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Abstract. We show that any two-dimensional odd dihedral repre-
sentation ρ over a finite field of characteristic p > 0 of the absolute
Galois group of the rational numbers can be obtained from a Katz
modular form of level N , character ε and weight k, where N is the
conductor, ε is the prime-to-p part of the determinant and k is the
so-called minimal weight of ρ. In particular, k = 1 if and only if ρ is
unramified at p. Direct arguments are used in the exceptional cases,
where general results on weight and level lowering are not available.
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1 Introduction

In [S1] Serre conjectured that any odd irreducible continuous Galois represen-
tation ρ : GQ → GL2(Fp) for a prime p comes from a modular form in charac-
teristic p of a certain level Nρ, weight kρ ≥ 2 and character ερ. Later Edixhoven
discussed in [E2] a slightly modified definition of weight, the so-called minimal
weight, denoted k(ρ), by invoking Katz’ theory of modular forms. In particular,
one has that k(ρ) = 1 if and only if ρ is unramified at p.

The present note contains a proof of this conjecture for dihedral representations.
We define those to be the continuous irreducible Galois representations that are
induced from a character of the absolute Galois group of a quadratic number
field. Let us mention that this is equivalent to imposing that the projective
image is isomorphic to a dihedral group Dn with n ≥ 3.
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124 Gabor Wiese

Theorem 1 Let p be a prime and ρ : GQ → GL2(Fp) an odd dihedral rep-
resentation. As in [S1] define Nρ to be the conductor of ρ and ερ to be the
prime-to-p part of det ◦ρ (considered as a character of (Z/(Nρp)Z)∗). Define
k(ρ) as in [E2].

Then there exists a normalised Katz eigenform f ∈ Sk(ρ)(Γ1(Nρ), ερ, Fp)Katz,
whose associated Galois representation ρf is isomorphic to ρ.

We will on the one hand show directly that ρ comes from a Katz modular form
of level Nρ, character ερ and minimal weight k(ρ) = 1, if ρ is unramified at p.
If on the other hand ρ is ramified at p, we will finish the proof by applying
the fundamental work by Ribet, Edixhoven, Diamond, Buzzard and others on
“weight and level lowering” (see Theorem 10).

Let us recall that in weight at least 2 every Katz modular form on Γ1 is clas-
sical, i.e. a reduction from a characteristic zero form of the same level and
weight. Hence multiplying by the Hasse invariant, if necessary, it follows from
Theorem 1 that every odd dihedral representation as above also comes from
a classical modular form of level Nρ and Serre’s weight kρ. However, if one
also wants the character to be ερ, one has to exclude in case p = 2 that ρ is
induced from Q(i) and in case p = 3 that ρ is induced from Q(

√
−3) (see [B],

Corollary 2.7, and [D], Corollary 1.2).

Edixhoven’s theorem on weight lowering ([E2], Theorem 4.5) states that mod-
ularity in level Nρ and the modified weight k(ρ) follows from modularity in
level Nρ and Serre’s weight kρ, unless one is in a so-called exceptional case. A
representation ρ : GQ → GL2(Fp) is called exceptional if the semi-simplification
of its restriction to a decomposition group at p is the sum of two copies of an
unramified character. Because of work by Coleman and Voloch the only open
case left is that of characteristic 2 (see the introduction of [E2]).

Exceptionality at 2 is a common phenomenon for mod 2 dihedral representa-
tions. One way to construct examples is to consider the Hilbert class field H
of a quadratic field K that is unramified at 2 and has a non-trivial class group.
One lets ρK be the dihedral representation obtained by induction to GQ of a
mod 2 character of the Galois group of H|K. If the prime 2 stays inert in OK ,
then 2OK splits completely in H and the order of ρK(Frob2) is 2, where Frob2

is a Frobenius element at 2. Consequently, ρK is exceptional. An example for
this behaviour is provided by K = Q(

√
229). If the prime 2 splits in OK and

the primes of OK lying above 2 are principal, then ρK(Frob2) is the identity
and hence ρK is exceptional. This happens for example for K = Q(

√
2089).

Let us point out that some of the weight one forms that we obtain cannot be
lifted to characteristic zero forms of weight one and the same level, so that the
theory of modular forms by Katz becomes necessary. Namely, if p = 2 and
the dihedral representation in question has odd conductor N and is induced
from a real quadratic field K of discriminant N , whose fundamental units have
norm −1, then there does not exist an odd characteristic zero representation
with conductor dividing N that reduces to ρ. The representation coming from
the quadratic field Q(

√
229) used above, can also here serve as an example.
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The fact that dihedral representations come from some modular form is well-
known (apparently already due to Hecke). So the subtle issue is to adjust
the level, character and weight. It should be noted that Rohrlich and Tunnell
solved many cases for p = 2 with Serre’s weight kρ by rather elementary means
in [R-T], however, with the more restrictive definition of a dihedral representa-
tion to be such that its image in GL2(F2), and not in PGL2(F2), is isomorphic
to a dihedral group.
Let us also mention that it is possible to do computations of weight one forms
in positive characteristic on a computer (see [W]) and thus to collect evidence
for Serre’s conjecture in some cases.
This note is organised as follows. The number theoretic ingredients on dihedral
representations are provided in Section 2. In Section 3 some results on oldforms,
also in positive characteristic, are collected. Section 4 is devoted to the proof
of Theorem 1. Finally, in Section 5 we include a result on the irreducibility of
certain mod p representations.

I wish to thank Peter Stevenhagen for helpful discussions and comments and
especially Bas Edixhoven for invaluable explanations and his constant support.

2 Dihedral representations

We shall first recall some facts on Galois representations. Let ρ : GQ → GL(V )
be a continuous representation with V a 2-dimensional vector space over an
algebraically closed discrete field k.
Let L be the number field such that Ker(ρ) = GL (by the notation GL we
always mean the absolute Galois group of L). Given a prime Λ of L dividing
the rational prime l, we denote by GΛ,i the i-th ramification group in lower
numbering of the local extension LΛ|Ql. Furthermore, one sets

nl(ρ) =
∑

i≥0

dim(V/V GΛ,i)

(GΛ,0 : GΛ,i)
.

This number is an integer, which is independent of the choice of the prime Λ
above l. With this one defines the conductor of ρ to be f(ρ) =

∏
l l

nl(ρ), where
the product runs over all primes l different from the characteristic of k. If k is
the field of complex numbers, f(ρ) coincides with the Artin conductor.
Let ρ be a dihedral representation. Then ρ is induced from a character
χ : GK → k∗ for a quadratic number field K such that χ 6= χσ, with
χσ(g) = χ(σ−1gσ) for all g ∈ GK , where σ is a lift to GQ of the non-trivial
element of GK|Q. For a suitable choice of basis we then have the following
explicit description of ρ: If an unramified prime l splits in K as Λσ(Λ), then

ρ(Frobl) =

(
χ(FrobΛ) 0

0 χσ(FrobΛ)

)
. Moreover, ρ(σ) is represented by the

matrix

(
0 1

χ(σ2) 0

)
. As ρ is continuous, its image is a finite group, say, of

order m.
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126 Gabor Wiese

Lemma 2 Let ρ : GQ → GL2(Fp) be an odd dihedral representation that is
unramified at p. Define K, χ, σ and m as above. Let N be the conductor of ρ.
Let ζm a primitive m-th root of unity and P a prime of Q(ζm) above p.
Then one of the following two statements holds.

(a) There exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), which
has Artin conductor N and reduces to ρ modulo P.

(b) One has that p = 2 and K is real quadratic. Moreover, there is an infinite
set S of primes such that for each l ∈ S the trace of ρ(Frobl) is zero, and
there exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), which
has Artin conductor Nl and reduces to ρ modulo P.

Proof. Suppose that the quadratic field K equals Q(
√

D) with D square-free.
The character χ : GK → k∗ can be uniquely lifted to a character χ̃ : GK →
Z[ζm]∗ of the same order, which reduces to χ modulo P. Denote by ρ̃ the

continuous representation Ind
GQ

GK
χ̃. For the choice of basis discussed above the

matrices representing ρ can be lifted to matrices representing ρ̃, whose non-zero
entries are in the m-th roots of unity. Then for any open subgroup H of GQ,

one has that (Fp
2
)ρ(H) is isomorphic to (Z[ζm]2)ρ̃(H)⊗Fp. Hence the conductor

of ρ equals the Artin conductor of ρ̃, as ρ̃ is unramified at p. Alternatively, one
can first remark that the conductor of χ equals the conductor of χ̃ and then
use the formulae f(ρ) = NormK|Q(f(χ))D and f(ρ̃) = NormK|Q(f(χ̃))D.
Thus condition (a) is satisfied if ρ̃ is odd. Let us now consider the case when ρ̃
is even. This immediately implies p = 2 and that the quadratic field K is real,
as is the number field L whose absolute Galois group GL equals the kernel of ρ,
and hence also the kernel of χ̃. We shall now adapt “Serre’s trick” from [R-T],
p. 307, to our situation.
Let f be the conductor of χ̃. As L is totally real, f is a finite ideal of OK . Via
class field theory, χ̃ can be identified with a complex character of CLf

K , the ray
class group modulo f. Let ∞1,∞2 be the infinite places of K. Consider the
class

c = [{(λ) ∈ CL4Df∞1∞2

K | Norm(λ) < 0, λ ≡ 1mod 4Df}]
in the ray class group of K modulo 4Df∞1∞2. By Cebotarev’s density the-
orem the primes of OK are uniformly distributed over the conjugacy classes
of CL4Df∞1∞2

K . Hence, there are infinitely many primes Λ of degree 1 in the
class c. Take S to be the set of rational primes lying under them. Let a prime
Λ from the class c be given. It is principal, say Λ = (λ), and coprime to 4Df.

By construction we have c2 = [Λ2] = 1. As CLf
K is a quotient of CL4Df∞1∞2

K ,

the class of Λ in CLf
K has order 1 or 2. Since p = 2, the character χ has odd

order and we conclude that χ(Λ) = 1.
We have λ ≡ 1mod 4Df and Norm(λ) = −l for some odd prime l. Hence, the
extension K(

√
λ) has two real and two complex embeddings and is unramified

at 2 and at the primes dividing Df. We represent K(
√

λ) by the quadratic
character ξ : GK → {±1}. For the complex conjugation, the “infinite Frobenius
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element”, Frob∞1
, we have that ξ(Frob∞1

)ξσ(Frob∞1
) = −1. We now consider

the representation ρ̂ obtained by induction from the character χ̂ = χ̃ξ. Using
the same basis as in the discussion at the beginning of this section, an element g

of GK is represented by the matrix

(
χ̃(g)ξ(g) 0

0 χ̃σ(g)ξσ(g)

)
. In particular,

we obtain that the determinant of Frob∞ over Q equals −1, whence ρ̂ is odd.
Moreover, as l splits in K, one has that ρ(Frobl) is the identity matrix, so that
the trace of ρ(Frobl) is zero.
The reduction of ρ̂ equals ρ, as ξ is trivial in characteristic 2. Moreover, outside
Λ the conductor of χ̂ equals the conductor of χ̃. At the prime Λ the local
conductor of χ̂ is Λ, as the ramification is tame. Consequently, the Artin
conductor of ρ̂ equals Nl. ¤

Also without the condition that it is unramified at p, one can lift a dihedral
representation to characteristic zero, however, losing control of the Artin con-
ductor.

Lemma 3 Let ρ : GQ → GL2(Fp) be an odd dihedral representation. Define K,
χ, m, ζm and P as in the previous lemma.
There exists an odd dihedral representation ρ̂ : GQ → GL2(Z[ζm]), whose re-
duction modulo P is isomorphic to ρ.

Proof. We proceed as in the preceding lemma for the definitions of χ̃ and ρ̃.
If ρ̃ is even, then p = 2 and K is real. In that case we choose some λ ∈ OK −Z,
which satisfies Norm(λ) < 0. The field K(

√
λ) then has two real and two

complex embeddings and gives a character ξ : GK → Z[ζm]∗. As in the proof

of the preceding lemma one obtains that the representation ρ̂ = Ind
GQ

GK
χ̃ξ is

odd and reduces to ρ modulo P. ¤

3 On oldforms

In this section we collect some results on oldforms. We try to stay as much as
possible in the characteristic zero setting. However, we also need a result on
Katz modular forms.

Proposition 4 Let N, k, r be positive integers, p a prime and ε a Dirichlet
character of modulus N . The homomorphism

φN
pr :

(
Sk(Γ1(N), ε, C)

)r+1
↪→ Sk(Γ1(Npr), ε, C), (f0, f1, . . . , fr) 7→

r∑

i=0

fi(q
pi

)

is compatible with all Hecke operators Tn with (n, p) = 1.
Let f ∈ Sk(Γ1(N), ε, C) be a normalised eigenform for all Hecke operators.

Then the forms f(q), f(qp2

), . . . , f(qpr

) in the image of φN
pr are linearly inde-

pendent, and on their span the action of the operator Tp in level Npr is given
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128 Gabor Wiese

by the matrix 


ap(f) 1 0 0 . . . 0
−δpk−1ε(p) 0 1 0 . . . 0

0 0 0 1 . . . 0
...

0 . . . 0 0 0 1
0 . . . 0 0 0 0




,

where δ = 1 if p - N and δ = 0 otherwise.

Proof. The embedding map and its compatibility with the Hecke action
away from p is explained in [D-I], Section 6.1. The linear independence can be
checked on q-expansions. Finally, the matrix can be elementarily computed.

¤

Corollary 5 Let p be a prime, r ≥ 0 some integer and f ∈ Sk(Γ1(Npr), ε, C)
an eigenform for all Hecke operators. Then there exists an eigenform for all
Hecke operators f̃ ∈ Sk(Γ1(Npr+2), ε, C), which satisfies al(f̃) = al(f) for all
primes l 6= p and ap(f̃) = 0.

Proof. One computes the characteristic polynomial of the operator Tp of
Proposition 4 and sees that it has 0 as a root if the dimension of the matrix is
at least 3. Hence one can choose the desired eigenform f̃ in the image of φNpr

p2 .
¤

As explained in the introduction, Katz’ theory of modular forms ought to be
used in the study of Serre’s conjecture. Following [E3], we briefly recall this
concept, which was introduced by Katz in [K]. However, we shall use a “non-
compactified” version.
Let N ≥ 1 be an integer and R a ring, in which N is invertible. One defines
the category [Γ1(N)]R, whose objects are pairs (E/S/R,α), where S is an R-
scheme, E/S an elliptic curve (i.e. a proper smooth morphism of R-schemes,
whose geometric fibres are connected smooth curves of genus one, together with
a section, the “zero section”, 0 : S → E) and α : (Z/NZ)S → E[N ], the level
structure, is an embedding of S-group schemes. The morphisms in the category
are cartesian diagrams

E′ //

¤

E

S′ //
²²

S,
²²

which are compatible with the zero sections and the level structures. For every
such elliptic curve E/S/R we let ωE/S = 0∗ΩE/S . For every morphism π :
E′/S′/R → E/S/R the induced map ωE′/S′ → π∗ωE/S is an isomorphism.
A Katz cusp form f ∈ Sk(Γ1(N), R)Katz assigns to every object (E/S/R,α) of
[Γ1(N)]R an element f(E/S/R,α) ∈ ω⊗k

E/S(S), compatibly for the morphisms in
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the category, subject to the condition that all q-expansions (which one obtains
by adjoining all N -th roots of unity and plugging in a suitable Tate curve) only
have positive terms.
For the following definition let us remark that if m ≥ 1 is coprime to N
and is invertible in R, then any morphism of group schemes of the form
φNm : (Z/NmZ)S → E[Nm] can be uniquely written as φN ×S φm with
φN : (Z/NZ)S → E[N ] and φm : (Z/mZ)S → E[m].

Definition 6 A Katz modular form f ∈ Sk(Γ1(Nm), R)Katz is called inde-
pendent of m if for all elliptic curves E/S/R, all φN : (Z/N)S ↪→ E[N ] and
all φm, φ′

m : (Z/m)S ↪→ E[m] one has the equality

f(E/S/R, φN ×S φm) = f(E/S/R, φN ×S φ′
m) ∈ ω⊗k

E/S(S).

Proposition 7 Let N , m be coprime positive integers and R a ring, which
contains the Nm-th roots of unity and 1

Nm . A Katz modular form f ∈
Sk(Γ1(Nm), R)Katz is independent of m if and only if there exists a Katz mod-
ular form g ∈ Sk(Γ1(N), R)Katz such that

f(E/S/R, φNm) = g(E/S/R, φNm ◦ ψ)

for all elliptic curves E/S/R and all φNm : (Z/NmZ)S ↪→ E[Nm]. Here ψ
denotes the canonical embedding (Z/NZ)S ↪→ (Z/NmZ)S of S-group schemes.
In that case, f and g have the same q-expansion at ∞.

Proof. If m = 1, there is nothing to do. If necessary replacing m by m2, we
can hence assume that m is at least 3.
Let us now consider the category [Γ1(N ;m)]R, whose objects are triples
(E/S/R, φN , ψm), where S is an R scheme, E/S an elliptic curve, φN :
(Z/NZ)S ↪→ E[N ] an embedding of group schemes and ψm(Z/mZ)2S

∼= E[m]
an isomorphism of group schemes. The morphisms are cartesian diagrams com-
patible with the zero sections, the φN and the ψm as before.
We can pull back the form f ∈ Sk(Γ1(Nm), R)Katz to a Katz form h
on [Γ1(N ;m)]R as follows. First let β : (Z/mZ)S ↪→ (Z/mZ)2S be the em-
bedding of S-group schemes defined by mapping onto the first factor. Using
this, f gives rise to h by setting

h((E/S/R, φN , ψm)) = f((E/S/R, φN , ψm ◦ β)) ∈ ω⊗k
E/S(S).

As f is independent of m, it is clear that h is independent of ψm and thus
invariant under the natural GL2(Z/mZ)-action.
As m ≥ 3, one knows that the category [Γ1(N ;m)]R has a final ob-
ject (Euniv/Y1(N ;m)R/R, αuniv). In other words, h is an GL2(Z/mZ)-
invariant global section of ω⊗k

Euniv/Y1(N ;m)R
. Since this R-module is equal

to Sk(Γ1(N), R)Katz (see e.g. Equation 1.2 of [E3], p. 210), we find some
g ∈ Sk(Γ1(N), R)Katz such that f(E/S/R, φNm) = g(E/S/R, φNm ◦ ψ) for
all (E/S/R, φNm).
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Plugging in the Tate curve, one sees that the standard q-expansions of f and
g coincide. ¤

Corollary 8 Let N,m be coprime positive integers, p a prime not dividing
Nm and ε : (Z/NZ)∗ → Fp a character. Let f ∈ Sk(Γ1(Nm), ε, Fp)Katz be a
Katz cuspidal eigenform for all Hecke operators.
If f is independent of m, then there exists an eigenform for all Hecke operators
g ∈ Sk(Γ1(N), ε, Fp)Katz such that the associated Galois representations ρf and
ρg are isomorphic.

Proof. From the preceding proposition we get a modular form g ∈
Sk(Γ1(N), ε, Fp)Katz, noting that the character is automatically good. Because
of the compatibility of the embedding map with the operators Tl for primes
l - m, we find that g is an eigenform for these operators. As the operators Tl

for primes l - m commute with the others, we can choose a form of the desired
type. ¤

4 Proof of the principal result

We first cover the weight one case.

Theorem 9 Let p be a prime and ρ : GQ → GL2(Fp) an odd dihedral repre-
sentation of conductor N , which is unramified at p. Let ε denote the character
det ◦ρ.
Then there exists a Katz eigenform f in S1(Γ1(N), ε, Fp)Katz, whose associated
Galois representation is isomorphic to ρ.

Proof. Assume first that part (a) of Lemma 2 applies to ρ, and let ρ̂ be a lift
provided by that lemma. A theorem by Weil-Langlands (Theorem 1 of [S2])
implies the existence of a newform g in S1(Γ1(N),det ◦ρ̂, C), whose associated
Galois representation is isomorphic to ρ̂. Now reduction modulo a suitable
prime above p yields the desired modular form. In particular, one does not
need Katz’ theory in this case.
If part (a) of Lemma 2 does not apply, then part (b) does, and we let S be the
infinite set of primes provided. For each l ∈ S the theorem of Weil-Langlands
yields a newform f (l) in S1(Γ1(Nl), C), whose associated Galois representation
reduces to ρ modulo P, where P is the ideal from the lemma. Moreover, the
congruence aq(f

(l)) ≡ 0mod P holds for all primes q ∈ S different from l.

From Corollary 5 we obtain Hecke eigenforms f̃ (l) ∈ S1(Γ1(Nl3), C) such that

al(f̃
(l)) = 0 and aq(f̃

(l)) = aq(f
(l)) ≡ 0mod P for all primes q ∈ S, q 6= l. Re-

ducing modulo the prime ideal P, we get eigenforms g(l) ∈ S1(Γ1(Nl3), ε, Fp),
whose associated Galois representations are isomorphic to ρ. One also has
aq(g

(l)) = 0 for all q ∈ S.
The coefficients aq(f

(l)) for all primes q | N appear in the L-series of the com-
plex representation ρf(l) associated to f (l). As the image of ρf(l) is isomorphic
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to a fixed finite group G, not depending on l, there are only finitely many
possibilities for the value of aq(f

(l)). Hence the same holds for the g(l). Con-
sequently, there are two forms g1 = g(l1) and g2 = g(l2) for l1 6= l2 that have
the same coefficients at all primes q | N . For primes q - Nl1l2 one has that
the trace of ρf(l1)(Frobq) is congruent to the trace of ρf(l2)(Frobq), whence
aq(g1) = aq(g2). Let us point out that this includes the case q = p = 2, as the
complex representation is unramified at p.
In the next step we embed g1 and g2 into S1(Γ1(Nl31l

3
2), ε, Fp)Katz via the

method in the statement of Proposition 7. As the q-expansions coincide, g1

and g2 are mapped to the same form h. But as h comes from g2, it is inde-
pendent of l1 and analogously also of l2. Since ρh = ρ, Theorem 9 follows
immediately from Corollary 8. ¤

We will deduce the cases of weight at least two from general results. The
current state of the art in “level and weight lowering” seems to be the following
theorem.

Theorem 10 [Ribet, Edixhoven, Diamond, Buzzard,. . . ] Let p be a prime and
ρ : GQ → GL2(Fp) a continuous irreducible representation, which is assumed
to come from some modular form. Define kρ and Nρ as in [S1]. If p = 2,
additionally assume either (i) that the restriction of ρ to a decomposition group
at 2 is not contained within the scalar matrices or (ii) that ρ is ramified at 2.
Then there exists a normalised eigenform f ∈ Skρ

(Γ1(Nρ), Fp) giving rise to ρ.

Proof. The case p 6= 2 is Theorem 1.1 of [D], and the case p = 2 with
condition (i) follows from Propositions 1.3 and 2.4 and Theorem 3.2 of [B],
multiplying by the Hasse invariant if necessary.
We now show that if p = 2 and ρ restricted to a decomposition group GQ2

at 2 is contained within the scalar matrices, then ρ is unramified at 2. Let
φ : GQ → F2

∗
be the character such that φ2 = det ◦ρ. As φ has odd order,

it is unramified at 2 because of the Kronecker-Weber theorem. If ρ restricted
to GQ2

is contained within the scalar matrices, then we have that ρ|GQ2
is(

φ|GQ2
0

0 φ|GQ2

)
, whence ρ is unramified at 2. ¤

Proof of theorem 1. Let ρ be the dihedral representation from the asser-
tion. If ρ is unramified at p, one has k(ρ) = 1, and Theorem 1 follows from
Theorem 9.
If ρ is ramified at p, then let ρ̂ be a characteristic zero representation lifting ρ,
as provided by Lemma 3. The theorem by Weil-Langlands already used above
(Theorem 1 of [S2]) implies the existence of a newform in weight one and
characteristic zero giving rise to ρ̂. So from Theorem 10 we obtain that ρ
comes from a modular form of Serre’s weight kρ and level Nρ. Let us note
that using Katz modular forms the character is automatically the conjectured
one ερ.
The weights kρ and k(ρ) only differ in two cases (see [E2], remark 4.4). The
first case is when k(ρ) = 1. The other case is when p = 2 and ρ is not finite
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at 2. Then one has k(ρ) = 3 and kρ = 4. In that case one applies Theorem 3.4
of [E2] to obtain an eigenform of the same level and character in weight 3, or
one applies Theorem 3.2 of [B] directly. ¤

5 An irreducibility result

We first study the relation between the level of an eigenform in characteristic p
and the conductor of the associated Galois representation.

Lemma 11 Let ρ : GQ → GL2(Fp) be a continuous representation of conduc-
tor N , and let k be a positive integer. If f ∈ Sk(Γ1(M), ε, Fp)Katz is a Hecke
eigenform giving rise to ρ, then N divides M .

Proof. By multiplying with the Hasse invariant, if necessary, we can assume
that the weight is at least 2. Hence the form f can be lifted to characteristic
zero (see e.g. [D-I], Theorem 12.3.2) in the same level. Thus there exists a
newform g, say of level L, whose Galois representation ρg reduces to ρ. Now
Proposition 0.1 of [L] yields that N divides L. As L divides M , the lemma
follows. ¤

We can derive the following proposition, which is of independent interest.

Proposition 12 Let f ∈ Sk(Γ0(N), Fp)Katz be a normalised Hecke eigenform
for a square-free level N with p - N in some weight k ≥ 1.

(a) If p = 2, the associated Galois representation is either irreducible or trivial.

(b) For any prime p the associated Galois representation is either irreducible or
corresponds to a direct sum α⊕χk−1

p α−1, where χp is the mod p cyclotomic
character and α is a character factoring through G(Q(ζp)|Q) for a primitive
p-th root of unity ζp.

Proof. Let us assume that the representation ρ associated to f is reducible.
Since ρ is semi-simple, it is isomorphic to the direct sum of two characters
α ⊕ β. As the determinant is the (k − 1)-th power of the mod p cyclotomic
character χp, we have that β = χk−1

p α−1. Since the conductor of χk−1
p is 1, it

follows that the conductor of α equals that of β. Consequently, the conductor
of ρ is the square of the conductor of α. Lemma 11 implies that the conductor
of ρ divides N . As we have assumed this number to be square-free, we have
that ρ can only ramify at p.

The number field L with GL = Ker(ρ) is abelian. As only p can be ramified,
it follows that L is contained in Q(ζpn) for some pn-th root of unity. Since the
order of α is prime to p, we conclude that α factors through G(Q(ζp)|Q). In
characteristic p = 2 this implies that ρ is the trivial representation, as χ2 is the
trivial character. ¤
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