
Towards an Abstract Framework for Compliance
Silvano Colombo Tosatto∗‡, Guido Governatori† and Pierre Kelsen∗

∗University of Luxembourg, Luxembourg
{silvano.colombotosatto, pierre.kelsen}@uni.lu

†NICTA, Australia
{guido.governatori}@nicta.com.au
‡Universitá di Torino, Italy

Abstract—The present paper aims at providing an abstract
framework to define the regulatory compliance problem. In
particular we show how the framework can be used to solve the
problem of deciding whether a structured process is compliant
with a single regulation, which is composed of a primary
obligation and a chain of compensations.

Index Terms—Compliance, Normative Reasoning, Contrary to
Duty Obligations.

I. INTRODUCTION

Compliance initiatives are becoming more and more impor-
tant in enterprises with the increase of the number of regulatory
frameworks explicitly requiring businesses to show compliance
with them. As a consequence IT support for compliance
activities within enterprises is growing. Compliance is the
set of initiatives in an organization to ensure that the core
business activities and procedures are in agreement with specific
normative frameworks. Most compliance solutions are ad hoc
solutions and typically, implementation and maintenance are
time consuming [1]. Sadiq and Governatori propose in [2]
a classification of compliance activities into preventive and
detective. Auditing is a typical example of a detective activity,
where logs of already executed business activities are examined
to discover if there were non-compliance issues, and based
on the analysis of samples recommendations on measures to
prevent reoccurrence of compliance breaches are proposed.
Preventive solutions, on the other hand, consider the activities
to be done to achieve business objectives and their interactions
with and the impact on them of the obligations and prohibitions
imposed on a business by a normative framework or regulation.

Preventive solutions become crucial in areas where com-
pliance breaches may lead to critical failures of a system, or
when the recovering from such breaches is costly. Banking is
a typical example of such areas, where transactions that do not
follow the enforced regulations have to be avoided.

The implementation of a particular regulation is conducted
as part of a compliance initiative and involves the production
of so-called compliance artifacts. These artifacts are used to
represent compliance requirements and check them against the
enterprise information systems. Usually, regulatory frameworks
explicitly require compliance initiatives to provide proof of
compliance. Governatori and Sadiq [3] propose a compliance-
by-design methodology to address the compliance problem.
The methodology is based on the use of business process

models to describe the activities of an enterprise and to couple
them with formal specifications of the regulatory frameworks
regulating the business. Business process models describe the
task (activities) to be done, and the order in which the task
can be executed. In [4] it is argued that this is not enough
to ensure that a process is compliant, because normative
frameworks often specify requirements on other aspects (e.g.,
data, resources, timeframes, relations between different pieces
of data and resources). The solution to obviate this problem is
to extend business processes with semantic annotations. Tasks
in a process are associated with sets of annotations providing
information not typically available in a business process model.
Several approaches to handle compliance and to formalize
normative requirements, based on different logical formalisms
have been proposed, see for example ([5], [6], [7], [8], [9]).
Kharbili [10] gives a comparative analysis of a collection of
solutions to business process compliance management.

From the above point of view, compliance can be understood
as an additional correctness criterion for business processes.
Verification of a business processes is a very well studied area
(see for example the seminal paper by van der Aalst [11]).
However, compliance adds complexity to the verification task:
the structural correctness of structured processes can be verified
in linear time [12], but [13] shows that, even for structured
processes, checking whether a process is compliant with a
(formalised) legislation, is computationally hard (i.e., checking
whether there is at least one possible way to execute the process
without violating the regulations is an NP-complete problem,
and checking whether every execution is compliant is NP-hard).
Accordingly, there is a need to identify heuristics of classes of
tractable problems.

The aim of this paper is not to propose yet another formalism
for business process compliance, but to offer an abstract
framework capable to verifying whether a business process
is compliant with a given regulation. A regulation consists
of a primary obligation to which a chain of compensations
can be associated. Compensations are obligations that have
to be fulfilled in case the primary obligation is not. Such
representation of a regulation follows the concept of contrary
to duties [14] [15].

To achieve this goal we propose an abstract formalism for
business process compliance. The advantages of an abstract
formalism are that the framework highlights the crucial aspects

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18437679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of compliance without worrying about the details of a specific
formalism, i.e. the reasoning behind the obligations and how
the business processes are constructed. An additional benefit
of the abstract framework is that it allows scholars to classify
the approaches to compliance based on the features identified
by the abstract formalism. In this way one can study general
properties of business process compliance.

The paper is structured as follows: Section 2 defines
the abstract framework for compliance by introducing the
definitions of processes and regulations. Section 3 describes
a way to check compliance using the abstract framework for
compliance. Section 4 concludes the paper.

II. BUSINESS PROCESS REGULATORY COMPLIANCE

In this section we first introduce the business process
regulatory compliance problem and its elements: the business
process model and the regulations.

A. Business Process

We consider a particular class of processes: the structured
processes. Such a class of processes is limited in its expressivity
because it does not allow cycles and its components have to
be properly nested. An advantage of using structured processes
is that their correctness can be verified in polynomial time as
shown in [16] by Kiepuszewski et al. for structured workflow
models.

Polyvyanyy et al. [17] report that 406 out of 604 of the
reference models in the SAP collection are structured, and
19 of the remaining ones can be transformed into equivalent
structured processes. Thus, there is evidence that structured
processes still cover a substantial part of processes deployed
in practice (about 60%).

We define our processes in a similar way as the workflows
defined by Kiepuszewski et al.

Definition 1 (Process Block): Let T be the set of all tasks.
A process block B is inductively defined as follows:
• ∀t ∈ T , t is a process block.
• Let B1, . . . , Bn be process blocks:

– A sequence block: SEQ(B1, . . . , Bn) is a process
block.

– An XOR block: XOR(B1, . . . , Bn) is a process block.
– An AND block: AND(B1, . . . , Bn) is a process

block.
A process block can be defined also as a directed acyclic

graph: the nodes are called elements and the edges are called
transitions.

Definition 2 (Process Block as a Directed Graph): A pro-
cess block B can be represented as a directed acyclic
graph G = (VB , EB), where VB ⊆ T ∪ C, where C is
a set of coordinators which are of one of the four types:
xor split, xor join, and split, and join; and EB ⊆ VB×VB the
set of edges. The coordinators of type xor split and xor join
(resp. and split and and join) are used to enclose XOR blocks
(resp. AND blocks) in the graphical representation of a process
block. Each process block B has an initial node and a final
node denoted respectively by bB and fB .

VB , EB , bB and fB of a given process block B are defined
inductively as follows:
• For a block containing a single task, B = t: VB = {t},
EB = ∅, bB = t and fB = t

• Let B1, . . . , Bn be process blocks:
– For a sequence block B = SEQ(B1, . . . , Bn):
VB =

⋃n
i=1 VBi

and EB =
⋃n
i=1EBi

∪⋃n−1
j=1 {(f(Bj), b(Bj+1))}. bB = bB1 and fB = fBn .

– For an XOR block B = XOR(B1, . . . , Bn):
VB =

⋃n
i=1 VBi

∪ {xsplit, xjoin}, where
xsplit and xjoin are respectively of type
xor split and xor join. EB =

⋃n
i=1(EBi

∪
{(xor split, bBi), (fBi , xor join)}). bB = xsplit and
fBXOR

= xjoin.
– For an AND block B = AND(B1, . . . , Bn): VB =⋃n

i=1 VBi
∪ {asplit, ajoin}, where asplit and ajoin

are respectively of type and split and and join.
EB =

⋃n
i=1(E(Bi) ∪ {(asplit, bBi

), (fBi
, ajoin)}).

bB = asplit and fB = ajoin.
In the remainder of the paper we will mainly use Definition

1. However we also introduced Definition 2 and we will use it
to graphically represent the business processes.

Definition 3 (Structured Process Model): A structured pro-
cess P is a sequence block SEQ(start, B, end), where start
and end are two pseudo tasks, {start, end} ∩ T = ∅. Those
pseudo-tasks are used to identify the beginning of a structured
process model and its ending.

Structured process models can be graphically represented
using Business Process Model and Notation 2.01. The symbol

, , ,{ }is used to represent the start and , , ,{ }to represent the
end. The and split and and join coordinators are represented
both by, , ,{ }. The and split is identified by a single incoming
transition and multiple outgoing transitions. The opposite is
true for the and join, which is identified by multiple incoming
transitions and a single outgoing transition. In the same way, the
operator, , ,{ }identifies both xor split and xor join coordinators.

Example 1: Fig. 1 shows a structured process containing
four tasks labelled t1, . . . , t4. The structured process contains
an XOR block delimited by the xor split and the xor join. The
XOR block contains the tasks t1 and t2. The XOR block is
itself nested inside an AND block with the task t3. The AND
block is preceded by the start and followed by task t4 which
in turn is followed by the end.

Considering the structured process in Fig. 1 as a sequence
block, we can represent it as follows:

P = SEQ(start,SEQ(AND(XOR(t1, t2), t3), t4), end)

Structured processes exclude processes containing badly
nested blocks (Fig. 2.(a)) and processes with loops (Fig. 2.(b)).

An execution of a structured process is a sequence of a
subset of the tasks belonging to the process. A valid execution
identifies a path from the start to the end of the process and
follows the semantics of the coordinators and the transitions
that are traversed.

1http://www.omg.org/spec/BPMN/2.0

SEQ block

XOR block

AND block

SEQ block

t4

t3

t1

t2

Fig. 1. A graphical representation of a structured process

t4

t3

t1

t2

t4

t3

t1

t2 t5

(a)

(b)

Fig. 2. Examples of non-structured processes

Definition 4 (Execution): Given a process block B, an exe-
cution of B, written ε, is a totally ordered set (Tε,≺ε), where
Tε ⊆ T . An execution ε is constructed from B as follows:

1) If B = t, for some t ∈ T , then ε = ({t}, ∅).
2) If B = SEQ(B1, . . . , Bn), let ε1, . . . , εn be executions

of B1, . . . , Bn, then ε is the ordered sum of ε1, . . . , εn,
written ε1 + · · ·+ εn.

3) If B = XOR(B1, . . . , Bn), then ε = εi where εi is an
execution of Bi for some 1 ≤ i ≤ n.

4) If B = AND(B1, . . . , Bn), let ε1, . . . , εn be executions
of B1, . . . , Bn, then ε is a linear extension of

⋃n
i=1 εi =

(
⋃n
i=1 Tεi ,

⋃n
i=1 ≺εi), i.e. a total ordering for all the

tasks in the Bi’s that is compatible with the ordering
constraints in each of the εi.

We represent totally ordered sets as sequences and denote
the set of possible executions of a process block B as Σ(B).

If we consider structured processes to be process blocks
as well, Definition 4 can be used to define the executions of
either a whole process or just a part of it. Given a structured
process P , each execution ε ∈ Σ(P) has the peculiarity that
the pseudo task start is the minimal element and end is the
maximal element.

If a structured process conforms with Definition 3, then a
task belonging to such a structured process appears in at least
one of its executions. This means that each task contained in
a process has the possibility of being executed. In general, if
a task belongs to a process block, there exists at least one
execution of this block containing the task, as stated in the
following lemma.

Lemma 1 (Execution): Given a process block B and a task
t, if t ∈ B, then ∃ε ∈ Σ(B) such that t ∈ ε.

Proof (Execution):
Prove by structural induction on the process block B.

Example 2: Let us denote the structured process shown in
Fig. 1 by P . We have that Σ(P) = {ε1, ε2, ε3, ε4} where
ε1 = (start, t1, t3, t4, end), ε2 = (start, t2, t3, t4, end), ε3 =
(start, t3, t1, t4, end) and ε4 = (start, t3, t2, t4, end). Any other
execution such as ε5 = (start, t3, t4, t1, end), is not a valid
execution of P . In this case ε5 is not a valid execution of
P because t1 is executed after task t4, which according to
Definition 4 is not possible because t1 appears before t4 in
the sequence block to which they belong.

The state of a process can evolve during the execution of
the process. An annotated process is a process whose tasks are
associated with consistent sets of literals. These sets of literals
are called annotations [18] and indicate what has to hold after
a task is executed.

Definition 5 (Consistent literal set): Let L be the set of all
literals. A set of literals L ⊆ L is consistent if ∀l ∈ L, l ∈ L
implies l̃ 6∈ L, where l̃ denotes the negation of l2.

We define an update operator (inspired by AGM belief
revision [19]) to revise a set of literals with respect to another.

Definition 6 (Literal set update): Given two consistent sets
of literals L1 and L2, the update of L1 with L2, denoted by
L1 ⊕ L2, is a set of literals defined as follows:

L1 ⊕ L2 = L1 \ {l̃ | l ∈ L2} ∪ L2

Definition 7 (Annotation Function): An annotation function
ann is a total function associating to each task in T a consistent
set of literals, ann : T → 2L. However, in the extensional
representation of the function, i.e., defining ann by listing the
pairs, only the meaningful ones are shown. This means that
for all tasks t such that ann(t) does not appear in any of the
listed pairs, then the associated set of literals is ∅.

An annotation function ann can be used to annotate a process
block (B, ann) (according to Definition 3 a structured process
P is also a process block).

Example 3: We can annotate the process P in Fig. 1 with
the following function:

ann = {(t1, {a}), (t2, {b, c}), (t3, {c, d}), (t4, {¬a})}

The same can be visually represented as shown in Fig. 3.

2Let α be an atomic proposition. If l = α, then l̃ = ¬α and if l = ¬α,
then l̃ = α. This follows the double negation elimination rule of propositional
logic.

t4

t3

t1

t2

{a}

{b,c}

{c,d}

{¬ a}

Fig. 3. An annotated process

Definition 8 (State): Given a task t and a consistent set of
literals L, a state is a tuple σ = (t, L) where L represents the
set of literals holding after the execution of t.

A trace represents the change of states during an execution.
It is composed of a sequence of states.

Definition 9 (Trace): Given a process block (B, ann) as
context and one execution of B: ε = (t1, . . . , tn), a trace
θ is a finite sequence of states: (σ1, . . . , σn). Each state of
σi ∈ θ contains a set of literals Li capturing what holds after
the execution of a task. Each Li is a set of literals such that:

1) L1 = ann(t1);
2) Li+1 = Li ⊕ ann(ti+1), for 1 ≤ i < n.
We use Θ(B, ann) to denote the set of traces of a process

block B given an annotation function ann.
Example 4: Table I shows the traces of the annotated process

(P, ann) illustrated in Fig. 3. The first column contains the
possible executions of P . The second column contains the
corresponding traces.

B. Regulations

A regulation R is composed of a primary obligation followed
by a chain of compensations R = À⊗ �, where À represents
the primary obligation and � the chain of compensations. A
chain of compensations consists of a sequence of secondary
obligations � = Ω1 ⊗ · · · ⊗ Ωn. If the primary obligation is
not fulfilled, then the first secondary obligation of the chain
is enforced. The same applies when a secondary obligation
of the chain is enforced but not fulfilled. The difference is
that in such case the next secondary obligation of the chain is
enforced.

We specify the primary and secondary obligations using part
of Process Compliance Logic (PCL) [20].

Each obligation has a lifeline and a deadline. These elements
define the activation period of the obligation. Notice that the
lifelines and deadlines considered in the present paper are not
related to temporal values, but to states in a trace fulfilling the
condition given specified in the lifelines or the deadlines.

Once triggered by its lifeline, an obligation becomes active.
If an obligation is already active, further triggers of its lifeline
have no effect. Similarly when its deadline is triggered, an
obligation is deactivated. Because we consider only traces
containing a finite number of states, we assume that the last
state of a trace (the one containing the pseudo task end) triggers
every deadline.

We identify two types of obligations: achievement and
maintenance. An achievement obligation has to verify a
condition in at least one state within the activation period.
A maintenance obligation has to verify a condition in each
state within the activation period.

Definition 10 (Primary Obligation): Let lc, lb and ld be lit-
erals. A primary obligation À is a triple À = 〈O, lb, ld〉 where
lb is the lifeline condition, ld is the deadline condition and
O is one of the following types where lc is their fulfillment
condition:

O ::= Oa(lc) achievement
| Om(lc) maintenance

Literals are satisfied in a state if and only if the literal set
of the state contains them. Lifelines and deadlines activate or
deactivate an obligation in the states that satisfy them. The
activation period of an obligation is identified by all the states
between the state where the lifeline is satisfied, excluded, and
the state where the deadline is satisfied, included.

Achievement obligations prematurely terminate their activa-
tion period in the state where they are fulfilled. In contrast, for
maintenance obligations, their activation period is prematurely
terminated when a state does not fulfill the condition of the
obligation.

Definition 11 (Fulfillment): Let σ |= l iff l ∈ L, where L
is the literal set of the state; and given a sequence of states
(σ1, . . . , σn), let σi ≺ σj iff i < j (the same using respectively
� and ≤). We also define the following exceptions: the state
σend = (end, L) containing the pseudo task end always satisfies
σend |= ld and σend 6|= lb where lb is a lifeline and ld a deadline.

Given an obligation À = 〈O, lb, ld〉 and a trace θ, θ fulfills
À, written θ ` À, iff:
• O = Oa(lc): θ ` 〈Oa(l)c, lb, ld〉 iff:
∀σi ∈ θ it holds that σi |= lb then ∃σj ∈
θ such that σj |= lc and σj � σi, and ¬∃σh ∈
θ such that σh |= ld and σi ≺ σh ≺ σj .

• O = Om(lc): θ ` 〈Om(l)c, lb, ld〉 iff:
∀σi ∈ θ it holds that σi |= lb then ∃σh ∈
θ such that σh |= ld and ∀σj ∈ θ such that σj |=
lc and σi ≺ σj � σh.

Otherwise θ does not fulfill À, written θ 6` À.
An alternative way of representing the activation period of

an obligation is by using a finite state automaton. Fig. 4.(a)
shows the automaton modeling the activation period of an
achievement obligation. Fig. 4.(b) represents the automaton
modeling the activation period of a maintenance obligation.
We can notice that in both cases, an obligation becomes active
only if is inactive and a state triggering the lifeline is found.
Finding such state while the obligation is already active has
no impact on the activation period of the obligation.

The activation period terminates when the obligation is
fulfilled or when it is not possible to fulfill it in the successive
states. The two automata are consistent with the semantics of
Definition 11. Notice that in Fig. 4.(a), the two conditions on the
transition from Active to Not Fulfilled have to be considered
in conjunction (The same for the transition from Active to

Σ(P) Θ(P, ann)
(start, t1, t3, t4, end) ((start, {∅}), (t1, {a}), (t3, {a, c, d}), (t4, {¬a, c, d}), (end, {¬a, c, d}))
(start, t2, t3, t4, end) ((start, {∅}), (t2, {b, c}), (t3, {b, c, d}), (t4, {¬a, b, c, d}), (end, {¬a, b, c, d}))
(start, t3, t1, t4, end) ((start, {∅}), (t3, {c, d}), (t1, {a, c, d}), (t4, {¬a, c, d}), (end, {¬a, c, d}))
(start, t3, t2, t4, end) ((start, {∅}), (t3, {c, d}), (t2, {b, c, d}), (t4, {¬a, b, c, d}), (end, {¬a, b, c, d}))

TABLE I
PROCESS TRACES OF THE ANNOTATED PROCESS IN FIG. 3

Fulfilled in Fig. 4.(b)). Once the obligation is either fulfilled
or not, the state of the automaton is brought back to Inactive
thanks to the ε transitions. This represents that an obligation
can be activated multiple times by a trace.

Given a trace and an obligation, the automaton in Fig. 4 are
used to determine whether an obligation is active or inactive
with respect to the states of the given trace. For this reason
we avoid to represent any final state in the automaton since
they are not meaningful.

Inactive Active

Not
Fulfilled

Fulfilled
σ �|= ld

σ �|= lb

σ �|= lc

�

Start
Inactive Active

Not
Fulfilled

Fulfilled

Start

(a) (b)

�

�

�

σ |= lc

σ |= lc

σ |= ld

σ |= ld

σ |= ldσ |= ld

σ �|= lc

σ |= lb

σ |= lb

σ �|= lb σ |= lb

σ |= lb

σ �|= lc
σ �|= ld

σ |= lc

Fig. 4. Activation Periods using Finite State Automaton

Example 5 (Achievement): In a game of chess, moving a
piece is an achievement obligation triggered by the opponent
move. The deadline of such obligation can be considered as
the time allowed for the player to make his move. Thus the
player has to make his move before the allotted time expires.

Example 6 (Maintenance): While accessing secure data
there is the obligation to have the proper credentials for the
whole access period. The lifeline is when the access starts and
the deadline when the access ends. For the whole time period
of the access the credential must be retained.

1) Primary Obligation Compliance: Given a primary obli-
gation, an annotated process can be fully compliant, partially
compliant or not compliant with such primary obligation. An
annotated process is fully compliant if every trace fulfills the
obligation. It is partially compliant, if at least one trace fulfills
the obligation. If none of the traces fulfill the obligation, then
the annotated process is not compliant.

Definition 12 (Process Primary Obligation Compliance):
Given an annotated process (P, ann) and an obligation À.
• Full Compliance (P, ann) `F À:

if ∀θ ∈ Θ(P, ann), θ ` À.
• Partial Compliance (P, ann) `P À:

if ∃θ ∈ Θ(P, ann), θ ` À.
• Not Compliant (P, ann) 6` À:

if ¬∃θ ∈ Θ(P, ann), θ ` À.
Full compliance implies partial compliance. This means that

if a process is fully compliant with an obligation, then such

process is also partially compliant with the same obligation.
2) Compensation Chains: Obligations are often described as

soft constraints due to the possibility that they can be violated.
Thus, as happens in the real world, it is useful to consider
what should be done in case an obligation is violated.

Compensations are used to define the behavior that should be
adopted in the case an obligation is violated. A compensation
is associated to an obligation and it defines a secondary
obligation that is activated when the one preceding it is violated.
Secondary obligations are a particular type of obligations whose
lifeline is the violation of the obligation they try to compensate.

Definition 13 (Violation): Given an obligation À =
〈O, lb, ld〉 and a trace θ. If θ 6` À, then ∃σi ∈ θ where
À is violated. We use VÀ to indicate the set of states in θ that
violate À. VÀ is defined as follows:

In case of O = Oa(lc), a state in VO written σh satisfies
the following:
• σh |= ld
• ∃σi such that σi ≺ σh and σi |= lb
• ¬∃σk such that σi ≺ σk ≺ σh and σk |= ld
• ¬∃σj such that σi ≺ σj � σh and σj |= lc

In case of O = Om(lc), a state in VO written σj satisfies
the following:
• σj 6|= lc
• ∃σi such that σi ≺ σj and σi |= lb
• ¬∃σh such that σh |= ld and σi ≺ σh � σj
Definition 14 (Compensation): A compensation, written Ω,

is a tuple 〈O, ld〉 where O can be either Oa(lc) or Om(lc),
and ld represents the deadline condition.

Because compensations are also obligations, it can also
be that they are violated. It is possible then to associate a
compensation to another compensation. This way of assigning
compensations can create a sequence of compensations, where
a compensation is activated when the previous is violated.
We call such sequence of secondary obligations a chain of
compensations.

Definition 15 (Compensation Chain): Given a primary obli-
gation À, � is the chain of compensations for À, written
À⊗�. A chain of compensation is a sequence of compensations
Ω1⊗· · ·⊗Ωn where each Ωi aims to compensate the violations
of the previous one in the chain.

In general we can assume that each À has a compensation
chain associated, however this chain can be empty if À does
not allow compensations.

Definition 16 (Compensation Lifeline): Given an obligation
with a chain of compensations associated À⊗ �, where � is
sequence of one or more secondary obligations Ω1⊗ · · · ⊗Ωn,

let lVy be a special literal where y refers to the previous
obligation in the chain.

The first compensation of � is Ω1 and can be rewritten as
an obligation: ÀΩ1

= 〈O, lVÀ , ld〉. Each other compensation
in the chain Ωm can be rewritten as an obligation ÀΩm

=
〈O, lVΩm−1

, ld〉.
Given a state σi ∈ θ, σi |= lVy iff σi+1 ∈ Vy as explained

in Definition 13.
In Definition 16, the activation period of a compensation

includes the state triggering it (the state violating the previous
obligation of the chain), differently from the activation period
of a primary obligation. We decided to adopt this approach to
be able to handle situations where a task violating an obligation
also fulfills the compensation associated with it.

Example 7: A classic example featuring these conditions
is the Gentle Murder, introduced in [14], where the primary
obligation is represented by the prohibition “don’t kill” and
the compensation by “if you kill, then do it gently”. Without
including the violating state into the activation period of the
compensation, we would not be able to capture this type of
compensations which relies on executing an action which
indeed violates the obligation, but in such a way that it does
represent an exception.

Definition 17 (Compensation Fulfillment): Given a trace θ
and an obligation to which is associated a chain of compensa-
tions À⊗ �, where � = Ω1 ⊗ · · · ⊗ Ωn:
• Fulfilling the Obligation θ `O À⊗ �:

iff θ ` À
• Fulfilling a Compensation θ `C À⊗ �:

iff ∃Ωi ∈ �, θ ` ÀΩi

• Not Fulfilling θ 6` À⊗ �:
iff ¬∃Ωi ∈ �, θ ` ÀΩi

From Definition 11 we know that an obligation whose lifeline
is never fulfilled is considered to be fulfilled. Thus from this
observation we can state that fulfilling the obligation implies
fulfilling a compensation, because if the primary obligation is
fulfilled, which is the case for fulfilling the obligation, then
none of the secondary obligations are activated and each of
them is considered to be fulfilled.

Definition 18 (Process Compensation Compliance): Given
an annotated process (P, ann) and a primary obligation with a
chain of compensations associated À⊗ �:
• Full Obligation Compliance (P, ann) `FO

À⊗ �:
if ∀θ ∈ Θ(P, ann), θ `O À⊗ �.

• Full Compensation Compliance (P, ann) `FC
À⊗ �:

if ∀θ ∈ Θ(P, ann), θ `C À⊗ �.
• Partial Obligation Compliance (P, ann) `PO

À⊗ �:
if ∃θ ∈ Θ(P, ann), θ `O À⊗ �.

• Partial Compensation Compliance (P, ann) `PC
À⊗�:

if ∃θ ∈ Θ(P, ann), θ `C À⊗ �.
• Not Compliant (P, ann) 6` À⊗ �:

if ¬∃θ ∈ Θ(P, ann), θ `C À⊗ �.
We can see from Definition 18 that full obligation compli-

ance implies both full compensation compliance and partial
obligation compliance. Both full compensation compliance

and partial obligation compliance imply partial compensation
compliance.

When a structured process is partially obligation compliant
with a regulation, it can be also be the case that it is fully
compensation compliant. However this is not always the
case, otherwise Partial Obligation Compliance would have
implied Full Compensation Compliance. Because of this, the
abstract framework proposed in the following section explicitly
distinguishes whether the structured process is only partially
obligation compliant or also fully compensation compliant.

Not Compliant

PC

FO
POFC

Fig. 5. Relations between the compliance results (Definition 18)

We represent the relations among the possible compliance
results in Fig. 5 using Venn Diagrams. The set containing the
partial compensation compliant results (PC) is disjoint from
the set of not compliant results. The other sets are subsets
of PC and the intersection of full compensation compliance
(FC) and partial obligation compliance (PO) includes the set
of full obligation compliant results (FO).

III. CHECKING COMPLIANCE

In this section we propose some algorithms and procedures
to verify compliance using our framework. Given a structured
process and a regulation, the proposed solution determines
whether the structured process is compliant with the given
regulation. We use as an algorithm a more detailed sequence of
instructions. We define the procedures as interfaces, describing
the properties of the output given the input.

Compliance

Primary

Lifeline State

Achievement Maintenance

Primary Violation

Fig. 6. I/O relations of the Procedures and Algorithms of the verification

In Fig. 6 we show the relations between the components.
The input is processed by Primary and then Compliance. It can
be noticed that within Primary other components process the
input, and the whole Primary itself is recursive. For the sake

of simplicity we avoided to show the details inside Violation
since it contains the same structure as Primary.

We define two new operators: the executive union ∪ε and
the executive intersection ∩ε. Both operations are binary. The
executive union, written B1 ∪εB2 = B3, is defined as follows:
Σ(B1) ∪ Σ(B2) = Σ(B3). The executive intersection, written
B1∩εB2 = B3, is defined as follows: Σ(B1)∩Σ(B2) = Σ(B3).
We also introduce an empty block, written B∅, and Σ(B∅) = ∅.
When Σ(B

′
) ⊆ Σ(B), then B

′
is a sub-process block of B.

Algorithm 1:
Main(P, ann, R)

1: (BÀ, B�, Bnot) = Primary((B, ∅),À, B,B,B∅)
2: return Compliance(B,BÀ, B�, Bnot)

The input is a structured process P = SEQ(start, B, end)
and a regulation R = À⊗ �. The regulation is composed of a
primary obligation with a chain of compensations associated
À⊗ �. The primary obligation is expressed as À = 〈O, lb, ld〉
and the chain of compensations � = Ω1 ⊗ · · · ⊗ Ωn. Each
compensation in the chain is expressed as Ω = 〈O, ld〉. We
handle � as a vector, meaning that �[i] returns the i-th element
in the chain. In case the index given to the vector is greater
than the length of the chain or in case the chain is empty, null
is returned.

The verification procedure uses the algorithm Primary, which
has the task to verify for which subsets of the possible traces
the primary obligation is fulfilled. When a subset of traces
does not fulfill the primary obligation, the algorithm takes care
to pass such subset to the algorithm in charge to verify if the
possible compensations are fulfilled in such subset. The result
of Primary is later passed to Compliance which interprets it
and decides the compliance class of P with respect to R.

Before describing Primary we introduce the four procedures
it relies on: Lifeline, Starting State, Achievement and Mainte-
nance.

Procedure 1 (Lifeline):

BLife = Life(B, lb,X)

Output:
1) ∀(B′, t) ∈ BLife, lb ∈ ann(t)
2) ∀(B′, t) ∈ BLife,∀ε ∈ Σ(B′), t ∈ ε and ¬∃tx ∈ ε|tx ∈
X and tx � t

3) ∀(B′, t) ∈ BLife,∀ε ∈ Σ(B′),∀tx ∈ X ,¬∃tj ∈
ε such that lb ∈ ann(tj) and tx � tj ≺ t

The procedure Lifeline takes as input a process block B,
whose structure is consistent with Definition 1, a literal lb and
a set of tasks X . The set X can contain a single task or can
be empty. If X is not empty, the task contained represent up
to which task of B the compliance has already been checked,
otherwise it means that no part B has been evaluated yet.

The procedure returns a set of tuples BLife, each tuple
belonging to the set is composed of a process block B

′
and

a task t. Each B′ is a sub-process block of B allowing only
executions containing the task t. Each tuple represents a set
of traces which always trigger the activation period of the
obligation being analyzed in the state containing the task t.

Independently from the task in B chosen to be t in a tuple of
BLife, there exists at least an execution of B containing this
task (Lemma 1).

The set X is used to avoid livelocks, it can contain a task
indicating till where the fulfillment of an obligation has already
been verified. Thus it avoids that the procedure Lifeline returns
a tuple in the output which has already been considered.

Procedure 2 (Starting State):

((B1, t), (B2, t), (B3, t), (B4, t)) = State((B, t), lc, ld)

Output:
1)

⋃4
i=1 Σ(Bi) = Σ(B)

2) ∀θ ∈ Θ(Bi, ann),∃σ ∈ θ|t ∈ σ and cond

B1: cond = σ |= lc and σ |= ld
B2: cond = σ |= lc and σ 6|= ld
B3: cond = σ 6|= lc and σ |= ld
B4; cond = σ 6|= lc and σ 6|= ld

The procedure Starting State takes as input a tuple (B, t),
where B is a process block and t a task, plus two literals: lc
and ld.

The output of this procedure is composed of four tuples
(Bi, t). The union of the serializations of all the blocks in the
tuples in the output has to contain the same executions as B.
Each possible execution of B belongs to exactly one of the
Bi of the output.

Each tuple (Bi, t) ensures a condition for the state containing
t, for all of its possible traces. The condition ensured is different
from all Bi.

The procedure Starting State divides a process block into sub-
blocks according to which of two given literals are contained
in the state containing t. Such division is necessary because the
fulfillment of an obligation can depend on the state holding at
the beginning of its activation period. Moreover, when verifying
if a violation can be fulfilled or not, we need to consider only
the traces which have brought about to the violation, hence
the division according to the state holding at the beginning of
the activation period.

Procedure 3 (Achievement):

Bc,Bv = A((B, t), lc, ld)

Output:
1) ∀(Bc,X) ∈ Bc,∀(Bv, v) ∈ Bv,

⋃
Σ(Bc) ∪

⋃
Σ(Bv) =

Σ(B) and
⋃

Σ(Bc) ∩
⋃

Σ(Bv) = ∅ and
⋂

Σ(Bc) =
∅ and

⋂
Σ(Bv) = ∅

2) ∀(Bc,X) ∈ Bc,∀θ ∈ Θ(Bc, ann),∃σk ∈ θ|t ∈
σk,∃σi ∈ θ|σi |= lc and ¬∃σj ∈ θ|σj |= ld and σk ≺
σj ≺ σi

3) ∀(Bc,X) ∈ Bc,∀θ ∈ Θ(Bc, ann),∃σi ∈ θ|t ∈ σi,
∃σx ∈ θ|tx ∈ σx and σx |= lc, ¬∃σj |σj |= lc and σi ≺
σj ≺ σx

4) ∀(Bc,X) ∈ Bc,∀θ ∈ Θ(Bc, ann),∃σi ∈ θ|t ∈
σi,¬∃σj ∈ θ|σj |= lc, σi ≺ σj or ∃σk ∈ θ|σk |= ld
and σi ≺ σk ≺ σj

5) ∀(Bv, v) ∈ Bv,∀θ ∈ Θ(Bv, ann),∃σi ∈ θ|t ∈ σi,∃σj ∈
θ|v ∈ σj , (either σj |= ld or ¬∃σh ∈ θ|σh � σj) and
¬∃σk ∈ θ|σk |= ld and σi ≺ σk ≺ σj

The procedure Achievement takes as input a tuple (B, t)
containing a process block B and a task t, plus two literals:
lc and ld. Each execution of B contains the task t.

The output of this procedure consists of two sets: Bc,Bv.
The set Bc is composed of tuples: (Bc,X), where Bc is a
sub-process block of B and X a set containing a single task
tx. The set Bv is composed of tuples (Bv, v), where Bc is a
sup-process block of B and v is a task.

Each element of Bc is a tuple (Bc,X), the block Bc contains
only traces where an achievement obligation 〈Oa(lc), lb, ld〉
is satisfied in the activation period triggered by the state
containing t. The set X contains a single task tx, which belongs
to the first state where the obligation is fulfilled in the activation
period triggered by the state containing t. The task tx also
represents until which point the compliance of a block has
already been checked.

Each element of Bv is a tuple (Bv, v), the block Bv allows
only traces where an achievement obligation 〈Oa(lc), lb, ld〉
is satisfied in the activation period triggered by the state
containing t. The task v identifies where the obligation has
been violated, namely the state terminating the activation period
triggered by the state containing t. The task v also indicates
from where a possible compensation has to be verified.

Procedure 4 (Maintenance):

Bc,Bv = M((B, t), lc, ld)

Output:
1) ∀(Bc,X) ∈ Bc,∀(Bv, v) ∈ Bv,

⋃
Σ(Bc) ∪

⋃
Σ(Bv) =

Σ(B) and
⋃

Σ(Bc) ∩
⋃

Σ(Bv) = ∅ and
⋂

Σ(Bc) =
∅ and

⋂
Σ(Bv) = ∅

2) ∀(Bc,X) ∈ Bc,∀θ ∈ Θ(Bc, ann),∃σi ∈ θ|t ∈ σi, either
(∃σj ∈ θ|σj |= ld and σj � σi, ∀σk ∈ θ|σi ≺ σk ≺
σj , σk |= lc) or (∀σk ∈ θ|σi ≺ σk, σk |= lc)

3) ∀(Bc,X) ∈ Bc,∀θ ∈ Θ(Bc, ann),∃σi ∈ θ|t ∈ σi,
∃σj ∈ θ|x ∈ σj and (either σj |= ld or ¬∃σh ∈ θ|σh �
σj), and σj > σi, ¬∃σk ∈ θ|σk |= ld and σi ≺ σk ≺ σj

4) ∀(Bv, v) ∈ Bv,∀θ ∈ Θ(Bv, ann),∃σi) ∈ θ|t ∈ σi,
∃σj ∈ θ|σj 6|= lc and σj � σi, ¬∃σk ∈ θ|σk |= ld
and σi ≺ σk ≺ σj

5) ∀(Bv, v) ∈ Bv,∀θ ∈ Θ(Bv, ann),∃σi ∈ θ|t ∈ σi, ∃σj ∈
θ|v ∈ σj , σj 6|= lc and σj � σi, ¬∃σk ∈ θ|σk 6|= lc and
σi ≺ σk ≺ σj

The input and the output of the procedure Maintenance
contain the same elements as the procedure Achievement.
The output consists in two sets containing the same kind of
tuples of the two sets constituting the output of the procedure
Achievement. Each execution of B must appear in the set of
possible executions of only one of the blocks within the tuples
of Bc or the tuples of Bv .

Each element of Bc is a tuple (Bc,X) where Bc is a sub-
process block of B and X is a set containing a single task
x. The block Bc allows only traces where a maintenance
obligation 〈Om(lc), lb, ld〉 is satisfied in the activation period
triggered by the state containing t. The set X contains a single
task tx, which belongs to the state deactivating the activation

period of the obligation. As per Procedure 3, the task tx also
represents until which point the compliance of a block has
already been checked.

Each element of Bv is a tuple (Bv, v), where Bv is a sub-
process block ob B and v a task belonging to each execution
of Bv. Each Bv contains only traces where a maintenance
obligation 〈Om(lc), lb, ld〉 is not fulfilled in the activation
period triggered by the state containing t. In each tuple, the
task v identifies where the maintenance obligation is violated,
namely in the state of the trace containing it. It also indicates
from where a possible compensation has to be verified.

Algorithm 2 (Primary):

(BÀ
′, B�

′, Bnot
′) = Primary((B,X),À, BÀ, B�, Bnot)

1: Blife = Life(B, lb,X)
2: for all (Blife, t) : Blife do
3: ((B1, t), (B2, t), (B3, t), (B4, t)) = State((Blife, t), lc, ld)
4: for 1 ≤ i ≤ 4 do
5: if O = Oa(lc) then
6: Bc,Bv = A((Bi, t), lc, ld)
7: else
8: Bc,Bv = M((Bi, t), lc, ld)
9: end if

10: ∀(Bc,X) ∈ Bc: BÀ = BÀ ∩ε (
⋃
εBc)

11: for all(Bc,X) : Bc do
12: (BÀ

′, B�
′, Bnot

′) =
Primary((B,X),À, BÀ, B�, Bnot)

13: BÀ = BÀ ∩ε BÀ′
14: B� = B� ∩ε B�

′

15: Bnot = Bnot ∪ε Bnot′
16: end for all
17: for all(Bv, v) : Bv do
18: (BÀ

′′, B�
′′, Bnot

′′) =
Violation((Bv, v),À, �[1], BÀ, B�, Bnot)

19: BÀ = BÀ ∩ε BÀ′′
20: B� = B� ∩ε B�

′′

21: Bnot = Bnot ∪ε Bnot′′
22: end for all
23: end for
24: end for all
25: return (BÀ, B�, Bnot)

The algorithm Primary takes as input a process block B, a
primary obligation À and three process blocks: BÀ, B�, Bnot.
The output of the algorithm is composed of three process
blocks: BÀ′, B�

′, Bnot
′ which respectively contains the traces

compliant with the primary obligation, the traces compliant
with the compensations and the traces not compliant with the
regulation.

As per Primary, before describing the algorithm Violation
we introduce the procedure Violation Lifeline it relies on.

Procedure 5 (Violation Lifeline):

Blife = VLife(B, v)

Output:
1) ∀(B′, t) ∈ Blife,∀ε ∈ Σ(B′),∃v ∈ ε, ∃t ∈ ε|t ≺ v and
¬∃k ∈ ε|t ≺ k ≺ v

The procedure Violation Lifeline takes as input a process
block B and a task v belonging to B. Each execution of B
contains v.

According to Definition 16, the state where a violation occurs
has to be included in the activation period of the compensation.
Similarly to the procedure Lifeline, the procedure Violation
Lifeline returns a set of tuples (B

′
, t) where t is a task which

has the possibility to be executed just before v and B
′

always
contains in its executions the sequence (t, v). By building the
tuples in this way, it is possible to reuse the achievement and
maintenance procedure already defined to verify the primary
obligation. Because these procedures consider t as the state
triggering the activation period and as a result v always belongs
to the first state of the activation period.

Algorithm 3 (Violation):

(BÀ
′, B�

′, Bnot
′) = Violation((Bv, v),À, �[i], BÀ, B�, Bnot)

1: if �[i] = null then
2: Bnot = Bnot ∪ε Bv
3: else
4: Blife = VLife(Bv, v)
5: for all(Blife, t) : Blife do
6: ((B1, t), (B2, t), (B3, t), (B4, t))=

State((Blife, t), lc, ld)
7: for 1 ≤ i ≤ 4 do
8: if O = Oa(lc) then
9: Bc,Bv = A((Bi, t), lc, ld)

10: else
11: Bc,Bv = M((Bi, t), lc, ld)
12: end if
13: for all(Bc,X) : Bc do
14: (BÀ

′, B�
′, Bnot

′) =
Primary((B,X),À, BÀ, B�, Bnot)

15: BÀ = BÀ ∩ε BÀ′
16: B� = B� ∩ε B�

′

17: Bnot = Bnot ∪ε Bnot′
18: end for all
19: for all(Bv, v) : Bv do
20: (BÀ

′′, B�
′′, Bnot

′′) =
Violation((Bv, v),À, �[i+ 1], BÀ, B�, Bnot)

21: BÀ = BÀ ∩ε BÀ′′
22: B� = B� ∩ε B�

′′

23: Bnot = Bnot ∪ε Bnot′′
24: end for all
25: end for
26: end for all
27: end if
28: return (BÀ, B�, Bnot)

The algorithm Violation takes as input a tuple (Bv, v) where
Bv is a block and v is a task, a primary obligation À, a
compensation Ωi (the ith element of the vector �[i]) and
three blocks: BÀ, B�, Bnot. The output of the algorithm is
a tuple composed of three blocks, where each of the elements
respectively contains the traces compliant with the primary
obligation, the traces compliant with the compensations and
the traces not compliant with the regulation.

Algorithm 4 (Compliance):

Compliance(B,BÀ, B�, Bnot)

The algorithm Compliance takes as input four process blocks:
B the original process block of P , BÀ contains all the traces
of P compliant with the primary obligation of R, B� contains
all the traces compliant with the compensations of R and Bnot
contains all the traces not compliant with R.

The algorithm returns a compliance result for the structured
process with respect to the regulation given as input to the
procedure as follows:

1: if BÀ = B then
2: return (P, ann) `FO

R
3: else
4: if BÀ = ∅ then
5: if B� = B then
6: return (P, ann) `FC

R
7: else
8: if B� = ∅ then
9: return (P, ann) 6` R

10: else
11: return (P, ann) `PC

R
12: end if
13: end if
14: else
15: if B� = B then
16: return (P, ann) `PO

R and (P, ann) `FC
R

17: else
18: return (P, ann) `PO

R
19: end if
20: end if
21: end if

The procedure allows to determine the compliance class of a
process with respect to a regulation. In case a process needs to
be restructured to avoid violations, the input of the algorithm
Compliance can be used to identify the problematic executions.

A. Complexity

The number of traces contained in a structured process can
be exponential in the size of the process itself. Our verification
procedure avoids to analyze the problem trace by trace (brute
force approach) when possible. The procedure deals with sub-
blocks of the process containing traces with similar properties.
However, in the case where all the traces contained in a process
do not share similar properties (worst case), then the procedure
solves the problem analyzing each of the traces separately.

The details of Algorithms 1 and 2 allow to notice the
existence of various branching points inside the procedure.
These branching points occur when different traces need a
different type of analysis. One of the branching points of the
procedure is identified by the procedure State, which divides a
process block into four sub-process blocks depending whether
the fulfillment condition and the deadline condition hold at
the beginning of the activation period of an obligation. By
pointing out these differences, we can define the procedure to
verify achievement and maintenance obligations in a similar
way as the ones described in [21] which have the advantage
to be computable in polynomial time.

IV. CONCLUSION AND RELATED WORK

Business process compliance received increased attention
in the field of business process modeling in the past few
years. The majority of approaches propose some logics for
compliance (e.g., deontic logic [5], linear temporal logic [22],
clause based logic/logic programming [8], [18], extensions of
BPMN languages [23]).

To the best of our knowledge this is the first approach to
propose an abstract framework capable of capturing the general
features of the business process regulatory compliance problem.
In the current paper we do not argue about the complexity
of the solution proposed, apart from a brief discussion at the
end of Section 3, however the problem tackled in this paper
intersects the one which is proven to be NP-complete [13] and
extends it with the concept of compensations.

Other works like [20] and [24] provide solutions in linear
time, however the first verifies the compliance of a trace, instead
of a process, and the second provides an approximate solution.

Linear Temporal Logic and model checking are very power-
ful techniques for the verification of different type of systems,
and it can be used for the verification of business processes and
some aspects of compliance [22]. However, the complexity of
linear temporal logic is NP-complete for the language including
the F (sometimes in the future) operator and PSPACE-complete
for the extensions with F, X (next), U(until) operators. In
addition, while it is tempting to represent the deontic operators
(obligations) in temporal logic, temporal logic is not fully
appropriate for the task [25], since it is not able to capture
in a natural way the different nuances required by normative
reasoning, for example, the representation on norms that can
be violated but for which compensation are possible.

As future work we plan to extend the current framework,
allowing it to capture more general business process regulatory
compliance problems. As a consequence we aim to show how
some of other existing approaches can be considered instances
of the abstract framework proposed, allowing in this way
to compare them. Finally, we also aim to use the abstract
framework proposed to systematically analyze the complexity
of the problem itself.

ACKNOWLEDGMENT

• NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

• Silvano Colombo Tosatto is supported by the National Research
Fund, Luxembourg.

REFERENCES

[1] M. El Kharbili, S. Stein, I. Markovic, and E. Pulvermueller, “Towards a
framework for semantic business process compliance management,” in
Proceedings of the GRCIS workshop., ser. CEUR Workshop Proceedings,
S. Shazia, I. Marta, and z. M. Michael, Eds., Montpellier, France, June
17th 2008, pp. 1–15.

[2] S. Sadiq and G. Governatori, “Managing regulatory compliance in
business processes,” in Handbook of Business Process Management,
J. van Brocke and M. Rosemann, Eds. Berlin: Springer, 2010, vol. 2,
ch. 8, pp. 157–173.

[3] G. Governatori and S. Sadiq, “The journey to business process compli-
ance,” in Handbook of Research on BPM, J. Cardoso and W. van der
Aalst, Eds. IGI Global, 2009, ch. 20, pp. 426–454.

[4] S. Sadiq, G. Governatori, and K. Naimiri, “Modelling of control objectives
for business process compliance,” in BPM 2007, ser. Lecture Notes in
Computer Science, G. Alonso, P. Dadam, and M. Rosemann, Eds., no.
4714. Berlin: Springer, 2007, pp. 149–164.

[5] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance checking
between business processes and business contracts,” in 10th International
Enterprise Distributed Object Computing Conference (EDOC 2006),
P. C. K. Hung, Ed. IEEE, 2006, pp. 221–232.

[6] S. Goedertier and J. Vanthienen, “Designing compliant business processes
with obligations and permissions,” in Business Process Management
(BPM) Workshops, 2006, pp. 5–14.

[7] D. Roman and M. Kifer, “Reasoning about the behaviour of semantic
web services with concurrent transaction logic,” in VLDB, 2007, pp.
627–638.

[8] A. Ghose and G. Koliadis, “Auditing business process compliance,” in
ICSOC, ser. Lecture Notes in Computer Science, B. J. Krämer, K.-J. Lin,
and P. Narasimhan, Eds., vol. 4749. Springer, 2007, pp. 169–180.

[9] A. Awad, R. Goré, J. Thomson, and M. Weidlic, “An iterative approach
for business process template synthesis from compliance rules,” in CAISE
2011. Springer, 2011.

[10] M. Kharbili, “Business process regulatory compliance management
solution frameworks: A comparative evaluation,” in Asia-Pacific
Conference on Conceptual Modelling (APCCM 2012), ser. CRPIT,
A. Ghose and F. Ferrarotti, Eds., vol. 130. Melbourne, Australia:
ACS, 2012, pp. 23–32. [Online]. Available: http://crpit.com/confpapers/
CRPITV130Kharbili.pdf

[11] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow
Management,” Journal of Circuits Systems and Computers, vol. 8, no. 1,
pp. 21–66, 1998.

[12] ——, “Formalization and verification of event-driven process chains,”
Information and Software technology, vol. 41, no. 10, pp. 639–650, 1999.

[13] S. Colombo Tosatto, G. Governatori, P. Kelsen, and L. van der Torre,
“Business process compliance is hard,” NICTA, Tech. Rep., 2012.

[14] H. Prakken and M. Sergot, “Dyadic deontic logic and contrary-to-duty
obligations,” 1997.

[15] A. Jones and J. Carmo, “Deontic logic and contrary-to-duties,” in
Handbook of Philosophical Logic, D. Gabbay and F. Guenthner, Eds.
Kluwer Academic Publishers, 2002, pp. 265–343.

[16] B. Kiepuszewski, A. H. M. t. Hofstede, and C. Bussler, “On
structured workflow modelling,” in Proceedings of the 12th International
Conference on Advanced Information Systems Engineering, ser. CAiSE
’00. London, UK, UK: Springer-Verlag, 2000, pp. 431–445. [Online].
Available: http://dl.acm.org/citation.cfm?id=646088.679917

[17] A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas, “Structuring acyclic
process models,” Inf. Syst., vol. 37, no. 6, pp. 518–538, Sep. 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.is.2011.10.005

[18] G. Governatori, J. Hoffmann, S. W. Sadiq, and I. Weber, “Detecting
regulatory compliance for business process models through semantic
annotations,” in Business Process Management Workshops, ser. Lecture
Notes in Business Information Processing, D. Ardagna, M. Mecella, and
J. Yang, Eds., vol. 17. Springer, 2008, pp. 5–17.

[19] C. E. Alchourrón, P. Gärdenfors, and D. Makinson, “On the logic of
theory change: Partial meet contraction and revision functions,” Journal
of Symbolic Logic, vol. 50, no. 2, pp. 510–530, 1985.

[20] G. Governatori and A. Rotolo, “Norm compliance in business process
modeling,” in Proceedings of the 4th International Web Rule Symposium:
Research Based and Industry Focused (RuleML 2010), ser. LNCS, vol.
6403. Springer, 2010, pp. 194–209.

[21] S. Colombo Tosatto, M. El Kharbili, G. Governatori, P. Kelsen, Q. Ma,
and L. van der Torre, “Algorithms for basic compliance problems,” in
Benelux conference on Artificial Intelligence, Array, Ed., 2012, pp. 67–74.

[22] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer Science
- R&D, vol. 23, no. 2, pp. 99–113, 2009.

[23] A. Awad, G. Decker, and M. Weske, “Efficient compliance checking using
bpmn-q and temporal logic,” in BPM, ser. Lecture Notes in Computer
Science, M. Dumas, M. Reichert, and M.-C. Shan, Eds., vol. 5240.
Springer, 2008, pp. 326–341.

[24] J. Hoffmann, I. Weber, and G. Governatori, “On compliance checking
for clausal constraints in annotated process models,” Information Systems
Frontiers, vol. 14, no. 2, pp. 155–177, 2012.

[25] R. H. Thomason, “Deontic logic as founded on tense logic,” in New
studies in deontic logic: norms, actions, and the foundations of ethics,
R. Hilpinen, Ed. Dordrecht, Holland: D. Reidel Publishing Company,
1981, pp. 165–176.

