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Abstract We show that any element of the universal Teichmüller space is

realized by a unique minimal Lagrangian diffeomorphism from the hyper-

bolic plane to itself. The proof uses maximal surfaces in the 3-dimensional

anti-de Sitter space. We show that, in AdSn+1, any subset E of the bound-

ary at infinity which is the boundary at infinity of a space-like hypersurface

bounds a maximal space-like hypersurface. In AdS3, if E is the graph of a

quasi-symmetric homeomorphism, then this maximal surface is unique, and

it has negative sectional curvature. As a by-product, we find a simple char-

acterization of quasi-symmetric homeomorphisms of the circle in terms of

3-dimensional projective geometry.

1 Introduction

1.1 The universal Teichmüller space

We consider here the universal Teichmüller space T , which can be defined as

the space of quasi-symmetric homeomorphisms from RP 1 to RP 1 up to pro-
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jective transformations, see e.g. [18]. The quasi-symmetric homeomorphisms

from RP 1 to RP 1 are precisely the homeomorphisms which are the boundary

value of a quasi-conformal diffeomorphism from H2 to H2, so that the uni-

versal Teichmüller space T can be defined as the space of quasi-conformal

diffeomorphisms from H2 to H2, up to composition with a hyperbolic isom-

etry and up to the equivalence relation which identifies two quasi-conformal

diffeomorphisms if they have the same boundary value.

It was conjectured by Schoen that any element in the universal Teichmüller

space can be uniquely realized as a quasi-conformal harmonic diffeomor-

phism:

Conjecture 1.1 (Schoen [27]) Let φ : RP 1 → RP 1 be a quasi-symmetric
homeomorphism. There is a unique quasi-conformal harmonic diffeomor-
phism ψ : H2 → H2 such that ∂ψ = φ.

A number of partial results were obtained towards this conjecture, proving

the uniqueness of ψ and its existence if φ is smooth enough, see [2, 24, 29]

and the references there.

1.2 Minimal Lagrangian diffeomorphisms

Our first goal here is to prove an analog of Conjecture 1.1, with harmonic

maps replaced by close relatives: minimal Lagrangian diffeomorphisms.

Definition 1.2 Let  : S → S be a diffeomorphism between two hyperbolic

surfaces.  is minimal Lagrangian if it is area-preserving, and its graph is a

minimal surface in S × S.

The relationship between harmonic maps and minimal Lagrangian maps is

as follows.

Proposition 1.3

• Let S0 be a Riemann surface, and let ψ : S0 → S be a quasi-conformal
harmonic diffeomorphism from S0 to a hyperbolic surface S. Let q be the
Hopf differential of ψ . There is a unique harmonic diffeomorphism ψ  :
S0 → S from S0 to another hyperbolic surface S with Hopf differential
−q . Then ψ  ◦ ψ−1 : S → S is a minimal Lagrangian map.

• Conversely, let  : S → S be a minimal Lagrangian map between two
(oriented) hyperbolic surfaces, and let S0 be the graph of , considered as
a Riemann surface with the complex structure defined by its induced metric
in S ×S. Then the natural projections from S0 to S and to S are harmonic
maps, and the sum of their Hopf differentials is zero.
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Thus minimal Lagrangian maps are a kind of “symmetric squares” of har-

monic maps.

It is known that any diffeomorphism between two closed hyperbolic

surfaces can be deformed to a unique harmonic diffeomorphism, see e.g.

[20, 21]. In the same manner, it was proved by Schoen and by Labourie that

any such diffeomorphism can be deformed to a unique minimal Lagrangian

diffeomorphism [23, 27].

Our first result is an extension of this existence and uniqueness result to

the universal Teichmüller space.

Theorem 1.4 Let φ : RP 1 → RP 1 be a quasi-symmetric homeomorphism.

There is a unique quasi-conformal minimal Lagrangian diffeomorphism  :
H2 → H2 such that ∂ = φ.

The result of Schoen and Labourie on closed hyperbolic surfaces obviously

follows from this. The proof of Theorem 1.4 can be found in Sect. 6. Note that

partial results in this direction were obtained previously by Aiyama, Akuta-

gawa and Wan [1], who proved the existence part of Theorem 1.4 when φ

has small dilatation. Recently, Brendle has obtained results on the existence

and uniqueness of minimal Lagrangian diffeomorphisms between two convex

domains of the same, finite area in hyperbolic surfaces, see [14].

1.3 The anti-de Sitter space

The proof of Theorem 1.4 is essentially based on the geometry of maximal

space-like surfaces in the anti-de Sitter (AdS) 3-dimensional space, as already

in [1]. Recall that an embedded surface in a 3-dimensional Lorentzian man-

ifold is space-like if its induced metric is Riemannian. It is maximal if its

mean curvature vanishes, so that maximal space-like surfaces in Lorentzian

manifolds are analogs of minimal surfaces in Riemannian manifolds.

This relationship between Teichmüller theory and 3-dimensional AdS

geometry follows a pattern in some recent works (see [3, 11–13, 25] and also

[1]), where results on Teichmüller theory were proved using 3-dimensional

AdS geometry, although mostly in a somewhat different direction. The re-

lationship between maximal surfaces in 3-dimensional AdS manifolds and

minimal Lagrangian maps between closed hyperbolic surfaces was also used

recently in [22].

The 3-dimensional AdS space can be considered as a Lorentzian analog of

the 3-dimensional hyperbolic space. It can be defined as the quadric

AdS∗
3 = {x ∈ R2,2|x, x = −1},

where R2,2 is R4 endowed with bilinear symmetric form of signature (2,2).

It is a geodesically complete Lorentz manifold of constant curvature −1.
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Another way to define it is as the Lie group SL(2,R), endowed with its bi-

invariant Killing metric. More details are given in Sect. 2. The key point for

us, basically discovered by Mess [3, 25] and used in the references mentioned

above, is that space-like surfaces in AdS∗
3 naturally give rise to area-preserving

diffeomorphisms from the hyperbolic plane to itself. In this way, Theorem 1.4

is proved below to be equivalent to an existence and uniqueness statement for

maximal space-like surfaces in AdS∗
3, and it is in this form that it is proved.

The anti-de Sitter space can of course be defined in higher dimensions. The

existence part of the result on maximal surfaces is actually stated (and proved)

below in the more general context of maximal hypersurfaces in AdS∗
n+1, see

Theorem 1.6. The uniqueness part, however, is considered here only in AdS∗
3

(and it needs hypotheses that are more interesting in dimension 2 + 1), see

Theorem 1.10.

1.4 Maximal surfaces and minimal Lagrangian diffeomorphisms

For closed hyperbolic surfaces, the existence of a minimal Lagrangian dif-

feomorphism is equivalent to the existence of a maximal space-like surface

in a 3-dimensional globally hyperbolic AdS manifold, see [22]. This relation

extends to maximal surfaces in AdS∗
3 and the universal Teichmüller space as

follows.

One way to consider the bridge between Teichmüller theory and AdS

geometry is through the asymptotic boundary of AdS∗
3—denoted by ∂∞AdS∗

3

—that, as for the hyperbolic space, furnishes a natural compactification of

AdS∗
3. As in the hyperbolic case, a conformal Lorentzian structure is defined

on ∂∞AdS∗
3. There is a natural projection ∂∞AdS∗

3 to RP 1 × RP 1 that is a

2-to-1 covering (see Sect. 2.6 for details). The graph of any homeomorphism

of RP 1 lifts to a space-like closed curve in ∂∞AdS∗
3.

Proposition 1.5

• Let S ⊂ AdS∗
3 be a maximal space-like graph with uniformly negative

sectional curvature. Then there is a minimal Lagrangian diffeomorphism
S : H2 → H2 associated to S, and the graph of ∂S : ∂H2 → ∂H2 is the
projection of the boundary at infinity of S in ∂∞AdS∗

3.

• Conversely, to any quasi-conformal minimal Lagrangian diffeomorphism
 : H2 → H2 is associated a maximal surface S with uniformly negative
sectional curvature and with boundary at infinity equal to the lifting of the
graph of ∂ in ∂∞AdS∗

3.

It is this proposition which provides the bridge between Theorem 1.4 and

the existence and uniqueness of maximal surfaces in AdS∗
3.



Maximal surfaces and the universal Teichmüller space 283

1.5 Existence and regularity of maximal hypersurfaces in AdSn+1

We can state an existence result for maximal hypersurfaces in the AdS space

with fixed boundary values. The regularity conditions on the boundary values

are quite weak, since we only demand that it bounds some space-like surface

in AdS∗
n+1.

Theorem 1.6 Let  be a closed acausal C0,1 graph in ∂∞AdS∗
n+1 (n ≥ 2).

If  does not contain light-like segments, then there is a maximal space-like
hypersurface S0 such that ∂S0 = .

We provide in Sect. 4 a direct proof of this result, where the maximal sur-

face is obtained as a limit of bigger and bigger maximal disks.

This existence result can be improved insofar as the regularity of the hy-

persurface is concerned. To state this improvement, we need a definition. Let

 be a nowhere time-like graph in ∂∞AdS∗
n+1. Using the projective model of

AdS∗
n+1 which is also recalled in Sect. 2.5, we can consider the convex hull

of , it is a convex subset of AdS∗
n+1 with boundary at infinity containing ,

we use the notation CH(). We denote by C() the intersection with AdS∗
n+1

of CH() (considered as a subset of projective space). The boundary of C()

is the disjoint union of two nowhere time-like hypersurfaces, which we call

∂+C() and ∂−C().

Definition 1.7 The width of C() (or by extension of ), denoted by

w(C()) (resp. w()) is the supremum of the (time) distance between

∂−C() and ∂+C().

It is proved below (Lemma 4.16) that w() is always at most equal to π/2.

Theorem 1.8 Suppose that w(∂∞S) < π/2 in Theorem 1.6. Then S0 can be
taken to have bounded second fundamental form.

The proof is also in Sect. 6.

1.6 The mean curvature flow

We also give in the Appendix another proof of Theorem 1.6. It is based on

the mean curvature flow for hypersurfaces in the anti-de Sitter space.

Theorem 1.9 Let S ⊂ AdSn+1 be a space-like graph. There exists a long-time
solution of the mean curvature flow with initial value S with fixed boundary
at infinity, defined for all t > 0.
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This flow converges, as t → ∞, to a maximal surface. When w(∂∞S) <

π/2, we also have bounds on the second fundamental form of the hypersur-

faces occurring in the flow.

1.7 Uniqueness of maximal surfaces in AdS∗
3

We do not know whether maximal hypersurfaces with given boundary at in-

finity are unique in AdS∗
n+1. We can however state a result for surfaces in

AdS∗
3, under a regularity assumption on the boundary at infinity.

Theorem 1.10 Let S be a space-like graph in AdS∗
3. Suppose that the bound-

ary at infinity of S is the graph of a quasi-symmetric homeomorphism from
RP 1 to RP 1. Then there is a unique maximal surface in AdS∗

3 with bound-
ary at infinity ∂∞S and with bounded second fundamental form, and it has
negative sectional curvature.

The proof, which can be found in Sect. 6, is based on the following propo-

sition.

Proposition 1.11 Let S0 ⊂ AdS3 be a maximal space-like graph with
bounded principal curvatures. Then either it is flat, or its sectional curva-
ture is uniformly negative (bounded from above by a negative constant).

Those results should be compared to the existence and uniqueness of a

maximal surface in a maximal globally hyperbolic AdS 3-dimensional man-

ifold, see [4]. Theorem 1.6 applies to this case, with S0 the lift of a closed

surface in the globally hyperbolic manifold M . In this case the boundary at

infinity of S is the limit set of M , which is the graph of a quasi-symmetric

homeomorphism (see [3, 25]). Theorem 1.12 then shows that w(∂∞S) < π/2,

so that Theorem 1.10 also applies.

1.8 A characterization of quasi-symmetric homeomorphisms of the circle

Consider a homeomorphism u : RP 1 → RP 1, let u ⊂ ∂∞AdS3 be the lifting

of the graph of u on ∂∞AdS3.

Theorem 1.12 w(u) is at most π/2. It is strictly less than π/2 if and only
if u is quasi-symmetric.

The first part here is just Lemma 4.16, already mentioned above. The sec-

ond part is proved in Sect. 6.1.

This statement can be considered in a purely projective way, because the

fact that a point of ∂−C(u) is at distance strictly less than π/2 from ∂+C(u)
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corresponds to a purely projective property, stated in terms of the duality be-

tween points and space-like planes in AdS3, see Sect. 2.4. This duality is itself

a projective notion, see Sect. 2.5.

The proof uses the considerations explained above on the properties of

maximal surfaces bounded by u, it can be found in Sect. 6.1. It is based

on Theorem 1.8 and to a partial converse, in dimension 3 only: if an acausal

graph in ∂∞AdS∗
3 is the boundary of a maximal surface with bounded second

fundamental form which is not a “horosphere” (as described in Sect. 5.2), then

 is the graph of a quasi-symmetric homeomorphism from RP 1 to RP 1.

1.9 What follows

Section 2 contains a number of basic notions on the anti-de Sitter (AdS)

space and some of it basic properties. It is included here for completeness,

in the hope of making the paper reasonably self-contained for reader not yet

familiar with AdS geometry. Section 3 similarly contains some basic facts

(presumably less well-known) on space-like hypersurfaces in the AdS space.

Section 4 is perhaps the heart of the paper. After some preliminary state-

ments on maximal space-like hypersurfaces in AdS, it contains both an ex-

istence theorem for maximal hypersurfaces with given boundary data at in-

finity, and a statement on the regularity of those hypersurfaces under a geo-

metric condition on the boundary at infinity. This condition is later translated

(for surfaces in the 3-dimensional AdS space) in terms of quasi-symmetric

regularity of the data at infinity.

In Sect. 5 we further consider this regularity issue, with emphasis on sur-

faces in AdS∗
3, and we prove a uniqueness result for maximal surfaces with

regular enough data at infinity. Finally we prove Theorem 1.4.

Appendix contains an alternative proof of the existence of a maximal hy-

persurface with given data at infinity, based on the mean curvature flow. This

approach also yields some regularity results.

2 The anti de Sitter space

This section contains a number of basic statements on AdS geometry, which

are necessary in the proof of the main results. Readers who are already famil-

iar with AdS geometry will find little interest in it, we have however decided

to include it to make the paper self-contained, hoping that it is useful for

readers interested in Teichmüller theory but not yet in AdS geometry.

2.1 Definitions

We consider the hyperbolid model of the hyperbolic space: the hyperbolic

space Hn is identified with the set of future-pointing unit time-like vectors in
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(n+ 1)-dimensional Minkowski space Rn,1. In this work, if it is not specified

differently, we always use this identification. In particular points of Hn are

identified with elements (x1, . . . , xn+1) ∈ Rn+1 such that
n

1 x2
i − x2

n+1 =
−1. We also fix the point x0 = (0, . . . ,0,1) ∈ Hn.

Let Rn,2 be Rn+2 equipped with the symmetric 2-form

x, y = x1y1 + · · · + xnyn − xn+1yn+1 − xn+2yn+2.

The (n + 1)-dimensional anti de Sitter space is the set

AdS∗
n+1 = {x ∈ Rn,2|x, x = −1}.

The tangent space at a point x ∈ AdS∗
n+1 is the linear hyperplane orthogonal

to x with respect to ·, ·. The restriction of ·, · to TxAdS∗
n+1 is a Lorentzian

scalar product.

Remark 2.1 With this definition of AdS∗
n+1, its isometry group is immediately

seen to be O(n,2). In particular, this isometry group acts transitively on the

points of AdS∗
n+1. More precisely, it acts simply transitively on the set of

couples (x, e) where x ∈ AdS∗
n+1 and e is an orthonormal basis of TxAdS∗

n+1.

It is also clear (using the action of O(n,2) by isometries) that the geodesics

in AdS∗
n+1 are precisely the intersections of AdS∗

n+1 with the linear planes in

Rn,2 containing 0.

There is a map

 : Hn × R → AdS∗
n+1

defined by

((x1, . . . , xn+1), t) = (x1, x2, . . . , xn, xn+1 cos t, xn+1 sin t). (1)

 is a covering map, so topologically AdS∗
n+1

∼= Hn × S1. It will often be

convenient to consider the universal cover AdSn+1 of AdS∗
n+1, that is Hn ×R,

equipped with the pull-back of the metric on AdS∗
n+1.

It is easy to see that this metric at a point ((x1, . . . , xn+1), t) takes the form

gH − x2
n+1dt2. (2)

If we consider the Poincaré model of Hn, the metric can be written as

4

(1 − r2)2
(dy2

1 + · · · + dy2
n) −


1 + r2

1 − r2

2

dt2, (3)

where r =


y2
1 + · · · + y2

n and y1, . . . , yn are the Cartesian coordinates on

the ball {y ∈ Rn|r(y) < 1}.
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By (2) we see that the time translations

(x, t) → (x, t + a)

are isometries of AdSn+1. The coordinate field ∂
∂t

is a Killing vector field and

the slices Hn × {t} are totally geodesic.

We denote by ∇̄ the Levi-Civita connections of both AdSn+1 and Hn. Since

Hn × {t} is totally geodesic, the restriction of ∇̄ on this slice coincides with

its Levi-Civita connection.

We say that a vector v ∈ Tx,tAdSn+1 is horizontal if it is tangent to the slice

Hn × {t}. Analogously it is vertical if it is tangent to the line {x} × R.

The lapse function φ is defined by

φ2 = −


∂

∂t
,

∂

∂t


.

The gradient of t is a vertical vector at each point and it equal to

∇̄t = − 1

φ2

∂

∂t
,

so its squared norm is equal to − 1
φ2 .

2.2 The asymptotic boundary and the causal structure

We denote by AdSn+1 the manifold with boundary Hn × R, where Hn
is the

usual compactification of Hn (obtained for instance in the projective model

of Hn). Another way to consider AdSn+1 is as the universal cover of the com-

pactification of AdS∗
n+1 defined by adding the projectivization of the cone of

vectors x ∈ Rn,2 such that x, x = 0.

Clearly AdSn+1 is the interior part of AdSn+1, whereas its boundary, ∂Hn ×
R is called the asymptotic boundary of AdSn+1 and is denoted by ∂∞AdSn+1.

The following statement is clear when considering the definition of AdS∗
n+1

as a quadric.

Lemma 2.2 Every isometry f of AdSn+1 extends to a homeomorphism of
AdSn+1.

The asymptotic boundary of a set K ⊂ AdSn+1—denoted by ∂∞K—is the

set of the accumulation points of K in ∂∞AdSn+1. By (3) it is clear that the

conformal structure on AdSn+1 extends to the boundary. This means that in

the conformal class of the metric g there is a metric g∗ that extends to the

boundary. We can for instance put g∗ = 1
φ2 g.
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A vector v tangent at some point in ∂∞AdSn+1 is time-like (light-like,

space-like) if g∗(v, v) < 0 (= 0, > 0). Notice that the definition makes sense

since the sign of g∗(v, v) depends only on the conformal class of g∗.

Lemma 2.3 Let c : (−1,1) → AdSn+1 be an inextensible time-like path.

If the function t is bounded from above on c, there exists the limit p1 =
lims→1 c(s) ∈ ∂∞AdSn+1.

Proof The vertical component of ċ is

ċV = ċ, ∇̄t ∂

∂t
= ṫ

∂

∂t
.

Since the norm of ∂
∂t

for g∗is 1, we have |ċV |g∗ = ṫ . On the other hand, the

fact that c is time-like implies

|ċH |g∗ ≤ |ċV |g∗ = ṫ .

Since the function t is increasing along c, the bound on t along c implies that

ċH is bounded in a neighbourhood of 1. It follows that the path cH obtained

by projecting c to Hn, has finite length with respect to the metric 1
φ2 gH. This

implies that there exists the limit x1 = lims→1 cH (s). On the other hand, since

t is increasing along c there exists the limit t1 = lims→1 t (c(s)). The point

p1 = (x1, t1) is the limit point of c. Since we assume that c is inextensible in

AdSn+1, p1 ∈ ∂∞AdSn+1. �

The point p1 is an asymptotic end-point of c.

An inextensible path is without end-points if and only if the function t

takes all the real values along c, or equivalently, if c does not admit any as-

ymptotic end-point. Vertical lines are instances of inextensible paths without

end-points.

2.3 Geodesics and geodesic hyperplanes in AdSn+1

The next statement, which is classical, describes the geodesics in AdS∗
n+1,

considered as a quadric in Rn,2.

Lemma 2.4 (see [9]) Geodesics in AdS∗
n+1 are the intersection AdS∗

n+1 with
linear 2-planes in Rn,2 containing 0. In particular, given a tangent vector v

at some point p ∈ AdS∗
n+1, we have

expp(sv) =
⎧
⎨
⎩

cos(s)p + sin(s)v if v, v = −1;
p + sv if v, v = 0;
cosh (s)p + sinh (s)v if v, v = 1.

(4)
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Remark 2.5 Totally geodesics k-planes in AdS∗
n+1 are the intersection of

AdS∗
n+1 with (k + 1)-linear planes of Rn,2 containing 0.

Space-like and light-like geodesics are open simple curves. Homotopically,

time-like geodesics are simple closed non-trivial curve. Moreover every com-

plete time-like geodesic starting at p passes through −p at time (2k + 1)π

and at p at time 2kπ for k ∈ Z. Passing to the universal cover, we get the

following statement.

Lemma 2.6 Given a point p = (x, t) ∈ AdSn+1 there is a discrete set {pk|k ∈
Z} such that every time-like geodesic γ starting at p passes through pk at
time t = kπ . Moreover, p2k = (x, t + 2kπ) and p2k+1 = (y, t + (2k + 1)π)

where y is some point in Hn independent of k.

In what follows we will often use the points p1 and p−1. To simplify the

notation we will denote these points by p+ and p−.

Time-like geodesics are time-like paths without end-points. On the

other hand since space-like geodesics are conjugated to horizontal ones

by some isometry, they have 2 asymptotic end-points. Using the projec-

tion  one can check that the path c(s) = (x(s), arccos( 1√
1+s2

)) where

x(s) = (s,0, . . . ,0,
√

1 + s2) is a light-like geodesic. Since c has two as-

ymptotic end-points, the same property holds for every light-like geodesic.

Remark 2.7 Points in ∂∞AdSn+1 related by a time-like arc in ∂∞AdSn+1 are

not joined by a geodesic arc in AdSn+1. Indeed by the above description if a

geodesic connects two points in the asymptotic boundary of AdSn+1 then it is

either space-like or light-like (and in this case it is contained in the boundary).

Totally geodesic n-planes in AdSn+1 are distinguished by the restriction of

the ambient metric on them. They can be time-like, space-like or light-like

according as whether this restriction has Lorentzian, Euclidean or degenerate

signature.

Space-like hyperplanes are conjugate by some isometry to horizontal

planes. Time-like hyperplanes are conjugate by some isometry to the hyper-

plane P0 × R, where P0 is a totally geodesic hyperplane in Hn. For light-like

hyperplanes we will need a more precise description.

Lemma 2.8 Let P be a light-like hyperplane. There are two points ζ− and ζ+
in ∂∞AdSn+1 such that P is foliated by light-like geodesics with asymptotic
end-points ζ− and ζ+. The foliation of P by light-like geodesics extends to a
foliation of P \ {ζ−, ζ+} by light-like geodesics, where P denotes the closure
of P in AdSn+1.
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Proof It is sufficient to prove the statement for a specific light-like plane.

Consider the hypersurface P0 = {(x, t) ∈ AdSn+1|t = arcsin( x1
xn+1

)}. Using

the projection  one see that P0 is a totally geodesic plane, indeed (P0)

is a connected component of the intersection of AdS∗
n+1 with the linear plane

defined by the equation y1 − yn+2 = 0.

We consider the natural parameterization σ : Hn → P0 defined by σ (x) =
(x, arcsin(

x1
xn+1

)). Since the function x1
xn+1

extends to the boundary of Hn, the

map σ extends to Hn
and gives a parameterization of the closure P 0 of P0 in

AdSn+1.

The level surfaces Ha = { x1
xn+1

= a} are totally geodesic hyperplanes or-

thogonal to the geodesic c = {x2 = · · · = xn = 0}. Let N be the unit future-

oriented vector field on Hn orthogonal to Ha for all a. A simple computation

shows that

• for all a, σ |Ha is an isometric embedding;

• N̂ = σ∗(N) is a light-like field;

• N̂ is orthogonal to σ (Ha).

It follows that P0 is a light-like plane. The integral lines of N̂ produce a

foliation of P0 by light-like geodesics. Notice that integral lines of N̂ are the

images of integral lines of the field N . By standard hyperbolic geometry, all

these lines join the endpoints, say x−, x+, of the geodesic c. We conclude that

light-like geodesics of P0 join σ (x−) to σ (x+). Since the foliation of Hn by

integral lines of N extends to a foliation of Hn \ {x−, x+}, the foliation given

by N̂ extends to a foliation of P0 \ {ζ−, ζ+}. By continuity we conclude that

the leaves of this foliation are light-like. �

For a light-like plane P the points ζ− and ζ+ are called respectively the

past and the future end-points of the plane.

Space-like and light-like hyperplanes disconnect AdSn+1 in two connected

components, that coincide with the past and the future of them. Their asymp-

totic boundary is a no-where time-like closed hypersurface of ∂∞AdSn+1. On

the other hand the asymptotic boundary of a time-like plane is the union of

two inextensible time-like curves.

2.4 The causal structure of AdSn+1

If c : [0,1] → AdSn+1 is a time-like path, its length is defined in this way:

(c) =
 1

0

(−ċ(s), ċ(s))1/2ds.

Given p ∈ AdSn+1 we consider the set P−(p) (resp. P+(p)) defined respec-

tively as the set of points that can be joined to p through a past-directed (resp.

future-directed) time-like geodesic of length π/2.
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Remark 2.9 For a point x ∈ AdS∗
n+1 we can identify the set of unit time-like

tangent vectors at x with the geodesic plane P ∗
x = x⊥ ∩ AdS∗

n+1 (where x⊥ is

the linear plane orthogonal to x). P ∗
x has two connected components. Equa-

tion (4) shows that these components are the images of P+(p) and P−(p),

where p is any preimage of x in AdSn+1.

The following properties of P−(p) and P+(p) are a direct consequence of

Remark 2.9.

Lemma 2.10 The sets P−(p) and P+(p) are complete, space-like totally
geodesic planes. Every time-like geodesic starting at p meets P−(p) and
P+(p) orthogonally.

Remark 2.11 For the point p0 = (x0,0), a direct computation (still using the

projection ) shows that P−(p0) and P+(p0) are level curves of the time

function t corresponding to values −π/2 and π/2 respectively.

The planes P−(p) and P+(p) are disjoint and bound an open precompact

domain Up in AdSn+1. For instance, for p = (x0,0) we have Up = {(x, t) ∈
AdSn+1| − π/2 < t < π/2}. By definition the interior of Up (denoted by

int(Up)) is the intersection of Up with AdSn+1. Notice that

int(Up) = I+(P−(p)) ∩ I−(P+(p)).

Notice that P+(pk) = P−(pk+1) for every k ∈ Z. In particular Upi
∩Upj

=
∅ if |i − j | > 1 and Upi

∩ Upi+1
= P+(pi).
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Given p ∈ AdSn+1 we denote by Cp the set of points joined to p through

a time-like geodesic of length less than π/2.

Proposition 2.12

• Cp ⊂ Up .

• Space-like and light-like geodesics join p to points in Up \ Cp , whereas
time-like geodesics are contained in


n∈Z Cpn .

• I+(p) ⊂ Cp ∪ I+(P+(p)) = Cp ∪
k>0 Upk

.

• ∂Cp ∩ Up is the light-like cone through p, whereas ∂∞Cp is the union of
the asymptotic boundary of P+(p) and the asymptotic boundary of P−(p).

This proposition can be easily proved using the projection  and the ex-

plicit formula (4).

It is worth noticing that AdSn+1 is not geodesically convex. Indeed the set

of points in AdSn+1 that can be joined to p by a geodesic is int(Up)∪
Cpk

.

Corollary 2.13 The set I−(p+) ∩ I+(p−) is the maximal star neighbour-
hood of p.

Given p ∈ AdSn+1 and q ∈ I+(p), the distance between them is defined as

δ(p, q) = sup{(c)|c time-like path joining p to q}.
The next statement is true in a rather general context and can be proved by

classical arguments.

Lemma 2.14 If U is a star neighbourhood of p, then the distance from p

δp : U ∩ I+(p)  q → δ(p, q) ∈ R

is smooth. For q ∈ U ∩ I+(p) the distance δ(p, q) is realized by the unique
geodesic joining p to q contained in U .

Remark 2.15 The definition of the distance shows that for q ∈ I+(p)∩U and

r ∈ I+(q), the reverse of the triangle inequality holds

δ(p, r) ≥ δ(p, q) + δ(q, r). (5)

2.5 The projective model

As noted in the proof of Lemma 2.6 the geodesics in AdS∗
n+1 are obtained as

the intersection of AdS∗
n+1 with the linear planes of Rn+2 containing 0.

For this reason the projection map

π : AdSn+1 → RP n+1
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is projective: it sends geodesics of AdSn+1 to projective segments. The image

of this projective map is the interior of a quadric Q ⊂ RP n+1 of signature

(n − 1,1).

Notice for p ∈ AdSn+1 the domain (int(Up)) is a connected component

of AdS∗
n+1 \ P ∗

(p). Thus the domain π((Up)) is contained in some affine

chart of RP n+1.

In this way we construct a projective embedding

π∗ : int(Up) → Rn+1.

The map π∗ can be easily computed assuming p = (x0,0). In this case

Up = {(x, t)|t ∈ (−π/2,π/2)} so (int(Up)) = {(y1, . . . , yn, , yn+1, yn+2) ∈
AdS∗

n+1|yn+1 > 0} and

π∗(x1, . . . , xn+1, t) =


x1

xn+1 cos t
,

x2

xn+1 cos t
, . . . ,

xn

xn+1 cos t
, tan t


(6)

for every (x1, . . . , xn) ∈ Hn and t ∈ (−π/2,π/2).

Notice that the map extends continuously on Up to a map, still denoted

by π∗. From (6), the image π∗(Up) is the set


(z1, . . . , zn+1)|

n

i=1

z2
i ≤ z2

n+1 + 1


. (7)

In particular we deduce that every point q ∈ Up (even on the boundary)

can be joined to p by a unique geodesic and that this geodesic continuously

depend on q .

We have seen above how to associate to a point p ∈ AdSn+1 two totally

geodesic space-like hyperplanes P−(p) and P+(p). Both planes are sent by

π to the intersection with π(AdS∗
n+1) of the same projective plane P , and

P has a purely projective definition. Indeed the light-cone of p is tangent

to Q along a circle C, and the image by π of the boundary at infinity of

P−(p) is precisely C. One way to see this is by using the fact that in the

projective model of AdSn+1 (as for the hyperbolic space) the distance between

two points can be defined in terms of the Hilbert distance of the quadric Q,

see e.g. [26].

This duality extends to a duality between totally geodesic (space-like) k-

planes in π(AdSn+1), with the dual of a k-plane P being a (n − k)-plane P ∗.

Then P ∗ can be defined as the intersection between the hyperplanes dual to

the points of P , and conversely. Then P ∗ can be characterized as the set of

points at distance π/2 from P along a time-like segment, and conversely.
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2.6 The 3-dimensional AdS space

The general description of the n-dimensional anti-de Sitter space AdS∗
n+1

above can be refined when n = 2, and AdS∗
3 has some quite specific prop-

erties.

One such specificity is that AdS∗
3 is none other than the Lie group SL(2,R),

with its Killing metric. This point of view, which is important in itself (see [3,

25]), will not be used explicitly here.

Another feature which is specific of AdS3 is the fact that the boundary of

π(AdS3) in RP 3 is a quadric of signature (1,1) which, as is well known, is

foliated by two families of projective lines, which we will call Ll and Lr (l

and r stand for “left” and “right” here). Those projective lines correspond pre-

cisely to the isotropic curves in the Lorentz-conformal structure on ∂∞AdS3.

Each line of one family intersects each line of the other family at exactly

one point, this provides an identification of ∂π(AdS∗
3) with RP 1 ×RP 1, with

each copy of RP 1 identified with one of the two families of lines foliating

∂π(AdS∗
3).

This has interesting consequences, in particular those explained in Sect. 3.4.

Another consequence is that the isometry group of AdS3 can be naturally

identified (up to finite index) with the product of two copies of PSL(2,R).

Indeed any isometry of AdS3 in the connected component of the identity acts

on the two families of lines foliating ∂∞AdS3 by permuting those lines, and

this action is projective on each family of lines. Conversely, any couple of

elements of PSL(2,R) can be obtained in this manner.

3 Space-like graphs in AdSn+1

This section continues the description of the geometry of the AdS space, with

emphasis on space-like surfaces. Readers already familiar with AdS geometry

might not be very surprised by most of the results, but several notations and

lemmas will be used in the next section.

3.1 Definitions

A smooth embedded hypersurface M in AdSn+1 is space-like if for every

x ∈ M the restriction of ·, · on TxM is positive definite. It turns out that

a Riemannian structure is induced on every space-like hypersurface by the

ambient metric.

We say that a space-like surface M in AdSn+1 is a graph if there is a func-

tion

u : Hn → R
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such that M coincides with the graph of u.

First let us check which functions correspond to space-like graphs. The

function u induces a function on Hn × R

û(x, t) = u(x).

The gradient of û at a point (x, t) is the horizontal vector that projects to the

gradient of u at x.

The graph of u, say M = Mu, is defined by the equation û − t = 0. Thus

the tangent space T(x,u(x))M = ker(dt − dû)(x,u(x)). In particular the normal

direction of M at (x, u(x)) is generated by the vector

ν̄ = ∇̄t − ∇̄û (8)

whose norm is

|∇̄û|2 − 1

φ2
.

Since |∇̄û| = |∇̄u| we deduce that M is space-like if and only if

1 − φ2|∇̄u|2 < 0, (9)

and the future-pointing normal vector is

ν = φ
1 − φ2|∇̄u|2

(∇̄û − ∇̄t). (10)

It is interesting to express (9) using the Poincaré model of hyperbolic

space. In that case we have

∇̄u = (1 − r2)2

4


∂u

∂y1
, . . . ,

∂u

∂yn



so

|∇̄u|2 = (1 − r2)

4


∂u

∂yj

2

and condition (9) becomes



j


∂u

∂yj

2

<
4

(1 + r2)2
. (11)

In particular the function u is 2-Lipschitz with respect to the Euclidean dis-

tance of the ball.
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Lemma 3.1 Let M = Mu be a smooth space-like graph in AdSn+1. Then the
function u extends to a continuous function

ū : H̄n → R.

In particular the closure of M in AdSn+1 is still a graph.

3.2 Acausal surfaces

A C0,1 hypersurface M in AdSn+1 is said to be weakly space-like if for every

p ∈ M there is a neighbourhood U of p in AdSn+1 such that U \M is the dis-

joint union I+
U (M) ∪ I−

U (M). A neighbourhood satisfying the above property

will be called a good neighbourhood of p.

It is not hard to see that a space-like surface is weakly space-like. On the

other hand a C1 weakly space-like surface is characterized by the property

that no tangent plane is time-like.

A weakly space-like graph is a weakly space-like surface that is the graph

of some function u. Weakly space-like graphs correspond to Lipschitz func-

tions u such that the inequality

1 − φ2|∇̄u|2 ≤ 0

holds almost everywhere. As for space-like graphs it is still true that the clo-

sure of acausal graphs in AdSn+1 is a graph.

First we provide an intrinsic characterization of weakly space-like graphs.

Proposition 3.2 Let M be a connected weakly space-like hypersurface. The
following statements are equivalent:

(1) M is a weakly space-like graph;

(2) AdSn+1 \ M is the union of 2 connected components;

(3) every inextensible time-like curve without end-points meets M exactly in
one point.

Proof The implication (1) ⇒ (2) is clear.

Assume (3) holds. Then every vertical line meets M exactly in one point.

This shows that the projection π : M → Hn is one-to-one. Since M is a

topological manifold, the Invariance of Domain Theorem implies that π is

a homeomorphism. Thus M is a graph.

Finally suppose that (2) holds. We consider the equivalence relation on

M such that p ∼ q if there are good neighbourhoods U and V of p and q

respectively such that I+
U (p) and I+

V (q) are contained in the same component

of AdSn+1 \M . Equivalence classes are open. Since M is connected, all points

are equivalent. We deduce that there is a component, say +, of AdSn+1 \ M
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such that if c = c(s) is a future-directed time-like path hitting M for s = 0,

then there is  > 0 such that c(s) ∈ + for 0 < s < . In the same way, there

is a component, say − such that c(s) ∈ − for − < s < 0.

If U is a good neighbourhood of some point p ∈ M , then U ⊂ + ∪ M ∪
−, so + ∪ − ∪ M is an open neighbourhood of M . Since the closure

of every component of AdSn+1 \ M contains points in M , by the assumption

(2), + and − are different components of AdSn+1 \ M and AdSn+1 =
− ∪ M ∪ +.

It follows that no future-directed time-like curve starting at a point of +
can end at some point of M . Since any future-directed time-like curve that

starts on M intersects +, points of M are not related by time-like curves

and I+(M) ⊂ + and I−(M) ⊂ −.

In particular, given a point p ∈ M , the surface M is contained in Up . It

follows that the restriction of the time-function t on M is bounded in some

interval [a, b]. Moreover + contains the region {(x, t)|t > b}, instead −
contains the region {(x, t)|t < a}.

Since the restriction of t on any inextensible time-like curve without end-

points c takes all the values of the interval (−∞,+∞) we have that c contains

points of − and points of +. Thus it must intersect M . Since points of M

are not related by time-like arcs, such intersection point is unique. �

Remark 3.3 Proposition 3.2 implies that space-like graphs are intrinsically

described in terms of the geometry of AdSn+1. In particular, if M is a space-

like graph, and γ is an isometry of AdSn+1, then γ (M) is still a space-like

graph.

Remark 3.4 Given a point p ∈ AdSn+1 we have that ∂I+(p) is a weakly

space-like graph. Indeed we can assume p = (x0,0). In that case it turns out

that ∂I+(p) is the graph of the function arccos( 1
xn+1

).

An important feature of weakly space-like graphs is that they are acausal

as the following proposition states.

Proposition 3.5 Let M = Mu be a weakly space-like graph in AdSn+1, and
let M denote its closure in AdSn+1. Given p ∈ M , then, for every q ∈ M , p

and q are connected by a geodesic [p,q] that is not time-like. Moreover, if
this geodesic is light-like, then it is contained in M .

Proof Proposition 3.2 implies that M ∩ I+(p) = ∅ and M ∩ I−(p) = ∅. In

particular, M ⊂ Up that is a star-neighbourhood of p. It follows that any point

q of M is connected to p by some geodesic that continuously depends on p.

Since points of M cannot be connected to p by a time-like geodesic, the same

holds for points in ∂∞M .
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Finally, let us prove that if [p,q] is light-like, then it is contained in M . Let

u± : Hn → R be such that ∂I±(p) is the graph of u±. Let us set p = (x0, t0)

and q = (x1, t1). Consider the geodesic arc of Hn, say x(s), starting from x0

and ending at x1 defined for s ∈ [0, T ] (T can be +∞ if x1 ∈ ∂Hn). Notice

that the function of s defined by u+(s) = u+(x(s)) satisfies

u̇+ = 1

φ(x(s))
, u+(0) = t0. (12)

On the other hand the function u(s) = u(x(s)) satisfies

u̇ =

∇̄u,

dx

ds


≤ 1

φ(x(s))
, u(0) = t0. (13)

Comparing (12) and (13) we deduce that

u(s) ≤ u+(s),

and the equality holds at some s0 if and only if u̇(s) = 1
φ(x(s))

on the interval

[0, s0], that is equivalent to say that the light-like segment joining p = (x0, t0)

to q = (x(s0), u(x(s0))) is contained in M .

In an analogous way we show that u−(s) ≤ u(s). �

Remark 3.6 The hypothesis that M is a graph is essential in Proposition 3.5.

It is not difficult to construct a space-like surface M containing points p, q

that are related by a vertical segment.

For a weakly space-like surface M , a point p ∈ M is singular if it is con-

tained in the interior of some light-like segment contained in M . The singular

set of M is the set of singular points. Analogously we define the singular set

of the asymptotic boundary  of M . Notice that the singular set of  can be

non-empty even if M does not contain singular points.

3.3 The domain of dependence of a space-like graph

Let M be a space-like graph in AdSn+1, and let  denote its asymptotic

boundary. We will suppose that M does not contain any singular point.

The domain of dependence of M is the set D of points x ∈ AdSn+1 such

that every inextensible causal path through x intersects M . It can be easily

shown that this property is equivalent to requiring that (I+(x) ∪ I−(x)) ∩ M

is precompact in AdSn+1. There is an easy characterization of D in terms

of .

Lemma 3.7 With the notations of Sect. 2.3, a point p lies in D if and only if
 is contained in Up .
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Proof Suppose that p ∈ D. Without loss of generality we can suppose that

p ∈ I−(M). By the hypothesis, I+(p)∩M is precompact in AdSn+1 (whereas

I−(p) ∩ M = ∅). Thus there is a compact ball B ⊂ Hn such that I+(p) ∩ M

is contained in the cylinder above B . In particular, M \ (B × R) is contained

in Up . It follows that  ⊂ Up .

If some point x of  were contained in ∂∞P+(p) then the geodesic joining

p to x would be light-like and would intersects M in some point q . Then

by Proposition 3.5, the light-like geodesic segment joining q to x would be

contained in M and this would contradict the hypothesis that M does not

contain any singular point.

Let us consider now a point p such that  ⊂ Up . Again we can suppose

that p ∈ I−(M). By the assumption the asymptotic boundary of M and the

asymptotic boundary of I+(p) are disjoint. It follows that I+(p) ∩ M is pre-

compact in AdSn+1. �

Corollary 3.8 Two space-like surfaces share the boundary at infinity if and
only if their domains of dependence coincide.

Proposition 3.9

• The domain D is geodesically convex and its closure at infinity is pre-
cisely .

• The boundary of D is the disjoint union of two weakly space-like graphs
∂±D = Mu± whose boundary at infinity is .

• Every point p ∈ ∂D is joined to  by a light-like ray.

To prove this proposition we need a technical lemma of AdS geometry.

Lemma 3.10 Given two points p,q ∈ AdSn+1 connected along a geodesic
segment [p,q] and given any point r lying on such a segment, we have that

Up ∩ Uq ⊂ Ur.

Proof Let up (resp. vp) be the real function on Hn such that P+(p) (resp.

P−(p)) is the graph of up (resp. vp). Analogously define uq, vq, ur, vr .

We have that

Up = {(x, t)|vp(x) < t < up(x)}, Uq = {(x, t)|vq(x) < t < uq(x)},
Ur = {(x, t)|vr(x) < t < ur(x)}.

In particular, Up ∩Uq = {(x, t)|max{vp(x), vq(x)} < t < min{up(x), uq(x)}}.
Then, the statement turns out to be equivalent to the inequalities

vr ≤ max{vp, vq}, min{up,uq} ≤ ur .
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If the segment [p,q] is time-like, then, up to isometry, we can suppose

that p = (x0,0), q = (x0, a), r = (x0, b) with 0 ≤ b ≤ a. In this case we have

up(x) = π/2, uq(x) = a + π/2, ur(x) = b + π/2 so the statement easily

follows.

Suppose now that the geodesic [p,q] is space-like. Up to isometry, we

can suppose that p = (xp,0), q = (xq,0), r = (xr ,0) where xp, xq, xr are the

following points in (the hyperboloid model of) Hn:

xp = (−sinh ,0, . . . ,0, cosh ), xq = (sinhη,0, . . . ,0, coshη),

xr = (0, . . . ,0,1),

where η and  are respectively the distance from p and q to r .

The corresponding points p∗, q∗, r∗ ∈ AdS∗
n+1 are

p∗ = (−sinh ,0, . . . ,0, cosh ,0), q∗ = (sinhη,0, . . . ,0, coshη,0),

r∗ = (0, . . . ,0,1,0).

By Remark 2.9, (P+(p)) is a component of the intersection of AdS∗
n+1 with

the hyperplane defined by the equation

−y1sinh  − yn+1cosh  = 0.

In particular, pulling-back this equation, we deduce that the set P+(p) is a

component of the set

{((x1, . . . , xn+1), t) ∈ Hn × R| − x1sinh () − xn+1 cos tcosh () = 0}.

Since the function t takes value in (0,π) on P+(p) we deduce that

up(x1, . . . , xn+1) = arccos


− x1sinh

xn+1cosh


.

Analogously, we derive

ur(x1, . . . , xn+1) = π/2, uq(x1, . . . , xn+1) = arccos


x1sinhη

xn+1coshη


.

Notice that up ≤ π/2 if x1 ≤ 0, whereas uq ≤ π/2 if x1 ≥ 0. It follows that

min{up,uq} ≤ ur .

Since vp = −up , vq = −uq and vr = −ur , we deduce that max{vp, vq} ≥
vr .

When [p,q] is light-like, the computation is completely analogous. �
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Remark 3.11 From the proof of the lemma we have that P+(p) and P+(q)

are disjoint in AdSn+1 if p and q are joined by a time-like segment, while

they meet along a (n − 1)-dimensional geodesic plane if p and q are con-

nected by a space-like geodesic. Finally in the light-like case, they meet at

the asymptotic end-points of the geodesic through p and q .

Proof of Proposition 3.9 Let p be a point contained in D and consider the

nearest conjugate points p± to p as defined in Sect. 2.3. First we show

that D is contained in the star neighbourhood I−(p+) ∩ I+(p−) of p. Let

q /∈ I−(p+). If q ∈ I+(p+) then I−(p+) ⊂ I−(q). Since  is contained in

the asymptotic boundary of the past of P+(p) = P−(p+) that in turn coin-

cides with the asymptotic boundary of I−(p+), we see that  ⊂ ∂∞I−(q),

so that  ∩ Uq = ∅. Suppose now that q is related to p+ by a space-like geo-

desic. Remark 3.11 shows that ∂∞P−(p+)∩∂∞P−(q) contains a point (ξ, t).

Since  is a graph on ∂Hn, there is a point in  of the form (ξ, t ) and since

 ⊂ I−(P−(p+)) we get t  < t . It follows that (ξ, t ) is not contained in Uq .

Eventually we obtain that q /∈ D. The same argument shows that any point in

D must be contained in I+(p−) so D is contained in I−(p+) ∩ I+(p−).

We deduce from this that given two points p,q ∈ D, the geodesic seg-

ment [p,q] joining them exists and does not contain any point conjugate to

p. Given a point r ∈ [p,q] the region Ur contains Up ∩ Uq , so that Ur con-

tains . By Lemma 3.7 it follows that r ∈ D. This shows that D is convex.

Clearly  is contained in the boundary of D. On the other hand, given any

other point q ∈ ∂∞AdSn+1, the vertical line through q meets  at a point q .
By Remark 2.7, there is no geodesic arc in AdSn+1 joining q to q . Since D

is convex, q  cannot lie on D. In particular, the asymptotic boundary of D

coincides with .

To prove that the boundary of D has two components, we notice that every

time-like geodesic, say c, through a point p ∈ M must intersect ∂D in two

points which are contained in the future and in the past of M respectively.

Indeed, since D is contained in some compact region of AdSn+1, it turns out

that c ∩ D is precompact without asymptotic points. By the convexity of D,

we have that c ∩ D is a compact segment and clearly there is an end-point in

the future of M and another end-point in the past of M .

Let us define ∂±D = ∂D ∩ I±(M). The previous argument proves that no

time-like geodesic can join points of ∂+D. Since D is convex, points of ∂+D

are joined by light-like or space-like geodesic arcs. In particular ∂+D is an

acausal set. By general results (see e.g. [8]) it is a weakly space-like surface

(in particular it is a C0,1-embedded surface).

In addition, every inextensible time-like path without endpoints must inter-

sect ∂+D at some point. By Proposition 3.2 we deduce that ∂+D is a weakly

space-like graph.
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To conclude we have to prove that points in ∂D are connected to  by

some light-like ray. By the characterization of D given by Lemma 3.7, we

have that ∂D is the set of points p such that  ⊂ Up and  ∩ ∂∞(P−(p) ∪
P+(p)) = ∅. Take a point y in this intersection. By the convexity of D, the

segment c joining x to y (that is light-like) is contained in D. Points on c are

joined to y ∈  by a light-like geodesic, so they cannot be contained in D. In

particular c ⊂ ∂D. �

Remark 3.12 Since time-like arcs in D do not contain conjugate points, their

length is less than π . In particular, the length of any time-like geodesic seg-

ment joining a point of ∂−D and a point of ∂+D is less than π . If there

exists a point q+ ∈ ∂+D and q− ∈ ∂−D such that δ(q−, q+) = π , then we

have P−(q+) = P+(q−) = P and Uq+ ∩ Uq− = P . Since  is contained in

Uq+ ∩ Uq− , we conclude that  = ∂∞P . In this case D = I−(q+) ∩ I+(q−).

Remark 3.13 The closure of D in AdSn+1 is compact.

Lemma 3.14 For every p ∈ D the intersection I+(p) ∩ D is compact in
AdSn+1.

Proof Since the closure of D in AdSn+1 is compact, it is sufficient to show

that no point in ∂∞AdSn+1 is an accumulation point for D ∩ I+(p). How-

ever the set of boundary accumulation points of I+(p) is disjoint from Up ,

whereas the set of boundary accumulation points for D is , that is contained

in Up . �

Lemma 3.15 There is a point p ∈ D such that D ⊂ Up .

Proof We first assume there are points q+ ∈ ∂+D and q− ∈ ∂−D such that

δ(q−, q+) = π . By Remark 3.12, we deduce that D = I−(q+) ∩ I+(q−) and

any point on the plane P−(q+) = P+(q−) satisfies the statement.

Now we consider the case where δ(q, q ) < π for q ∈ ∂−D and q  ∈ ∂+D.

We define two functions on D

τ+(p) = sup
q∈D∩I+(p)

δ(p, q), τ−(p) = sup
q∈D∩I−(p)

δ(q,p)

that are Lipschitz-continuous (see [9]). By Lemma 3.14, for p ∈ D there is

q+(p) ∈ D such that τ+(p) = δ(p, q+(p)) and analogously there is a point

q−(p) such that τ−(p) = δ(q−(p),p). Clearly q+(p) ∈ ∂+D and q−(p) ∈
∂−D.

Notice that by the reverse of triangle inequality we have τ+(p) + τ−(p) ≤
δ(q−(p), q+(p)) < π . In particular the open sets − = {τ− < π/2} and
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+ = {τ+ < π/2} cover D. Since they are not empty, it follows that there

exists a point p such that τ−(p) < π/2 and τ+(p) < π/2, so D ⊂ Up . �

3.4 From space-like graphs in AdS3 to diffeomorphisms of H2

There is a relation between some space-like surfaces in AdS∗
3 (satisfying some

specific properties) and diffeomorphisms from H2 to H2. More specifically,

there is a one-to-one relation between maximal graphs in AdS∗
3 with negative

sectional curvature and minimal Lagrangian diffeomorphisms from the hy-

perbolic disk to itself. The quasi-conformal minimal Lagrangian diffeomor-

phisms correspond precisely to the maximal graphs with uniformly negative

sectional curvature.

This relation, which is well-known (see [1]), is at the heart of the proof

of Theorem 1.4, so we outline its construction and its main properties here,

referring to [3, 5, 11, 22, 25] for more details.

Let S ⊂ AdS3 be a space-like graph. Let I be its induced metric, B its

shape (or Weingarten) operator, and let E be the identity map from T S to

T S at each point. Denote by J the complex structure of I on S. We can then

define two metrics μl ,μr as:

μl = I ((E + JB)·, (E + JB)·), μr = I ((E − JB)·, (E − JB)·).
It is then not difficult to show that both μl and μr are hyperbolic metrics

(see [5, 22])—the reason for this being that E ± JB satisfies the Codazzi

equation, d∇(E ±JB) = 0 on S, and that det(E ±JB) = 1+det(B) is equal

to minus the sectional curvature of the induced metric I on S, which by the

Gauss equation in AdS3 is equal to −1 − det(B).

However μl and μr are not necessarily smooth metrics, they might have

singularities when E ± JB is singular, that is—by the determinant computa-

tion just mentioned—when 1 + det(B) = 0. This means that μl and μr are

smooth hyperbolic metrics whenever the induced metric on S has negative

sectional curvature.

There is a nice geometric interpretation of metrics μl and μr that is based

on a specific feature of AdS3. Every leaf of the left (right) foliation of ∂∞AdS3

meets the boundary of any space-like planes exactly at one point. Consider a

fixed totally geodesic plane P0. Given any other plane P there are two natural

identifications P,l,P,r : ∂∞P → ∂∞P0 obtained by following each of the

families of lines Ll , Lr .

By means of the projective model, it can be easily seen that maps P,l and

P,r extend uniquely to isometries of AdS3—still denoted by P,l , P,r—

sending P to P0 (see [13, 25] for details).

It is also not difficult to check that replacing P0 by another geodesic plane

does not change P,l and P,r up to left composition by some isometry of

AdS3 preserving respectively Ll and Lr .
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Now given any space-like surface S we can define two maps l ,r : S →
P0 as

l(x) = P(x),l(x), r (x) = P(x),r (x),

where P(x) is the geodesic plane tangent to S at x. Still in this case, replacing

P0 does not change l and r , up to left composition with some isometry of

AdS3 that preserves respectively Ll and Lr .

The following is a basic remark, see e.g. [22] for a proof—it can actually

be checked by a direct computation, by choosing P0 as the tangent plane at

the point x.

Lemma 3.16 The pull-backs by l (resp. r ) of the hyperbolic metric on P0

is precisely the metric μl (resp. μr ).

A consequence is that l and r are non-singular when μl ,μr are non-

degenerate metrics, and we have seen that this is the case when det(B) = −1.

We are therefore lead to consider surfaces with negative sectional curvature

(the Gauss formula indicates that the sectional curvature of S is K = −1 −
det(B)).

Lemma 3.16, which is a local statement, can be improved, under the con-

dition that S is a space-like maximal graph with negative curvature. Here we

call πl (resp. πr ) the map from ∂∞AdS3 to P0 sending a point x ∈ ∂∞AdS3 to

the intersection with P0 of the line of Ll (resp. Lr ) containing x.

Proposition 3.17 Suppose that S is a maximal space-like graph with sec-
tional curvature bounded from above by some negative constant. Then l

(resp. r ) is a global diffeomorphism from S to P0. l (resp. r ) extends
continuously to the closure of S in AdS3, and its boundary value is the re-
striction of πl (resp. πr ) to ∂∞S.

The difficult part to prove is the extension result. We need the following

technical lemma that gives a condition for the extension. Unfortunately this

lemma does not apply directly to S, but to the surface S+ of points whose

distance from S is π/4. We then factorize the map l as the composition of

the corresponding map +
l : S+ → P0 and a diffeomorphism σ : S → S+ that

is given by the normal evolution and that is the identity on the boundary.

Lemma 3.18 Let S be a space-like surface in AdS3 with negative curvature
whose boundary curve  does not contain singular points (that is, ∂∞S does
not contain any light-like segment). Consider the maps l ,r : S → P0 de-
scribed above. Suppose that there is no sequence of points xn on S such that
the totally geodesic planes Pn tangent to S at xn converge to a light-like plane
P whose past end-point and future end-point are not on .
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Fig. 1 The rhombus in the proof of Lemma 3.18

Then for any sequence of points xn ∈ S converging to x ∈ ∂∞S we have
that l(xn) → πl(x) (resp. r (xn) → πr (x)) in P0

Proof We prove that for any sequence xn → x ∈ ∂∞S there is a subsequence

such that l(xnk
) converges to πl(x). Indeed, up to passing to a subsequence

we can suppose that the totally geodesic plane Pn tangent to S at xn converges

to a plane P∞. Since x is the limit of points on Pn, it belongs to ∂∞P∞.

We distinguish two cases

(1) P∞ is space-like;

(2) P∞ is light-like.

First we deal with the first case. We have that l(xn) = Pn,l(xn). Since

Pn → P∞ it can be checked that Pn,l → P,l uniformly on AdS3 (see [13]).

So we have

l(xn) → P∞,l(x) = πl(x).

Consider now the case where P∞ is light-like. By the assumption either

the past or the future end-point of P∞ is contained in  = ∂∞S. Since points

on  are not joined by light-like segments, the intersection between  and

P∞ is only this point. Since x ∈  ∩P∞, we conclude that x is either the past

endpoint or the future end-point of P . Up to reversing the time-orientation

we can suppose that x is the past end-point of P∞.

Up to some isometry of AdS3 preserving the leaves of Ll we can suppose

that x ∈ P0 so it is sufficient to prove that l(xn) → x.

Consider any geodesic l on P0 and let U be the half-plane bounded by l

containing the point x. We will show that for n large enough l(xn) ∈ U .

The four leaves of Ll and Lr passing through the end-points of l bound a

rhombus R in ∂∞AdS3 containing x in its interior (see Fig. 1). The end-points
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of l are two opposite vertices of R and there are two other opposite vertices

z− and z+ such that z− is the past end-point of both edges adjacent to it and

z+ is the future end-point of both edges adjacent to it.

Since x is the past endpoint of P∞, this plane intersects the frontier of R

in two points, one for each edge with vertex z+. In particular also Pn ∩ R is

for n large enough an arc cn joining two points on the edges adjacent to z+.

Let L− be the light-like plane whose past end-point is z− and L+ be the

light-like plane whose future end-point is z+. Notice that V = I−(L+) ∩
I+(L−) is a neighbourhood of x in AdS3 and the asymptotic boundary of V

is exactly R. In particular, for n large enough, xn ∈ V .

The boundary of L+ is the union of the two past-directed light-like rays

starting from z+ and L− is the union of two future-directed light-like rays

starting from z+.

It turns out that Hn = Pn ∩ I−(L+) is the half-plane on Pn that is the

convex hull of cn. Since cn is contained in the future of ∂∞L− we have that

Hn ⊂ I+(L−). And we conclude that

Pn ∩ V = Hn.

Since for n large enough xn ∈ Pn ∩ V , we have that

l(xn) = Pn,l(xn) ∈ Pn,l(Hn).

Now Pn,l(Hn) is the half-plane of P0 whose asymptotic boundary is

πl(cn). Notice that πl(cn) is contained in ∂∞U so we have l(xn) ∈
Pn,l(Hn) ⊂ U . �

Remark 3.19 If S is a future-convex graph and its boundary does not con-

tain singular points then the condition required in Lemma 3.18 is satisfied.

Indeed totally geodesic planes tangent to S are support planes so if we take a

sequence of such planes Pn that converges to some light-like plane P∞, we

have that P∞ cannot intersects S transversely. In particular S is contained in

the past of P∞. This implies that either the boundary of S is disjoint from the

boundary of P∞ or that the past end-point of P∞ is contained in the boundary

of S.

Now if the tangency points xn of Pn with S converge to some asymptotic

point x, clearly x ∈ S ∩P∞. Thus, in this case we have that the past end-point

of P∞ is contained in the boundary of S. Since the boundary of S does not

contain light-like segments, the point x must coincide with the past end-point

of P∞.

Lemma 3.20 Let S be a maximal space-like graph with sectional curvature
bounded from above by some negative constant. The asymptotic boundary of
S does not contain any light-like segment.
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The proof is based on some simple preliminary claims.

Claim 3.21 Let S ⊂ AdS3 be a space-like graph with principal curvatures in
(−1,1). Then the equidistant surfaces Sr at (oriented) time-like distance r

from S, for all r ∈ [−π/4,π/4], are smooth, space-like graphs. If the princi-
pal curvatures of S are in (−1 + ,1 − ), then, for r close enough to π/4,

Sr is past-convex, and S−r is future-convex.

Proof If (Sr)r∈I is a non-singular foliation of a neighborhood of S by space-

like surfaces at constant distance r from S, then the shape operator Br of Sr

satisfies a Riccati type equation relative to r :

dBr

dr
= B2

r − I,

where I is the identity. It follows that the principal curvatures of S evolve as

tan(r − r0), where r0 is chosen so that tan(r0) is the principal curvature of S

at the corresponding point and in the corresponding direction.

Suppose now that S has principal curvatures k ∈ (−1 + ,1 − ) at each

point, for some  > 0. This implies that, at each point and in each principal di-

rection, r0 ∈ (−π/4+α,π/4−α), where α > 0 is another constant. As a con-

sequence, the equidistant foliation (Sr) is well-defined for r ∈ [−π/4,π/4],
and moreover for α < α the surfaces Sπ/4−α and S−π/4+α are smooth and

respectively strictly concave and strictly convex, so that the domain

 =


r∈[−π/4+α,π/4−α]
Sr

is convex with smooth boundary, with principal curvatures bounded from be-

low by a strictly positive constant. �

Applying Lemma 3.15 to the domain of dependence of S, we deduce that

S embeds in the projective model of AdS3. In particular we can consider its

convex hull K , that is the minimal convex set containing S. The width of S—

denoted by w(S)—is defined as the width of its convex hull, that is supremum

of the length of timelike geodesics contained in K .

Corollary 3.22 Let S be a space-like maximal surface, with sectional curva-
ture bounded from above by a negative constant. Then w(S) < π/2.

Proof This follows from the claim because the convex hull of S is contained

in , and w() ≤ π/2 − 2α < π/2. �

Claim 3.23 Suppose that there is a light-like segment in ∂∞S. Then w(S) =
π/2.
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Fig. 2 Deforming a graph to the standard 2-step graph

Proof We consider the surface S embedded in the projective model of the

Anti-de Sitter space. The boundary at infinity of S is the graph of a map u :
RP 1 → RP 1. If ∂∞S contains a light-like segment then u is not continuous,

and its graph has a “jump”, as in the left-hand side of Fig. 2. Composing u on

the left with a sequence of projective transformations, we can make its graph

as close as wanted (in the Hausdorff topology) from the standard 2-step graph

shown on the right-hand side of Fig. 2. (This is achieved by composing u on

the right with a sequence of powers of a projective transformation having as

attracting fixed point the point where the “jump” occurs.) We call 0 this

2-step graph, considered as a subset of ∂π(AdS3) (here π is the map in the

projective model of AdS3).

Now 0, as a subset of ∂π(AdS3), is composed of four light-like segments.

It has four vertices, and it is not difficult to check that the lines  and ∗
connecting the two pairs of opposite points are two dual space-like lines

in π(AdS3). In particular, if CH(0) denotes the convex hull of 0, then

w(CH(0)) = π/2 (a more detailed analysis of this situation can be found in

[9, Sect. 7.3.3]).

Since ∂∞S can be made arbitrarily close to 0 by applying AdS isometries

(corresponding to composing u on the left and on the right with projective

transformations of RP 1), it follows that w(S) = π/2. �

Proof of Lemma 3.20 The statement follows directly from Corollary 3.22 and

Claim 3.23. �

Let us come back to Proposition 3.17.

Proof of Proposition 3.17 We consider again the surface S+ of points in the

future of S at distance π/4 from S. We have seen that S+ is smooth and past-

convex. Moreover a diffeomorphism σ : S → S+ is uniquely determined so

that the Lorentzian distance between x and σ (x) is exactly π/4.

Since the distance between points on S+ and points on S is bounded, they

share the same boundary. Moreover, since the boundary of S does not contain

light-like segments, it can easily seen that the map σ extends to the identity

at the boundary.
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We claim that the map l can be factorized as the composition of σ and

+
l , where +

l : S+ → P0 is the map constructed in the same way as l . The

claim and Remark 3.19 imply that l extends to the boundary.

Let us prove the claim. Given any point x ∈ S, we have to check that

l(x) = +
l (σ (x)). Up to isometry we can suppose that:

• P0 is the plane tangent to S at x,

• x = (x0,0) and P0 is the horizontal plane.

With this assumption clearly l(x) = x.

Since the segment joining x to σ (x) is orthogonal to both S and S+, it

follows that σ (x) = (x0,π/4) and the plane P+ tangent to S+ at σ (x) is the

horizontal plane.

In this case the map P+,l can be explicitly computed. In particular it is

given by P+,l(y, t) = (R(y), t − π/4) where R ∈ Isom(H2) is a rotation of

angle π/4 around x0. It easily follows that +
l (σ (x)) = P+,l(σ (x)) = x,

and this proves the claim.

Notice that the map l and r turn to be proper maps. On the other hand,

under the hypothesis that S has negative sectional curvature, l and r are

local diffeomorphisms from S to P0, so that, by the Dependence of Domain

Theorem, they are global diffeomorphism from S to P0. �

Definition 3.24 Suppose that S has negative sectional curvature. We call S :
−1

l ◦ r : H2 → H2. S is a global diffeomorphism, well-defined up to

composition by a hyperbolic isometry.

By construction the differential of S is given at each point by (E +
JB)−1(E − JB). It follows that, as long as the principal curvatures of S are

in [−1+ ,1− ] for some  > 0, the diffeomorphism S is quasi-conformal

(and conversely).

Lemma 3.25 The map S extends to a homeomorphism from H2 to H2, and
the graph of ∂S : RP 1 → RP 1 in (the image by π ) of AdS3 is the boundary
at infinity of S in ∂∞AdS3.

Proof The extension of S to the boundary is a direct consequence of its

definition and of the extension to the boundary of l and r . It is then clear

that the graph of ∂S is equal to ∂∞S, since the restrictions of πl and πr to

∂∞S are equal to the boundary values of l and r . �

We have now proved the first two points in Proposition 1.5. To prove the

third point it is necessary to construct, given a quasi-conformal minimal La-

grangian diffeomorphism  : H2 → H2, a maximal space-like S such that

 = S . One way to do this is through the identification of H2 × H2 with
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the space of time-like geodesics in AdS3 (see [5]). We rather use here local

arguments (as in [22]).

Let  : H2 → H2 be a minimal Lagrangian diffeomorphism. Call ρl and

ρr the hyperbolic metrics on the two copies of H2 (this underlines the rela-

tionship with the construction in the previous paragraphs). The fact that  is

minimal Lagrangian is equivalent (see [23]) to the fact that

∗ρr = ρl(b·, b·),
where b is self-adjoint (for ρl), positive, of determinant 1, and satisfies the

equation

d∇ l

b = 0,

where ∇ l is the Levi-Civita connection of ρl and d∇ l
b is defined (see [10]) as

(d∇ l

b)(x, y) = ∇ l
x(by) − ∇ l

y(bx) − b([x, y]).
We can then define a metric I on S by

4I = ρl((E + b)·, (E + b)·). (14)

Since b is non-singular and has positive eigenvalues, I is a metric on H2.

Since d∇ l
b = 0 we also have d∇ l

(E + b) = 0, it follows from standard argu-

ments (see e.g. [22]) that the Levi-Civita connection of I is

∇xy = (E + b)−1∇ l
x((E + b)y),

and therefore that the curvature K of I is equal to

K = Kl

det((E + b)/2)
= − 4

det(E + b)
= − 4

2 + tr(b)
.

Let J be the complex structure of I , we now define B : T H2 → T H2 as

follows:

JB = (E + b)−1(E − b). (15)

Then JB has some remarkable properties.

(1) d∇JB = 0. This follows from a direct computation, because d∇ l
(E −

b) = 0. Since J is parallel for ∇ , it follows that d∇B = 0.

(2) JB is self-adjoint for I , because E − b is self-adjoint for ρl . It follows

that B is traceless.

(3) JB is traceless—this follows from a direct computation in a basis where

b is diagonal, using the fact that det(b) = 1. It follows that B is self-

adjoint.
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(4) det(JB) = det(E−b)
det(E+b)

= 2−tr(b)
2+tr(b)

. It follows that K = −1 − det(B).

In other terms, setting I = I (B·, ·), we see that I satisfies the Gauss and Co-

dazzi equation relative to I . It follows that there exists a (unique) isometric

embedding of (H2, I ) in AdS3 with second fundamental form I (and shape

operator B).

Equation (15) then shows that E + JB = 2(2 + b)−1, so that μl = ρl ,

and a direct computation shows also that μr = ρr . If  is quasi-conformal

then b is bounded, so that the sectional curvature of S is uniformly negative.

The first part of this section shows that the graph of ∂ in RP 1 × RP 1
∂∞AdS3 is equal to the boundary at infinity of S, and this finishes the proof

of Proposition 1.5.

4 The existence and regularity of maximal graphs

Given a smooth space-like surface M in AdSn+1 we consider the future-

oriented normal vector field ν.

The gradient function with respect to the field T = −φ∇̄t is

vM = −ν, T .
It measures the angle between the hypersurface M and the horizontal slice.

Notice that vM(x) ≥ 1 for every x ∈ M . If M is the graph of a function u then

vM = 1
1 − φ2|∇̄u|2

.

In that case the normal field ν is equal to ν = φvM(∇u − ∇t).

The shape operator of M is the linear operator of T M defined by

B(v) = ∇̄vν

whereas the second fundamental form is defined by I(v,w) = v,B(w). The

mean curvature, denoted by H , is the trace of B . A space-like surface M is

maximal if its mean curvature vanishes.

In [6] a general formula for the mean curvature of a space-like graph is

given. If M is the space-like graph of a function u we have

H = 1

vM


divM(φgradMu) + divMT


, (16)

where divM is the operator on M defined

divMX =


ei, ∇̄ei
X, X ∈ (T AdSn+1)

where ei is any orthonormal basis.
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4.1 Maximal hypersurfaces and convex subsets

We concentrate here on convexity properties of maximal hypersurfaces in

AdSn+1.

Lemma 4.1 Let M be a compact maximal graph. Suppose that there exists a
space-like plane P such that ∂M is contained in I−(P ). Then M is contained
in I−(P ).

Proof Suppose by contradiction that a point p0 of M lies in the future

of P . Without loss of generality we can suppose that P is the horizon-

tal plane {t = 0} and p0 = (x0, a) with a > 0. Since M is contained in

I+((p0)−) ∩ I−((p0)+), by our assumption on the boundary we have that

0 < a < π and ∂M is contained in the region of points with −π < t < 0.

Consider the function u : AdSn+1 → R defined at the point p = (x, t) as

u(p) = xn+1 sin(t).

By our assumption,

u(p) < 0 for every p ∈ ∂M. (17)

We compute now u, where  is the Beltrami-Laplace operator of M .

Notice that u is the pull-back of the function u∗ defined on AdS∗
n+1 as

u∗(y) = y, e,
where e = (0, . . . ,0,−1). Thus we can suppose that M is immersed in

AdS∗
n+1 and compute u∗. Notice that the gradient of u∗ is the orthogonal

projection of e on M , that is,

∇u(y) = e + e, yy + e,ν∗ν∗ = e + uy + e,ν∗ν∗,

where ν∗ is the normal field of M in AdS∗
n+1. Since for v ∈ TyM , ∇v(∇u) is

the tangential part of ∇̄v(∇u) (where ∇̄ is the standard connection in R2,2)

we have

∇v(∇u∗) = u∗v + e,ν∗B(v).

Taking the trace we get u∗ = nu∗ + e,ν∗H = nu∗, where the last equality

holds since M is maximal. Eventually we have

u = nu.

In particular if the maximum of the function u is achieved at some interior

point of M , then it must be negative. Since u(p0) > 0 we get a contradic-

tion. �
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Definition 4.2 A convex slab of AdSn+1 is a convex domain in AdSn+1 whose

boundary is the union of two acausal graphs.

Let K be a convex slab and Mv and Mu be its boundary components that

are graph respectively of functions v,u : Hn → R and suppose that v < u.

The domain K is

{(x, t)|u(x) ≤ t ≤ v(x)}.
The component Mv (resp. Mu) is called the past (resp. future) boundary of K .

Notice that the future boundary is past-convex: this means that points of Mv

are related by a space-like geodesic that lies in the past of Mv . Analogously

Mu is future convex. Since points of a convex slab K can be connected by

geodesics, Remark 2.7 implies that the asymptotic boundary of K can inter-

sect each vertical line in ∂∞AdSn+1 in at most one point. So we have

Corollary 4.3 If K is a convex slab then its boundary components share the
same asymptotic boundary.

Remark 4.4 Let u and v be two space-like functions defined on Hn such

that Mu is past convex, Mv is future convex and v(x) < u(x). Corollary 4.3

implies that in general the domain  = {(x, t)|v(x) < t < u(x)} is not convex.

On the other hand it is not difficult to see that if the functions u and v coincide

on ∂Hn, then  is a convex slab.

Remark 4.5 Let K be a convex slab and D be the domain of dependence of

its asymptotic boundary. Then K is contained in D̄.

An important property of convex slabs is that a maximal surface whose

boundary is contained in a convex slab is completely contained in the slab.

Proposition 4.6 Let  be a convex slab. If M is a compact maximal surface
such that ∂M is contained in . Then M is contained in .

Proposition 4.6 is a direct consequence of Lemma 4.1 and the following

lemma.

Lemma 4.7 Let  be a convex slab and let S−, S+ denote respectively its
past and future boundary. For every p ∈ S− (resp. p ∈ S+) there is a space-
like geodesic plane Pp passing through p such that  ⊂ I+(Pp) (resp.  ⊂
I−(Pp)). Moreover we have

 =


p∈S−

I+(Pp) ∩


p∈S+

I−(Pp).



314 F. Bonsante, J.-M. Schlenker

Proof Since  is contained in the domain of dependence D of its asymptotic

boundary, there is a point p such that  ⊂ Up . Up to isometry we can suppose

that p = (x0,0) and consider the projective map

π∗ : Up → Rn+1

constructed in Sect. 2.5. Since π∗ is a projective map, the set π∗() is convex

in Rn+1.

Given a point q ∈ S+ the point q∗ = π∗(q) lies on the boundary of π∗(),

so there is a support plane P ∗ passing through it. We can consider the plane in

Up equal to Pq = (π∗)−1(P ∗). This plane passes through q and does not meet

the interior of . Since any time-like arc passing through q meets the interior

of , the plane Pq is not time-like. In particular, P disconnects AdSn+1 in

two components that are the future and the past of Pq . Since q ∈ S+, it turns

out that  ⊂ I−(Pq). Analogously for q ∈ S− we find a plane Pq such that

 ⊂ I+(Pq).

In particular the inclusion

 ⊂


p∈S−

I+(Pp) ∩


p∈S+

I−(Pp)

is proved. Now take a point q /∈ . Consider a time-like geodesic arc con-

tained in AdSn+1 \  such that q is an end-point and the other end-point, say

p, lies on ∂. Without loss of generality we can assume p ∈ S+. In that case

it turns out that q ∈ I+(Pp), so the reverse inclusion is also proved. �

Lemma 4.8 Let  be a space-like graph in ∂∞AdSn+1. There is a convex
slab K(), called the convex hull of , such that:

• The asymptotic boundary of K() is .

• Every convex slab with boundary  contains K().

Proof Let D be the domain of dependence of  and take p ∈ D. Consider

the image ∗ of  through the projective map

π∗ : Up → Rn+1.

Clearly ∗ is contained in the image, say D∗, of D. In particular the convex

hull in Rn+1 of ∗, say K , is contained in D∗.

We denote by K() the convex set (π∗)−1(K). It is clear that  is con-

tained in the asymptotic boundary of K(). By Corollary 4.3,  coincides

with the asymptotic boundary of K().

Clearly no support plane of K() can be time-like. Indeed time-like planes

disconnect the asymptotic boundary of K(). This implies that the boundary
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of K() in AdSn+1 is locally achronal. Moreover it has two components, and

each of them disconnects AdSn+1 in two components. It follows easily that

K() is a convex slab. �

Remark 4.9 The same proof shows that: for a space-like graph M in AdSn+1,

there is convex slab, say K(M), such that

• K(M) contains M .

• If K is a convex slab containing M , then K(M) ⊂ K .

The slab K(M) is called the convex hull of M .

Clearly if D is the domain of dependence of  we have K() ⊂ D. The

following statement is an important technical point for what follows. Recall

that singular points of  are points contained in some light-like segment con-

tained in .

Lemma 4.10 If  is space-like graph in ∂∞AdSn+1 without singular points,

then the boundary components of K = K() do not contain singular points.

Moreover, in this case, no point of K is contained in ∂D.

Proof Suppose that a light-like segment c is contained in ∂+K . Take a support

plane P of ∂+K at some point of c. Clearly P is light-like and contains c. For

every p ∈ c notice that

I+(P ) ∩ ∂+K = ∅,  ⊂ Up. (18)

Let p− be the past end-point of the light-like geodesic through p contained

in P . Let l be the vertical line through p−. Since  is a graph, it must intersect
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l at some point. Notice that one component of l \ {p} is contained in I+(P )

whereas the other component is contained in I−(p). This remark and (18)

show that  must intersect l at p−, that is, p− ∈ .

By a classical theorem on convex sets in Euclidean space (still using the

projective map π∗ as in Lemma 4.7), P ∩ K() is the convex hull of P ∩ .

Thus there is another point q ∈ P ∩ . By Lemma 2.8, we conclude that p−
and q are connected by a light-like segment and this contradicts the assump-

tion that  does not contain any singular point.

Eventually, segments joining points of ∂+K() to  are space-like. By

Proposition 3.9 we conclude that no point of ∂+K() is contained in ∂D. �

4.2 Existence of entire maximal graph with given boundary condition

Let  be a space-like graph in ∂∞AdSn+1 without singular points. In this

section we prove the main theorem on the existence of a maximal graph with

given asymptotic boundary.

Theorem 4.11 There is a maximal graph M in AdSn+1 whose boundary at
infinity coincides with .

Let us consider the following notation that we will use through this section:

• D is the domain of dependence of ;

• K is the convex hull of ;

• S is the future boundary of K ;

• Br is the ball in Hn centered at x0 of radius r ;

• Sr is the intersection of S with the cylinder Br × R.

In [7] (Theorem 4.1) it is shown that there is a maximal surface Mr such

that ∂Mr = ∂Sr . Moreover Mr is homotopic to Sr (rel. ∂Sr ) in the sense that

there exists a family of space-like embeddings

hs : Sr → AdSn+1

such that

(1) h0 = Id, h1(Sr) = Mr ;

(2) hs(x) = x for x ∈ ∂Sr and s ∈ [0,1];
(3) the map s → hs(x) is a vertical path for every x ∈ Sr .

It easily follows that Mr is the graph of some function defined on Br .

Putting the previous results together we obtain the following lemma.

Lemma 4.12 For every r > 0, there is a maximal surface Mr such that
∂Mr = ∂Sr . Moreover, the surface Mr is a graph of a function ur defined
on Br and is contained in K .
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The basic idea of the proof of Theorem 4.11 is to construct a sequence

rk → +∞ such that urk converges C2 on compact subset of Hn. The proof is

based on an a-priori gradient estimate, that is a particular case of an estimate

proved by Bartnik [7]. Given a point p ∈ AdSn+1 and  > 0 we denote by

I+
 (p) the set of points in the future of p whose distance from p is at least .

Lemma 4.13 Let p ∈ AdSn+1 and  > 0, and let H ⊂ I−(p+) be a compact
domain (where p+ is defined in Sect. 2.3). There is a constant C = C(p, ,H)

such that, for every maximal graph M that verifies the following conditions:

• ∂M ∩ I+(p) = ∅,

• M ∩ I+(p) is contained in H ,

we have that

sup
M∩I+

 (p)

vM < C

where vM is the gradient function of M .

Proof Let us consider the time-function

τ (x) = δ(x,p) − (/2)

where δ(x,p) is the Lorentzian distance between x and p. This function is

smooth on the domain V = H ∩ I+(p).

Notice that by the assumption on M , the region M ∩ V contains the region

of M where τ ≥ 0 and M ∩ I+
 (p) is contained in V .

We can apply Theorem 3.1 of [7] and conclude that

sup
M∩I+

 (p)

vM < C

where C depends on the C2-norms of t and τ and on the C0 norm of Ric,

taken on the domain Vτ≥0 with respect to a reference Riemannian metric. �

We can prove now Theorem 4.11.

Proof of Theorem 4.11 For every point p ∈ D ∩ I−(∂−K) we choose  =
(p) such that the family {I+

(p)(p) ∩ K}p∈D∩I−(∂−K) is an open covering

of K .

Given a number R, the intersection (BR × R) ∩ K is compact, so there

is a finite numbers of points p1, . . . , pk0
∈ D ∩ I−(∂−K) such that putting

k = (pk) we have

(BR × R) ∩ K ⊂
k0

1

I+
k

(pk).
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For all k ∈ {1, . . . , k0}, pk ∈ D, so that the intersection I+(pk)∩D is com-

pact. Moreover, D ⊂ I−((pk)+). It follows that the set Hk = I+(pk) ∩ K is

compact and contained in I−((pk)+).

By Lemma 4.13, there is a constant Ck , such that

sup
M∩I+

k
(pk)

vM < Ck

for every maximal surface M that satisfies the following requirements:

• ∂M ∩ I+(pk) = ∅;

• M ∩ I+(pk) is contained in Hk .

By the compactness of I+(pk) ∩ D, there is r0 > 0 such that

I+(pk) ∩ D ⊂ Br0
× R

for k = 1, . . . , k0.

Let {Mr} be the family of maximal surfaces constructed in Lemma 4.12.

Then Mr ⊂ K . Moreover there exists r0 > 0 such that, for r > r0, ∂Mr ∩
I+(pk) = ∅ for k = 1, . . . , k0.

It follows that supMr∩I+
k

(pk)
vMr ≤ Ck for k = 1, . . . , k0. Since Mr ∩ (BR ×

R) ⊂
k I+

k
(pk) we conclude that

sup
Mr∩(BR×R)

vMr ≤ max{C1, . . . ,Ck0
} (19)

for every r > r0.

Eventually we deduce that for every R there is a constant C(R) such that

the gradient function of vMr is bounded by C(R) for r sufficiently big.

Take now any divergent sequence ri . Let ui be the function defined on Bri

such that Mri = Mui
. By comparing (16) with estimate (19), we see that the

restriction of ui on BR is solution of a uniformly elliptic quasi-linear operator

on BR , with bounded coefficients.

Since |ui | and |∇̄ui | are uniformly bounded on BR , by elliptic regularity

theory (see e.g. [19]) the norms of ui in C2,α(BR−1) are uniformly bounded.

It follows that the family ui is precompact in C2(BR−1).

By a diagonal process we extract a subsequence uih converging to a func-

tion u∞ defined on Hn in such a way that the convergence is C2 on compact

sets. Since the uih are uniformly space-like, so is u∞. Moreover, since it is

the C2 limit of solutions of (16), it is still a solution.

As a consequence, the graph of u, say M , is a maximal graph. Since M

is a limit of surfaces contained in K , it is contained in K . In particular the

asymptotic boundary of M is contained in , and so it coincides with . �
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4.3 Regularity of maximal hypersurfaces

We will now show that if the distance between K and the past boundary of

D is strictly positive, then any maximal surface contained in K has bounded

second fundamental form.

Theorem 4.14 Suppose that there exists  > 0 such that, for every y ∈ ∂−K ,

there exists a point x ∈ ∂−D such that δ(x, y) ≥ . Then there exists a con-
stant C > 0, depending on , such that the second fundamental form of any
maximal graph contained in K is bounded by C.

To prove this theorem we will need the following relation between the

boundaries of D and K . The first part of the lemma will be used in the proof

of Theorem 4.14, while the second part will be necessary below.

Lemma 4.15 Let  ⊂ ∂∞AdSn+1 be space-like graph, let K = K() be its
convex hull, and let D = D() be its domain of dependence. Then:

(1) For all q ∈ K and p ∈ ∂−D ∩ I−(q) we have that δ(p, q) ≤ π/2.

(2) For all q ∈ ∂+K there exists p ∈ ∂−D ∩ I−(q) such that δ(p, q) = π/2.

The proof of the first point in dimension 2 + 1 can be found in [9]. That

argument actually applies in every dimension. For the sake of completeness

we sketch the argument here.

Proof Since p ∈ ∂−D,  is contained in Up and  ∩ (P+(p) ∪ P−(p)) = ∅.

Notice that the plane P+(p) does not disconnect , so, it is a support plane

for K . In particular K ⊂ I−(P+(p)). This implies that the distance of every

point of K ∩ I+(p) from p is bounded by π/2, and proves the first point.

Moreover, since P+(p) is a support plane of K , its intersection with ∂+K

is non-empty. But for any point q ∈ P+(p) we have δ(p, q) = π/2, and this

proves the second point. �

As a consequence we find a bound on the width of the boundary at infinity

of a space-like graph in AdSn+1. This estimate is improved for n = 2 when

the boundary at infinity is the graph of a quasi-symmetric homeomorphism,

see Theorem 1.12.

Lemma 4.16 Let M ⊂ AdSn+1 be a space-like graph. Then w(∂∞M) ≤ π/2.

We can now prove Theorem 4.14.

Proof of Theorem 4.14 We consider q0 = (x0,0) and consider the horizontal

plane P0 passing though (x0,π/2 − /2), and define H0 = I+(q0) ∩ I−(P0).
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From Lemma 4.13, we find a constant C (depending on ) such that

sup
N∩I+

/3(q0)

vN < C

for every maximal surface N such that

(1) ∂N ∩ I+(q0) = ∅,

(2) N ∩ I+(q0) ⊂ H0.

Moreover, by applying the elliptic regularity theory as in the proof of The-

orem 4.11, we see that there is another constant, still denoted by C, such that

sup
N∩I+

/2(q0)

|A|2 < C

for the same class of maximal surfaces.

Now consider a point p on the maximal surface M . By the assumption

there is a point p0 ∈ ∂−D such that δ(p,p0) > . We can fix a point q on the

segment [p0,p] such that δ(p, q) > /2. Since I+(q) ∩ K is compact, there

is a point r ∈ ∂+K that maximizes the distance from q . Lemma 4.15 and the

reverse triangle inequality imply that s̄ := δ(q, r) < π/2 − /2. Moreover

the plane passing through r and orthogonal to the segment [q, r] is a support

plane P for K (that is K ⊂ I−(P )).

Now consider an isometry γ of AdSn+1 such that γ (q) = (x0,0) and

γ (r) = (x0, s̄). We have that γ (P ) is the horizontal plane through (x0, s̄).

Since s̄ < π/2 − /2, γ (P ) ⊂ I−(P0). Thus, γ (K) ⊂ I−(P0), and γ (M) ∩
I+(q0) ⊂ H0.

In particular γ (M) satisfies the conditions (1), (2) above and we conclude

that

sup
γ (M)∩I+

/2(q0)

|Ã|2 < C

where Ã denotes the second fundamental form of γ (M). Since γ (p) ∈
I+
/2(q0) we conclude that

|A|2(p) = |Ã|2(γ (p)) < C

where the constant C is independent of the point p. �

Corollary 4.17 Suppose that w(K) < π/2. Then there exists C > 0 such that
any maximal space-like graph in K has second fundamental form bounded
by C.
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Proof Let  = π/2 − w(K), so that  > 0. Let y ∈ ∂−K . Consider a point

z ∈ ∂+K ∩ I+(y) for which δ(y, z) is maximal. Then δ(y, z) ≤ w(K) by

definition of w.

Let now  be the past-oriented time-like geodesic ray starting from z and

containing y, and let x be its intersection with ∂−D. By the definition of z,

the space-like plane orthogonal to  at z is a support plane of K (otherwise

z would not maximize δ(y, ·) on ∂+K).

This shows that z is also a critical point of δ(x, ·) on ∂+K and, since K is

convex, it is a maximum of this function on ∂+K . Therefore δ(x, z) = π/2

by the second point of Lemma 4.15. Therefore δ(x, y) ≥ . So we can apply

Theorem 4.14, which yields the result. �

5 Uniqueness of maximal surfaces in AdS3

We consider in this section the uniqueness of maximal graphs with given

boundary at infinity and bounded second fundamental form in AdS3. The ar-

gument has two parts. The first is to show that those surfaces have negative

sectional curvature. The second part is to show that the existence of such a

negatively curved maximal space-like graph forbids the existence of any other

maximal graph with the same boundary. Both parts use a version “at infinity”

of the maximum principle, for which a compactness argument is needed. For

the first part we need a simple compactness statement on sequences of maxi-

mal surfaces.

5.1 A compactness result for sequences of maximal hypersurfaces

The following statement will allow us below to use the maximum principle

“at infinity”.

Lemma 5.1 Choose C > 0, a point x0 ∈ AdSn+1, and a future-oriented unit
time-like vector n0 ∈ Tx0

AdSn+1. There exists r0 > 0 as follows. Let P0 be
the space-like hyperplane orthogonal to n0 at x0, let D0 be the disk of radius
r0 centered at x0 in P0, and let (Sn)n∈N be a sequence of maximal space-
like graphs containing x0 and orthogonal to n0, with second fundamental
form bounded by C. After extracting a sub-sequence, the restrictions of the
Sn to the cylinder above D0 converge C∞ to a maximal space-like disk with
boundary contained in the cylinder over ∂D0.

The proof given here applies with a few modifications to the more gen-

eral context of maximal (resp. minimal) immersions of hypersurfaces in any

Lorentzian (resp. Riemannian) manifold with bounded geometry, we state the

lemma in AdSn+1 for simplicity.
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Proof For all n, the surface Sn is the graph of a function fn over Pn. The

bound on the second fundamental form of Sn, along with the fact that the Sn

are orthogonal to n0, indicates that, for some r > 0, the derivative of fn is

bounded on the disk of center x0 and radius r , more precisely there exists

 > 0 such that

φ∇fn < 1 −

on this disk of center x0 and radius r .

This, along with the bound on the second fundamental form of Sn (again)

shows that the Hessian of fn is bounded by a constant depending on r (for

r small enough). Thus we can extract from (fn)n∈N a subsequence which

is C1,1 converging to a function f∞ on the disk of center x0 and radius r .

Moreover the gradient of f∞ is uniformly bounded, so that the graph of f∞
is a disk which is uniformly space-like.

By definition the fn are solutions of (16), which just translates analytically

the fact that their graphs are maximal surfaces. Since f∞ is a C1,1-limit of the

fn, it is itself a weak solution of (16). Since (16) is quasi-linear, it then follows

from elliptic regularity that f∞ is C∞, and that (fn) is C∞-converging to f∞
(see [19]). This means that the restriction of the Sn to the cylinder above the

disk of radius r0 in P0, for some r0 > 0 (depending only on C) converge to a

limit which is a maximal surface, the graph of f∞ over the disk of radius r0. �

5.2 Maximal surfaces with bounded second fundamental form

The first proposition of this section is the following, its proof is based on

Lemma 5.1. Note that from this point on we will often consider space-like

graphs in the projective model of AdS3.

Proposition 5.2 Let S be a complete maximal surface in AdS3. Suppose that
the norm of the fundamental form of S is bounded. Then S either has negative
sectional curvature, or S is flat. If the supremum of the sectional curvature of
S is 0, then w(∂∞S) = π/2.

The completeness mentioned here is with respect to the induced metric

on S. The proof uses two preliminary statements. The first is taken from [22],

where it can be found in the proof of Lemma 3.11, p. 214. Note that the sign

of the Laplacian used here is defined so that  is negative as an operator

acting on L2.

Lemma 5.3 Let  be a maximal space-like surface in a 3-dimensional AdS
manifold. Let B be its shape operator, and let χ = log(−det(B))/4. Then χ

satisfies the equation

χ = e4χ − 1.
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As a consequence, we can apply the maximum principle to χ , it shows

that χ cannot have a positive local maximum. This can be translated into a

statement on K , using the Gauss formula, which shows that K = −1 + e4χ .

Lemma 5.4 Suppose that K has a local maximum at a point where it is non-
negative. Then K = 0 at that point, and on the whole surface S, so that S is
flat (in the intrinsic sense).

We need another elementary statement, characterizing the maximal sur-

faces with flat induced metric in AdS3. We include the proof for the reader’s

convenience.

Lemma 5.5 Let  be a space-like maximal surface in AdS3, with zero sec-
tional curvature. Then  is a subset of a “horosphere”, that is, its principal
curvatures are −1 and 1, and its lines of curvature form two orthogonal folia-
tions by parallel lines. If  is a space-like graph, then its boundary at infinity
is the union of four light-like segments in ∂∞AdS3.

Proof Since  is maximal, its principal curvatures are at each point two op-

posite numbers, k and −k. The Gauss formula asserts that the sectional cur-

vature of  is K = −1+k2, so k = 1. Let (e1, e2) be an orthonormal frame of

unit principal vectors on 0, and let I be the second fundamental form of .

The Codazzi equation can be written as follows, at any point m ∈ , for any

vector field x on  such that ∇x = 0 at m:

I ((d∇B)(e1, e2), x) = e1.I(e2, x) − e2.I(e1, x) − I([e1, e2], x) = 0.

If ω is the connection form for the frame (e1, e2), a simple computation (using

that ∇x vanishes at m) shows that, at m,

e1.I(e2, x) − e2.I(e1, x) = I(ω(e1)e1 + ω(e2)e2, x) = −I([e1, e2], x).

Since I is non-degenerate, it follows that ω(e1)e1 + ω(e2)e2 = 0.

Therefore e1 and e2 are both parallel vector fields, and the first part of the

statement follows.

There is a simple way to describe such a horosphere. Consider a space-like

line  in AdS3, and the set 0 of endpoints of the future-oriented time-like

segments of length π/4 starting from . An explicit computation (as in the

proof of Proposition 5.2 below) shows that 0 is precisely a horosphere as

described above. The action of the isometry group of AdS3 shows that there

exists a unique surface of this type passing through each point x of AdS3, with

fixed (time-like) normal and fixed principal direction at x for the principal

curvature +1, so any maximal graph with zero sectional curvature is of this

type.
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Let ∗ be the line dual to , that is, the set of endpoints of future-oriented

time-like segments of length π/2 starting from  (see Sect. 2.5). Now let

∂0 be the boundary at infinity of 0. Considering the projective model of

AdS3 shows that ∂0 contains the endpoints at infinity − and + of , and

also the endpoints at infinity of ∗+ and ∗− of ∗. Since ∂0 is a nowhere

time-like curve in ∂∞AdS3, it is necessarily made of the four segments from

+ to ∗+, from ∗+ to −, from − to ∗−, and from ∗− to +, which are

all light-like. This proves the last part of the lemma. �

Proof of Proposition 5.2 Since S has bounded second fundamental form, its

sectional curvature K is bounded, we call KS the upper bound of K on S.

Lemma 5.4 already shows that if this upper bound is attained on S, then it is

non-positive, and if it is equal to 0 then S is flat. We will use Lemma 5.1 to

extend this argument to the case where the upper bound KS is not attained.

Consider a sequence (sn)n∈N of points in S such that KS − 1/n < K(sn) <

KS , and apply to S a sequence of isometries (φn)n∈N which sends sn to a fixed

point x0 and the oriented unit normal vector to S at sn to a fixed vector n0.

Since S has bounded second fundamental form, Lemma 5.1 shows that we

can extract from the sequence (φn(S))n∈N a subsequence which converges, in

the neighborhood of x0, to a maximal space-like graph S0. By construction

the curvature of S0 has a local maximum at x0, and this local maximum is

equal to KS . Lemma 5.4 therefore shows that KS ≤ 0.

Suppose now that KS = 0. Then the sequence φn(S) converges, in a neigh-

borhood of x0, to a “horosphere” 0, as described in Lemma 5.5. Lemma 5.1

shows that the convergence is C∞ in compact subsets of AdS3. Let En

be the boundary at infinity of φn(S). Since φn(S) is space-like, En is a

nowhere time-like curve in ∂∞AdS3. By construction, En = (ρl,n,ρr,n)E,

where E = ∂∞S, (ρl,n) and (ρr,n) are two sequences of elements of PSL2(R),

and, for all n ∈ N, (ρl,n,ρr,n) is considered as an isometry acting on AdS3

through the natural identification (see Sect. 2.6 or [3, 25]).

By Lemma 3.1 (more precisely the fact that space-like hypersurfaces in

AdSn+1 are the graphs of 2-Lipschitz functions), since φn(S) converges on

compact subsets of AdS3 to 0, En converges to the boundary at infinity

of 0, which we call E0. In particular, using the notations in the proof of

Lemma 5.5, for each n ∈ N there are four points x+
n , x−

n , x+∗
n , x−∗

n ∈ En

which can be chosen so that x+
n → +, x−

n → −, x+∗
n → ∗+ and x−∗

n →
∗−.

Therefore, for n large enough, there are points yn, zn which are arbitrarily

close to  and to ∗ respectively, with (yn) and (zn) converging to lim-

its respectively in  and to ∗. The distance between the limits is π/2, so

that the distance between yn and zn goes to π/2 as n → ∞, this shows that

w(K) = π/2. �
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5.3 Quasi-symmetric homeomorphisms and the width

There is another important relation which is valid only in AdS3, as stated in

the next proposition.

Proposition 5.6 Let E be a weakly space-like graph in ∂∞AdS3 (that is, E

is a weakly space-like curve). Let K be the convex hull of E. Suppose that
w(K) = π/2. Then E is not the graph of a quasi-symmetric homeomorphism
from RP 1 to RP 1 (see e.g. [28, Sect. 2.1]).

Proof We suppose that w(K) = π/2, it follows that there exist two sequences

of points (xn) in ∂−K and (yn) in ∂+K such that δ(xn, yn) → π/2. We can

suppose (replacing xn and yn by points in the same face of ∂K if necessary)

that xn is contained in a space-like geodesic n ⊂ ∂−K , and that yn is con-

tained in a space-like geodesic
n ⊂ ∂+K .

We can find a sequence (φn) of isometries of AdS3 such that φn(xn) → x,

φn(yn) → y, with δ(x, y) = π/2. Moreover, φn(K) is the convex hull φn(E).

Since the φn(K) are convex, they converge (perhaps after extracting a subse-

quence) in the Hausdorff topology to a limit K0, which is the convex hull of

E0 = limφn(E). Moreover, extracting a subsequence again if necessary, we

can suppose that φn(n) →  and that φn(

n) → . Since x ∈ , y ∈ ,

and δ(x, y) = π/2,  = ∗, otherwise the width of K0 would have to be

strictly larger than π/2, contradicting Lemma 4.16.

Then E0 contains the endpoints −,+ of , and the endpoints ∗−,∗+
of ∗. Since E is weakly space-like, so is E0, so it is the union of four light-

like segments joining those four points.

Since E0 is composed of four light-like segments (with endpoints +,∗+,

− and ∗−) there are points u, v and u, v in RP 1, with u = v and u = v,
such that, in the identification of ∂∞AdS3 with RP 1 × RP 1, + = (u,u),
∗+ = (u, v), − = (v, v), and ∗− = (v,u).

So E0 is the graph of the function f0 : RP 1 → RP 1 sending (u, v) to

v and (v,u) to u. After composing on the right and on the left with pro-

jective transformations, we can suppose that it is the graph of the function

f0 : RP 1 → RP 1 sending (0,2) to 0 and (2,∞] ∪ [−∞,0) to 1.

Consider the points −3,−1,1,∞ ∈ RP 1. A direct computation shows that

their cross-ratio is [−3,−1;1,∞] = 2, while the cross-ratio of their images

by f0 is [0,0;1,1] = 1.

It follows that there are 4-tuples of points on φn(E) whose projection by

πl are 4-tuples of points with cross-ratio arbitrarily to 2 and whose projection

by πr are 4-tuples of points with cross-ratio arbitrarily close to 1. This means

precisely, by definition of a quasi-symmetric homeomorphism, that E is not

the graph of a quasi-symmetric homeomorphism. �
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5.4 Uniqueness of negatively curved maximal surfaces

We now turn to the second proposition of this section, the fact that maximal

space-like graphs with negative sectional curvature are uniquely determined,

among all maximal space-like graphs, by their boundary at infinity.

Proposition 5.7 Let S be a maximal graph in AdS3, with sectional curvature
bounded from above by a negative constant. Then S is unique among complete
maximal graphs with given boundary curve at infinity and bounded second
fundamental form.

We first state a preliminary lemma (see also Lemma 4.8).

Lemma 5.8 Let u : RP 1 → RP 1 be a homeomorphism, and let Eu ⊂ RP 1 ×
RP 1  ∂π(AdS3) be its graph. Let C(Eu) be the convex hull of Eu. Then any
maximal surface in AdS3 with boundary at infinity Eu is contained in C(Eu).

Proof Let S ⊂ AdS3 be a maximal surface, with boundary at infinity Eu. The

image of S in the projective model of AdS3 is a saddle surface, that is, a sur-

face which has opposite principal curvatures at each point. A characterization

of saddle surfaces (see [15, Sect. 6.5.1]) is that, for any relatively compact

subset G ⊂ S, then G is contained in the convex hull of ∂G. This property,

applied to an exhaustion of the image of S in the projective model by compact

subsets, is precisely what we need. �

Proof of Proposition 5.7 We consider the domain  introduced in the proof

of Claim 3.21, as the set of points at time-like distance at most π/4 from S.

Claim 3.21 shows that  is convex, with smooth,space-like boundary.

Consider now another maximal graph S ⊂ AdS3, complete, with the same

boundary at infinity as S, and with bounded second fundamental form. By

construction the boundary of  is equal to E. Since  is convex, it contains

the convex hull of E and therefore, by Lemma 5.8, it contains S. Let r1 be

the supremum over S of the distance to S. The argument above shows that

r1 ∈ [0,π/4 − α), and the maximum principle shows that, if r1 > 0, then it

cannot be attained at an interior point of S, since then S would have to be

tangent from the interior of Sr1
, which would contradict the maximality of S.

Since S is complete, there exists a sequence (xn)n∈N of points in S such

that d(xn, S) → r1 and that the norm of the differential at xn of the restriction

to S of the distance to S goes to zero as n → ∞ (this is a very weak form of

a lemma appearing e.g. in [30]).

Consider a sequence of isometries (φn)n∈N chosen such that φn(xn) is

equal to a fixed point x0, and that the normal to φn(S
) at φn(xn) is a fixed vec-

tor n0. Lemma 5.1 shows that, after extracting a sub-sequence, (φn(S
))n∈N
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converges in a neighborhood of x0 to a smooth, maximal surface S∞. More-

over, since the differential at xn of the distance to S goes to zero, the images

by φn of S also converge to a limit S∞, in a neighborhood of its intersection

with the normal to S∞ at x0.

We can now apply the maximum principle to the distance to S∞ as a max-

imal surface in the foliation by the surfaces equidistant to S∞, and obtain a

contradiction if r1 > 0. So r1 = 0, and S = S. �

Together with Proposition 5.2 and Proposition 5.6, Proposition 5.7 leads

directly to a simple consequence.

Corollary 5.9 Let S be a maximal graph in AdS3, with bounded second fun-
damental form. Suppose that the boundary at infinity of S is the graph E of
a quasi-symmetric homeomorphism from RP 1 to RP 1. Then S is the unique
maximal surface with boundary at infinity E and bounded second fundamen-
tal form.

6 Proof of the main results

6.1 A characterization of quasi-symmetric homeomorphisms

We now prove Theorem 1.12. Let u : RP 1 → RP 1 be a homeomorphism, and

let Eu be its graph. We already know, from Lemma 4.16, that w(Eu) ≤ π/2.

Moreover Proposition 5.6 shows that if u is quasi-symmetric, then w(Eu) <

π/2.

Suppose conversely that w(Eu) < π/2. We can apply Theorem 4.11 to Eu,

and obtain a maximal graph M in AdS3 with boundary at infinity equal to Eu.

Corollary 4.17 shows that M has bounded second fundamental form.

Proposition 5.2 then shows that M has sectional curvature bounded from

above by a negative constant. Therefore we obtain through Proposition 1.5 a

minimal Lagrangian quasi-conformal diffeomorphism φ with boundary value

equal to u. Since φ is quasi-conformal, u is quasi-symmetric, as claimed.

6.2 Theorems 1.4 and 1.10

Theorem 1.4 clearly follows, through Proposition 1.5, from Theorem 1.10, so

we now concentrate on this last statement.

Proof of Theorem 1.10 Let E = ∂∞S ⊂ ∂∞AdS3, and let M be the maximal

graph with boundary at infinity E which is provided by Theorem 4.11. Since

E is the graph of a quasi-symmetric homeomorphism, Proposition 5.6 shows

that w(E) < π/2.
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The argument in the previous paragraph then shows that E is the boundary

at infinity of a maximal graph M in AdS3, which has bounded second funda-

mental form by Theorem 4.14. Then Proposition 5.2 shows that M has sec-

tional curvature bounded from above by a negative constant. Proposition 5.7

can therefore be used to obtain that M is unique among maximal graphs with

boundary at infinity E and bounded second fundamental form. �

Appendix: Mean curvature flow for space-like graphs

In this section we prove a longtime existence solution for the mean curvature

flow of space-like graphs in AdSn+1. The proof is based on Ecker’s estimates

[16], that are the parabolic analogous of Bartnik’s estimates we have used

in Lemma 4.13. This argument provides an alternate proof of the existence

and regularity of maximal surfaces with given asymptotic boundary already

proved in Sect. 4.

We recall that a mean curvature flow of a space-like surface is a family of

space-like embeddings σs : M → AdSn+1 such that

∂σ

∂s
(x, s) = H(x, s)ν(x, s) (20)

where H(x, s) and ν(x, s) are respectively the mean curvature and the normal

vector of the surface Ms = σs(S) at point σs(x).

We also consider the case where M is compact with boundary. In that case

we always consider the Dirichlet condition

σs(x) = σ0(x) for all x ∈ ∂M. (21)

Lemma A.1 Let (Ms)s∈[0,s0] be a family of space-like surfaces moving by
mean curvature flow. If M0 is a graph of a function u0 defined on some domain
 of Hn with smooth boundary, then so is Ms for every s ∈ [0, s0].

Moreover, if us :  → R is the function defining Ms then

∂u

∂s
= φ−1v−1H (22)

where v is the gradient function on Ms .

Proof Since Ms is homotopic to M0 through a family of space-like surfaces

with fixed boundary, then Ms is contained in the domain of dependence of

M0 that, in turn, is contained in  × R.

Moreover, Ms disconnects ×R in two regions. The same argument as in

Proposition 3.2 shows that Ms is a graph on  of a function us .

The evolution equation of us is computed in [17]. �
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Remark A.2

(1) Notice that ∂(t◦σ )
∂s

= φ−1vH , that is different from (22). The reason is

that the curve σ (x, ·) at some point s is tangential to the normal of Ms , so

in general it is not a vertical line. This implies that the function us agrees

with t |Ms only up some tangential diffeomorphism of Ms .

(2) Equation (22) is equivalent, up to tangential diffeomorphisms, to (20).

This means that if (us)s∈[0,s0] is a solution of (22), there is a time-

dependent field Xs on  such that the map σ :  × [0, s0] → AdSn+1

defined by

σ (x, s) = (ψs(x), us(ψs(p)))

is a solution of (20), where ψs is the flow of Xs .

Proposition A.3 ([16]) Let M0 be a space-like C0,1 compact graph in
AdSn+1. Then there is a smooth solution of (20) for s ∈ (0,+∞) such that

• ∂Ms = ∂M0 for every s;

• Ms → M0 in the Hausdorff topology as s → 0;

• Ms → M∞ in the C∞-topology as s → +∞, where M∞ is the unique
maximal space-like surface with the property that ∂M∞ = ∂M0;

• if Hs denotes the mean curvature on Ms we have

H 2
s (x) ≤ n

2

1

s
. (23)

A.1 Mean curvature flow and convex subsets

To show the convergence of the mean curvature flow, we need to remark that,

under suitable hypothesis, it does not leave convex subsets of AdSn+1.

Lemma A.4 Let Ms be a compact solution of (20). Suppose that there exists
a space-like plane P such that M0 is contained in I−(P ) and ∂M0 ⊂ I−(P ).

Then Ms is contained in I−(P ) for every s > 0.

Proof Without loss of generality we can suppose that P is the horizontal

plane. We consider the function u : AdSn+1 → R defined, as in the proof of

Lemma 4.1, by u(x, t) = xn+1 sin t .

By our assumption

u(p) ≤ 0 for every p ∈ M0,

u(p) < 0 for every p ∈ ∂Ms.
(24)

On the other hand the computation in Lemma 4.1 shows that


d

ds
−


u = −nu
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where  is the Laplace-Beltrami operator on Ms .

In particular if the maximum of the function u is achieved at some interior

point of Ms we have

dumax

ds
≤ numax.

By (24), we deduce that umax(s) < 0 for every s > 0. In particular Ms is

contained in the region {(x, t)|0 < t < π} for every s > 0. �

Lemma A.4 and Lemma 4.7 imply the following property.

Proposition A.5 If Ms be a compact solution of (20) such that M0 is con-
tained in the closure of some convex slab , and ∂M0 is contained in , then
Ms is contained in  for every s > 0.

Let M = u be a weakly space-like graph and  be its asymptotic bound-

ary. We will assume that neither M nor  contains any singular point. Finally

we denote by D the domain of dependence of M and by K its convex hull,

introduced in Remark 4.9. The same argument as in Lemma 4.10 shows that

K ∩ ∂D = ∅.

For every r > 0 let ur be the restriction of u on Br (that is the ball in Hn of

center at x0 and radius r). We consider the mean curvature flow with Dirichlet

condition of the compact graph of ur , that is, a map

σ r : Br × (0,+∞) → AdSn+1

that verifies (20) and satisfies

• σ r (x,0) = (x,u(x)) for every x ∈ Br ;

• σ r (x, s) = (x, u(x)) for every x ∈ ∂Br .

Let us denote by Mr
s the image of Br through the map σ (·, s).

By Lemma A.1 and Proposition A.3 there is a family of space-like func-

tions

ur
s : Br → R

such that Mr
s is the graph of ur

s and the family (ur
s ) satisfies (22).

Proposition A.6 For every R > 0, η > 0 there is r̄ > 0 and constants
C,C0,C1, . . . such that for every r > r̄ and every s > η we have

sup
Mr

s ∩BR×R
v < C

sup
Mr

s ∩BR×R
|∇mA|2 < Cm for m = 0, . . . .
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Proof The scheme of the proof is the same as for Theorem 4.14. In particular

we use the notations introduced there.

We choose points p1, . . . , pk0
∈ D ∩ I−(∂−K) and numbers 1, . . . , k

such that

(BR × R) ∩ K ⊂
k0

1

I+
k

(pk).

On I+
k

(pk) we consider the time function τk = τpk
− k where τpk

denote the

Lorentzian distance from pk and is a time function on I+(pk). Notice that τk

is smooth on the domain V = I+(pk) ∩ I−((pk)+). Moreover K ∩ I+
k/2(pk)

is a compact domain in V .

Since Mr
s is contained in K for every r and s, we deduce that there exists

r0 such that for r ≥ r0 and k = 1, . . . , k0

∂Mr
s ∩ I+(pk) = ∅

and Mr ∩ {τk ≥ 0} = Mr
s ∩ I+

k/2(pk) is compact.

Thus we are in the hypothesis of Theorem 2.1 of [16], there is a constant

ak

sup
Mr

s ∩I+
k

(pk)

vMr
s
≤ ak


1 + 1

s


(25)

where ak depends on the C2 norm of τk and t and the C0 norm of Ric taken

on the domain K ∩ I+
k/2(pk) with respect to a reference Riemannian metric.

In particular for s > η we have

sup
Mr

s ∩I+
k

vMr
s
≤ ak


1 + 1

η


. (26)

By Theorem 2.2 of [16] we also have that for every m = 0,1, . . . there are

constants ak,m such that

sup
MR

s ∩I+
k

(pk)

|∇mA|2 ≤ ak,m.

In particular, the constants C = sup{a1, . . . ak0
}, Cm = sup{a1,m, . . . , ak,m}

satisfy the statement. �

Theorem A.7 There is a family of space-like functions

ūs : Hn → R

for s ∈ (0,+∞) that verifies (22) such that
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• ūs → u as s → 0 in the compact open topology.

• {ūs}s>1 is a relatively compact family in C∞(Hn).

• the graph Ms of ūs is contained in K for every s > 0.

• the mean curvature of Ms satisfies Hs(x)2 < n
2s

.

Proof For any R > 0 and  > 0 we consider the restriction of ur on BR ×
[−,+∞). Proposition A.6 implies that such restrictions form a pre-compact

family in C∞(BR × [−,+∞)).

By a diagonal process, we can construct a sequence rn → +∞ such

that (urn) converges to ū in the C∞-topology on compact subsets of Hn ×
(0,+∞). Notice that by construction (ūs)s>1 is precompact in C∞(Hn).

By the uniform estimate on the gradient function of ur
s on BR we get that

the graph Ms of ūs is space-like. Clearly ūs verifies (22). Since (23) holds for

every ur
s , we get that H(ūs)

2 < n
2s

.

Analogously, passing to the limit in the inclusion Mr
s ⊂ K , we get that Ms

is contained in K .

Comparing (22) with (23), it follows that

|ur
s(x) − u(x)| ≤ √

ns.

Taking the limit for r → +∞ we get

|ūs(x) − u(x)| ≤ √
ns

which shows that ūs → u in the compact open topology. �

Remark A.8 Taking the limit of Msk for a suitable sequence sk → +∞ we ob-

tain a maximal surface contained in D. Thus Theorem A.7 furnishes another

proof of Theorem 4.11.
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