p�t�, to describe the state of the system.
Instead, we can also use the state of holes, −	�t� and 1
− p�t�. If p�t� is a solution for an upward process, then 1
− p�t� is a solution for a downward process with −	�t�. Hence
we do not need to calculate the downward process separately,
as it follows from this symmetry.

Before turning to the solution of differential Eq. �12�, we
examine the physical meaning of the constant K. Eliminating
ṗ in Eq. �11� by using master Eq. �3�, the resulting quadratic
equation for p�t� leads to the relation

p�t� =
1

e�	�t� + 1
�1 + e�	�t�/2�K� . �13�

This equation indicates that when K=0, p�t� is the equilib-
rium distribution associated with the instantaneous value of
the energy, implying that K=0 corresponds to the quasistatic
limit ��→��. As K increases, p�t� deviates from the equilib-
rium distribution. We conclude that K measures how far the
state of the system deviates from the quasistatic limit. We
will use this insight below to obtain a perturbative solution
for small dissipation by assuming that K is small.

Next we proceed to solve Eq. �12�. Separation of the vari-
ables p and t leads to the following explicit result for the
upward processes,

Ct = F�p�t�;K� − F�p�0�;K� , �14�

where

F�p;K� = −
1

2
ln p +

1
�K

arctan� 1 − 2p
�K + 4p�1 − p�

	
+

1

2
ln� 2p + K + �K2 + 4Kp�1 − p�

2�1 − p� + K + �K2 + 4Kp�1 − p�
	 .

�15�

For the downward processes, we need to use F�1− p ;K�.
The value of K is determined by the boundary conditions

C� = F�p���;K� − F�p�0�;K� . �16�

Note that K depends solely on the operation time �, the prob-
abilities p0 and p1, and the tunneling rate C but not on tem-
perature. Unfortunately, function �15� is quite complicated so
we cannot obtain an analytical expression for K. In general
we need to solve for it numerically. However, an exact per-
turbative solution is possible �cf. Sec. IV�.

Having thus obtained the optimal p�t� with K determined
by Eq. �14�, we insert this expression in Eq. �7b� to obtain
the corresponding maximum heat for the optimal upward
processes,
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�Q = �
0

�

	�t�ṗdt = �
p�0�

p���

	�p�dp

= �
p�0�

p���

dp ln�2p�1 − p� + K + �K2 + 4Kp�1 − p�
2p2 	

= S�p���;K� − S�p�0�;K� = �S , �17�

where

S�p;K� = p ln�2�1 − p�p + K − �K2 + 4Kp�1 − p�
2p2 	

− �K arcsin� 1 − 2p
�K + 1

	
− ln�2�1 − p� − K − �K2 + 4Kp�1 − p�

2
	 . �18�

For the downward processes, S�p ;K� is replaced by
S�1− p ;K�.

Out of equilibrium, S is different from the system entropy
S�p�=−p ln p− �1− p�ln�1− p�. Indeed, �S is the entropy
flow and is related to the system entropy change �S
=S�p����−S�p�0�� via the always-positive entropy produc-
tion �iS=�S−�S0. It is only in the quasistatic limit,
where K→0 and thus �iS=0, that S�p ;K� reduces to S�p�.

We are now ready to apply the above results to our heat
engine. To make the connection with the left/right symmetry
required for the universality of the coefficient in the qua-
dratic term, cf. the discussion in the introduction, it will be of
interest to consider an asymmetry in the rate constant: we
will use the subscripts Cc and Ch for the rate constant C
when in contact with the cold and hot reservoir, respectively.
Recalling that processes I and III are upward and downward
processes, respectively, boundary condition �16� leads to

Cc�c = F�p1;Kc� − F�p0;Kc� �19a�

Ch�h = F�1 − p0;Kh� − F�1 − p1;Kh� , �19b�

which determine the integration constants Kc and Kh, respec-
tively.

Substituting Kc and Kh into Eq. �17�, we obtain the
amount of heat that enters the system during processes I and
III,

Qc = Tc�S�p1;Kc� − S�p0;Kc�� = Tc�Sc �20a�

Qh = Th�S�1 − p0;Kh� − S�1 − p1;Kh� = Th�Sh� , �20b�

which leads to the efficiency of the engine

� = 1 +
Tc�Sc

Th�Sh
. �21�

In the quasistatic limit, Kc→0 and Kh→0, one has S�p ;0�
=S�p�=S�1− p�, hence �Sc=−�Sh so that Eq. �21� reduces
to Carnot efficiency.

The above results provide the required optimization with
respect to the schedules. It remains to perform the optimiza-
tion with respect to the remaining degrees of freedom �c, �h,

p0, and p1. In general, this can only be done numerically
since Eq. �14� only provides an implicit equation for the time
dependence of the optimal schedule. We are, however,
mainly interested in the verification of universal features of
efficiency at maximum power. We therefore proceed with a
perturbative analysis for which analytic solutions can be ob-
tained.

IV. WEAK DISSIPATION LIMIT

The deviation from Carnot efficiency can be investigated
using the theory of linear irreversible thermodynamics where
Th−Tc is assumed to be smaller than the temperatures Th and
Tc of the reservoirs. However, for finite-time thermodynam-
ics, a different kind of expansion, directly related to the irre-
versibility caused by finite operation time, is more natural.
As mentioned in Sec. III, K is a direct measure of the devia-
tion from the quasistatic limit. Hence, it is natural to expand
thermodynamic quantities in K. Since this is an expansion
about the reversible case of zero dissipation, we will refer to
this as the limit of weak dissipation.

We expand Eq. �15� in a series in �K. The leading term is

F�p;K� =
arcsin�1 − 2p�

�K
. �22�

With this approximation, we are able to solve Eq. �19� for K
to obtain

�K� =

�1 − �0


C���

, �� = c,h� �23�

where

�i = arcsin�1 − 2pi�, �i = 0,1� . �24�

The present expansion is thus valid under the following con-
dition of weak dissipation:

C��� � 
�1 − �0
, �� = c,h� . �25�

Note that it can easily be satisfied in our model since the
right-hand side is bounded by �.

Once we find the value of K, the remaining calculation is
straightforward. Equation �14� leads to the optimal protocols,

pc�t� =
1

2
�1 − sin� t

�c

�1 − �0
 + �0�	 �26a�

ph�t� =
1

2
�1 + sin� t

�h

�1 − �0
 − �1�	 . �26b�

Expanding in a Taylor series with respect to �K, Eq. �18�
is approximated by the two lowest-order terms as

S�p� = S�p� − arcsin�1 − 2p��K . �27�

Inserting the value of K, we obtain the maximum heat
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Qc
� = − Tc�S − Tc

��1 − �0�2

Cc�c
�28a�

Qh
� = Th�S − Th

��1 − �0�2

Ch�h
�28b�

where �S=S�p0�−S�p1� is the reversible entropy change.
The second term on the right-hand side is the irreversible
heat, which has to be small under condition �25� of weak
dissipation. In the quasistatic limit ��→��, the second term
vanishes and efficiency �21� reaches the Carnot efficiency, as
expected.

When the operation time is too short, the irreversible heat
becomes dominant and the net heat becomes negative. Equa-
tion �28� indicates that positive power can be obtained only
if

�Th − Tc��S

��1 − �0�2 �
Tc

Cc�c
+

Th

Ch�h
. �29�

This inequality is consistent with the condition of asymptotic
expansion �25� and can thus be satisfied even for a large
temperature difference.

So far, we have maximized the power only for the fixed
operation times �c and �h and the boundary values p0 and p1
of the occupation probabilities. Now we further maximize
the power

P =
Qc

� + Qh
�

�c + �h
�30�

with respect to the operation times. It is easy to find that the
power is a maximum when

�c
� =

2��1 − �0�2Tc�1 + �ThCc/TcCh�
Cc�S�Th − Tc�

�31a�

�h
� =

2��1 − �0�2Th�1 + �TcCh/ThCc�
Ch�S�Th − Tc�

. �31b�

This optimization reflects the usual competition with the de-
nominator of the power preferring faster operation whereas
the numerator suggests a slower schedule to stay closer to
Carnot efficiency.

For the asymptotic expansion to be valid, the optimal op-
eration times must satisfy condition �25� of weak dissipation.
That is, for process III the following inequality must be sat-
isfied:


�1 − �0

Ch�h

� =
�S

2
�1 − �0

Th − Tc

Th�1 + �TcCh/ThCc�
� 1. �32�

This can be achieved in two ways. The first one corresponds
to the usual condition for linear irreversible thermodynamics,
�Th−Tc� /Th�1. The alternative is 
�S / ��1−�0�
�1. In this
limit, our result remains valid even for large temperature
differences.

With the optimized operation times �Eq. �31��, the result-
ing power is written as a function of p0 and p1,

P =
�Th − Tc�2

4��Th/Ch + �Tc/Cc�2
D�p0,p1� , �33�

where

D�p0,p1� =
�S2

��1 − �0�2 . �34�

The power reaches its maximum when D�p0 , p1� takes a
maximum value, Dmax=0.439 at p0= p1=0.0832 or p0= p1
=0.9168. At these conditions, optimal operation time �31�
and maximum heat �28� both vanish. However, the power
remains finite. This final optimization thus leads to a singular
and unrealistic situation. We note, however, that since Eq.
�34� does not depend on the system parameters, the effi-
ciency does in fact not depend on this final optimization step.
Therefore, we proceed to evaluate efficiency without further
reference to optimal occupation probabilities.

Using maximum heat �28� and optimal time �31�, we fi-
nally obtain the following remarkable result for the effi-
ciency at the maximum power:

�� =
�c�1 + �ChTc/CcTh�

2�1 + �ChTc/CcTh� − �c

,

=
�c

2
+

�c
2

4�1 + �r�
+

�c
3

8�1 + �r�
+ o��c

4� �35�

with r=Ch /Cc. When r=1, efficiency �35� exactly coincides
with the Curzon-Ahlborn efficiency �CA=1−�Tc /Th. Note
also that the efficiency is bounded below by �c /2 for
Ch /Cc→� and bounded above by �c / �2−�c� for Ch /Cc
→0. These limits can be realized without violating the con-
dition of weak dissipation.

V. DISCUSSION

We have calculated the efficiency � at maximum power
of a Carnot cycle with a single-level quantum dot as the
operational device. Our calculation is in agreement with
known universality properties. In particular, the efficiency at
maximum power is equal to half of the Carnot efficiency in
the regime of linear response, �=�c /2+¯. In the case of a
left/right symmetry, corresponding to equal exchange rate
coefficients Ch=Cc of the dot with the heat reservoirs, the
coefficient of the quadratic term is also given by its universal
value 1/8, �=�c /2+�c

2 /8+¯. However, we need to stress
that this result was obtained not by an expansion in �c but in
the limit of weak dissipation. In fact, this calculation adds a
new perspective concerning the occurrence of Curzon-
Ahlborn efficiency itself. Indeed, in the presence of left/right
symmetry, the efficiency is actually exactly equal to the CA
efficiency �CA=1−�1−�c, in the limit of weak dissipation.
This limit is reminiscent of the original derivation of CA
efficiency, and is in the present model formally similar to the
assumption of a linear conduction law between reservoir and
quantum dot. However the concept of weak dissipation
is more general. It remains to be explored whether this
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observation implies a wider range of validity of CA effi-
ciency. In particular, it could explain why observed efficien-
cies at maximum power are not very different from CA effi-
ciency in a wide range of systems under operational
conditions far from linear response.
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