
Scheduling DAG applications on multi-core processor
packages architectures

Johnatan E. Pecero, Sebastien Varrete, and Pascal Bouvry

CSC/SnT University of Luxembourg

{firstname.lastname}@uni.lu

1 Introduction

In this paper, we deal with the problem of scheduling fine grain task graph applications on multi-
core processor packages. We model this problem as a task scheduling problem with hierarchical
communication delays. That is, we adopt the model in which the communications between cores
on a processor package are much faster than those between cores belonging to different ones. This
model incorporates the hierarchical nature of the communications using today’s parallel computers,
as shown by many PCs where cores are grouped into processor packages. Our main contribution is to
provide a scheduling algorithm based on a genetic approach that considers this model when schedul-
ing the fine grain applications. Simulation results demonstrate the effectiveness of the proposed
approach when compared with a list scheduling algorithm for hierarchical communications [1].

We consider computing architectures with a set P of M homogeneous processor packages each
package containing a set of m homogeneous cores. One example of this kind of architecture could be
machines with large shared memory having two 2.5 GHz Intel Xeon E5000 processor package series
of two or four cores each. As stated, the computational model we adopt here is the hierarchical
communication model [2]. That is the communication delay �ij between two cores in the same
package is negligible (�ij = 0), while it takes cij units of time if the two cores belong to different
packages. The rational is that in multi-core processors both computation units are integrated
on the same die. Thus, communication between these computation units does not have to go
outside the die, and hence is independent of the die pin overhead, making intra-die communication
much faster than inter-die. The application is modeled by a precedence graph G = (T,E), where
the set of vertices T is a set of n tasks. Each edge e = (ti, tj) ∈ E is a precedence constraint
meaning that the results of task ti must be available before tj starts its execution. To every task
tj , there is an associated value pj representing its processing time. In terms of classical scheduling
problems, the application has to be scheduled on P , the set of mM processor packages. The l-th
processor package is denoted Pl∗ whereas the k-th core of the l-th processor is denoted Plk ∈ Pl∗.
A solution of the problem of scheduling an application on the multi-cores is to determine the
processor and core assignment and an execution date for each task of the application respecting
scheduling constraints. The associated optimization problem is to minimize Cmax, the completion
time (i.e. makespan) of the last executed task. In the 3-fields notation this problem is denoted
by PM (Pm)|prec, pj , C = (cij , 0)|Cmax [2]. In terms of complexity, the problem is NP-hard as it
contains NP-hard problems as particular cases [1].

2 Genetic-based Scheduling Algorithm on Multi-core (GSAM)

The solution we provide is based on a genetic algorithm. To encode a solution we use two arrays
of integers M � and m� of length n. The array M � encodes the processor package, where the i-th
location of the array corresponds to the task ti and its content represents the processor package Pl∗
where task ti is allocated. The array m� encodes the core Plk where task ti is executed on processor
package Pl∗. The initial population has been generated at random. The fitness function is the inverse
of the makespan. To compute the makespan of any individual we implemented an algorithm based
on the list scheduling principle. Informally, the principle is to schedule the application iteratively
one time slot after the other on the assigned processor and core. GSAM is executed until a fixed
number of iterations has been reached. We have implemented the proportionate selection scheme
based on the roulette wheel principle. We used an elitist model where the global best individual
is always kept and replace the worst individual in the new generation, the rest of the individuals
are replaced by the new generation. We implemented single recombination operator; mutation
randomly changes one task in the scheduling to a different processor package and core.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18437706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Pecero, Varrete and Bouvry

3 Experiments

We compare the performance of GSAM with a modified list scheduling algorithm [1], called ETF
in the paper, that considers hierarchical communications. The list scheduling algorithm maintains
a list of ready tasks that are greedily scheduled on available resources. To make a more accurate
comparison we have decided to select at random the ready task to be executed. We have selected
for our simulations task graphs from the Standard Task Graph Set [3]. SPEC fpppp composed of 334
tasks and 1196 edges, sparse matrix solver composed of 96 tasks and 128 edges, and robot control
application with 88 tasks in size and 131 edges were adopted as targeted benchmark. For each
graph, we have varied the communication to computation cost ratio (CCR). We have generated
four CCRs (0.5, 1, 2, 5). The parameters of GSAM are: population size equal to 40, generation limit
of 50, recombination probability of 0.85, mutation probability of 0.005. We used the makespan (in
milliseconds) of the applications generated by the algorithms as the main performance measure. We
have simulated the algorithms on 2 processor architectures composed of 2, 3, 4, and 6 cores. Figure 1
depicts the results for the simulations. In left we show average results for both algorithms on all
the applications when the CCR increases. The figure in the right depicts results for architectures
with different number of cores. In both cases GSAM produces better schedules on average than
ETF. In our simulations, GSAM produces schedules 12.5% shorter than ETF.

 0

 200

 400

 600

 800

 1000

 1200

0.5 1 2 5

Av
gM
ak
es
pa
n(
T[
ms
])

CCR

STG Graphs

GSAM
ETF

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 6

A
v
g
M
a
k
e
s
p
a
n
(
T
[
m
s
]
)

Cores

STG Graphs

GSAM
ETF

Fig. 1. Results for simulations

4 Concluding Remarks

In this work, we have provided a GA approach for scheduling DAG applications on multi-core
processor packages. We have adopted the hierarchical model were communications between cores on
a same package are negligible regarding communications between different packages. We compared
the provided algorithm with a modified list scheduling algorithm taken from the literature. The
simulation results emphasize the interest of GSAM.

We plan to extend this work, first we consider to investigate our algorithm in the context of
power-aware scheduling on multi-core architectures. Our idea is first to load all the tasks and cores
in the same package before distributing the load to another package, therefore putting the idle
packages in a lower state, hence saving power. Furthermore, we are planning to consider memory
contention issues. The idea is the opposite of the power-aware policy, that is, first to distribute the
load between processor packages before distributing the load between cores on a same package.

5 Acknowledgements

This work is supported by the FNR Luxembourg through project Green-IT no. C09/IS/05 and the
AFR Luxembourg through the grant no. PDR-08-010.

References

1. Blachot, F., Huard, G., Pecero, J. E., Saule, E., Trystram, D.: Scheduling instructions on hierarchical

machines. IEEE IPDPS-PDSEC 2010, Atlanta, USA (2010)

2. Bampis, E., Giroudeau, R., König, J. C.: An approximation algorithm for the precedence constrained

scheduling problem with hierarchical communications. Theor. Comput. Sci., 290(3): 1883–1895, 2003

3. Kasahara, H., Tobita, T., Matsuzawa, T., Sakaida, S.: Standard task graph set. Available:

http://www.kasahara.elec.waseda.ac.jp/schedule/

