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Abstract. A fault attack consists in inducing hardware malfunctions in
order to recover secrets from electronic devices. One of the most famous
fault attack is Bellcore’s attack against RSA with CRT; it consists in
inducing a fault modulo p but not modulo q at signature generation
step; then by taking a gcd the attacker can recover the factorization of
N = pq. The Bellcore attack applies to any encoding function that is
deterministic, for example FDH. Recently, the attack was extended to
randomized encodings based on the iso/iec 9796-2 signature standard.
Extending the attack to other randomized encodings remains an open
problem.
In this paper, we show that the Bellcore attack cannot be applied to the
PSS encoding; namely we show that PSS is provably secure against ran-
dom fault attacks in the random oracle model, assuming that inverting
RSA is hard.

Key-words: Probabilistic Signature Scheme, Provable Security, Fault At-
tacks, Bellcore Attack.

1 Introduction

rsa [14] is still the most widely used signature scheme in practical applications.
To sign a message m with rsa, the signer first applies an encoding function µ to
m, and then computes the signature σ = µ(m)d mod N . The signature is verified
by checking that σe = µ(m) mod N . For efficiency reasons RSA signatures are
often computed using the Chinese Remainder Theorem (crt); in this case the
signature is first computed modulo p and q separately:

σp = md mod p , σq = md mod q

and then σp and σq are combined by CRT to form the signature σ.
Boneh, DeMillo and Lipton showed that rsa signatures computed with CRT

can be vulnerable to fault attacks [3]. If the attacker can induce a fault when σq

is computed while keeping the computation of σp correct, one obtains:

σp = md mod p , σq 6= md mod q

and the resulting faulty signature σ satisfies

σe = m mod p , σe 6= m mod q .
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Therefore, given one faulty signature σ, the attacker can recover the factorization
of N by computing gcd(σe − m mod N,N) = p. This attack actually applies
to any deterministic rsa encoding, e.g. Full Domain Hash (fdh) [2] with σ =
H(m)d mod N .

More generally, the attack applies to any probabilistic scheme where the
random used to generate the signature is sent along with the signature, e.g. as
in the Probabilistic Full Domain Hash (pfdh) encoding [6] where the signature
is σ‖r with σ = H(m ‖ r)d mod N . In that case, given the faulty value of σ and
knowing r, the attacker can still factor N by computing gcd(σe−H(m ‖ r) mod
N,N) = p.

However, if the random r is not given to the attacker along with the signature
σ then the Bellcore attack is thwarted. This is the case for signatures of the form
σ = µ(m, r)d mod N where the random r is only recovered when verifying the
signature, as in pss [2]. To recover r one needs a correct signature; from a faulty
signature, the attacker cannot retrieve r nor infer µ(m, r) in order to compute
gcd(σe − µ(m, r) mod N,N) = p, unless r is short enough to be guessed by
exhaustive search. Note that obtaining another correct signature for m would
not help the attacker since with high probability a different random r′ would be
used to generate this signature.

Recently, it was shown how to extend Bellcore’s attack to a large class of
randomized rsa encoding schemes [7]. The extended attack was illustrated with
the iso/iec 9796-2 standard [11]. iso/iec 9796-2 is originally a deterministic
encoding scheme but often used in combination with message randomization, as
in the emv standard [8]. The iso/iec 9796-2 encoded message has the form

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m = m[1] ‖m[2] is split into two parts. The authors of [7] showed that if
the randomness introduced into m[1] is not too large (e.g. less than 160 bits for
a 2048-bit rsa modulus), then a single faulty signature allows to factor N as
in the original Bellcore attack. The attack is based on Coppersmith’s technique
for finding small roots of polynomial equations [5], which is based on the LLL
algorithm [12].

However, extending the attack to other randomized RSA signatures remains
an open problem. In particular, it is natural to ask whether the Bellcore attack
could apply to PSS [2], the most popular RSA-based signature scheme. In this
paper, we show that the Bellcore attack cannot be extended to PSS; namely we
show that PSS is provably secure against random fault attacks in the random
oracle model, assuming that inverting RSA is hard.

More precisely, we consider an extended model of security in which the at-
tacker, in addition to the regular signing oracle, has access to a faulty signature
oracle; that is, the attacker can request faulty signatures either modulo p or
modulo q. For a faulty signature modulo q, the signer first generates the correct
value modulo p:

σp = µ(m, r)d mod p



but generates a random σq modulo q. With CRT the signer then computes σ′

such that σ′ = σp mod p and σ′ = σq mod q, and returns the faulty signature
σ′ to the adversary. Our result is that PSS is still secure under this extended
notion of security, in the random oracle model, assuming that inverting RSA is
hard.

2 Security Model

We recall the definition of a signature scheme.

Definition 1 (signature scheme). A signature scheme (Gen, Sign, Verify) is
defined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given

1k, outputs a pair of matching public and private keys, (pk, sk).
- The signing algorithm Sign takes the message M to be signed, the public

key pk and the private key sk, and returns a signature x = Signsk(M). The

signing algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate sig-

nature x′ and pk. It returns a bit Verifypk(M,x′), equal to one if the signa-

ture is accepted, and zero otherwise. We require that if x ← Signsk(M), then
Verifypk(M,x) = 1.

In the existential unforgeability under an adaptive chosen message attack

scenario, the forger can dynamically obtain signatures of messages of his choice
and attempts to output a valid forgery. A valid forgery is a message/signature
pair (M,x) such that Verifypk(M,x) = 1 whereas the signature of M was never
requested by the forger.

In the following, we consider an extended model of security in which the
attacker, in addition to the regular signing oracle, has access to a faulty signature
oracle; that is, the attacker can request faulty signatures either modulo p or
modulo q. For a faulty signature modulo q, the signer first generates the correct
value modulo p:

σp = µ(m, r)d mod p

and generates a random σq modulo q. With CRT the signer then computes σ′

such that σ′ = σp mod p and σ′ = σq mod q, and returns the faulty signature
σ′ to the adversary. This is actually equivalent to first computing a correct
signature σ:

σ = µ(m, r)d mod N

and then generating a random u modulo q and computing the faulty signature:

σ′ = σ + u · p mod N

Formally, we consider the following scenario between a challenger and an
attacker. Our scenario applies to any RSA based signature scheme in which a
signature σ is computed as σ = µ(m, r)d mod N for some (randomized) encod-
ing function µ(m, r).



Setup: the challenger generates an RSA modulus N = p · q, a public exponent
e such that gcd(e, φ(N)) = 1 and a private exponent d such that e · d = 1
mod φ(N). The challenger sends (N, e) to the adversary.

Queries: the adversary can make regular signature queries to the challenger. In
this case, given a message m, the challenger generates a random r and output
the (correct) signature:

σ = µ(m, r)d mod N

Additionally, the attacker can make faulty signature queries. For every such
query, the attacker specifies whether the fault should be modulo p or modulo q.
For a faulty signature modulo q, the challenger first generates a random r and
computes the correct signature:

σ = µ(m, r)d mod N

Then the challenger generates a random u modulo q, and computes:

σ′ = σ + u · p mod N

and sends σ′ to the attacker. The challenger proceeds similarly if a faulty signa-
ture modulo p is requested.

Forgery: eventually the attacker must output a forgery, that is a message signa-
ture pair (m,x) such that Verifypk(m,x) = 1 whereas the signature of m was
never requested by the forger, neither as a regular signature query nor in a faulty
signature query.

This completes the description of the attack scenario. As usual, we say that
a signature scheme is (t, ε)-secure if no adversary running in time t can output
a forgery with probability better than ε.

The PSS scheme was proven secure in the random oracle model [1], and our
security proof with faulty signatures is also in the random oracle model. It is
well known that a security proof in the random oracle model does not necessarily
imply that a scheme is secure in the real world (see [4]). Although it is always
better to have a security proof in the standard model, we think that it is still
better to have a proof in the random oracle model than no proof at all.

2.1 Why Random Faults ?

In our security model we have assumed that when a faulty signature σ′ is ob-
tained, it has the uniform distribution modulo p (or modulo q). This could be
seen as a very strong assumption; namely in practice the faults might have a
completely non-random distribution. Consider for example a fault attack induc-
ing the values of the registers to be set to zero. This gives σp = 0 and recovering
p is then straightforward: simply compute gcd(σ′, N) = p. To prevent from this
attack we could assume that when a fault occurs the value σp still has enough
min-entropy.



In the following we argue that 1) the random fault assumption is almost
unavoidable if we want to obtain a security proof and 2) such assumption might
actually be reasonable in practice.

Assume that a fault gives a random σp mod p but with the k most significant
bits set to 0, for some small integer k. That is, the attacker can obtain a list of
faulty signatures σ′

i such that the corresponding σ′

i,p = σ′

i mod p satisfy:

0 ≤ σ′

i,p <
p

2k
(1)

for all 1 ≤ i ≤ n, where n is the number of faulty signatures. We show how to
recover p, using an attack similar to [13]. With LLL [12], the attacker computes
a short vector (u1, . . . , un) such that:

n
∑

i=1

ui · σ
′

i = 0 mod N

This implies:
n
∑

i=1

ui · σ
′

i,p = 0 mod p

Since from (1) the σ′

i,p are small modulo p, if the ui’s are small enough, then the
equality will hold not only modulo p but also over Z:

n
∑

i=1

ui · σ
′

i,p = 0

This gives a vector (u1, . . . , un) that is orthogonal in Z to the unknown vector
(σ′

1,p, . . . σ
′

n,p). It is shown in [13] that by generating sufficiently many such
vectors, one can recover the unknown vector (σ′

1,p, . . . σ
′

n,p) and eventually p.
Note that this attack applies to any RSA-based signature scheme with CRT,

not only to PSS. This attack shows it is not enough for σp to have min-entropy,
as only a few bits of entropy loss compared to the uniform distribution enable
to recover p. Therefore, if we want to obtain a security proof, it seems necessary
to assume that σp is uniformly distributed modulo p.

Actually the random fault assumption might be reasonable in practice. Name-
ly to prevent probing attacks, the data being transmitted in the memory bus
inside the micro-processor is usually encrypted. Therefore, the content of a regis-
ter after a fault attack could still be some encrypted value, so it can be reasonable
to model this register value as uniformly random.

3 PSS is Secure against Random Fault Attacks

3.1 The PSS Scheme

We recall the definition of the PSS scheme [2]. The scheme uses three hash
functions h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}k−k0−k1−1, where k, k0 and k1 are parameters.
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Fig. 1. PSS: the components of the image y = 0‖ω‖r∗‖g2(ω) are darkened. The signa-
ture of m is yd mod N

Key Generation: generate a k-bit RSA modulus N = pq, and a random ex-
ponent e ∈ Z

∗

φ(N). Generate d such that e · d = 1 mod φ(N). The public-key is

(N, e); the private key is (N, d).

Signature generation: given a message m, do the following:

1. r ← {0, 1}k0

2. ω ← h(m‖r)
3. r∗ ← g1(ω)⊕ r
4. y ← 0‖ω‖r∗‖g2(ω)
5. Return σ = yd mod N

Signature Verification: given a message m and a signature σ, do the following:

1. Let y = σe mod N
2. Parse y as 0‖ω‖r∗‖γ. If the parsing fails return 0.
3. r ← r∗ ⊕ g1(ω)
4. If h(m‖r) = ω and g2(ω) = γ return 1.
5. else return 0.

3.2 Security Proof

We first give an intuition of the proof. We denote by µ(m, r) the PSS encoding
scheme, that is µ(m, r) = 0‖ω‖r∗‖g2(ω) where ω = h(m‖r) and r∗ = g1(ω)⊕ r.

We receive as input a challenge (N, e, η) and we must output ηd mod N .
In the original PSS security proof [2], when receiving a signature query, the
simulator generates a random α modulo N such that αe mod N can be written
as 0‖ω‖s‖t. The simulator generates a random r of k0 bits. Then it lets h(m, r) =
ω, g1(ω) = s⊕ r and g2(ω) = t. Therefore we have that µ(m, r) = (αe mod N).
The simulator can then return α as a signature for m. When receiving a hash
query for h(m, r), the simulator generates a random α modulo N such that η ·αe



can be written as 0‖ω‖s‖t; it then proceeds as previously. In this case we have
µ(m, r) = (η · αe mod N). Therefore a forgery for µ(m, r) enables to compute
ηd mod N .

One can see that if there is no collision on the randoms r used for signature
generation, and no collision on the values ω, then the simulation is perfect. Then
given a forgery σ′ for some message m′, with high probability we have that
µ(m′, r′) = (η · αe mod N) for some known α. Therefore from σ′ = µ(m′, r′)d

mod N one can compute ηd mod N as required and solve the RSA challenge.
In our extended model of security, we must additionally simulate a faulty

signature oracle. To do this, one could first generate as previously a random
α modulo N such that αe mod N can be written as 0‖ω‖s‖t. The simulator
generates a random r of k0 bits. Then it lets h(M, r) = ω, g1(ω) = s ⊕ r and
g2(ω) = t, so that again µ(m, r) = (αe mod N). Then instead of returning the
correct signature α, the simulator could generate a random u modulo q, and
output the faulty signature:

α′ = α+ u · p mod N (2)

Obviously our simulator cannot do this, because it does not know the prime
factors p and q. Instead we show that the distribution of α′ is statistically close
to uniform in ZN ; therefore, the simulator can simply return a random α′ ∈ ZN .

Since RSA is a permutation, instead of considering the distribution of α′,
one can consider the distribution of y′ = α′e mod N . From (2) we have:

y′ = y + v · p mod N

where v is uniformly distributed modulo q and y is uniformly distributed in
[0, 2k−1[. The following lemma shows that the distribution of y′ is statistically
close to uniform in ZN .

Lemma 1. Let N = pq be a k-bit modulus where p and q are k/2-bit, and let y
be a random integer such that 0 ≤ y < 2k−1. Let v be a random integer modulo q.
Then the distribution of y′ = y + v · p mod N is ǫ-statistically close to uniform

modulo N , with ǫ = 4
2k/2

Proof. We consider a fixed a ∈ ZN and we provide an estimate of Pr[y′ = a].
For this we consider the solutions of the equation:

a ≡ y + v · p mod N (3)

We have that for every v ∈ [0, q), there exists a unique y ∈ [0, N [ which satis-
fies the above relation. However we are only interested in the y’s in the range
[0, 2k−1[. We have that for each i ∈ [1, q], the pair:

(v = q − i, y = a+ ip mod N)

is a solution of (3) iff
a+ ip mod N < 2k−1 (4)



Depending on the choice of a, there are actually either ⌊ 2
k−1

p ⌋ or ⌊ 2
k−1

p ⌋ + 1

many i values which satisfy relation (4). Hence there are ⌊ 2
k−1

p ⌋ or ⌊
2k−1

p ⌋ + 1

many solutions to congruence (3) such that y < 2k−1. Since y and v are random
integers in the range [0, 2k−1) and [0, q) respectively, this gives:

⌊

2k−1

p

⌋

·
1

2k−1
·
1

q
≤ Pr[y′ = a] ≤

(⌊

2k−1

p

⌋

+ 1

)

·
1

2k−1
·
1

q

We write ⌊ 2
k−1

p ⌋ = c, which gives p · c < 2k−1 < p · c+ p. We obtain:

Pr[y′ = a] ≥
c

2k−1q
=

1

N
·

pc

2k−1
=

1

N
·

(

1−
2k−1 − pc

2k−1

)

>
1

N
·
(

1−
p

2k−1

)

(as 2k−1 < pc+ p)

>
1

N
·

(

1−
2p

N

)

(as 2k−1 >
N

2
)

=

(

1−
2

q

)

·
1

N

Similarly, we have:

Pr[y′ = a] ≤

(

1 +
2

q

)

·
1

N

This gives:
(

1−
2

q

)

·
1

N
≤ Pr[y′ = a] ≤

(

1 +
2

q

)

·
1

N

for all a ∈ [0, N). This implies that the distribution of y′ is 4
2k/2 -statistically

close to uniform modulo N as q > 2k/2−1. ⊓⊔

Lemma 1 shows that it is sufficient for our simulator to return a random α′

modulo N as the faulty signature. In other words, instead of first generating a
random y ∈ [0, 2k−1), then a random v modulo q, then y′ = y + v · p and finally
α′ = y′d mod N , the simulator can simply output a random α′ modulo N , and
such output will be statistically indistinguishable from a faulty signature.

However to this faulty signature α′ corresponds a correct signature α such
that:

α = α′ − u · p mod N

where u is randomly distributed modulo q. Equivalently letting y′ = α′e mod N
there exists a corresponding value y with:

y = y′ − v · p mod N (5)

where v is randomly distributed modulo q such that y can be written as:

y = 0‖ω‖s‖t = µ(m, r)



This implicitly defines h(m, r) = ω, g1(ω) = s⊕r and g2(ω) = t for the simulation
of random oracles h, g1 and g2.

Since our simulator does not know p, it cannot compute y in equation (5)
and therefore our simulator does not known the corresponding values of ω, s
and t; therefore our simulator cannot answer the corresponding h queries, g1
queries and g2 queries if such queries are made by the attacker. Intuitively for
h-queries it is sufficient that the set of r values is exponentially large; for this
the parameter k0 must be large enough. For g1 and g2 queries we must show
that the adversary has a negligible probability of querying ω. This is shown in
the following lemma: we show that given a faulty signature α′ (or equivalently
y′ = α′e mod N) the distribution of ω has enough variability, if the parameter
k1 is sufficiently large. This implies that ω does not need to be computed, and
therefore the factorization of N is not needed for our simulation.

Lemma 2. Let N = pq be a k-bit modulus where p and q are k/2-bit, and let y
be a random integer such that 0 ≤ y < 2k−1. Let v be a random integer modulo

q, and let y′ = y + v · p mod N . Write y = 0‖ω‖x where ω is k1-bit and x is

k − k1 − 1 bits. Given y′, for any ω′ of k1-bit we have:

Pr[ω = ω′|y′] ≤
8

2min(k1,k/2)

Proof. We have that:

Pr[ω = ω′|y′] =
#(y, v) pairs, s.t. y′ = y + v · p mod N and y = 0‖ω′‖x

#(y, v) pairs, s.t. y′ = y + v · p mod N and 0 ≤ y < 2k−1

For a fixed v, the value y mod N gets fixed by the relation y′ = y+v ·p mod N .
Moreover at least ⌊ q2⌋ of the possible v values give y mod N in the desired range
between 0 and 2k−1. Hence the denominator of the above fraction can be lower
bounded by ⌊ q2⌋.

We have that for a fixed y′, the value of y is fixed modulo p; hence for a fixed
ω′ with y = 0‖ω′‖x, the value of x is also fixed modulo p. As x is k − k1 − 1-

bit, over Z there can be at most ⌈ 2
k−k1−1

p ⌉ many possible x values. Hence the

numerator of the above fraction can be upper bounded by ⌈ 2
k−k1−1

p ⌉.

Hence we have,

Pr[ω = ω′|y′] ≤
⌈ 2

k−k1−1

p ⌉

⌊ q2⌋
<

2k−k1−1

2k/2−1
+ 1

2k/2−2
=

2k−k1−1 + 2k/2−1

2k−3
<

8

2min(k1,k/2)

⊓⊔

Formally, we obtain the following theorem:

Theorem 1. Assume that no algorithm can invert RSA in time t′ with proba-

bility better than ε′. Then the signature scheme PSS[k0, k1] is (t, qh, qg, qs, qfs, ε)



secure, where

t(k) = t′(k)− [qs(k) + qg(k) + qh(k) + 1] · k0 ·Θ(k3)

ε(k) = ε′(k) + (qs + qfs + 1) · (qs + qfs + qh) · 2
−k0 + 8 · qg · qfs · 2

−min(k1,k/2)

+ (qh + qs + qfs) · (qh + qg + qs + qfs + 1) · 2−k1

+ qh · qfs · 2
−k0 + 4 · qfs · 2

−k/2

Here the attacker can make at most qh, qg, qs, qfs number of h queries, g queries,

signature queries and fault signature queries respectively.

Proof. We use a simulator which behaves in exactly same way as in original PSS
security proof [2], in addition it answers fault queries with a uniformly random
integer modulo N . Now if the attacker is successful against our simulator then
we break the RSA challenge (N, e, η) as in the original paper.

We must show that any attacker which is successful against the original attack
scenario will be successful against our simulator. For that, we use a sequence of
games. We start with Game0, which is exactly the attack scenario, which requires
to know the factorization of N . Then we progressively modify the game, so that
eventually knowledge of the factorization of N is not needed anymore. We denote
by Si the event that the attacker succeeds in Gamei.

Game0: this is the attack scenario. We answer signature queries as specified in
the signature generation algorithm, using the private exponent d. We simulate
the faulty signature queries by first generating a correct signature σ and then
computing σ′ = σ+ u · p mod N for a random u modulo q. In the following for
simplicity we only consider faulty signatures modulo q; faulty signatures modulo
p are simulated in exactly the same way.

Game1: we abort if there is a collision for ω at Step 2 of the signature generation
algorithm, or if the random r used during signature generation has already ap-
peared before. We call this event A1. More precisely event A1 happens if one of
the following is true:

– The random r used in a signature oracle or faulty signature oracle query
collides with either 1) the r used in a previous signature oracle or faulty
signature oracle query or 2) the r used in a previous h oracle query.

– The h function output in a signature oracle or faulty signature oracle query
collides with either 1) the h function outputs in previous signature oracle or
faulty signature oracle queries or 2) with a previous h oracle query output
or 3) a previous g oracle query input.

– The h oracle query output collides with either 1) a h function output in
previous signature oracle or faulty signature oracle query or 2) a previous h
oracle query output or 3) a previous g oracle query input.

We obtain:

Pr[A1] ≤ (qs+qfs) ·(qs+qfs+qh) ·2
−k0 +(qh+qs+qfs) ·(qh+qg+qs+qfs) ·2

−k1



and:
|Pr[S1]− Pr[S0]| ≤ Pr[A1]

Game2: we construct a similar simulator as in the original PSS security proof [2];

however to deal with faulty signature queries we continue to use the factorization
of N .

The simulator receives as input a challenge η and must output ηd mod N .
When receiving a signature query, the simulator generates a random α modulo
N such that αe mod N can be written as 0‖ω‖s‖t. The simulator generates a
random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) = s⊕ r and g2(ω) = t.

When receiving a hash query for h(m, r), the challenger generates a random
α modulo N such that η · αe mod N can be written as 0‖ω‖s‖t; it then defines
h(m, r) = ω, g1(ω) = s ⊕ r and g2(ω) = t as previously. The queries to g1 and
g2 are simulated by returning a random value for every new input.

To simulate the faulty signature oracle, one first generates as above a random
α modulo N such that αe mod N can be written as 0‖ω‖s‖t. The simulator
generates a random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) = s ⊕ r and
g2(ω) = t. Then instead of returning α, the simulator generates a random u
modulo q, and outputs:

α′ = α+ u · p mod N (6)

In Game2 we abort as in Game1, and additionally in the following case: while
generating a random α modulo N such that αe mod N can be written as
0‖ω‖s‖t during signature or faulty signature queries (and similarly for h(m, r)
queries), we stop after trying k0+1 times. This adds (qh+ qs+ qfs) · 2

−k0 in the
error term:

|Pr[S2]− Pr[S1]| ≤ (qh + qs + qfs) · 2
−k0

Game3: we abort if the attacker makes a query for g(ω) where ω was used in a
faulty signature for message m and random r, while the attacker has not made
a query to h(m, r) before. We define this event as A3. As all the query answers
are simulated independently, from Lemma 2 this gives:

|Pr[S3]− Pr[S2]| ≤ Pr[A3] ≤ qg · qfs ·
8

2min(k1,k/2)

Game4: we abort if the attacker makes a query for h(m, r) where r was used to
generate a faulty signature with ω, while the attacker has not made a query
before to g(ω). In this case the attacker’s view is independent from r, which
gives:

|Pr[S4]− Pr[S3]| ≤ qh · qfs · 2
−k0

Game5: we abort if the attacker makes a query for h(m, r) where r was used to
generate a faulty signature, or if the attacker makes a query for g(ω) where ω was
used in a faulty signature. Game5 is the same as Game4 since for a faulty signature
m with random r and ω, either the attacker starts with a h(m, r) query or it
starts with a g(ω) query.

Pr[S5] = Pr[S4]



Game6: we change the way the faulty signature oracle is simulated. Instead of
first generating α and then α′ as in equation (6), we first generate a uniformly
random α′ and then a random u modulo q such that αe mod N can be written
as 0‖ω‖s‖t. From Lemma 1 we have:

|Pr[S6]− Pr[S5]| ≤ qfs ·
4

2k/2

Game7: since we do not answer the queries for h(m, r) where r was used to
generate a faulty signature, and the queries for g(ω) where ω was used in a
faulty signature, we do not need to compute ω. Therefore, we do not need to
compute a random u modulo q such that αe mod N can be written as 0‖ω‖s‖t.
Therefore we do not need to know the factorization of N anymore, and we have:

Pr[S7] = Pr[S6]

Finally, if the adversary outputs a forgery with probability at least ε in Game0,
then the adversary must output a forgery with probability at least ε−|Pr[S7]−
Pr[S0]| in Game7. As in the original PSS security proof, from this forgery we can
solve the RSA challenge with probability at least:

ε′ = ε− |Pr[S7]− Pr[S0]| − 2−k1

Combining the previous inequalities, we get (6). ⊓⊔

4 PSS-R is Secure against Fault Attacks

In PSS-R or PSS with message recovery the goal is to save bandwidth such that
the message is recoverable from the signature; hence it is not necessary to send
the message separately.

4.1 The PSS-R Scheme

We recall the definition of the PSS-R scheme [2]. The scheme uses three hash
functions h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}k−k0−k1−1, where k, k0 and k1 are the parameters.

Key Generation: generate a k-bit RSA modulus N = pq, and a random ex-
ponent e ∈ Z

∗

φ(N). Generate d such that e · d = 1 mod φ(N). The public-key is

(N, e); the private key is (N, d).

Signature generation: given a message m, do the following:

1. r ← {0, 1}k0

2. ω ← h(M‖r)
3. r∗ ← g1(ω)⊕ r
4. m∗ ← g2(ω)⊕m
5. y ← 0‖ω‖r∗‖m∗



m r

ω

h

0 r∗ M∗

g1(ω)

g1

g2(ω)

g2

Fig. 2. PSS-R: Components of image y = 0‖ω‖r∗‖M∗ are darkened. The signature of
M is yd mod N

6. Return σ = yd mod N

Message Recovery: given a signature σ, do the following:

1. Let y = σe mod N
2. Parse y as 0‖ω‖r∗‖m∗. If the parsing fails return Reject.
3. r ← r∗ ⊕ g1(ω)
4. m← m∗ ⊕ g2(ω)
5. If h(m‖r) = ω return m.
6. else return Reject.

4.2 Security Proof

Theorem 2. Assume that no algorithm can invert RSA in time t′ with probabil-

ity better than ε′. Then the signature scheme PSS-R[k0, k1] is (t, qh, qg, qs, qfs, ε)
secure, where:

t(k) = t′(k)− [qs(k) + qg(k) + qh(k) + 1] · k0 ·Θ(k3)

ε(k) = ε′(k) + (qs + qfs + 1) · (qs + qfs + qh) · 2
−k0 + 8 · qg · qfs · 2

−min(k1,k/2)

+ (qh + qs + qfs) · (qh + qg + qs + qfs + 1) · 2−k1

+ qh · qfs · 2
−k0 + 4 · qfs · 2

−k/2

Here the attacker can make at most qh, qg, qs, qfs number of h queries, g queries,

signature queries and fault signature queries respectively.

Proof. The proof of this theorem is very similar to that of Theorem 1 and hence
is omitted.



5 Conclusion

We obtain from the previous theorems that unless the attacker is making more
fault oracle queries than hash oracle queries, one gets the same security bound
as in the original PSS proof without fault oracle. We note that in practice fault
queries are usually more expensive than hash queries, since those hash queries
can be made offline when a concrete hash function is used.

In [6] a better security bound was given for PSS (without fault oracle). It
was shown that the random size k0 could be taken as small as log2 qs, where qs is
the maximum number of signature queries; with qs = 230 this gives k0 = 30 bits.
However with a fault oracle one cannot take such a small k0, since in this case
the random r could be recovered by exhaustive search and the Bellcore attack
would still apply.

In summary. any parameters chosen according to the bounds in the original
PSS paper [2] give the same level of security against fault attacks. One can take
k = 1024, k0 = k1 = 128 as in [2].
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