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Abstract

This paper deals with the characterization of some classes of aggregation functions often
used in multicriteria decision making problems. The common properties involved in these
characterizations are “increasing monotonicity” and “stability for positive linear trans-
formations”. Additional algebraic properties related to associativity allow to completely
specify the functions.

Keywords: aggregation functions; interval scale; invariance; algebraic properties of aggrega-
tion operators; multiple criteria decision making.

1 Introduction

Synthesizing judgments is an important part of multiple criteria decision making methods. The
most typical situation concerns individuals who form quantifiable judgments about a measure
of an object (weight, length, area, height, volume, importance or other attributes, for instance
in the framework of a hierarchy)(see [3,4]) or quantifiable judgments on pairs of alternatives
along each criterion. In the latter case, the judgments are very often expressed with the help
of fuzzy preference relations (see [8,9]).

In order to reach a consensus (overall opinion) on these jugdments, classical aggregation
functions have been proposed: arithmetic means, geometric means, root-power means and
many others. Of course, given such an aggregation function, we can ask for a motivation of
its use, i.e. for natural, reasonable assumptions which lead to this function. Conversely, we
can specify some assumptions (called axioms or properties) and determine all the aggregation
functions satisfying these. This is the topic with which we deal here.

This paper aims at describing the family of all aggregation functions fulfilling three specific
properties. The first two are increasing monotonicity and stability for the same transformations
of interval scales in the sense of the theory of measurement (see [15]), i.e. stability for positive
linear transformations (we refer to the corresponding functional equation in [5,6] where the
arithmetic mean is characterized). The third property is chosen among well-known algebraic
properties such as associativity, decomposability and bisymmetry. See Section 3 for details.

We make a distinction between aggregation functions having a fixed number of arguments
(aggregation m-functions) and aggregation functions defined for all number of arguments (ag-
gregation operators or aggregators). Section 4 is devoted to characterizations of aggregation
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†Institut de Mathématique, Université de Liège, Avenue des Tilleuls 15 - D1, B-4000 Liège, Belgium. Email:
mathonet@math.ulg.ac.be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18438456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


m-functions whereas Section 5 presents characterizations of aggregators. For space limitation,
no proof of the results will be given.

2 Basic definitions

We first want to clarify somewhat the difference between an aggregation m-function and an
aggregator. In this paper, IN∗ denotes the set of strictly positive integers and IR the set of
real numbers. Moreover, we assume that the information to be aggregated consists of numbers
belonging to the interval [0, 1] as required in most applications. In Section 6, we show that
this assumption can be weakened.

Definition 1 Let m ∈ IN∗. An aggregation m-function M (m) defined on [0, 1] is a real valued
function of m arguments:

M (m) : [0, 1]m → IR : (x1, . . . , xm) → M (m)(x1, . . . , xm).

Definition 2 An aggregation operator (or aggregator) M defined on [0, 1] is a sequence (M (m))m∈IN∗

of aggregation m-functions M (m) defined on [0, 1].

Obviously, an aggregator M defined on [0, 1] can be viewed as a function defined for any
number of arguments:

M :
∞⋃

m=1

[0, 1]m → IR : (x1, . . . , xm) → M(x1, . . . , xm).

In order to avoid heavy notations, we introduce the following terminology. It will be used all
along this paper.

• II := [0, 1]

• For all m ∈ IN∗, Nm := {1, . . . , m}
• For all m ∈ IN∗ and all x ∈ II, m · x := x, . . . , x︸ ︷︷ ︸

m

• Given a vector (x1, . . . , xm) ∈ IIm, let x(1), . . . , x(m) denote the elements of this vector
sorted in increasing order: that is, x(1) ≤ . . . ≤ x(m).

3 Aggregation properties

As mentioned in the introduction, if we want to obtain a reasonable or satisfactory aggregation,
any aggregation m-function should not by used. In order to evacuate the “undesirable” m-
functions, we can adopt an axiomatic approach and impose that these m-functions fulfil some
selected properties. Such properties can be divided in three categories: natural properties,
stability properties and algebraic properties.

2



3.1 Natural properties

Definition 3 The aggregation m-function M (m) defined on II is

• symmetric (Sy) if M (m) is a symmetric function on IIm, i.e. if, for all permutations σ
of Nm and all (x1, . . . , xm) ∈ IIm, we have

M (m)(x1, . . . , xm) = M (m)(xσ(1) . . . , xσ(m)).

• increasing (In) if M (m) is increasing in each argument, i.e. if, for all i ∈ Nm and all
x1, . . . , xm, x′i ∈ II, we have

xi < x′i ⇒ M (m)(x1, . . . , xi, . . . , xm) ≤ M (m)(x1, . . . , x
′
i, . . . , xm).

• compensative (Comp) if, for all (x1, . . . , xm) ∈ IIm,

min(x1, . . . , xm) ≤ M (m)(x1, . . . , xm) ≤ max(x1, . . . , xm).

• idempotent (I) if, for all x ∈ II,

M (m)(m · x) = x.

It should be noted that any compensative aggregation m-function defined on II necessarily
takes its values in II. Moreover, we have the following result which can easily be checked:

Proposition 1 For every aggregation m-function M (m) defined on II,

(i) (Comp) ⇒ (I)
(ii) (In, I) ⇒ (Comp)

The properties mentioned in Definition 3 can be adapted to aggregators as follows.

Definition 4 The aggregator M defined on II fulfils (Sy) (resp. (In), (Comp), (I)) if, for all
m ∈ IN∗, the aggregation m-function M (m) fulfils (Sy) (resp. (In), (Comp), (I)).

3.2 Stability properties

Definition 5 The aggregation m-function M (m) defined on II is

• stable for the admissible similarities (SSI) if

M (m)(rx1, . . . , rxm) = rM (m)(x1, . . . , xm)

for all (x1, . . . , xm) ∈ IIm and all r > 0 such that rxi ∈ II for all i ∈ Nm.

• stable for the admissible translations (STR) if

M (m)(x1 + t, . . . , xm + t) = M (m)(x1, . . . , xm) + t

for all (x1, . . . , xm) ∈ IIm and all t ∈ IR such that xi + t ∈ II for all i ∈ Nm.
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• stable for the admissible positive linear transformations (SPL) if

M (m)(rx1 + t, . . . , rxm + t) = rM (m)(x1, . . . , xm) + t

for all (x1, . . . , xm) ∈ IIm and all r > 0, t ∈ IR such that rxi + t ∈ II for all i ∈ Nm.

• stable for the standard negation N (SSN) if

M (m)(1− x1, . . . , 1− xm) = 1−M (m)(x1, . . . , xm)

for all (x1, . . . , xm) ∈ IIm.

The use of stability properties supposes that the values to be aggregated are given according
to some scale type as defined by Roberts [15]. Note that some characterization theorems
were obtained by Nagumo [14] for (SSI) and (STR) and by Silvert [16] for (SSN) (see also [9:
pp.117-126] and [13]). The next result gives some relations between stability properties.

Proposition 2 For all aggregation m-function M (m) defined on II, we have

(i) (SSI, STR) ⇔ (SPL)
(ii) (SSI) ⇒ M (m)(m · 0) = 0

(iii) (SPL) ⇒ (I)
(iv) (SSI, SSN) ⇒ (SPL)

It clearly turns out, by the previous proposition, that the condition “r > 0” in the statement
of (SSI) or (SPL) can be replaced by “r ≥ 0” without any effect.

The next proposition characterizes the aggregation m-functions M (m) defined on II and
satisfying (SPL). A similar characterization was obtained by Aczél and Roberts [5: p.220
(Case 5b)] in the case of aggregation m-functions M (m) defined on IR.

Proposition 3 An aggregation m-function M (m) defined on II fulfils (SPL) if and only if there
exists an aggregation m-function F (m) defined on II such that, for all (x1, . . . , xm) ∈ IIm, we
have

M (m)(x1, . . . , xm) =

{
x if (x1, . . . , xm) = (x, . . . , x),
(x(m) − x(1))F (m)

[
x1−x(1)

x(m)−x(1)
, . . . ,

xm−x(1)

x(m)−x(1)

]
+ x(1) otherwise.

Definition 6 The aggregator M defined on II fulfils (SSI) (resp. (STR), (SPL), (SSN)) if,
for all m ∈ IN∗, the aggregation m-function M (m) fulfils (SSI) (resp. (STR), (SPL), (SSN)).

This paper mostly concentrates on the characterization of aggregation functions and operators
satisfying properties (In) and (SPL), as well as some additional properties such as (Sy), (SSN),
or algebraic properties to be introduced next.

3.3 Algebraic properties

Definition 7 The aggregation m-function M (m) defined on II is

• associative (A) if m = 2 and

M (2)(M (2)(x1, x2), x3) = M (2)(x1,M
(2)(x2, x3))

for all (x1, x2, x3) ∈ II3.
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• autodistributive (AD) if m = 2 and

M (2)(x1,M
(2)(x2, x3)) = M (2)(M (2)(x1, x2),M (2)(x1, x3)),

M (2)(M (2)(x1, x2), x3) = M (2)(M (2)(x1, x3),M (2)(x2, x3))

for all (x1, x2, x3) ∈ II3.

• bisymmetric (B) if m ≥ 2 and

M (m)(M (m)(x11, . . . , x1m), . . . ,M (m)(xm1, . . . , xmm))
= M (m)(M (m)(x11, . . . , xm1), . . . ,M (m)(x1m, . . . , xmm))

for all square matrices

X =




x11 · · · x1m
...

...
xm1 · · · xmm


 ∈ IIm×m.

Note that those definitions make sense only if M (m) takes its values in II.

The properties mentioned in Definition 7 were investigated by several authors. For a list of
references see [2]. Ling [11] has specifically investigated the associative property (A). Bisym-
metry (B) has been used by Aczél [1] and Fodor and Marichal [7] to characterize certain mean
values. This property expresses that aggregation can be performed first on the rows, then on
the columns of any square matrix, or conversely. The next proposition presents an immediate
link between (B) and (AD).

Proposition 4 For every aggregation 2-function M (2) defined on II, we have (I, B)⇒(AD).

The next algebraic properties concerns aggregators.

Definition 8 The aggregator M defined on II is

• associative (A) if each subset of consecutive elements from (x1, . . . , xm) can be substitued
by the partial aggregation of this subset without changing the global aggregation, i.e. for-
mally, if M (1)(x) = x ∀x ∈ II and if, for all m ∈ IN∗, all (x1, . . . , xm) ∈ IIm and all
0 ≤ j < k ≤ m, we have

M (m)(x1, . . . , xj , xj+1, . . . , xk, xk+1, . . . , xm)

= M (m−k+j+1)(x1, . . . , xj , M
(k−j)(xj+1, . . . , xk), xk+1, . . . , xm).

• decomposable (D) if each element of any subset of consecutive elements from (x1, . . . , xm)
can be substitued by the partial aggregation of this subset without changing the global ag-
gregation, i.e. formally, if M (1)(x) = x ∀x ∈ II and if, for all m ∈ IN∗, all (x1, . . . , xm) ∈
IIm and all 0 ≤ j < k ≤ m, we have

M (m)(x1, . . . , xj , xj+1, . . . , xk, xk+1, . . . , xm)

= M (m)(x1, . . . , xj , (k − j) ·M (k−j)(xj+1, . . . , xk), xk+1, . . . , xm).
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• strongly decomposable (SD) if each element of any subset of elements from (x1, . . . , xm)
can be substitued by the partial aggregation of this subset without changing the global ag-
gregation, i.e. formally, if M (1)(x) = x ∀x ∈ II and if, for all m ∈ IN∗, all (x1, . . . , xm) ∈
IIm and all N = {i1, . . . , ip} ⊆ Nm, with i1 < . . . < ip, we have

M (m)(x1, . . . , xm) = M (m)(x′1, . . . , x
′
m)

where, for all i ∈ Nm,

x′i =

{
xi if i 6∈ N,

M (p)(xi1 , . . . , xip) otherwise.

• strongly bisymmetric (SB) if M (1)(x) = x ∀x ∈ II and if, for all m, p ∈ IN∗,

M (p)(M (m)(x11, . . . , x1m), . . . , M (m)(xp1, . . . , xpm))

= M (m)(M (p)(x11, . . . , xp1), . . . , M (p)(x1m, . . . , xpm))

for all matrices

X =




x11 · · · x1m
...

...
xp1 · · · xpm


 ∈ IIp×m.

Note that those definitions make sense only if, for all m ∈ IN∗, M (m) takes its values in II.

Associativity (A) is a well-known algebraic property which allows to omit “parentheses” in
an aggregation of at least three elements (see e.g. [2]). Observe that, if the aggregator M is
associative, then the 2-function M (2) is associative (just set m = 3 in Definition 8). Of course,
associativity can be viewed as an iterative property since it allows to define completely any
aggregator M only from its 2-function M (2).

Decomposability is a property introduced by Kolmogoroff [10] and Nagumo [14] in the
case of symmetric aggregators (Sy)(see also [7]). In the nonsymmetric case, we generalize this
property in two ways: decomposability (D) and strong decomposability (SD). Of course, under
(Sy), these two properties are identical. We also introduce the property of strong bisymmetry
(SB) as a generalization of (B).

The next proposition points out a link between (A) and (D).

Proposition 5 For every aggregator M defined on II, we have (I, A)⇒(D).

4 Characterization of some aggregation m-functions

This section is devoted to aggregation m-functions which are increasing and stable for positive
linear transformations. The next definition introduces some of them (all are defined on II).

Definition 9 Let m ∈ IN∗.

• For any weight vector ω(m) = (ω(m)
1 , . . . , ω

(m)
m ) ∈ IIm such that

m∑

i=1

ω
(m)
i = 1,
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the weighted arithmetic mean m-function WAM(m)

ω(m) and the ordered weighted averaging

m-function OWA(m)

ω(m) associated to ω(m), are respectively defined by

WAM(m)

ω(m)(x1, . . . , xm) =
m∑

i=1

ω
(m)
i xi ∀(x1, . . . , xm) ∈ IIm,

OWA(m)

ω(m)(x1, . . . , xm) =
m∑

i=1

ω
(m)
i x(i) ∀(x1, . . . , xm) ∈ IIm.

• The arithmetic mean m-function AM(m) is defined by

AM(m)(x1, . . . , xm) =
1
m

m∑

i=1

xi ∀(x1, . . . , xm) ∈ IIm.

• For any i ∈ Nm, the projection m-function P(m)
i associated to the i-th argument is defined

by
P(m)

i (x1, . . . , xm) = xi ∀(x1, . . . , xm) ∈ IIm.

• The minimum m-function MIN(m) and the maximum m-function MAX(m) are respec-
tively defined by

MIN(m)(x1, . . . , xm) = min
i∈Nm

xi ∀(x1, . . . , xm) ∈ IIm,

MAX(m)(x1, . . . , xm) = max
i∈Nm

xi ∀(x1, . . . , xm) ∈ IIm.

• For any nonempty subset N (m) ⊆ Nm, the partial minimum m-function MIN(m)

N(m) and

the partial maximum m-function MAX(m)

N(m) associated to N (m), are respectively defined
by

MIN(m)

N(m)(x1, . . . , xm) = min
i∈N(m)

xi ∀(x1, . . . , xm) ∈ IIm,

MAX(m)

N(m)(x1, . . . , xm) = max
i∈N(m)

xi ∀(x1, . . . , xm) ∈ IIm.

The following result shows that any aggregation 2-function M (2) fulfilling (In, SPL) is com-
pletely defined by the values M (2)(0, 1) and M (2)(1, 0).

Proposition 6 The aggregation 2-function M (2) defined on II fulfils (In, SPL) if and only if,
for all (x1, x2) ∈ II2, we have

M (2)(x1, x2) =

{
(1− θ)x1 + θx2 if x1 ≤ x2,
θx1 + (1− θ)x2 if x1 ≥ x2,

with θ, θ ∈ II. Moreover, we have θ = M (2)(0, 1) and θ = M (2)(1, 0).

Some particular examples according to the values of θ and θ can be found in Table 1. Moreover,
the next corollary trivially follows.
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(θ, θ) M (2)

(θ, θ) = (0, 0) MIN(2)

(θ, θ) = (1, 1) MAX(2)

(θ, θ) = (0, 1) P(2)
1

(θ, θ) = (1, 0) P(2)
2

θ + θ = 1 WAM(2)
(1−θ,θ)

θ = θ OWA(2)
(1−θ,θ)

Table 1: Some examples

Corollary 1 The aggregation 2-function M (2) defined on II fulfils (Sy, In, SPL) if and only if
there exists ω(2) ∈ II2 such that

M (2) = OWA(2)

ω(2) .

Note that a complete characterization of the OWA(m)

ω(m) m-functions can be found in [12] (see
also [9: p.133]).

The next theorems describe the families of aggregation m-functions fulfilling (In, SPL, A),
(In, SPL, AD) and (In, SPL, B) respectively.

Theorem 1 The aggregation 2-function M (2) defined on II fulfils (In, SPL, A) if and only if

M (2) ∈ {MIN(2), MAX(2), P(2)
1 , P(2)

2 }.

Theorem 2 Let M (2) be any aggregation 2-function defined on II. Then the following three
assertions are equivalent:

(i) M (2) fulfils (In, SPL, AD),
(ii) M (2) fulfils (In, SPL, B),

(iii) M (2) ∈ {MIN(2), MAX(2)} ∪ {WAM(2)

ω(2) |ω(2) ∈ II2}.

Theorem 3 Let m ∈ IN∗,m ≥ 2. The aggregation m-function M (m) defined on II fulfils (In,
SPL, B) if and only if

M (m) ∈ {MIN(m)

N(m), MAX(m)

N(m) |N (m) ⊆ Nm} ∪ {WAM(m)

ω(m) |ω(m) ∈ IIm}.

To summarize this section, we present a table containing the characterizations obtained above
(Table 2). The table also contains some corollaries which can be checked easily (recall that (SSI,
SSN) implies (SPL)). Among them, we can find a complete characterization of the weighted
arithmetic mean m-functions. Note that another characterization of this family can be found
in [2: pp.234-239] (see also [5]). Moreover, by introducing new properties, we can obtain
other corollaries. For instance, AM(m) alone could be characterized using a property of strict
increasing monotonicity.

5 Characterization of some aggregators

This section is devoted to aggregators which are increasing and stable for positive linear trans-
formations. The next definition introduces some of them.
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In, SPL, A (m = 2) Sy, In, SPL, A (m = 2) In, SSI, SSN, A (m = 2)

MIN(2), MAX(2), P
(2)
1 , P

(2)
2 . MIN(2), MAX(2). P

(2)
1 , P

(2)
2 .

In, SPL, AD (m = 2) Sy, In, SPL, AD (m = 2) In, SSI, SSN, AD (m = 2)

MIN(2), MAX(2), {WAM
(2)

ω(2) |ω(2) ∈ II2}. MIN(2), MAX(2), AM(2). {WAM
(2)

ω(2) |ω(2) ∈ II2}.

In, SPL, B (m ≥ 2) Sy, In, SPL, B (m ≥ 2) In, SSI, SSN, B (m ≥ 2)

{MIN
(m)

N(m) ,MAX
(m)

N(m) |N (m) ⊆ Nm}, MIN(m), MAX(m), AM(m). {WAM
(m)

ω(m) |ω(m) ∈ IIm}.
{WAM

(m)

ω(m) |ω(m) ∈ IIm}.

Table 2: Results from Section 4

Definition 10

• For any sequence ω = (ω(m))m∈IN∗ of weight vectors ω(m) ∈ IIm, such that

m∑

i=1

ω
(m)
i = 1 ∀m ∈ IN∗,

the weighted arithmetic mean aggregator WAMω defined on II and associated to ω is the
aggregator (WAM(m)

ω(m))m∈IN∗.

• For any θ ∈ II, the decomposable weighted arithmetic mean aggregator DWAMθ defined
on II and associated to θ is the aggregator (WAM(m)

ω(m))m∈IN∗ where, for all i ∈ Nm,

ω
(m)
i =

(1− θ)m−iθi−1

∑m
j=1(1− θ)m−jθj−1

.

• The arithmetic mean aggregator AM defined on II is the aggregator (AM(m))m∈IN∗.

• The first projection aggregator FP and the last projection aggregator LP, both defined
on II, are the aggregators (P(m)

1 )m∈IN∗ and (P(m)
m )m∈IN∗. Observe that FP=DWAM0 and

LP=DWAM1.

• The minimum aggregator MIN and the maximum aggregator MAX, both defined on II,
are the aggregators (MIN(m))m∈IN∗ and (MAX(m))m∈IN∗.

• For any sequence N = (N (m))m∈IN∗ of nonempty subsets N (m) ⊆ Nm, the partial mini-
mum aggregator MINN and the partial maximum aggregator MAXN , both defined on II
and associated to N , are the aggregators (MIN(m)

N(m))m∈IN∗ and (MAX(m)

N(m))m∈IN∗.

The next theorems describe the families of aggregators fulfilling (In, SPL, A), (In, SPL, D),
(In, SPL, SD) and (In, SPL, SB) respectively.

Theorem 4 The aggregator M defined on II fulfils (In, SPL, A) if and only if

M ∈ {MIN, MAX, FP, LP}.
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In, SPL, A Sy, In, SPL, A In, SSI, SSN, A

MIN, MAX, FP, LP. MIN, MAX. FP, LP.

In, SPL, D Sy, In, SPL, D In, SSI, SSN, D

MIN, MAX, {DWAMθ|θ ∈ II}. MIN, MAX, AM. {DWAMθ|θ ∈ II}.

In, SPL, SD Sy, In, SPL, SD In, SSI, SSN, SD

MIN, MAX, FP, LP, AM. MIN, MAX, AM. FP, LP, AM.

In, SPL, SB Sy, In, SPL, SB In, SSI, SSN, SB

{MINN ,MAXN |N = (N (m) ⊆ Nm)m∈IN∗}, MIN, MAX, AM. {WAMω|ω = (ω(m) ∈ IIm)m∈IN∗}.
{WAMω|ω = (ω(m) ∈ IIm)m∈IN∗}.

Table 3: Results from Section 5

Theorem 5 (i) The aggregator M defined on II fulfils (In, SPL, D) if and only if

M ∈ {MIN, MAX} ∪ {DWAMθ|θ ∈ II}.

(ii) The aggregator M defined on II fulfils (In, SPL, SD) if and only if

M ∈ {MIN, MAX, FP, LP, AM}.

Theorem 6 The aggregator M defined on II fulfils (In, SPL, SB) if and only if

M ∈ {MINN , MAXN |N = (N (m) ⊆ Nm)m∈IN∗} ∪ {WAMω|ω = (ω(m) ∈ IIm)m∈IN∗}.

To summarize this section, we present a table containing the above characterizations (Table
3). The table also contains some corollaries which can be checked easily. In particular, we
obtain a complete characterization of the weighted arithmetic mean aggregators. Moreover,
AM could be isolated using a property of strict increasing monotonicity.

6 Aggregation functions defined on real intervals containing II

Let Ω be any interval such that II ⊆ Ω ⊆ IR. Obviously, all the definitions and properties
introduced earlier can be defined on Ω rather than II. In this section, we show that all the
results obtained so far can be adapted to aggregation functions defined on Ω.

The next two results establish a link between some aggregation functions defined on Ω and
their restrictions to II.

Proposition 7 Let P∈ {Sy, In, Comp, I, SSI, STR, SPL, SSN}, Q∈ {A, AD, B}, R∈ {A,
D, SD, SB}. Then

1. Let m ∈ IN∗. If the aggregation m-function F (m) defined on Ω fulfils (P) (resp. (Comp,
Q)) then its restriction M (m) to II fulfils (P) (resp. (Comp, Q)).
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2. If the aggregator F defined on Ω fulfils (P) (resp. (Comp, R)) then its restriction M to
II fulfils (P) (resp. (Comp, R)).

Proposition 8 Any aggregation m-function F (m) (m ∈ IN∗) defined on Ω and fulfilling (SPL)
is completely defined by its restriction to II. The same holds true for any aggregator F .

Proposition 7 and Proposition 8 allow to obtain characterizations for aggregation functions
defined on Ω. For instance, we have the following:

Corollary 2 Let m ∈ IN∗,m ≥ 2. The aggregation m-function F (m) defined on IR fulfils (Sy,
In, SPL, B) if and only if

F (m) ∈ { MIN(m), MAX(m), AM(m)}.

7 Conclusion

We have characterized some aggregation m-functions and some aggregators which can be useful
in multicriteria decision making procedures. The results contribute to the theory of MCDM
and can help the decision maker in choosing a particular family of functions on the basis of
some properties expected in advance from an aggregation function.
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