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Abstract – Current statistics can be calculated in various ways. Event-based approaches use the
statistics of the number of events occurring during a given time. Time-based approaches use the
statistics of the time needed to reach a given number of events. By analyzing normal as well as
anomalous statistics of nonequilibrium currents through a two level system in contact with two
different reservoirs, we investigate the conditions under which these different statistics do or do not
yield identical predictions. We rely on the continuous time random walk formulation introduced
in our earlier work (Phys. Rev. E, 77 (2008) 051119).
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Introduction. – The study of currents is of fundamen-
tal importance in statistical mechanics. Average energy
and particle currents are central in determining whether
a system is in equilibrium. Indeed, at equilibrium the
net probability current between any pair of system states
is zero, i.e., detailed balance between all pairs of states
is satisfied. This of course means that all net currents
through the system are zero. External driving mechanisms
bring a system out of equilibrium and may lead to non-
zero currents. Examples of driving mechanisms include
contacts with reservoirs of different temperatures or
chemical potentials, and external forces. The resulting
departure from detailed balance is responsible for an
associated nonzero entropy production [1].
The study of current statistics of systems out of

equilibrium has become an important tool to analyze
small systems where fluctuations around average behavior
can be significant. In macroscopic systems only average
currents are of interest because fluctuations are too
insignificant to be observable. However, in small systems
the fluctuations of currents around the average provide
rich information about the nonequilibrium dynamics of
these systems, as evidenced by the considerable recent
interest in the field of photon and electron counting
statistics [2–6]. Furthermore, current fluctuations have

recently been connected to the generalized version of the
Second Law of thermodynamics via a variety of fluctu-
ation theorems [7–12]. However, there is a fundamental
aspect of current statistics that has, to our knowledge,
not yet been fully explored, namely, the circumstances
under which ergodic conditions are or are not satisfied.
Ergodicity involves the equivalence between ensemble-
averaged and time-averaged statistical properties at
equilibrium. Here we extend the notion of ergodicity to
nonequilibrium currents by exploring conditions under
which event-based and time-based current statistics are
asymptotically equivalent.
It is of particular interest to address these questions

in the presence of anomalous statistics [13] that are
known to significantly affect the ergodic properties of the
system [14–17]. Effects of anomalous statistics were first
observed in averaged current measurements on macro-
scopic disordered semiconductors and amorphous solids,
and were described in terms of continuous time random
walks (CTRW) [18–20]. Nowadays, anomalous statistics
can be measured by photon counting experiments on single
nanodevices such as blinking single quantum dots [21],
single nanocrystals [14], and single molecules [22]. Since
these experiments can give access to the full probability
distribution of the fluctuations it becomes appropriate to
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extend the concept of ergodicity beyond the average to
higher moments.

Definitions and main results. – To describe the
issue, we introduce a system in which certain elementary
events occur as time t progresses, for instance, the net
transfer of a mass or of a charge in or out of a system.
The process is stochastic, that is, there is a distribution
of the number of events occurring in a given time interval,
or there is a distribution of times at which one observes a
given number of events. The current associated with such
events is usually defined as I = k/t under the assumption
that the number of events, k, scales linearly with time.
We will call this the “normal” scaling, and generalize the
definition of the current to recognize the possibility that
the number of events does not grow linearly with time,

I =
k

tα
. (1)

Normal behavior thus corresponds to α= 1, and we call
other scaling behaviors “anomalous”. In particular, we
focus on anomalous behavior with sublinear scaling, 0<
α< 1. As we shall see, this scaling is consistent with
the CTRW formalism and, more specifically, with the
subordination principle of so-called anomalous statistical
processes [23–25].
The scaling information is not sufficient to describe

the full statistics of the current. We need to be more
precise about the nature of the distribution that defines
the behavior of the current and current moments. The
traditional approach to current statistics is to count the
number of events that occur during a given time interval.
Mathematically, this means that one treats k as a random
variable and t as a parameter. The associated probability
distribution is Pt(k), the probability that k events occur
in time t. The current moments according to this point of
view are calculated as

〈Im〉t ≡ 〈k
m〉t
tαm

=
1

tαm

∑
k

kmPt(k), (2)

where m is a positive integer. The average current is
given by the first moment, 〈I〉t. The subscript serves as
a reminder that time here is a parameter.
An alternative approach is to consider time to be the

random variable and the number of events the parameter.
The associated probability density is Pk(t), the probability
that a time t is needed to observe k events. The current
moments according to this point of view are calculated as

〈Jm〉k ≡
km

〈tαm〉k
=

km∫
dt tαm Pk(t) . (3)

With this approach, we use a different symbol for the
current (J) simply to stress the difference. The average
current is now given by the first moment 〈J〉k. We stress
that (2) and (3) require different types of measurement
of the current. The first measures the current during a

fixed time interval t and the second measures it until a
given number of events k has occurred. The statistics is of
course obtained by repeating the experiment many times
or by doing it simultaneously on independent copies of the
system.
At this point it might be tempting to say that the

current statistics are ergodic when asymptotically the
statistics of events and the statistics of times lead to
identical results,

lim
t→∞

〈km〉t
tαm

= lim
k→∞

km

〈tαm〉k
, (4)

that is

lim
t→∞ 〈I

m〉t = lim
k→∞

〈Jm〉k. (5)

To our knowledge this concept of ergodicity would be new
for two reasons. First, it defines an equivalence of time and
ensemble averages at the level of the currents instead of
ordinary system observables. The time average of a current
cannot be expressed in terms of the fraction of time that
the system spends in a given state along a trajectory,
as do conventional approaches to ergodicity (e.g., [15]).
Furthermore, currents are not uniquely specified by the
system states and require that the reservoirs responsible
for the transitions be specified as well. Second, we have
not restricted this statement to averages (m= 1) but have
stated it for all moments (m� 1).
One of our two main results of this paper is the

following:

The ergodic condition (4) is satisfied for normal
statistics, α= 1, but fails for anomalous statistics,
0<α< 1.

Our second goal in this work is to introduce current
statistics for which an ergodic condition is satisfied for
the entire range 0<α� 1. This is achieved by dealing with
the current even more directly, so that time as a random
variable governed by the probability density Pk(t) enters
through the inverse moments,

〈Im〉k ≡ km〈t−αm〉= km
∫
dt
Pk(t)
tαm

. (6)

An alternative ergodic condition would then be the asser-
tion that asymptotically the statistics of events and the
statistics of inverse times lead to identical results,

lim
t→∞

〈km〉t
tαm

= lim
k→∞

km〈t−αm〉k, (7)

that is

lim
t→∞ 〈I

m〉t = lim
k→∞

〈Im〉k. (8)

The second main result of this paper is the following:

The ergodic condition (7) is satisfied for all values
0<α� 1.
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Fig. 1: Two-level system embedded between a left (L) and a
right (R) particle reservoir.

While we could describe and justify these assertions in
a very general way for currents that scale as (1), it is more
instructive to do so using a simple model that highlights
the principal issues. Our model system is sketched in fig. 1,
and falls within the framework considered in ref. [26].

The model. – The system consists of two levels, i= 0
and i= 1, connected to two “particle” reservoirs that we
call left (L) and right (R). The nature of the “particles”
does not matter other than that the current is associated
with the flow of these particles between L and R through
the two-level system. The nature of L and of R also
does not matter other than that L and R must of course
be different in some way. It is the asymmetry between
the two that generates the nonequilibrium constraint. We
have chosen the simplest possible system for our example,
namely, one that allows the presence of either no particles
or one particle but no more than one particle. Such a
model can be viewed as a single-site asymmetric simple
exclusion process [27] and has been used, for example,
to model electron transport in a single-level quantum
dot [28].
Transitions between the states of the system occur

because of particle flow in or out of the system to one
or the other reservoir. We follow the CTRW formulation
in [26] (also called a semi-Markov process, e.g., [29,30])
to describe these transitions. The transitions between the
states are triggered by one or the other of the reservoirs,
and since these are distinct and correspond to different
mechanisms, we label the transitions with an index ν =L,
R. Suppose that the system arrives at state i′ at a given
time and that its next transition is to state i at a time t
later via mechanism ν. We assume the distribution ψνii′(t)
for this transition to be separable,

ψνii′(t) = P
ν
ii′ψi′(t). (9)

Here P ν01 and P
ν
10 are the transition probabilities down-

ward and upward, respectively, triggered by reservoir ν,
and the waiting time distributions ψ0(t) for transitions
from i= 0 to i= 1 and ψ1(t) for transitions from i= 1 to
i= 0 are assumed to be independent of ν.
To explore the consequences of anomalous statistics

on various notions of ergodicity, we choose waiting time
distributions that decay asymptotically as

ψi(t)∼ (1/τi)(t/τi)−α−1. (10)

The times τ0 and τ1 are characteristic times (but not in
general first moments, which in fact diverge when α< 1).
As we shall see shortly, this scaling is consistent with the
scaling (1) of the current. The case α= 1 is representative
of waiting time distributions that decay at least as fast as
1/t2, and these have a first moment τi. In Laplace space,
to lowest order in s the distributions behave as

ψ̃i(s) = 1− (τis)α. (11)

We note that a direct connection to thermodynamics can
be made for α= 1 by, for instance, identifying the two
reservoirs as heat baths of equal temperatures T but differ-
ent chemical potentials µν , and imposing the conditions
(P ν10τ1)/(P

ν
01τ0) = exp (µν/kBT ) [26]. A detailed discus-

sion surrounding our choice of waiting time distribution
can be found in [31].

Current statistics. – Having described our setup, we
are now ready to calculate the various statistical quantities
needed to prove our statements about ergodicity. First,
consider event-based statistics. We define the number of
events kν to be the difference between the number of 0→ 1
and 1→ 0 transitions (denoted N01 and N10) triggered by
the ν reservoir by time t, i.e.,

kν =N01P
ν
01−N10P ν10. (12)

It is always understood that a transition occurred at time
t= 0. In ref. [26] we used a generating function formalism
to obtain an analytic expression for the asymptotic form
of the moments of Pkν (t). Those results immediately lead
to the result for the left-hand sides of eq. (4) (or (5)) and
eq. (7) (or (8)),

lim
t→∞ 〈I

m
ν 〉t = limt→∞

〈kmν 〉t
tαm

=
Γ(m+1)

Γ(αm+1)
amν , (13)

where

aν ≡ P ν10−P ν01
τα0 + τ

α
1

. (14)

To calculate the right-hand sides, we next consider the
time-based statistics, that is, the statistics of the times
needed to reach a given number of events. The probability
Pkν (t) is the probability that kν events have occurred by
time t and is simply a time convolution of N10 factors
ψ0(t) and N01 factors ψ1(t) in some order. The order
is intertwined with the events triggered by the other
reservoir, but does not matter when we go to Laplace
space. Recalling that convolutions in the time domain
lead to products in Laplace space, we get for the Laplace
transform of Pkν the product

P̃kν (s) = [ψ̃0(s)]
N10 [ψ̃1(s)]

N01 . (15)

The numbers of events N10 and N01 are random vari-
ables. However, this can be simplified at long times
because whereas the total number of transitions 2N =
N01+N10 is large, the difference is small, |N01−N10|� 1,
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the constraint coming from the fact that no more than one
particle is allowed in the system. Therefore at long times
we can set N01 ≈N10 ≈N , so that

P̃kν (s) = [ψ̃0(s)ψ̃1(s)]
N . (16)

In the long time (small s) limit, eq. (11) then leads to

P̃kν (s) = [1− (τα0 + τα1 )sα]N , (17)

which can be approximated by

P̃kν (s) ≈ exp [N ln
(
1− (τα0 + τα1 )sα

)
]

≈ exp [−N(τα0 + τα1 )sα]
= exp

(
−kν
aν
sα
)
. (18)

In the last step we have set kν ≈N(P ν01−P ν10) and have
used eq. (14).
Equation (18) is the inverse Laplace transform of the

one-sided Lévy distribution,

Pkν (t) =
(
aν

kν

)1/α
Lα
[(

aν

kν

)1/α
t

]
. (19)

The fractional moments of the Lévy distribution for
0<α� 1 and q < α are [32,33]∫

du uq Lα(u) = Γ(1− q/α)
Γ(1− q) , (20)

from which it follows that

〈tq〉kν =
Γ(1− q/α)
Γ(1− q)

(
kν

aν

)q/α
. (21)

The higher positive moments (q� α) are singular. These
moments allow us to calculate the right-hand side of eq. (4)
(or eq. (5)). In particular, the first immediate conclusion
is that for 0<α< 1 the moments in the denominator of
the right-hand side of eq. (4) diverge. This means that the
right-hand side of this presumptive ergodicity condition
vanishes, whereas the left-hand side does not, cf. eq. (13).
Thus, the condition (4) (or (5)) indeed fails for anomalous
statistics.
On the other hand, when α= 1 one finds that for any

value of q

〈tq〉kν =
(
kν

aν

)q
, (22)

and hence we find for the right-hand side of eq. (4) that

lim
kν→∞

kmν
〈tm〉kν

= amν . (23)

This is identical to the result obtained from eq. (13) when
α= 1. Thus, this condition is satisfied for normal statistics.
Finally, we turn to the right-hand side of eq. (7) or (8).

The negative moments can be obtained from eqs. (20)
and (21) with q < 0. We immediately get

〈t−αm〉kν =
Γ(m+1)

Γ(αm+1)

amν
kmν

. (24)

Using this result, we find that the time-based current
statistics leads to the moments

lim
kν→∞

〈Imν 〉kν = lim
kν→∞

kmν 〈t−αm〉kν =
Γ(m+1)

Γ(αm+1)
amν . (25)

The last expression is identical to that occurring in
eq. (13). This then proves the ergodic condition (7) or (8)
for all 0<α� 1.
Conclusions. – In this letter we have considered the

current statistics of systems away from equilibrium in
which an external constraint produces a current. The
waiting time distribution between successive elementary
processes that give rise to the current decays as t−α−1 at
long times, with 0<α� 1. The scaling is “normal” when
α= 1 and “anomalous” when 0<α< 1. The elementary
events may, for example, be a transfer of particles or of
charge. Specifically, we have addressed the question of
the equivalence between different ways of calculating the
current statistics.
Two setups can be used to directly measure a (properly

scaled) fluctuating current I = k/tα. One can fix the time
interval t and measure the number k of events occurring
during this time or, alternatively, one can fix the number of
events k and measure the time t required for this number
of events to occur for the first time. We have shown that
in both of these setups, the average current as well as
the higher moments of the current are asymptotically
the same, that is, limt→∞〈km〉/tαm = limk→∞km〈t−αm〉
for all 0<α� 1, cf. eqs. (2), (6), and (8). A similar
conclusion, but for a different model involving average
particle velocities in tilted periodic potentials, has been
reached in [34]. When the current moments are calculated
indirectly using the average time statistics km/〈tαm〉,
cf. eq. (3), difficulties arise in the case of anomalous
scaling. This occurs because this approach is in fact an
incorrect way of calculating current moments except for
normal scaling, where all three calculations of the current
moments yield the same asymptotic results.
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