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Abstract

We couple collocated isogeometric boundary element methods and unstructured analysis-
suitable T-spline surfaces for linear elastostatic problems. We extend the definition
of analysis-suitable T-splines to encompass unstructured control grids (unstructured
meshes) and develop basis functions which are smooth (rational) polynomials defined
in terms of the Bézier extraction framework and which pass standard patch tests. We
then develop a collocation procedure which correctly accounts for sharp edges and
corners, extraordinary points, and T-junctions. This approach is applied to several
three-dimensional problems, including a real-world T-spline model of a propeller. We
believe this work clearly illustrates the power of combining new analysis-suitable com-
puter aided design technologies with established analysis methodologies, in this case,
the boundary element method.

Keywords: isogeometric analysis, T-splines, boundary elements,
design-through-analysis, collocation

1. Introduction

There is an increasing demand for tighter integration and sophistication of the tools
and technologies which underlie modern design-through-analysis frameworks. This
trend is fueled by the promise of reduced costs and turn-around times in the engineer-
ing product lifecycle and the demand for higher fidelity and complexity in modern
engineered systems. Fundamental to the accomplishment of this objective is the de-
velopment of technology which unifies and improves upon the basic components of
each subsystem. In this spirit, we couple isogeometric boundary element methods
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and T-spline surfaces of arbitrary topology. This approach entirely eliminates geom-
etry clean-up and feature removal steps, and traditional mesh generation. Indeed, the
T-spline design is also the analysis model. This approach can be applied directly to en-
gineering surface designs of arbitrary complexity, automatically, at any point during the
design-through-analysis iterative cycle. The geometrically exact and smooth T-spline
combined with the boundary element method is demonstrated on several benchmark
problems. Additionally, a T-spline propeller model is analyzed to demonstrate the fea-
sibility of the method on real-world engineering designs. We focus on linear elasticity
in this paper but note that the approach is general and can be applied to any suitable
boundary element formulation.

1.1. Isogeometric analysis

Isogeometric Analysis (IGA) has emerged as an important alternative to traditional
design and analysis methodologies. IGA, introduced in the Finite Element Analysis
(FEA) community [1, 2], establishes a fundamental link with Computer Aided Design
(CAD) geometry by using the geometric basis directly as the basis for analysis. Con-
sequently, the finite element mesh is an exact representation of the geometry.

A surprising development in the initial NURBS-based isogeometric investigations
was the tremendous computational advantages that smoothness offers over standard
finite elements [3, 4]. Areas of application of NURBS-based isogeometric analysis
are varied and continue to grow rapidly. A small sampling includes fluids and tur-
bulence [5, 6, 7, 8], fluid-structure interaction [9, 10, 11, 12], incompressibility [13,
14, 15], structural and vibration analysis [16, 3], plates and shells [17, 18, 19, 20, 21],
phase-field analysis [22, 23, 24], large deformation structural analysis with severe mesh
distortion [25], shape optimization [26, 27, 28, 29], and electromagnetics [30]. Inter-
estingly, this success has attracted researchers within the Computer Aided Geomet-
ric Design (CAGD) community to develop new “analysis-aware” geometric technolo-
gies [31, 32, 33, 34, 35, 36, 37, 38].

1.2. T-splines

While isogeometric analysis represents an important step forward there still re-
mains basic limitations in the predominantly NURBS-based engineering design ap-
proaches of today. NURBS are severely limited by the simple fact that they are four
sided. In traditional NURBS-based design, modeling a complicated engineering de-
sign often requires hundreds, if not thousands, of NURBS patches which are usually
discontinuous across patch boundaries. As an example, a multi-patch NURBS repre-
sentation of the single T-spline in Figure 21 is shown in Figure 23. In this case, 72
NURBS patches are required to construct the same geometry. The complexity of the
patch layout coupled with the manual enforcement of smoothness across patch bound-
aries (via control point positioning) makes NURBS design of complicated geometries
time-consuming, error prone, and tedious. Also, almost all NURBS models use trim-
ming curves. Consequently, a global geometric discretization, based on NURBS, is
usually not suitable as a basis for analysis.

T-splines were introduced in [39] in the CAGD community to address the funda-
mental limitations of NURBS. T-splines can model complicated engineering designs
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as a single, watertight geometry. Additionally, NURBS are a special case of T-splines
so existing technology based on NURBS extends to T-splines. Any trimmed NURBS
model can be represented by a watertight trimless T-spline [40] and multiple NURBS
patches can be merged into a single watertight T-spline [39, 41]. Unlike NURBS, T-
splines can be locally refined [42, 43]. These geometric properties are especially crit-
ical in the context of boundary element methods where the behavior and accuracy of
the method are strongly influenced by the watertightness, smoothness, and the ability
to refine the surface mesh while maintaining exact geometry.

1.3. T-spline-based isogeometric analysis

Partnering T-spline discretizations with isogeometric analysis was first proposed
in [44, 45] and described in detail in [46]. It was found that T-splines possess the
same optimal convergence properties as NURBS with far fewer degrees-of-freedom.
Later, analysis-suitable T-splines were formulated [47, 43]. Analysis-suitable T-splines
are a canonical class of T-splines which possess the basic mathematical properties of
NURBS (linear independence, partition of unity, etc.) while maintaining the local
refinement property and design flexibility of general T-spline descriptions.

T-spline-based isogeometric analysis has been applied in various contexts. Appli-
cation areas include fracture and damage [48, 49, 24], fluid-structure interaction [50],
and shells [19]. A design-through-analysis framework utilizing immersed boundary
methods, hierarchical refinement, and T-splines is described in [51]. Automatic con-
version algorithms from unstructured quadrilateral and hexahedral meshes to T-splines
surfaces and volumes is described in [38, 52]. Efficient and canonical finite element
data structures for NURBS and T-splines based on Bézier extraction are described
in [53, 54]. Mathematical studies of the basic approximation properties of analysis-
suitable T-spline spaces are underway [55].

1.4. The boundary element method

The application of boundary integral equations in the context of engineering appli-
cations can be traced back to the early works of Jaswon [56] and Symm [57] for poten-
tial problems and then to elasticity by Cruse [58]. These early formulations outlined
the key feature of the boundary element method (BEM): Discretization is restricted
to the boundary of the physical domain. Free-space Green’s functions (commonly re-
ferred to as fundamental solutions) for the specific problem class under consideration
must be known a priori and singular integrals must be dealt with appropriately. Most
often, in these early works, constant or linear elements were used to discretize the
geometry and unknown solution fields. Later, isoparametric quadratic elements were
used to minimize geometric and discretization errors [59]. Little has changed over the
past few decades and discretizations using constant, linear or quadratic polynomials
are predominant.

Several advances have been made which couple BEM and existing CAGD tech-
nologies in some form. In [60, 61], shape optimization is performed where NURBS are
used for geometry representation and traditional polynomial basis functions are used to
discretize the displacement and traction fields. The idea of combining BEM and IGA
was first proposed in [2]. More recently, isogeometric boundary element analysis using
NURBS curves and surfaces was developed in [62, 63, 64].
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We note that there is a strong theoretical precedent for the use of T-spline dis-
cretizations (smooth splines), collocation-based boundary element methods, and exact
geometry. In this context, several important asymptotic convergence estimates exist in
R2 [65, 66] and to a more limited extent R3 [67, 68, 69].

T-spline surface designs and BEM form an ideal isogeometric partnership, as the
main source of error in BEM is the geometrical approximation of the boundary repre-
sentation, which is entirely eliminated by T-splines. We believe this represents one of
the clearest instantiations of the IGA vision to date.

1.5. Structure and content of the paper

This paper is organized as follows. The boundary integral equations for linear elas-
tostatics and accompanying fundamental solutions are presented in Section 2. Analysis-
suitable T-splines, defined over unstructured grids, are then described in Section 3.
Section 4 details the construction of the T-spline basis with emphasis placed on basis
function definition near so called extraordinary points (vertices whose valence or the
number of edges touching the vertex is not four). This constitutes the most compre-
hensive description of T-spline technology to date. A collocation approach, tailored to
handle unstructured grids with T-junctions, is presented in Section 5. Sections 6 and 7
detail the discretization and collocation of the elastostatic boundary integral equations
for both smooth and non-smooth boundaries, respectively. Numerical integration tech-
niques which account for the singular integrals arising in the formulation are presented
in Section 8. Finally, in Section 10, several demanding three-dimensional problems are
solved, including a complete, exact T-spline model of a propeller.

Throughout this paper we use d
s

and d
p

to denote the number of spatial and para-
metric dimensions, respectively. In all cases, the polynomial degree p is 3. Spatial
components of vectors and tensors are indexed by i, j = 1, 2, . . . , d

s

. We use n
cp

to
denote the number of T-spline basis functions and ne

cp

to denote the number of T-spline
basis functions which are non-zero over element e.

2. Continuous boundary integral formulation

For an arbitrary physical domain, ⌦ ⇢ Rd

s , with boundary �, the boundary integral
equation (BIE) for linear elastostatics, in the absence of body forces, is written as

C(s)u(s) +�
Z
�

T(s,x)u(x) d�(x) =

Z
�

U(s,x)t(x) d�(x) (1)

u
i

(x) = g
i

(x) on �

g

i

✓ � (2)
t
i

(x) = h
i

(x) on �

h

i

✓ � (3)

where s 2 � is a boundary source point, x 2 � is a boundary field point, u(x) 2
Rd

s is the displacement vector at field point x, t(x) 2 Rd

s is the traction vector at
field point x, U(s,x) = [U

ij

] is a d
s

⇥ d
s

real matrix representing the fundamental
displacement kernel, T(s,x) = [T

ij

] is a d
s

⇥ d
s

real matrix termed the fundamental
traction kernel, and C(s) = [C

ij

] is a d
s

⇥ d
s

real matrix called the jump term matrix
(see Section 8.3 for additional details). We note that the jump term matrix only depends
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on the geometric properties of the boundary at source point s. If the source point lies
on a smooth surface then C

ij

=

�

ij

2

where �
ij

is the kronecker delta. Due to the
strong singularity in the fundamental traction kernel, T, the integral associated with it
is evaluated in the Cauchy Principal Value limiting sense (denoted by a dashed integral
sign).

The fundamental displacement and traction kernels for two-dimensional domains
are

U
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1
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and for three-dimensional domains the kernels are

U
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where r = x� s, r = |r|, r
,i

=

@r

@x

i

, n is the unit outward normal evaluated at x, n
i

is
its ith component, µ is the shear modulus, and ⌫ is Poisson’s ratio.

3. Analysis-suitable T-splines over unstructured grids

To discretize the boundary integral equations (1) through (3) we define analysis-
suitable T-splines over unstructured grids. This generalizes the notion of analysis-
suitable T-splines described in [43, 47, 46]. Analysis-suitable T-splines preserve the
important mathematical properties of NURBS while providing an efficient and highly
localized refinement capability [43, 24]. All T-splines possess the following properties:

• The basis functions form a partition of unity.

• Each basis function is non-negative.

• An affine transformation of an analysis-suitable T-spline is obtained by applying
the transformation to the control points. We refer to this as affine covariance;
it is a consequence of the fact that the basis functions form a partition of unity.
This implies that all patch tests (see [70]) are satisfied a priori.

• They obey the convex hull property. This is a consequence of partition of unity
and non-negativity.

• Local refinement is possible.
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However, not all T-splines have linearly independent basis functions [71]. It is
shown in [47] that all T-splines whose T-meshes satisfy a simple topological condition
do have linearly independent basis functions. T-splines that satisfy this topological re-
quirement are called analysis-suitable T-splines [43, 46, 47]. Section 3.3 describes that
topological requirement, and explains how it extends to T-meshes that have extraordi-
nary points.

3.1. The unstructured T-mesh

An important object of interest underlying T-spline technology is the T-mesh, de-
noted by T. For surfaces, a T-mesh is a polygonal mesh and we will refer to the con-
stituent polygons as elements or, equivalently, faces. Each element is a quadrilateral
whose edges are permitted to contain T-junctions – vertices that are analogous to hang-
ing nodes in finite elements. A control point, P

A

2 Rd

s , and control weight, w
A

2 R,
where the index A denotes a global control point number, is assigned to every vertex
in the T-mesh.

The valence of a vertex, denoted by N , is the number of edges that touch the vertex.
An extraordinary point is an interior vertex that is not a T-junction and for which N 6=
4. Edges that touch an extraordinary point are referred to as spoke edges.

The T-mesh elements which touch a T-mesh vertex form the one-ring neighbor-
hood of the vertex. The two-ring neighborhood is the one-ring neighborhood and the
elements that touch the one-ring neighborhood. An n-ring neighborhood is formed in
the obvious way. We call the T-mesh elements and vertices contained in the two-ring
neighborhood of an extraordinary point irregular elements and vertices, respectively.
All other T-mesh elements and vertices are called regular elements and vertices. Fig-
ure 1 shows valence three and five extraordinary points, along with their one- and
two-ring neighborhoods.

To define a basis, a valid knot interval configuration must be assigned to the T-
mesh. A knot interval [72] is a non-negative real number assigned to an edge. A valid
knot interval configuration requires that the knot intervals on opposite sides of every
element sum to the same value. In this paper, we require that the knot intervals for
spoke edges of an individual extraordinary point either be all non-zero or all zero.

3.2. T-junction extensions

A T-junctions extension consists of one or two directed line segments originating
at the T-junction [43]. Figure 1 shows a T-mesh that contains a single T-junction, and
the directed line segments in Figure 2a (drawn in dashed lines) are its extension. The
black dashed line, extending over two faces, is called a face extension, and the portion
of a face extension lying in the face immediately adjacent to the T-junction is called a
one-bay face extension. The red dashed line, extending along a single edge, is called
an edge extension. A T-junction lying on the boundary has a face extension but no
edge extension. All other T-junctions have either one face extension and one edge
extension, or two face extensions. The direction of an extension is always away from
its T-junction. An extended T-mesh T

ext

is formed by adding all T-junction extensions
to a T-mesh T. Since T-junction extensions are closed line segments, a horizontal
and vertical extension can intersect either on the interior of both extensions or at the
endpoint of one extension or both extensions.

6



Figure 1: An unstructured T-mesh. Extraordinary points are denoted by red hollow circles and T-junctions
are denoted by red hollow squares. The one-ring neighborhoods are composed of the darkly shaded elements
and the two-ring neighborhoods are composed of the dark and lightly shaded elements. The spoke edges are
denoted by the thick black lines.

3.3. Analysis-suitable definition

For T-meshes that have no extraordinary points, an analysis-suitable T-spline is
defined in [47] to be one whose T-mesh has no intersecting extensions; it is proven
in [47] that such T-splines have linearly independent basis functions. We now define
an analysis-suitable T-spline with extraordinary points to be one whose T-mesh honors
the following conditions: no T-junction extensions intersect, no one-bay face extension
spans an element in the three-neighborhood of an extraordinary point, and no extraor-
dinary point lies within the three-neighborhood of another extraordinary point. A proof
is under development to assure that the basis functions for such T-splines are linearly
independent. We use the adjective “analysis-suitable” to refer to a T-spline, and its T-
mesh and extended T-mesh. The analysis-suitable extended T-mesh corresponding to
the T-mesh in Figure 1 is shown in Figure 2a.

4. The unstructured T-spline basis

A T-spline basis function, N
A

, is defined for every vertex, A, in the T-mesh. Each
N

A

is a bivariate piecewise polynomial function. If A has no extraordinary points in
its two-neighborhood, N

A

is comprised of a 4 ⇥ 4 grid of polynomials (see upper-
right example in Figure 2d). Otherwise, the polynomials comprising N

A

do not form
a 4 ⇥ 4 grid (see the other two basis functions diagrammed in Figure 2d). In either
case, the polynomials can be represented in Bézier form. Similarly, any T-spline can
be decomposed into a finite set of Bézier elements and the set of T-spline control points
maps linearly to the set of Bézier control points.

We note that the treatment and analysis of extraordinary points in control meshes
that have quadrilateral faces has a rich history in CAGD. A popular approach in CAGD
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(a) The extended T-mesh, T
ext

(b) The elemental T-mesh, T
elem

(c) The Bézier Mesh (d) Basis function supports in
T
elem

Figure 2: The extended T-mesh, elemental T-mesh, Bézier mesh, and regular and irregular elemental supports
of three particular T-spline basis functions. (a) The extended T-mesh, T

ext

. The extended T-mesh is formed
by adding all T-junction extensions to the T-mesh, T. In this case, there is a single T-junction extension
shown on the left. The face extension is denoted by a black dashed arrow and the edge extension is denoted
by a red dashed arrow. (b) The elemental T-mesh, T

elem

. The elemental T-mesh, T
elem

, is formed by
adding all face extensions to T and then eliminating all elements for which the knot interval sum on any side
is zero. The shaded elements are the elements in T

elem

. (c) The Bézier mesh in physical space. The Bézier
mesh is created through Bézier extraction as described in Section 4.2. (d) Three T-mesh vertices with the
underlying sets of elemental T-mesh elements which support the corresponding basis functions. The lightly
shaded rectangles are regular elements and the darkly shaded elements are irregular elements. In the top left,
the basis function is supported entirely by irregular elements. In the top right, the basis function is supported
entirely by regular elements. On the bottom, the basis function is supported by both regular and irregular
elements. The portions of the basis functions supported by regular elements are B-splines while the portions
supported by irregular elements are defined through the constrained optimization procedure described in
Section 4.3.
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to dealing with such extraordinary points is to use subdivision surfaces [73, 74, 75, 76,
77, 78, 79, 80]. In practice, the most popular approaches generalize uniform B-spline
knot insertion, also known as h-refinement. Notable exceptions being NURSS [81]
and T-NURCCs [39], which handle non-uniform knots and T-junctions, respectively.
The subdivision process generates elements near the extraordinary point which are
comprised of an infinite sequence of piecewise polynomials. We mention in passing
that certain subdivision schemes have been used as a basis for finite element analy-
sis [82, 83, 84, 85, 86].

As an alternative approach to dealing with extraordinary points, the CAGD com-
munity has increasingly explored finite polynomial representations for the surface sur-
rounding an extraordinary point, typically with each control grid face mapping to a
single polynomial patch. These approaches [87, 88, 89, 90, 91, 92, 93, 94, 95] are
more amenable to real-time applications, modern GPU processors, and high-end en-
gineering design where at least curvature continuity is required. In addition, in the
context of T-splines, these constructions are both forward and backward compatible
with NURBS, the current industry standard in CAD.

We focus our developments in this paper on defining the T-spline basis over irregu-
lar Bézier elements using one polynomial patch per element. We employ a constrained
minimization framework which guarantees a specified level of smoothness and basic
analysis-suitability properties. The construction of T-spline basis functions over regu-
lar Bézier elements is described in detail in [54].

4.1. The elemental T-mesh

An analysis-suitable elemental T-mesh, T
elem

, is formed by adding all face exten-
sions to T and then eliminating all elements for which the knot interval sum on any side
is zero. A Bézier element is then associated with each element in T

elem

. A Bézier ele-
ment is a region of the T-spline surface in physical space bounded by knot lines. Each
Bézier element has no interior knot lines, and hence can be represented by a single bi-
variate polynomial. We represent these polynomials in the Bernstein polynomial basis,
so each Bézier element is a Bézier surface patch. Each knot line in physical space is
the image of an edge in T

elem

, or equivalently, a line of reduced continuity in at least
one T-spline basis function. We call the collection of Bézier elements the Bézier mesh.

Figure 2b shows the elemental T-mesh corresponding to the T-mesh in Figure 1.
The elements in the elemental T-mesh are shaded. A single face extension is included
in T

elem

denoted by a dashed line. Consistent with B-spline conventions, the outer
ring of elements is always excluded from T

elem

. These elements typically have at least
one side whose knot intervals sum to zero to create an open knot vector structure along
the boundary.

4.2. B´ezier extraction

The Bézier elements in the Bézier mesh are defined through Bézier extraction. Re-
call that the set of T-spline control points maps linearly to the set of Bézier control
points. This map allows us to “extract” the Bézier patches that comprise a T-spline.
The transpose of this linear map is defined by a matrix called the extraction operator.
In the context of finite element analysis, the extraction operator is a generalization of
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the classical assembly operator and is used to standardize and localize element rep-
resentation. In other words, the extraction operator maps a canonical tensor product
Bernstein polynomial basis defined on Bézier elements to the global T-spline basis.
The transpose of the extraction operator maps T-spline control points to the Bézier
control points. See [53, 54] for a detailed description of Bézier extraction including the
implementation of Bézier extraction into finite element codes.

4.3. Irregular B´ezier element definition

Unlike regular Bézier elements, irregular Bézier elements cannot be defined through
B-spline knot insertion. Instead, their control points are chosen to satisfy geometric
constraints that create an attractive surface and satisfy basic analysis-suitability prop-
erties such as patch tests [46]. There are numerous applications of these constraints,
and several papers have been written exploring various choices [87, 88, 89, 90, 91, 92,
93, 94, 95].

In this paper, we present a general framework for irregular Bézier element definition
that can be applied to all constructions that produce a linear map from T-spline control
points to Bézier control points. We also present a particular construction which is
relatively simple to understand and implement.

The irregular Bézier elements produced by our construction honor the following
conditions: Two-neighborhood elements are C2 with adjoining three-neighborhood el-
ements, and C1 with their other neighbors; and one-neighborhood elements are G1

(i.e., tangent plane continuous) with adjoining one-neighborhood elements and C1

with adjoining two-neighborhood elements. One-neighborhood elements are biquar-
tic Bézier patches. These conditions leave extra degrees of freedom which are satisfied
by imposing a simple fairing functional to produce an aesthetically pleasing surface.
The details of the construction, including the derivation of the G1 constraints, written
in terms of biquartic Bézier elements, and the simple fairing functional employed in
this paper are presented in Appendix A and Appendix B.

4.3.1. A T-spline to B´ezier transformation

The first step in our construction defines one bicubic Bézier element for each one-
and two-neighborhood face in the control mesh. The control points of these bicubic
elements are linear combinations of T-spline control points, and the coefficients of
the linear combinations are rational polynomial functions of knot intervals, described
in Appendix A with reference to Figure 3. We call the resulting linear transformation
the T-spline to Bézier transformation. The two-neighborhood Bézier elements thus
defined are C1 with each other and C2 with the adjoining three-neighborhood patches.
The one-neighborhood Bezier elements are C1 with the two-neighborhood patches,
but only C0 with each other. Since C0 is not acceptable for most geometric modeling
applications, some adjustments to the Bezier control points of the one-neighborhood
elements must be made in order to achieve G1 continuity.

Figure 4 shows the initial bicubic Bezier element control grids and basis functions
resulting from the B-spline to Bézier transformation, corresponding to the two extraor-
dinary points in Figure 1. Figure 5a shows the initial C0 bicubic patches defining the
basis function corresponding to the valence five extraordinary point in Figure 1. Notice
the lack of smoothness.
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(a) (b)

(c) (d)

Figure 3: A non-uniform bicubic T-spline to Bézier transformation. (a) Face, edge, and vertex points defining
an irregular Bézier element. The Bézier control points are denoted by open circles while the original T-spline
control points are denoted by solid circles. Face Bézier points are denoted by a superscript f , edge Bézier
points are denoted by a superscript e, and vertex Bézier points are denoted by a superscript v. Notice that
the T-spline control points may or may not be extraordinary points. (b) Face points for a Bézier element
(see Appendix A for detailed formulae). Each face point is written in terms of T-spline control points
P

A

through P

D

and knot intervals a through f (see Appendix A for detailed formulae). (c) Edge points
corresponding to an edge of an extraordinary element. Each edge point is written in terms of Bézier face
points of neighboring Bézier elements and knot intervals a and b (see Appendix A for detailed formulae). (d)
A vertex point corresponding to a corner of an extraordinary element. Each vertex point is written in terms
of all adjacent face points and spoke edge knot intervals (see Appendix A for detailed formulae). Note that
face points are defined first, followed by edge points, and finally vertex points.
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Figure 4: The initial bicubic Bézier element control grids and basis functions resulting from a B-spline to
Bézier transformation, described in Section 4.3 and Appendix A, corresponding to the two extraordinary
points in Figure 1. These basis functions do not lie in a portion of the T-mesh with a rectangular grid
topology.
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4.3.2. A constrained optimization framework

While it is possible to obtain G1 continuity with bicubic patches, the resulting sur-
face is quite rigid and does not allow inflection points in the curves adjacent to extraor-
dinary points. To obtain a less rigid solution, we degree elevate the one-neighborhood
elements to be biquartic, thereby providing additional degrees of freedom. We use most
of these new degrees of freedom to enable a solution to the constraint equations that
assure G1 continuity. A few additional degrees of freedom remain, which are solved
for by minimizing a fairing functional.

To be more precise, a constrained optimization problem can be solved for each T-
spline basis function, N

A

, in the two-neighborhood of a valence N extraordinary point.
The T-spline to Bézier transformation, detailed in Appendix A, results in ⌫(N) =

20N + 1 one-ring Bézier coefficients. We then assemble µ(N) = 40N fairing equa-
tions and ⌧(N) = 20N+1 constraint equations, as described in Appendix B, into a fair-
ing matrix F

A

2 Rµ(N)⇥⌫(N) and corresponding right-hand side f

A

2 Rµ(N) and G1

constraint matrix G

A

2 R⌧(N)⇥⌫(N) and corresponding right-hand side g

A

2 R⌧(N),
respectively. We can then find a vector of “smoothed” Bézier coefficients, ˜c

A

2 R⌫(N),
which solves

min

˜c
A

2S
A

||F
A

˜

c

A

� f

A

||
2

(8)

where
S

A

= {˜c
A

| ||G
A

˜

c

A

� g

A

||
2

= min} . (9)

Once F

A

, f
A

, G
A

, and g

A

are assembled we solve the constrained least squares prob-
lem using the method of direct elimination as described in [96]. This approach cor-
rectly handles any linear dependencies which may exist in the constraint matrix, G

A

.
By solving a constrained optimization problem for each T-spline basis function, the
smoothness is built into the basis. Consequently, the surface remains smooth for al-
most all control point configurations.

Figure 5b shows the T-spline basis function, comprised of G1 biquartic patches,
corresponding to the valence five extraordinary point in Figure 1. Figure 5a shows the
initial C0 bicubic patches. Notice the difference in smoothness.

4.4. The T-spline geometric map

Since both regular and irregular elements can be represented in Bézier form, a
localized finite element representation of the global T-spline basis can be written using
Bézier extraction and extraction operators. In other words,

N

e

(

˜⇠) = C

e

B(

˜⇠) (10)

where ˜⇠ 2 ˜

⌦ is a coordinate in a standard parent element domain (see [70], Chapter
3, for a review of standard finite element paraphernalia, including the parent element
domain), Ne

(

˜⇠) = {Ne

a

(

˜⇠)}n
e

cp

a=1

is a vector of T-spline basis functions which are non-
zero over element e, B(

˜⇠) = {B
i

(

˜⇠)}(p+1)

d

p

i=1

is a vector of tensor product Bernstein
polynomial basis functions associated with Bézier element e, and C

e is the element
extraction operator.
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(a) (b)

Figure 5: The T-spline basis function corresponding to the valence five extraordinary point in Figure 1. (a)
The C

0 bicubic patches whose control points are shown in Figure 4. (b) The G

1 biquartic patches

We can define the element geometric map, x̃e

:

˜

⌦ ! ⌦

e, from the parent element
domain onto the physical domain as

x̃

e

(

˜⇠) =
1

(w

e

)

T

N

e

(

˜⇠)
(P

e

)

T

W

e

N

e

(

˜⇠) (11)

= (P

e

)

T

R

e

(

˜⇠) (12)

where R

e

(

˜⇠) = {Re

a

(

˜⇠)}n
e

cp

a=1

is a vector of rational T-spline basis functions, the ele-
ment weight vector we

= {we

a

}ne

a=1

, the diagonal weight matrix W

e

= diag(w

e

), and
P

e is a matrix of dimension ne

cp

⇥ d
s

that contains element control points,

P

e

=

266664
P e,1

1

P e,2

1

. . . P e,d

s

1

P e,1

2

P e,2

2

. . . P e,d

s

2

...
...

...
P e,1

n

e

cp

P e,2

n

e

cp

. . . P e,d

s

n

e

cp

377775 . (13)

Using (11) and (12) we have that

R

e

(

˜⇠) =
1

(w

e

)

T

N

e

(

˜⇠)
W

e

N

e

(

˜⇠), (14)

and using (10)

R

e

(

˜⇠) =
1

(w

e

)

T

C

e

B(

˜⇠)
W

e

C

e

B(

˜⇠). (15)
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Note that all quantities in (15) are written in terms of the Bernstein basis defined over
the parent element domain, ˜⌦. The Bézier mesh in physical space corresponding to the
T-mesh in Figure 1 is shown in Figure 2c. Each Bézier element is mapped into physical
space using the T-spline geometric map (12).

5. Collocation

Collocation generates a set of discrete equations, that satisfy (1) through (3) ex-
actly at a specified set of collocation points. Our collocation approach robustly handles
T-junctions and extraordinary points. We first define n-ring local knot interval vec-
tors and basis function domains and then describe how to compute the coordinates of
collocation points in both parametric and physical space.

5.1. n-ring local knot interval vectors

An n-ring local knot interval vector, K
A,n

, is constructed from knot interval se-
quences inferred from the T-mesh in the neighborhood of the associated vertex, A. We
construct an n-ring local knot interval vector, K

A,n

= {Ki

A,n

}N
i=1

, where Ki

A,n

=

{ki
A,1

, ki
A,2

, . . . , ki
A,n

}, by marching through the T-mesh in each topological direction,
i = 1, . . . , N , where N is four for ordinary vertices and equal to the number of spoke
edges (i.e., valence) if the vertex is extraordinary, starting at vertex A, until n vertices or
perpendicular edges are intersected. At each intersection, the knot interval distance tra-
versed from the last intersection is placed in the local knot interval vector. If a T-mesh
boundary is crossed or an extraordinary point is encountered before n knot intervals
are constructed, it is common practice to set the remaining knot intervals to zero. We
note that, for cubic T-splines, 2-ring local knot interval vectors can be constructed for
each regular vertex in the T-mesh. These local knot interval vectors are used to con-
struct T-spline basis functions. See [39, 54, 43] for additional details on T-spline basis
function definition for regular T-mesh vertices. In this paper, 1-ring and 2-ring local
knot interval vectors are also used to compute collocation points.

Figure 6 shows the 2-ring local knot intervals corresponding to an ordinary (a) and
extraordinary vertex (b). For the ordinary vertex, we have that

K

A,2

=

��
k1
A,1

, k1
A,2

 
,
�
k2
A,1

, k2
A,2

 
, . . . ,

�
k4
A,1

, k4
A,2

  
(16)

and for the valence five extraordinary vertex we have that

K

A,2

=

��
k1
A,1

, k1
A,2

 
,
�
k2
A,1

, k2
A,2

 
, . . . ,

�
k5
A,1

, k5
A,2

  
. (17)

5.2. n-ring local basis function domains

When the T-mesh vertex is an ordinary point we use K

A,n

to define a single local
basis function domain, b⌦

A,n

⇢ R2, as

b
⌦

A,n

=

2O
i=1

b
⌦

i

A,n

, (18)
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(a) 2-ring notation, ordinary case

(b) 2-ring notation, extraordinary case

Figure 6: Collocation data corresponding to the 2-ring of both extraordinary and ordinary vertices. (a)
Collocation data corresponding to the 2-ring of an ordinary vertex. (b) Collocation data corresponding to the
2-ring of a valence five extraordinary vertex.
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where b
⌦

1

A,n

= [�
P

n

j=1

k3
A,j

,
P

n

j=1

k1
A,j

] and b
⌦

2

A,n

= [�
P

n

j=1

k4
A,j

,
P

n

j=1

k2
A,j

].
A coordinate system, ⇠

A,n

= (⇠1
A,n

, ⇠2
A,n

) = (⇠
A,n

, ⌘
A,n

), called the n-ring basis
coordinate system, is assigned to each n-ring local basis function domain. Figure 6a
shows the local basis function domain and 2-ring basis coordinate system for a ordinary
vertex.

When the T-mesh vertex is extraordinary we use K
A,n

to define a set of local basis

function domains,
nb
⌦

A,n,i

o
N

i=1

, where b⌦
A,n,i

⇢ R2 is defined as

b
⌦

A,n,i

=

2O
j=1

b
⌦

j

A,n,i

, (19)

where b
⌦

j

A,n,i

= [0,
P

n

`=1

ki+j�1 (modN)

A,`

] ⇢ R. A coordinate system, ⇠
A,n,i

=

(⇠1
A,n,i

, ⇠2
A,n,i

) = (⇠
A,n,i

, ⌘
A,n,i

), called the ith n-ring basis coordinate system, is as-
signed to each n-ring local basis function domain in the set. Figure 6b shows the five
local basis functions domains and 2-ring basis coordinate systems for a valence five
extraordinary vertex. Notice that the origin of each coordinate system is at the extraor-
dinary vertex.

5.3. n-ring collocation points

To determine collocation points in the unstructured T-spline setting, we generalize
the notion of Greville abscissae1 to accomodate unstructured grids, T-junctions, and ex-
traordinary points. Collocation at Greville abscissae has been shown to be an accurate
choice in the context of collocated isogeometric boundary element [63, 64] and finite
element methods [97, 98]. We note that, if the T-spline does not have T-junctions or
extraordinary points, 1-ring collocation points described in this paper are equivalent to
two-dimensional Greville abscissae. Additionally, we use 2-ring collocation points in
the presence of discontinuous data. This ensures a unique location for each collocation
point.

We associate an n-ring collocation point with each basis function (or, equivalently,
control point). To determine the basis coordinates of an n-ring collocation point associ-
ated with a ordinary vertex we use the n-ring local knot interval vectors, K

A,n

, and the
n-ring local basis function domain, b⌦

A,n

, and compute the location of the collocation
point in the n-ring basis coordinate system as

↵
A,n

=

8<:
P

n

j=1 �(n�j+1)k

3
A,j

+

P
n

j=1(n�j+1)k

1
A,j

2n+1P
n

j=1 �(n�j+1)k

4
A,j

+

P
n

j=1(n�j+1)k

2
A,j

2n+1

9=; . (20)

The basis coordinates for the 2-ring collocation point corresponding to the ordinary

1In CAGD, Greville abscissae commonly refer to particular control point positions in physical space
which induce a linear geometric map. In this work, we instead use the term to refer to locations in parametric
space computed from sequences of knot intervals and allow the geometric map to remain arbitrary.
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vertex in Figure 6a is

↵
A,2

=

(
2k

1
A,1+k

1
A,2�2k

3
A,1�k

3
A,2

5

2k

2
A,1+k

2
A,2�2k

4
A,1�k

4
A,2

5

)
, (21)

which is denoted by the black square in Figure 6a.
The basis coordinates, in each n-ring local basis function domain, of an n-ring

collocation point associated with an extraordinary vertex is simply

↵
A,n,i

= {0, 0}T , i = 1, . . . , N. (22)

This choice is made for simplicity and because, for the case of a uniform knot inter-
val configuration, it represents a strict generalization of the Greville abscissae to the
unstructured setting.

Once the location of a collocation point has been determined in terms of an under-
lying n-ring basis coordinate system and basis function domain it is a simple matter to
determine which Bézier element domain(s) contains the collocation point. The location
of the collocation point in physical space is the image of the collocation point in the
Bézier element domain under the T-spline geometric map (12).

6. Discretization for smooth boundaries

We first describe the T-spline discretization scheme used to solve (1) through (3)
when the T-spline surface � is smooth. A smooth boundary is defined to be a surface
with a continuous normal field. In this setting, both the displacement and traction
fields are continuous. We describe necessary modifications for non-smooth boundaries
in Section 7. In the smooth case, we discretize both displacements and tractions using
the same set of T-spline basis functions. In other words,

u(x) =

n

cpX
A=1

u

A

R
A

(x) (23)

t(x) =

n

cpX
A=1

t

A

R
A

(x) (24)

where n
cp

is the number of control points or T-mesh vertices in the T-mesh and R
A

is
a (rational) T-spline basis function as described in Section 4. Inserting (23) and (24)

18



into (1) through (3) gives
n

cpX
A=1

C(s)R
A

(s)u

A

+

n

cpX
A=1

�
Z
�

T(s,x)R
A

(x) d�(x)u

A

(25)

=

n

cpX
A=1

Z
�

U(s,x)R
A

(x) d�(x)t

A

n

cpX
A=1

R
A

(s)uA

i

= g
i

(s) on �

g

i

(26)

n

cpX
A=1

R
A

(s)tA
i

= h
i

(s) on �

h

i

(27)

where uA

i

and tA
i

are the ith component of the displacement and traction control vari-
ables, respectively, associated with T-spline basis function R

A

.
We now collocate (25) through (27) by specifying n

cp

collocation points in �. In
the smooth setting, we use 1-ring collocation points for both extraordinary and ordinary
vertices. In other words, the collocation points, s

B

2 �, are computed using (20) for
ordinary vertices and (22) for extraordinary vertices and then mapped into physical
space using (12). Collocating (25) through (27) yields the set of equations

n

cpX
A=1

C(s

B

)R
A

(s

B

)u

A

+

n

cpX
A=1

�
Z
�

T(s

B

,x)R
A

(x) d�(x)u

A

(28)

=

n

cpX
A=1

Z
�

U(s

B

,x)R
A

(x) d�(x)t

A

, B = 1, 2, . . . , n
cp

n

cpX
A=1

R
A

(s

B

)uA

i

= g
i

(s

B

) 8B such that s

B

2 �

g

i

(29)

n

cpX
A=1

R
A

(s

B

)tA
i

= h
i

(s

B

) 8B such that s

B

2 �

h

i

. (30)

The boundary integrals in (28) can be localized to element integrals over Bézier ele-
ments using standard techniques [70] and the Bézier extraction framework described
in Section 4.2 and [53, 54]. The equations (28), (29), and (30) are then assembled into
the following linear system

Kd = f (31)

where K 2 R2n

cp

d

s

⇥2n

cp

d

s , f 2 R2n

cp

d

s , and d is the vector of unknown boundary
displacements and tractions, respectively. We note that the matrix, K, is in general
dense and non-symmetric.

7. Discretization for non-smooth boundaries

Most engineering models of interest have sharp edges and corners. In this case, the
displacement field is continuous but the traction field is discontinous due to disconti-
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nuities in the normal field. Ignoring the differing regularity requirements for displace-
ments and tractions in the discretization has a dramatic impact on the accuracy of the
solution. See Appendix C for a motivating example and a detailed discussion of the
differing methods employed in the boundary element literature to handle discontinuous
tractions. Using T-splines, we can automatically locally refine the T-spline basis such
that any discontinuities are appropriately accomodated.

7.1. The semi-discontinuous T-spline basis

To correctly model continuous displacements and discontinuous tractions we use
the original T-spline basis to discretize the displacements and a locally refined T-
spline basis to discretize the tractions. We call this locally refined basis the semi-
discontinuous T-spline basis. To be more precise, the displacements and tractions are
discretized as

u(x) =

n

cpX
A=1

u

A

R
A

(x) (32)

t(x) =

n

s

cpX
B=1

t

B

Rs

B

(x) +

n

d

cpX
C=1

t

C

Rd

C

(x) (33)

where the semi-discontinuous basis is composed of ns

cp

continuous basis functions,
Rs

B

, and nd

cp

discontinuous basis functions, Rd

C

. These functions are created through
exact local refinement of the original polynomial T-spline basis [42, 43] as described
in Section 7.1.1. We note that n

cp

 ns

cp

+ nd

cp

. If nd

cp

= 0, then the surface is smooth
and local refinement is not necessary since there are no discontinuities in the traction
field.

Once the appropriate semi-discontinuous basis has been constructed, we follow
the discretization procedure described in Section 6 by inserting (32) and (33) into (1)
through (3). However, we now collocate the resulting equations with ns

cp

+ nd

cp

col-
location points in �. We associate 1-ring collocation points with each Rs

B

and 2-ring
collocation points with each Rd

C

. This ensures that no collocation points lie on edges
or corners or are coincident.

Note that in the presence of discontinuities we generate a larger collocation point
set than is strictly required to collocate the continuous displacement field. In that case,
our method collocates a displacement unknown multiple times and sums the result
through the global assembly operation.

7.1.1. Semi-discontinuous local refinement

Semi-discontinuous local refinement is a special case of analysis-suitable local re-
finement described in [43]. The purpose of the local refinement step is to introduce
discontinuities in the T-spline basis only where the traction field is discontinuous due
to discontinuities in the normal field on the surface. The steps of the local refinement
algorithm are:

Step 1 Compute the physical location of all 1-ring collocation points on the surface
corresponding to the original T-spline basis.
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Step 2 Compute the number of unique normals at each collocation point.

Step 3 If the number of unique normals at a collocation point is greater than 1, refine
the original basis function associated with the collocation point. This generates
a set of refined basis functions which are added to the set of discontinous basis
functions. Otherwise, add the original basis function to the set of continuous
basis functions.

Step 4 Set the control points of the refined basis functions equal to the original control
point.

To refine a T-spline basis function whose associated collocation point has a non-
unique normal we compute the 2-ring local knot interval vectors and consider the fol-
lowing cases:

1. The associated vertex is ordinary:

1a. If k1
A,1

= k3
A,1

= 0 and k2
A,1

6= 0 or k4
A,1

6= 0 create two refined basis
functions whose 2-ring local knot interval vectors are

K

I,2

=

�
{0, 0} ,

�
k2
A,1

, k2
A,2

 
,
�
k3
A,1

, 0
 
,
�
k4
A,1

, k4
A,2

  
(34)

K

J,2

=

��
0, k1

A,2

 
,
�
k2
A,1

, k2
A,2

 
, {0, 0} ,

�
k4
A,1

, k4
A,2

  
. (35)

1b. If k2
A,1

= k4
A,1

= 0 and k1
A,1

6= 0 or k3
A,1

6= 0 create two refined basis
functions whose 2-ring local knot interval vectors are

K

I,2

=

��
k1
A,1

, k1
A,2

 
,
�
0, k2

A,2

 
,
�
k3
A,1

, k3
A,2

 
, {0, 0}

 
(36)

K

J,2

=

��
k1
A,1

, k1
A,2

 
, {0, 0} ,

�
k3
A,1

, k3
A,2

 
,
�
k4
A,1

, 0
  

. (37)

1c. If k1
A,1

= k2
A,1

= 0 and k2
A,1

= k4
A,1

= 0 create four refined basis functions
whose 2-ring local knot interval vectors are

K

I,2

=

��
0, k1

A,2

 
,
�
0, k2

A,2

 
, {0, 0} , {0, 0}

 
(38)

K

J,2

=

��
0, k1

A,2

 
, {0, 0} , {0, 0} ,

�
0, k4

A,2

  
(39)

K

K,2

=

�
{0, 0} , {0, 0} ,

�
0, k3

A,2

 
,
�
0, k4

A,2

  
(40)

K

L,2

=

�
{0, 0} ,

�
0, k2

A,2

 
,
�
0, k3

A,2

 
, {0, 0}

 
. (41)

2. The associated vertex is extraordinary of valence N . In this case, create N refined
basis functions whose 2-ring local knot interval vectors are:

K

I,2

=

n�
0, ki

A,2

 
,
n
0, ki+1

A,2

o
, {0, 0} , {0, 0}

o
, i = 1, . . . , N. (42)

8. Numerical integration

Inspection of the fundamental kernels (4) through (7) reveal that as s ! x the
expressions become singular where, more specifically, the 3D kernels of (6) and (7) are
found to be weakly singular and strongly singular, respectively. Therefore, appropriate
numerical integration techniques must be used for the integrals in (1). In general, the
boundary integrals can be classified into three types:
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• Non-singular integrals: The source point s and field point x lie sufficiently far
apart such that the integrand is considered regular.

• Nearly singular integrals: The source point lies close to, but not on, the element
containing the field point.

• Singular integrals: The source point lies on the same element as the field point.

In the present work, Gauss-Legendre quadrature is used to evaluate the non-singular
integrals. Accurate evaluation of nearly singular and singular integrals is more chal-
lenging.

8.1. Nearly singular integrals

Near singular integration is an active area of research in the boundary element com-
munity. In all cases, an adaptive scheme, which accurately measures the “closeness” of
the source point to the element in question, must be devised and an appropriate integra-
tion technique employed. In [59], near singular integration is achieved by subdividing
the element into equal length subelements with the number of subelements related to a
bound on integration error. Transformation techniques which reduce the singularity of
the integral thus allowing conventional Gauss-Legendre quadrature to be used are also
common [99, 100, 101]. Another approach is to transform the integral into a singular
part that can be integrated analytically leaving a non-singular part that can be easily
evaluated [102].

In this paper, we do not employ an adaptive integration scheme for nearly singular
integrals but instead use the same sufficiently high Gauss-Legendre quadrature rule for
both non-singular and nearly singular integrals such that integration error is suppressed.
We recognize that in most cases this represents overkill in terms of integral evaluation
and we plan on pursuing appropriate adaptive quadrature schemes for isogeometric
boundary element analysis in a forthcoming paper.

8.2. Evaluation of the weakly singular U kernel

In 3D, the U kernel is of O(1/r) and can be transformed into a regular integral
through polar integration. Denoting the local polar coordinate system, centered at ˜⇠s
(the parent coordinate of source point s in element e), as ˜⇢ = (⇢, ✓), this is achieved in
the following manner:Z

˜

⌦

e

U(s,x(˜⇠))Re

a

(

˜⇠)J(˜⇠) d˜⇠ =

Z
2⇡

0

Z
⇢̂(✓)

0

U(s,x(˜⇢))Re

a

(

˜⇢)J(˜⇢)J
⇢

(

˜⇢)⇢ d˜⇢ (43)

where ⇢̂ is the distance from the source point to the element boundary for a given ✓ and
J
⇢

is the Jacobian transformation from polar to parent coordinates. The inclusion of
the term ⇢ on the right-hand side of (43) transforms the weakly singular integral into a
regular integral and Gauss-Legendre quadrature can now be used for evaluation. In this
work, the element is split into subelements as shown in Figure 7, where the number of
subelements can vary from two to four, depending on the position of the source point
˜⇠s.
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Figure 7: Definition of a polar coordinate system in the parent space of a Bézier element.

8.3. Evaluation of the strongly singular T kernel

The evaluation of the first integral of (28) often presents the most challenges since
it involves the evaluation of a strongly singular integral. In addition, a byproduct of
the CPV limiting process is the creation of the jump term, C, which must be evaluated
at each collocation point. In this work, the commonly used technique of rigid body
motion [103], which can also be considered to be a form of regularized BEM [104], is
used. It relies on the following expression:

C(s) = ��
Z
�

T(s,x) d�(x), (44)

which is derived in Appendix D. By substituting this expression into (1), the following
BIE is obtained:Z

�

T(s,x)(u(x)� u(s)) d�(x) =

Z
�

U(s,x)t(x) d�(x). (45)

The integral on the left of (45) is now weakly singular and the technique described in
Section 8.2 can be used. In practice, however, this integral is calculated in two separate
parts. The discretized form of the first integral of (28), written asZ

˜

⌦

e

T(s,x(˜⇠))Re

a

(

˜⇠)J(˜⇠) d˜⇠, (46)

is calculated for all elements (for a given source point s), where the polar transforma-
tion described in Section 8.2 is used when ˜⇠s 2 ˜

⌦

e. These terms are placed in the
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relevant matrix entries in (31). Next, by summing over the basis functions for a par-
ticular element and employing the partition of unity property of the (rational) T-spline
basis, the following integral is calculated:X

a

Z
˜

⌦

e

T(s,x(˜⇠))Re

a

(

˜⇠)J(˜⇠) d˜⇠ =

Z
⌦

e

T(s,x) d⌦e. (47)

Then, by accumulating the contributions given by (47) for each element, the jump
term given by (44) is calculated at each collocation point. Since the point s is not
guaranteed to lie at a point which is interpolated by the T-spline basis, the jump term
must be multiplied by all the non-zero T-spline basis functions at the collocation point
as shown in (28) and then placed in the final system of equations.

It should be noted, however, that by using the collocation strategy described in
Section 7 for non-smooth boundaries, the jump term will always be of the form

C(x) =

1

2

I (48)

where I denotes the identity matrix. The reason for this is that all collocation points lie
on smooth portions of the surface.

9. Evaluation of stresses

To evaluate stresses on the boundary using the boundary element method, two ap-
proaches can be used. In the first approach, a boundary integral equation is used di-
rectly by placing the collocation point at the desired location and integrating over the
entire surface. This approach is accurate but requires hypersingular integration of the
entire boundary. The second approach uses a combination of displacement derivatives
and tractions, which are known at all points on the boundary (after analysis is per-
formed). This approach is much more efficient than the first approach and is used in
this paper. The accuracy of this approach is demonstrated in Section 10. The formula-
tion is outlined in [105] and [106] but is summarised here for clarity.

To determine the boundary stress at a local element coordinate (˜⇠, ⌘̃) and associated
global coordinate s the tangent vectors and normal at this point are first computed as

m1 =

dx

d˜⇠
, m2 =

dx

d⌘̃
, n = m1 ⇥m2. (49)

Note that this coordinate system may not be orthogonal. To determine an orthonormal
coordinate system we compute

v1 =

m1

|m1|
, v3 =

n

|n| , v2 = v3 ⇥ v1 (50)

as shown in Figure 8.
To determine strains in the local orthonormal coordinate system, the displacement

derivatives must be determined (Appendix E details the required formulae for @u
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Figure 8: Representation of local tangent and normal vectors at a point s on an element, along with a local
orthonormal coordinate system.

To determine stresses, the local strains, given by (51), and the traction at the point
(

˜⇠, ⌘̃) must be known. The traction, written as

t(

˜⇠) =

n

cpX
A=1

t

A

R
A

(

˜⇠), (52)

can be transformed into the local coordinate system using a standard transformation
matrix R (see Appendix E), i.e.,

{t
local

} = [R] {t}. (53)

Local stresses can be computed from local strains and tractions as
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The stresses in the global coordinate system (x, y, z) can be computed as

� = [R]

T
[�

local

][R]. (58)

To determine interior stresses, a collocation point is placed at an interior point and
the following boundary integral is evaluated [105, 106]

�
ij

(s) +

Z
�

S
kij

(s,x)u
k

(x) d�(x) =

Z
�

D
kij

(s,x)t
k

(x) d�(x) (59)
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where the boundary displacement and traction components u
k

, t
k

are assumed to be
known and S
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, D
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are given by
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with summation implied over the repeated index k.

10. Numerical results

In this section we investigate the performance of T-spline-based isogeometric bound-
ary element analysis. All geometries are discretized using bicubic T-spline basis func-
tions. In the presence of sharp corners and edges a semi-discontinuous T-spline basis is
used to discretize the tractions (see Section 7). The numerical computation for all the
models is performed using the Bézier extraction framework described in Section 4.2. In
all cases, the T-spline models were designed using the T-splines for Rhino plugin [107].

10.1. Patch tests

To study the behavior of our method, we first perform standard patch tests [108,
70]. In finite element methods, patch tests are used to determine whether an arbitrary
“patch” of elements can exactly reproduce basic constant and linear deformation states.
From a more practical standpoint, patch tests are also used to assess the correctness of
a finite element implementation. They are also a valuable tool to assess the behavior of
boundary element methods for similar reasons. Additionally, in the context of bound-
ary element methods, they test the ability of the semi-discontinuous basis to accurately
capture the discontinuous traction field, the correctness and accuracy of the underlying
numerical integration routines, and the stability of the collocation scheme.

The patch test we consider is illustrated in Figure 9. Other standard patch tests such
as shear and rotation are also satisfied by our method but are not shown for the sake of
brevity. The origin of the physical coordinate system is denoted by a solid circle. The
boundary conditions that are applied to each face of the cube are listed on the right.
A Poisson’s ratio of 0.3 is assumed and Young’s modulus, E, is 1e5. Due to the non-
zero Poisson’s ratio a fully three-dimensional stress state develops in the cube. The
analytical solution to this problem is a constant stress profile and a linear displacement
field in x, y, and z.

Three T-spline models of the cube are analyzed. These models are shown in Fig-
ure 10. The control points positions are shown on the left while the collocation point
positions are shown on the right. The first T-mesh on the top left consists of 6 Bézier
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Unit Cube

Figure 9: A three-dimensional patch test. The boundary conditions which are applied to each face of the cube
are listed on the right. Due to the non-zero Poisson’s ratio a fully three-dimensional stress state develops in
the cube. The analytical solution to this problem is a constant stress profile and a linear displacement field in
x, y, and z.

elements and 56 control points, the second T-mesh in the middle left consists of 96
Bézier elements and 218 control points, and the last T-mesh on the bottom left consists
of 180 Bézier elements and 310 control points. The T-mesh on the bottom contains
T-junctions which results in an unstructured collocation point configuration as shown
on the bottom right. In all cases, and to minimize integration error, a 20 ⇥ 20 Gauss
quadrature rule is used in each Bézier element to integrate both singular, nearly singu-
lar, and non-singular integrals. We note that the eight corner points are extraordinary
points of valence three. We mention in passing that patch tests were also performed
where several elements were distorted by moving control points. In all cases, the patch
tests were satisfied.

The results for the patch test are shown in Figure 11. In all cases, a linear dis-
placement profile in x, y, and z and constant stress profile are achieved by the method.
The results were indistinguishable for the three T-splines shown in Figure 10 which
indicates that the collocation point location scheme and semi-discontinuous T-spline
discretization are robust and accurate even in the presence of T-junctions. Only the
traction in x is shown. The tractions in y and z are not shown since they are identical
up to integration error which in this case was O(10

�8

). Using a higher order Gauss
rule eliminates these errors. Note that the computed traction in the x-direction on x-
faces is constant whereas it was set to zero on y- and z-faces. This is facilitated by the
discontinuous treatment of tractions across sharp edges.

10.2. Solid circular cylinder subjected to internal pressure loading

The problem of a solid circular cylinder subjected to an internal pressure loading is
shown in Figure 12. The exact solution, in terms of displacement and stresses in polar
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Control point positions Collocation point positions

Figure 10: Three T-spline models of the cube. The T-splines increase in complexity from top to bottom. On
the left, the control point positions are shown. On the right, the collocation point positions are shown. Notice
that the collocation point positions for the T-spline model on the bottom right are unstructured, mirroring the
unstructured nature of the underlying T-mesh (i.e., there are T-junctions in the T-mesh). In all cases, the
extracted Bézier meshes are also shown.
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Displacement in x Displacement in y

Displacement in z Traction in x

Figure 11: Results for the patch test described in Figure 9 for the three different T-spline models shown in
Figure 10. For the three T-splines the results are indistinguishable. Note that the computed traction in the
x-direction on x-faces is constant whereas it was set to zero on y- and z-faces.
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Figure 12: A thick cylinder pressurized internally.

coordinates (R, ✓), for the case with constant pressure, is
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where R
i

is the radius of the inner cylinder, R
o

is the radius of the outer cylinder, P
is the pressure applied to the inner cylinder, E is Young’s modulus, and ⌫ is Poisson’s
ratio. A small normal displacement, denoted by n in Figure 12, is applied to the internal
cylinder while zero traction is applied on all other surfaces.

We demonstrate the accuracy of the method by studying the behavior of the solution
on the coarse T-spline model shown in Figure 13. This T-spline is an exact representa-
tion of the thickened cylinder shown in Figure 12 where R

i

=

1

2

, R
o

= 1, and h = 4.
The origin of the physical coordinate system is denoted by a small solid circle. We take
Young’s modulus, E, as 1e5 and Poisson’s ratio, ⌫, as zero. The Bézier Mesh has 96
Bézier elements and 320 T-spline control points. A 30 ⇥ 30 Gauss quadrature rule is
used to integrate each Bézier element.

The deformed configuration for the cylinder is shown in Figure 14a. The axisym-
metric deformation of the cylinder is apparent. In Figure 14b, the maximum scaled
error in radial displacement, |u�u

h|
||u||1 , is plotted. The maximum scaled error in radial dis-

placement and pressure, |p�p

h|
||p||1 , are 0.00111565 and 0.000461453, respectively. Note
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Figure 13: An exact T-spline model of the thickened circular cylinder in Figure 12. The extracted Bézier
mesh is shown.

that the percent error for radial displacement is approximately 0.1% and the percent er-
ror for pressure is approximately 0.05%. This is remarkably accurate considering that
the Bézier mesh consists of only 96 elements as shown in Figure 13. This demonstrates
the potential of the method to obtain accurate analysis results during the design phase
of the design-through-analysis iterative cycle, where, in most cases, the control mesh
is kept as coarse as possible to facilitate the design process. If additional accuracy is
required it can be obtained using T-spline local refinement.

The values of �
RR

along a radial line, ✓ = 0, R = 0.5 to R = 1.0 are determined
numerically and compared against the analytical solution for the T-spline shown in Fig-
ure 13. A 30⇥ 30 Gauss quadrature rule is used to integrate each Bézier element. The
results are shown in Figure 15. Again, remarkable accuracy is obtained considering
that there is only two Bézier elements through the thickness.

10.3. Spherical hole in an infinite domain subjected to uniform tension at R = 1
The problem of a spherical hole in an infinite domain in R3 is shown in Figure 16.

The exact solution, in terms of displacements in spherical coordinates (R,�, ✓), is given
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(a) (b)

Figure 14: (a) Radial displacement contours and (b) the errors in radial displacement, |u�u

h|
||u||1 .

exact
numerical

Figure 15: Numerical and analytical �
RR

for thick cylinder problem along radial line R = 0.5 to R = 1.0.
Results are illustrated for the Bézier mesh in Figure 13.
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a denotes the radius of the sphere, S is the uniaxial tension applied at infinity, µ is the
shear modulus, and ⌫ is Poisson’s ratio. For completeness, the exact solution, in terms
of stresses, is given by
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The problem is modeled by placing the sphere in a cube and applying exact displace-
ment boundary conditions to the faces of the cube and an exact (in this case, zero)
traction boundary condition to the surface of the sphere, as shown in Figure 16.

The Bézier mesh for a coarse T-spline model of the problem in Figure 16 is shown
in Figure 17, on the left. The Bézier mesh of the spherical hole is shown in Figure 17,
on the right, where a =

1

2

. We take Young’s modulus, E, as 1e5 and Poisson’s ratio,
⌫, as 0.3. The Bézier Mesh has 14 Bézier elements and 147 T-spline control points.

The T-spline sphere is created by degenerating a rectangular T-spline surface. The
poles of the sphere are defined by multiple coincident control points. We note that the
single T-spline basis function corresponding to a control point at one of the poles is
defined to be the sum of all basis functions whose control points are coincident at that
pole. This is a standard technique in finite elements for degenerate elements [70] and
has been shown to produce basis functions which are in the Sobolev space H1 [109]
in the context of isogeometric analysis. A 20 ⇥ 20 Gauss quadrature rule is used to
integrate each Bézier element.
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Figure 16: A spherical hole in an infinite domain in R3 subjected to uniform tension at R = 1. The infinite
domain is modeled by enclosing the sphere in a box and applying an exact displacement boundary condition
to the faces of the box.

Figure 17: An exact T-spline model of the spherical hole enclosed in a cube (left) described in Figure 16. In
all cases, the exact Bézier mesh is shown. The Bézier mesh of the sphere is shown on the right.
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✓ Computed displacement, uh

✓

Figure 18: Exact displacements in R, �, and ✓ coordinates (left) compared with computed displacements
(right).
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Figure 19: Errors in R, �, and ✓ displacements.
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Figure 20: The values of spherical stress components along the line 0  �  ⇡, ✓ = 0 and R = 0.5. It
should be noted that all other stress components are zero along this line.

Figure 18 shows the exact displacement solutions in R, �, and ✓ on the left, and the
computed displacement solutions on the right. Figure 19 shows the error in displace-
ments. The maximum scaled errors in the R, �, and ✓ displacements on the sphere are
1.47159e�5, 9.70546e�6, and 1.81719e�7, respectively. Again, notice the accuracy
of the solution. In this case, the sphere is discretized with only 8 Bézier elements.

The values of �
��

and �
✓✓

along the line, R = 0.5, ✓ = 0, 0  �  ⇡, are
determined numerically and compared against the analytical solution for the T-spline
shown in Figure 17. A 20 ⇥ 20 Gauss quadrature rule is used to integrate each Bézier
element. The stress results are shown in Figure 20 where the exact and computed
stresses are visually identical. We note that all other stress components are zero along
this line.

10.4. A T-spline propeller

To illustrate the ability of the isogeometric boundary element method to handle
complex engineering geometries, a T-spline propeller design is analyzed. The ex-
tracted Bézier mesh is shown in Figure 21. The entire geometry is a single T-spline
consisting of 10, 080 control points and 10, 080 Bézier elements. Figure 22 shows a
closeup of an unstructured section of the Bézier mesh. Notice the smooth Bézier el-
ements surrounding each extraordinary point. These elements are constructed using
the analysis-suitable irregular element construction described in Section 4. There are a
total of 48 extraordinary points in the model.
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Figure 21: An extracted Bézier mesh for a propeller.
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Figure 22: A closeup of a smooth unstructured region of the Bézier mesh. The transition between each
propeller fin and the shaft is accomplished using four extraordinary points.
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Figure 23: An equivalent 72 patch NURBS for the T-spline propeller in Figure 21.

To illustrate the importance of being able to accomodate extraordinary points in
both design and analysis, an equivalent representation of the propeller as a multi-patch
NURBS is shown in Figure 23. In this case, there are 72 NURBS patches. In the
context of NURBS-based design, the propeller would be constructed patch-by-patch
with smoothness across patches enforced (usually manual) by control point positioning.
When used in analysis, all inter-patch connectivity and smoothness must be enforced
explicitly in the analysis to ensure consistent (at least continuous) deformations of the
geometry. This would be an enormous burden in analysis, but is completely eliminated
with T-splines.

In the context of T-spline-based isogeometric analysis, extraordinary points are
handled naturally and all smoothness considerations are built into the basis functions.
These properties are transferred automatically to the analysis since the geometric basis
is used as the basis for analysis.

We note that the the multi-patch NURBS shown in Figure 23 was generated au-
tomatically from the T-spline in Figure 21. This forward and backward compatibility
between T-splines and NURBS is made possible, in large part, by the finite polynomial
representation of the irregular Bézier elements surrounding each extraordinary point as
described in Section 4. This would not be possible if a subdivision-based approach was
being used near the extraordinary points.

Figure 24 shows the location of the collocation points in physical space for the
propeller. The knot interval configuration (see Section 3) for the propeller is uniform
so the collocation points are close to the corners of each Bézier element.
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Figure 24: Collocation point locations in physical space for the propeller problem.
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Figure 25: The original Bézier mesh for the propeller model and an exaggerated displacement profile with
displacement magnitude superimposed.
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Figure 26: The von Mises stress solution for the T-spline propeller model. Note that a logarithmic scale is
used to plot the stress.

A wind loading is simulated by setting all displacement components on the inte-
rior cylindrical surface to zero and setting the traction on all other surfaces to t =

{0, 0,�1000n
z

}T if n
z

> 0 and zero otherwise. We set Young’s modulus, E, to 1e5
and Poisson’s ratio, ⌫, to 0.3. Figure 25 shows the undeformed configuration and ex-
aggerated displacement profile with the magnitude of the resulting displacement field
superimposed. The von Mises stress profile is shown in Figure 26. Note that a logarith-
mic scale for the stress is used to more clearly visualize the changes in stress over the
surface. A closeup of the von Mises stress solution near extraordinary points is shown
in Figure 27. Notice the smoothness of the resulting stress profile.
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Figure 27: The von Mises stress solution near extraordinary points
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11. Conclusion

We have extended the definition of analysis-suitable T-splines to encompass sur-
faces of arbitrary topological complexity. The smooth T-spline basis functions near
extraordinary points are defined entirely in terms of polynomial Bézier elements thus
standardizing the element representation for the entire surface. Additionally, we devel-
oped a collocation approach which properly accounts for T-junctions and extraordinary
points.

We have developed an isogeometric collocated boundary element method using un-
structured T-spline surfaces with particular emphasis on linear elastostatic problems.
We have demonstrated the method on several three dimensional benchmark problems
and shown the potential of the method to handle complex, real-world geometries in
a fully automated manner, in the context of a T-spline propeller model. The T-spline
CAD file was created by a designer. There was no alteration to it for the purposes of
analysis, no feature removal, no geometry clean-up, no mesh generation. The results il-
lustrate the power of the isogeometric vision. There is one and only one design/analysis
model – the T-spline surface.

In this work we used high-order Gaussian quadrature rules on Bézier elements, but
these are quite inefficient. In future work, we plan on developing adaptive quadrature
schemes which properly account for nearly singular and singular integrals and which
take advantage of the smoothness of the underlying T-spline basis [110]. We also plan
on extending the range of applicability of the method to encompass other areas of
application.
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Appendix A. A non-uniform T-spline to B
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ezier transformation

Referring to Figure 3b, the linear combinations defining the four face points are
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where bold upper-case letters denote control points and lower case letters denote knot
intervals.

Referring to Figure 3c, any two edge points along an edge are defined as
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=

✓
a
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✓
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Q
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and

Q

e

j

=

✓
a

a+ b

◆
Q

f

b

+

✓
b

a+ b

◆
Q

f

c

. (A.6)

Finally, referring to Figure 3d, each vertex point is defined as

Q

v

j

=

NX
i=1

✓
ai�1

ai�1

+ ai+1

◆✓
ai+2

ai + ai+2

◆
Q

f

i

. (A.7)

Notice that both edge and vertex points are defined in terms of face points of neighbor-
ing Bézier elements. If the initial control mesh is a tensor product mesh these rules are
equivalent to repeated knot insertion as presented in [53, 54].
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Appendix B. Derivation of G1
constrained minimization

We note that to assemble the global equation system for a one-ring neighborhood
of irregular elements, the local indices for a Bézier coefficient, ci,A

↵�

, corresponding to
the representation of N

A

over the ith irregular element must be mapped to a global
index I . This map can be written as,

I(i,↵,�) =

8><>:
↵,� = 1, 1,

↵ = 1,� 6= 1, 20i+ �

↵ 6= 1, 20(i� 1) + 4(� � 1) + ↵.

(B.1)

Figure B.28 shows the action of I(i,↵,�) on the local indices of the Bézier coefficients,
ci,A
↵�

.

Appendix B.1. Assembling the constraint equations

As a result of the T-spline to Bézier transformation, irregular element wi is C1-
continuous with x

i and z

i, i = 1, . . . , N , as shown in Figure B.29. To maintain
C1 continuity between these elements during smoothing only requires that the Bézier
coefficients remain the same. This is satisfied if the equations c̃A

I(i,↵,�)

= ci,A
↵�

for
↵ � 4 and � � 1 or 2  ↵  3 and � � 4, i = 1, . . . , N are assembled into G

A

and
g

A

.
In addition to the C1 constraints along the boundaries of the one-ring neighborhood

we also enforce G1 continuity along spoke edges. In other words, we must derive the
constraint equations such that Bézier elements w

i�1 and w

i are G1-continuous for
i = 1, . . . , N . The general necessary and sufficient conditions for two Bézier elements
to be G1 is that they have the same normal vector along their common boundary curve.
Bézier elements w

i�1 and w

i in Figure B.29 are G1 if there exists functions ai(⇠),
bi(⇠), and ci(⇠) that satisfy

f i

(⇠) = ai(⇠)
@wi�1

(⇠, ⌘)

@⌘
|
⌘=0

+ bi(⇠)
@wi

(⇠, ⌘)

@⇠
|
⌘=0

+ ci(⇠)
@wi

(⇠, ⌘)

@⌘
|
⌘=0

⌘ 0

(B.2)

= ai(⇠)wi�1

⌘

(⇠) + bi(⇠)wi

⇠

(⇠) + ci(⇠)wi

⌘

(⇠) ⌘ 0. (B.3)

We assign a shared local coordinate system for both elements where the local ⇠ param-
eter lies along their common boundary curve as shown in Figure B.29. Throughout, we
adopt the notation

hc
1

, c
2

, . . . , c
p+1

ip(⇠) =
p+1X
↵=1

c
↵

Bp

↵

(⇠) (B.4)

where Bp

↵

(⇠) is a Bernstein polynomial of degree p in ⇠. If wi�1

(⇠, ⌘) and w

i

(⇠, ⌘)
are biquartic then ai(⇠) = ai+1 and ci(⇠) = ai�1. In addition, bi(⇠) must be quadratic
and the common boundary curve must be cubic. Then, the individual terms in (B.3)
can be written as

ai(⇠)wi�1

⌘

(⇠) = 4ai+1hci�1

21

� ci
11

, ci�1

22

� ci
21

, ci�1

23

� ci
31

, ci�1

24

� ci
41

, ci�1

25

� ci
51

i4(⇠),
(B.5)
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11 21 31 41 51

12 22 32 42 52

13 23 33 43 53

14 24 34 44 54

15 25 35 45 55

Figure B.28: The action of the local-to-global index map, I(i,↵,�).
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Figure B.29: The i

th quadrant of a two-ring neighborhood around an extraordinary point (top) and a close-
up of the Bézier coefficients involved in the G

1 constraint equations (bottom). The w

i, xi, yi, and z

i

represent Bézier elements, the ai represent knot intervals, and the ci
↵�

denote Bézier coefficients used in the
G

1 constraint equations (B.9) – (B.14).
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bi(⇠)wi

⇠

(⇠) = h�i, 0, 0i2(⇠)h4(ci
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� 1
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= �ih4(ci
21

� ci
11

), (
1

2

ci
11

� 2ci
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+ 2ci
41

� 1

2

ci
51

),
2

3

(ci
51

� ci
41
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(B.7)

and

ci(⇠)wi

⌘

(⇠) = 4ai�1hci
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� ci
11

, ci
22

� ci
21

, ci
32

� ci
31

, ci
42

� ci
41

, ci
52

� ci
51

i4(⇠).
(B.8)

The equation f i

(⇠) is a degree four polynomial in ⇠ which vanishes only if the follow-
ing five terms vanish,

ai+1

(ci�1

21

� ci
11

) + �i

(ci
21

� ci
11

) + ai�1

(ci
12

� ci
11

) = 0, (B.9)

4ai+1

(ci�1

22

� ci
21

) + �i

(

1

2

ci
11

� 2ci
21

+ 2ci
41

� 1

2

ai
51

) + 4ai�1

(ci
22

� ci
21

) = 0,

(B.10)

4ai+1

(ci�1

23

� ci
31

) +

2

3

�i

(ci
51

� ci
41

) + 4ai�1

(ci
32

� ci
31
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ai+1
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24

� ci
41

) + ai�1

(ci
42

� ci
41

) = 0, (B.12)

ai+1

(ci�1

25

� ci
51

) + ai�1

(ci
52

� ci
51

) = 0. (B.13)

To force the boundary curve to be a cubic polynomial requires that the fourth derivative
vanishes. This constraint can be written as,

ci
11

� 4ci
21

+ 6ci
31

� 4ci
41

+ ci
51

= 0. (B.14)

Notice that (B.9), (B.10), and (B.11) must be solved simultaneously for i = 1, . . . , N .
Equations (B.9), i = 1, . . . , N , are often called consistency conditions. If we as-
sume non-zero knot intervals, the solution for (B.9), i = 1, . . . , N , requires that
c
11

, c1
21

, . . . , cN
21

all lie in a plane. Additionally, we impose the constraint that there
exists an affine map that forces all angles marked ✓ in Figure B.28 to be equal and
|ci

21

� ci
11

| to be proportional to the knot intervals ai
0

. Under those restrictions, (B.9) is
satisfied if

�i

= �2

ai�1ai+1

ai
cos ✓ (B.15)

where ✓ =

2⇡

N

.
The global constraint equations (B.9) – (B.14) are assembled into G

A

and g

A

for
i = 1, . . . , N using the local-to-global map (B.1).
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Appendix B.2. Assembling the fairing system

In contrast to more complicated fairing functionals commonly used in CAGD [92]
we employ a very simple and efficient fairing technique which minimizes the vertical
and horizontal differences between the Bézier coefficients resulting from the T-spline to
Bézier transformation and the perturbed Bézier coefficients over each one-ring irregular
element. In other words, the global equations

c̃A
I(i,↵,�)

� c̃A
I(i,↵+1,�)

= ci,A
↵�

� ci,A
↵+1�

, 1  ↵  4, 1  �  5 (B.16)

and

c̃A
I(i,↵,�)

� c̃A
I(i,↵,�+1)

= ci,A
↵�

� ci,A
↵�+1

, 1  ↵  5, 1  �  4 (B.17)

are assembled into F

A

and f

A

for i = 1, . . . , N .

Appendix C. The challenge of discontinuous tractions

The challenge of robustly incorporating discontinuous tractions into a boundary
element discretization scheme has been addressed by various authors. Unfortunately,
there does not seem to be a general consensus on a preferred approach in the literature.
The more prominent methods include:

1. Ignore the requirement that tractions be discontinous at corners and edges and
assume that the errors are restricted to localized points on the boundary [103].

2. Force both displacements and tractions to be discontinuous at corners and edges [111].
3. Incorporate additional equations which relate tractions on either side of the edge

into the system of equations [112].
4. Add collocation points where there are insufficient equations to solve for all

traction unknowns [113].

We can immediately eliminate Method 2 since we view continuity of displacements
as a fundamental physical constraint. We eliminate Method 3 because it introduces
unnecessary implementational difficulties.

To decide between Method 1 and Method 4 a simple two-dimensional patch test
is performed to compare their performance. Figure C.30 illustrates the problem of a
square with Young’s modulus E and Poisson’s ratio ⌫ under uniaxial tension. Exact
displacements are specified at all points around the boundary while solving for trac-
tions. The simple geometry is modeled using a cubic NURBS curve.

First applying the strategy outlined in Method 1, the collocation points are chosen
to be equivalent to the classical Greville abscissae [63]. The resulting Bezier mesh
is shown in Figure C.31a where, in this case, there is a single Bézier element per
side. We model both displacements and tractions as continuous. The resulting traction
profile is shown in Figure C.31b where it is clear that significant errors are introduced
at corners. This in turn affects the accuracy of internal displacements since internal
displacements depend on the boundary tractions. This behavior is greatly magnified in
three-dimensional problems. For this reason, we eliminate Method 1 as a viable option.
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Figure C.30: A two-dimensional uniaxial tension problem

The remaining strategy (Method 4) is now tested. Since each corner exhibits un-
known tractions on each side of the corner point, two collocation points are required at
these locations. Each collocation point is offset by a small parameter into the interior of
the element. An example mesh using this strategy is illustrated in Figure C.31c again
using one Bézier element per side. Tractions are now allowed to be discontinuous at
corner points, while displacements remain continuous as described in Section 7.1. The
resulting traction profile in Figure C.31d illustrates the vast improvement over the pre-
vious approach. In addition, a mesh with two Bézier elements per side (Figure C.31c)
shows that tractions can be both modeled as discontinuous at corners and continuous
(C2-continuous in this case) elsewhere while maintaing the accuracy of the solution
(Figure C.31f).

An additional test is performed to ensure that the collocation strategy remains ac-
curate under a nonlinear mapping from parametric space to physical space. This is
achieved by modifying the knot vector used to construct the mesh in Figure C.31e such
that the elements on the bottom and right faces of the mesh are unequal in length (see
Figure C.31g) and exhibit nonlinear jacobians. The collocation strategy is insensitive
to the nonlinear mapping resulting in accurately computed tractions .

Appendix D. Derivation of the jump term through rigid body motion

The jump term C in (1) can be related to the integral containing T
ij

by applying
rigid body motion. This is equivalent to the statement that

u(x) = 1, t(x) = 0 8x 2 �. (D.1)

Substituting this into (1) gives

C(s) +�
Z
�

T(s,x) d�(x) = 0 (D.2)
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Edge element

Control point

Collocation point

Element endpoint

(a) Continuous traction mesh (b) Continuous traction solution

(c) Discontinuous traction mesh (d) Discontinuous traction solution

(e) Semi-discontinuous traction
mesh

(f) Semi-discontinuous traction
solution

(g) Semi-discontinuous traction
mesh (non-linear mapping)

(h) Semi-discontinuous traction
solution (non-linear mapping)

Figure C.31: A comparison of discretization and collocation strategies in the presence of discontinuous
tractions. The configurations shown are all in physical space.
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which implies that the jump term is

C(s) = ��
Z
�

T(s,x) d�(x). (D.3)

This relation circumvents the need to calculate C explicity (e.g. [114, 115]).

Appendix E. Expressions required for evaluation of boundary stresses

Displacement derivatives, in terms of the local coordinate system illustrated in Fig-
ure 8, can be derived using elementary geometric expression. We have that

v
1

= |m1|⇠ + |m2|⌘ cos ✓ (E.1)
v
2

= |m1|⌘ sin ✓ (E.2)

where ✓ is the angle between m
1

and m
2

and is calculated from

cos ✓ =

m1 ·m2

|m1||m2|
. (E.3)

Rearranging (E.1) and substituting (E.2) for ⌘, we have that

⇠ =

1
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✓
v
1

� v
2

cos ✓

sin ✓

◆
. (E.4)

Similarly, (E.2) can be rewritten in terms of ⌘ as

⌘ =

v
2

|m2| sin ✓
. (E.5)

From these expressions, the following derivatives can be found

@⇠

@v
1

=

1

|m1|
,

@⇠

@v
2

= � 1

|m1|
cos ✓

sin ✓

@⌘

@v
1

= 0,
@⌘

@v
2

=

1

|m2| sin ✓
. (E.6)

Now, the displacement derivatives in the local coordinate system can be found. For
example, @u

1

/@v
1

can be written as
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where (u
x

, u
y

, u
z

) are the global displacement components and (v
1x

, v
1y

, v
1z

) are
the components of the vector v1. Similar expressions can be obtained for @u

2

/@v
2

,
@u

1

/@v
2

and @u
2

/@v
1

.
A transformation R between the local and global coordinate systems shown in

Figure 8 is

R =

24 v1 · e
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v1 · e
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[45] M. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-
refinement with T-splines, Computer Methods in Applied Mechanics and Engi-
neering 199 (5–8) (2009) 264–275.

[46] M. A. Scott, T-splines as a Design-Through-Analysis technology, Ph.D. thesis,
The University of Texas at Austin (2011).

[47] X. Li, J. Zheng, T. W. Sederberg, T. J. R. Hughes, M. A. Scott, On linear in-
dependence of T-spline blending functions, Computer Aided Geometric Design
29 (2012) 63 – 76.

[48] C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, de Borst, R., An isogeometric
analysis approach to gradient damage models, International Journal for Numer-
ical Methods in Engineering, 86 (2011) 115–134.

[49] C. V. Verhoosel, M. A. Scott, R. de Borst, T. J. R. Hughes, An isogeometric ap-
proach to cohesive zone modeling, International Journal for Numerical Methods
in Engineering, 87 (2011) 336 – 360.

58



[50] Y. Bazilevs, M. C. Hsu, M. A. Scott, Isogeometric fluid-structure interaction
analysis with emphasis on non-matching discretizations, and with application
to wind turbines, Computer Methods in Applied Mechanics and Engineering
submitted for publication.
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patches, Computer Aided Geometric Design 7 (1-4) (1990) 151–163.

[90] J. Zheng, G. Wang, Y. Liang, Curvature continuity between adjacent rational
Bézier patches, Computer Aided Geometric Design 9 (5) (1992) 321–335.

61



[91] J. Peters, Patching Catmull-Clark meshes, in: Proceedings of the 27th
annual conference on computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 255–258.

[92] C. Loop, S. Schaefer, G2 tensor product splines over extraordinary vertices, in:
Computer Graphics Forum, Vol. 27, Blackwell Science Ltd., 2008, pp. 1373–
1382.

[93] X. Shi, T. Wang, P. Wu, F. Liu, Reconstruction of convergent G1 smooth B-
spline surfaces, Computer Aided Geometric Design 21 (9) (2004) 893–913.

[94] C. Loop, Second order smoothness over extraordinary vertices, in: Proceedings
of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry process-
ing, ACM, 2004, pp. 165–174.

[95] C. Loop, S. Schaefer, Approximating Catmull-Clark subdivision surfaces with
bicubic patches, ACM Trans. Graph. 27 (2008) 1–11.
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