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Abstract. Let S be a closed surface of genus at least 2, and let λ and µ be two laminations that fill S. Let
Eλ

r and E
µ
r be the right earthquakes on λ and µ respectively. We show that the composition Eλ

r ◦ E
µ
r has a

fixed point in the Teichmüller space of S. Another way to state this result is that it is possible to prescribe
any two measured laminations that fill a surfaces as the upper and lower measured bending laminations of the
convex core of a globally hyperbolic AdS manifold. The proof uses some estimates from the geometry of those
AdS manifolds.

1. Introduction, main results

1.1. Earthquakes. In this paper we consider a closed surface S of genus at least 2. We denote by TS , or
sometimes simply by T , the Teichmüller space of S, which we consider to be the space of hyperbolic metrics on
S considered up to isotopy. We denote by MLS , or simply by ML, the space of measured laminations on S.

Given a measured lamination λ ∈ MLS , we denote by Eλ
l the left earthquake along λ on S. Eλ

l is a continuous
map from TS to TS , see e.g. [30, 22]. Given two measured laminations λ, µ in S, we say that λ and µ fill S if
any closed curve c in S which is not homotopically trivial has non-zero intersection with either λ or µ.

The main result of this paper concerns fixed points of compositions of earthquakes on S.

Theorem 1.1. Let λ, µ ∈ MLS be two measured laminations which fill S. Then Eλ
l ◦Eµ

l : TS → TS has a fixed
point in TS.

There are some reasons to believe that this fixed point is unique. It is explained below why this statement
is equivalent to a conjecture made by G. Mess [25, 2] concerning globally hyperbolic anti-de Sitter 3-manifolds.

Theorem 1.1 shows a contrast between earthquakes and Dehn twists. Let λ and µ be two closed curves that
fill S, and let Dλ and Dµ be the Dehn twists along λ and µ, respectively. Thurston proved (see [31, Section
6]) that for n and m large enough, the composition (Dλ)n ◦ (Dµ)m is a pseudo-Anosov diffeomorphism of S, so
that it acts on T without fixed point. This does not contradict Theorem 1.1 since Dehn twists do not act on T
as earthquakes. (The shearing distance of a Dehn twist depends on the hyperbolic metric.)

1.2. Quasifuchsian hyperbolic 3-manifolds. Let M := S × R, let QFS be the space of quasifuchsian
hyperbolic metrics on M , that is, complete hyperbolic metrics containing a non-empty compact subset which
is convex, considered up to isotopy. Note that, here and elsewhere, we say that a subset K ⊂ M is convex if
any geodesic segment with endpoints in K is contained in K. If K is convex then its lift to the universal cover
of M is also convex and therefore connected, and, if K is non-empty, it is a deformation retract of M .

Quasifuchsian hyperbolic metrics have a boundary at infinity which is topologically the union of two copies
of S, endowed with a complex structure. According to a classical theorem of Bers [6], this complex structure
defines a parameterization of QFS by the product of two copies of TS , one for each boundary component.

Given g ∈ QFS , (M, g) contains a smallest non-empty closed convex subset C(M), called its convex core.
Except when C(M) is a totally geodesic surface, its boundary is the disjoint union of two closed surfaces each
homeomorphic to S. We call them the “upper” and “lower” boundary components of C(M). Each has an
induced metric which is hyperbolic, and is “bent” along a measured geodesic lamination, see [30, 16].

Let m+,m− be the induced hyperbolic metrics and λ+, λ− be the measured bending laminations on the
upper and lower boundary components of C(M). Then it is well known that λ− and λ+ fill S. Moreover λ+

and λ− have no closed curve with weight larger than π.
Thurston conjectured that any two measured laminations on S satisfying these two conditions can be uniquely

realized as (λ−, λ+). The existence part of this conjecture was proved (in a more general form) by Bonahon
and Otal.
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Theorem 1.2 (Bonahon, Otal [9]). Let λ+, λ− be two measured laminations which fill S, which have no closed
curve with weight at least equal to π. There exists a quasifuchsian metric g ∈ QFS such that the measured
bending lamination on the upper (resp. lower) boundary component of C(M) is λ+ (resp. λ−).

Thurston also conjectured that any two hyperbolic metrics can be obtained uniquely as (m+,m−), and the
existence part of this statement is also known (it follows from [24, 16]). This type of statement however does
not appear explicitly here.

1.3. Globally hyperbolic AdS manifolds. The geometric theory of 3-dimensional globally hyperbolic anti-
de Sitter (AdS) manifolds is quite similar to the theory of quasifuchsian hyperbolic 3-manifolds, a remarkable
fact discovered by Mess [25, 2].

Recall that an AdS 3-manifoldM is globally hyperbolic if it contains a space-like surface S which intersects any
inextendible time-like curve exactly once. It is globally hyperbolic maximal compact (GHMC) if this space-like
surface is closed, and moreover M is maximal (for the inclusion) under the previous condition.

Remark 1.3. Global hyperbolicity is a notion that makes sense for every Lorentzian manifold. It has strong
consequences. If S is a Cauchy surface in M , then topologically M = S × R.

Moreover it can be shown that there is a foliation of M into spacelike slices parallel to S. More precisely, for
a suitable product structure on M , the metric is of the form

(1) −dt2 + gt

where t is the real parameter and gt is a path of Riemann metrics on S.
Conversely, assuming S to be compact, any metric on S × R that is of the form (1) is globally hyperbolic.
We refer to [4, 17] for a complete treatment of this topic.

We call GHS the space of globally hyperbolic maximal compact AdS metrics on S × R, with the Cauchy
surface homeomorphic to S, considered up to isotopy.

Mess [25, 2] discovered that to any AdS metric g ∈ GHS are associated two points in TS , its left and right
hyperbolic metric, which can be defined through the decomposition of the identity component of the isometry
group of AdS3 as the product of two copies of PSL2(R). Moreover, these left and right metrics define a
parameterization of GHS by TS ×TS . This can be construed as an analog of the Bers theorem mentioned above.
Given g ∈ GHS , (M, g) also contains a smallest closed non-empty convex subset which is compact, which we
also call C(M) here.

We say that (M, g) is Fuchsian if C(M) is a totally geodesic surface. As in the quasifuchsian setting, if
M is not Fuchsian, then the boundary of C(M) is the union of two surfaces homeomorphic to S, and each
has a hyperbolic induced metric and is bent along a measured geodesic lamination. We call m+,m− the two
hyperbolic metrics, and λ+, λ− the two measured laminations. Extending Thurston’s conjectures, Mess [25]
asked whether any two hyperbolic metrics on S can be uniquely obtained, and whether any two measured
laminations that fill S can be uniquely obtained. The second result presented here is the proof of the existence
part of the statement concerning the measured bending laminations.

Theorem 1.4. Let λ+, λ− ∈ MLS be two measured laminations that fill S. There exists a globally hyperbolic
maximal AdS manifold M such that λ+ and λ− are the measured pleating laminations on the upper and lower
boundary components of the convex core.

1.4. From earthquakes to AdS manifolds. Theorem 1.4 is equivalent to Theorem 1.1 thanks to some key
properties of GHMC AdS manifolds, which we recall briefly here and in more details in Section 2.

Theorem 1.5 (Mess [25]). • Given a GHMC AdS manifold, its left and right metrics ρl, ρr are related
to the induced metrics and measured bending laminations on the boundary of the convex core as follows:

ρl = E
λ+

l (m+) , ρr = Eλ+

r (m+) ,

ρl = Eλ−

r (m−) , ρr = E
λ−

l (m−) ,

so that

(2) ρl = E
2λ+

l (ρr) = E2λ−

r (ρr) .

• Given ρl, ρr ∈ TS and λ+, λ− ∈ ML such that Equation (2) holds, there is a unique GHMC AdS
manifold with left and right metrics ρl and ρr, and the measured bending laminations on the boundary
components of its convex core are λ+, λ−.
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The proof of Theorem 1.4 clearly follows from this and from Theorem 1.1 (and conversely): given two

measured laminations λ+, λ− that fill S, the map E
2λ+

r ◦ E
2λ−

r has a fixed point, which we call ρr. Setting

ρl := E
2λ−

r (ρr) = E
2λ+

l (ρr), we see with Theorem 1.5 that ρl, ρr are the left and right metrics of a GHMC AdS
manifold for which λ+ and λ− are the upper and lower measured bending laminations of the boundary of the
convex core. The same argument can be used to prove Theorem 1.1 from Theorem 1.4.

1.5. Outline of the proof. The proof of Theorem 1.4 has two main parts.
The first is a description of elements of GHS near the “Fuchsian locus”, that, is the subset of AdS metrics

on S ×R containing a totally geodesic Cauchy surface. In the quasifuchsian case, Bonahon [8] proved that any
two measured laminations which fill S and are “small enough” in a suitable sense can be uniquely obtained
as the measured bending laminations on the boundary of the convex core of a quasifuchsian manifold which
is “almost-Fuchsian”. Series [29] then proved that those almost-Fuchsian metrics are the only ones realizing
λ+, λ− as the bending lamination on the boundary of the convex core.

We present here an analog of those arguments for the GHMC AdS setting.

Theorem 1.6. Let λ, µ ∈ MLS be two measured laminations that fill S. There exists ǫ > 0 such that, for all
t ∈ (0, ǫ), there exists a unique GHMC AdS manifold such that the measured bending laminations on the upper
and lower boundary components of the convex core are tλ and tµ.

The second tool of the proof of Theorem 1.4 is a compactness statement. First a definition.

Definition 1.7. Let FMLS ⊂ MLS × MLS be the space of pairs of measured laminations that fill S. Let
Φ : TS × TS → FMLS be the map which associates to (ρl, ρr) the measured bending laminations (λ+, λ−) on
the boundary of the convex core of the unique GHMC AdS manifold with left and right metrics ρl and ρr.

The compactness statement that is needed is the following statement, which is equivalent to Proposition 5.1.

Proposition 1.8. Φ is proper.

Since Φ is continuous, it is possible to define its degree, which by Theorem 1.6 is equal to 1. Therefore Φ is
surjective, which is another way to state Theorem 1.4.

The proof of Proposition 1.8 is based on Proposition 4.1, a simple estimate on the intersection between
measured laminations under some geometric assumptions.

Remark 1.9. The degree argument used here is possibly not limited to the AdS setting. It might also be used
for hyperbolic quasifuchsian 3-manifolds to prove Theorem 1.2. The proof should then use the compactness
result of [9] to prove that the map sending a quasifuchsian metric to the measured laminations on the boundary
of the convex core (as seen as a map to the space of “admissible” pairs of laminations) is proper, so that its
degree can be considered. Then the analysis made by Bonahon [8] concerning the behavior of this map near the
Fuchsian locus, and the results of Series [29] showing that small laminations can be obtained only there, should
indicate that the degree is one, so that the map is surjective. An interesting facet of this possible argument
would be that it does not use the rigidity of hyperbolic cone-manifolds proved by Hodgson and Kerckhoff [21].

1.6. Cone singularities. The arguments used here can be extended, with limited efforts, to hyperbolic surfaces
with cone singularities. Recall that Thurston’s Earthquake Theorem can be extended to this case [11]. We need
some notations before stating the result.

We call TS,θ the Teichmüller space of conformal structures on S with N marked points x1, · · · , xN of cone
angles given by θ = (θ1, · · · , θN ) ∈ (0, π)N . Any conformal class in TS,θ contains a unique hyperbolic metric
with cone singularities of angle θi at each xi (see [32]). Let MLS,N be the space of measured laminations on
the complement of {x1, · · · , xN} in S. Given a hyperbolic metric g on S with cone singularities of angle θi at
each xi, any λ ∈ MLS,N can be realized uniquely as a measured geodesic lamination for g (as long as the θi
are less than π), see e.g. [15]. The notion of earthquake as defined by Thurston extends to this setting with
cone singularities, see [11]. In this context, we (still) say that two measured laminations λ, µ ∈ MLS,N fill S
if, given any closed curve c in S \ {x1, · · · , xN} not homotopic to zero or to one of the xi, the intersection of c
with either λ or µ is non-zero.

Theorem 1.10. Let λ, µ ∈ MLS,N be two measured laminations which fill S. Then Eλ
r ◦ Eµ

r has at least one
fixed point on TS,θ.

The proof follows the same line as the proof of Theorem 1.1. Theorem 1.5 still holds in the context of
hyperbolic surfaces with cone singularities (of fixed angle less than π), in this case the GHMC AdS manifolds
that are involved have “particles”, that is, cone singularities along time-like curves, see [11]. Those manifolds
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have a convex core, its boundary is a pleated surface (outside the cone singularities) with an induced metric
which is hyperbolic with cone singularities, and the pleating defines a measured lamination. Theorem 1.10 can
therefore be stated in an equivalent way involving measured laminations on the boundary of the convex core.

Theorem 1.11. Let λ+, λ− ∈ MLS,N be two measured laminations which fill S (considered as a surface with N
punctures). There exists a GHMC AdS manifold with particles, with angles θ1, · · · , θN , such that the measured
bending laminations on the upper and lower boundary components of the convex core are λ+ and λ−.

The proof of Theorem 1.11 basically follows the same path as the proof of Theorem 1.4, with “particles” in
the GHMC AdS manifolds which is considered.

1.7. Flat space-times. The Minkowski globally hyperbolic spacetimes have interesting properties which are
reminiscent of, but different from, those of globally hyperbolic AdS manifolds. We recall those properties briefly
here, more details are given in Appendix B.

Consider again a closed surface S of genus at least 2. Maximal globally hyperbolic spacetimes containing a
space-like surface homeomorphic to S are quotient of a convex domain in the 3-dimensional Minkowski space
R

2,1 by ρ(π1(S)), where ρ is a morphisms from π1(S) into the isometry group of R2,1. The linear part of ρ
determines a point in TS ([25]).

In those spacetimes Mess pointed out a particular Cauchy surface that is obtained by grafting the hyperbolic
surface corresponding to the linear holonomy along a measured geodesic lamination. In this way a measured
geodesic lamination is associated to every MGHC flat spacetime ([25, 5]).

Maximal flat globally hyperbolic spacetimes come in pairs, with the elements of each pair sharing the same
holonomy: each pair contains one future complete and one past complete spacetime.

Theorem 1.12. For each λ−, λ+ ∈ MLS which fill S, there is a unique pair of MGHC flat spacetimes,
D−, D+ with the same holonomy, respectively past and future complete, such that λ− and λ+ are the laminations
associated respectively with D− and D+.

The proof is in Appendix A.

Acknowledgements. We wish to thank Caroline Series for several useful conversations and Gabriele Mondello
for suggesting the argument of Proposition 3.1. We are also deeply grateful to Steve Kerckhoff, who suggested
many important improvements to a previous version of the text and whose help was crucial in making the
arguments more widely understandable.

2. Preliminaries

2.1. Earthquakes. According to Thurston’s Earthquake Theorem [22, 25], given two elements u, v ∈ TS , there
is a unique (λ, µ) ∈ MLS ×MLS such that

Eλ
l (u) = Eµ

r (u) = v .

So we can consider the map

(3) Φ′ : TS × TS → ML2
S

associating to (u, v) the pair of measured lamination (λ, µ). It will be clear below that this map Φ′ differs from
the map Φ introduced in the previous section only by a factor 2.

Recall that (Eλ
r )

−1 = Eλ
l . So if u is a fixed point of Eµ

l ◦Eλ
l then

Eλ
l (u) = Eµ

r (u)

which, in turn, is equivalent to

Φ′(u, v) = (λ, µ)

where we have put v = Eλ
l (u).

Conversely, if Φ′(u, v) = (λ, µ) then

v = Eλ
l (u) = Eµ

r (u)

so that u = Eµ
l ◦E

λ
l (u). Therefore, E

µ
l ◦Eλ

l admits a fixed point if and only if (λ, µ) is contained in the image of

Φ′. Moreover fixed points of Eµ
l ◦E

λ
l are obtained by projecting Φ′−1(λ, µ) on the first factor. As a consequence,

our fixed point problem can be reduced to studying the image of Φ′.

2.2. Some AdS geometry. We briefly recall here some basic geometric properties of the anti-de Sitter space.
More details can be found e.g. in [25, 2, 12].
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Definition. The n-dimensional anti-de Sitter space can be defined as a quadric in the (n + 1)-dimensional flat
space R

n−1,2 of signature (n− 1, 2):

AdSn = {x ∈ R
n−1,2 | 〈x, x〉 = −1} ,

with the induced metric. It is a geodesically complete Lorentzian manifold of constant curvature −1, with
isometry group O(n − 1, 2). It can be considered as the Lorentzian analog of the n-dimensional hyperbolic
space.

One difference however is that AdSn is not simply connected, its fundamental group is isomorphic to Z, and
AdSn is homeomorphic to the product of a (n − 1)-dimensional ball and a circle. It is often useful to consider

its universal cover, denoted by ˜AdSn here.

Space-like, time-like and light-like vectors. We have mentioned that the metric induced by R
n−1,2 is Lorentzian.

So a non-zero vector v tangent to AdSn can be of three types:

• Space-like if 〈v, v〉 > 0.
• Time-like if 〈v, v〉 < 0.
• Light-like or isotropic if 〈v, v〉 = 0.

This terminology originates from relativity theory, see e.g. [19].

Geodesics and hyperplanes. By an elementary symmetry argument, the intersection of AdSn with a 2-planes
P ⊂ R

n−1,2 containing the origin is a geodesic g. When the restriction to P of the metric of Rn−1,2 is negative
definite, the restriction to g of the induced metric of AdSn is negative definite. Those geodesics are called
time-like, and their non-zero tangent vectors are time-like. Conversely, time-like geodesics in AdSn are exactly
the intersections of AdSn with the 2-dimensional planes containing 0 with negative definite induced metrics. It
follows that those time-like geodesics are closed, of length equal to 2π. Each of those time-like geodesics is a
retract by deformation of AdSn.

Let P be a 2-dimensional plane containing 0 in R
n−1,2 on which the induced metric is of signature (1, 1).

The intersection of P with AdSn is a complete geodesic, on which the induced metric is positive definite – those
geodesics are called space-like.

The intersections of AdSn with the hyperplanes in R
n−1,2 containing 0 and of signature (n− 1, 1) are totally

geodesic, and the induced metric is Riemannian. They are isometric to the hyperbolic (n − 1)-dimensional
space. Those hyperplanes are called space-like, and their non-zero tangent vectors are all space-like.

The intersections of AdSn with the hyperplanes containing 0 and of signature (n − 2, 2) are also totally
geodesic, but of Lorentzian signature. They are isometric to AdSn−1, and are called time-like hyperplanes.
Note however that their non-zero tangent vectors are not all time-like, but they can be either space-like, time-
like or light-like (isotropic). Actually a totally geodesic hyperplane is time-like if and only if it contains at least
one time-like tangent vector.

Causal structure. We consider in the sequel a time orientation in AdSn. In other terms, we choose one of
the two connected components of the space of time-like vectors in AdSn, and consider those vectors to be
future-oriented, while those in the other connected component are past-oriented.

We can then define the future of a subset Ω ⊂ AdSn, as the subset of points in AdSn which can be obtained
as the endpoint of a future-oriented time-like curve starting from Ω. We will denote the future of Ω by I+(Ω).
Analogously we define the past of Ω as the set of endpoints of past-oriented time-like curves originating from
Ω, and denote it by I−(Ω).

This notion is not too helpful in AdSn, because there are closed time-like curves. For instance it is not
difficult to check that the future of a totally geodesic space-like hyperplane is the whole space. However it is
more interesting in the universal cover ˜AdSn. For instance, the future of a space-like totally geodesic hyperplane
P0 is a connected component of ˜AdSn \ P0.

Projective model, boundary at infinity. There is a natural action of Z/2Z on AdSn, given by x 7→ −x in the
quadric model above. The quotient space AdSn/(Z/2Z) has a projective model, which is often useful to obtain
a heuristic idea of its geometry. It is obtained in the same manner as the Klein model of hyperbolic space, by
projecting from the quadric in R

n−1,2 to the tangent hyperplane P0 at one of its points x0, in the direction of 0.
This projection map, restricted to the points x ∈ AdSn such that 〈x, x0〉 < 0, is projective — it sends geodesics
to line segments — and its image is the interior of a quadric of signature (n− 2, 1) in R

n. It is sometimes more
convenient to consider this model in the projective space RPn, rather than in R

n. One gets in this manner a
projective model of the quotient of AdSn by the “antipodal” action of Z/2Z.
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The boundary at infinity of AdSn/(Z/2Z) can be defined in this projective model, as the quadric bounding
the projective model of AdSn/(Z/2Z) in RPn. Equivalently, we can define the boundary of AdSn, seen as a
quadric in R

n−1,2, as the quotient of the space of non-zero isotropic vectors in R
n−1,2 by R>0.

This boundary projects to RPn, and we obtain in this way the boundary of the projective model in RPn of
the quotient AdSn/(Z/2Z).

Normal vectors to hyperplanes. The metric on AdSn is non-degenerate. It follows that, given any totally geodesic
hyperplane P ⊂ AdSn and any point x ∈ P , the orthogonal to TxP in TxAdSn is a well-defined line in TxAdSn.
If P is oriented and non-isotropic, then we can define its unit oriented normal vector at x, which is a vector n
such that 〈n, n〉 = 1 if P is time-like, and such that 〈n, n〉 = −1 if P is space-like.

It is useful to remark that the unit normal vector field defined in this way is actually a parallel vector field
along P , as can be checked by using the quadric model of AdSn as defined above.

Angles between space-like hyperplanes. Let P1, P2 be two space-like totally geodesic hyperplanes in AdSn, which
intersect along a codimension 2 plane. Then P1 and P2 are the intersections with AdSn of two hyperplanes H1

and H2 in R
n−1,2 containing 0, each of signature (n− 1, 1).

We can define the angle θ between P1 and P2 as the angle between H1 and H2 in R
n−1,2. Let N1, N2 be the

two unit orthogonal vectors to H1 and H2 which are in the same connected component of Rn−1,2 \H1, then θ
is the non-negative number defined by the equation

(4) cosh(θ) = |〈N1, N2〉| .

If x ∈ P1 ∩ P2 and n1, n2 are the unit future-oriented normals to P1 and P2 at x, then θ can also be defined
by the fact that cosh(θ) = |〈n1, n2〉|.

Orthogonality between space-like and time-like hyperplanes. There is a well-defined notion of angle between a
space-like and time-like hyperplane in AdSn (see e.g. [27]), but we will not really need this notion here. What
we do need, however, is the notion of orthogonality between a time-like hyperplane and a space-like hyperplane,
and also between a time-like hyperplane and a space-like geodesic line or between a space-like hyperplane and
a time-like line.

Those notions can be defined as follows. Given a time-like hyperplane T and a space-like hyperplane S, we
say that they are orthogonal at a point x ∈ P ∩S if, at x, the unit vector normal to T is orthogonal to the unit
vector normal to S. Since the normal vector fields are parallel along T and along S, it then follows that T and
S are also orthogonal at any other intersection point, and we will say simply that they are orthogonal.

Given now a space-like geodesic line D intersecting T , we say that D is orthogonal to T if, at the intersection
point, D is parallel to the unit vector normal to T . In the same way, a time-like line D is orthogonal to a
space-like hyperplane S if, at the intersection point, D is parallel to the unit vector normal to S.

AdS vs de Sitter. It can be useful to recall that the de Sitter n-dimensional space dSn is defined as a quadric
in the Minkowski (n+ 1)-dimensional space:

dSn = {x ∈ R
n,1 | 〈x, x〉 = 1} .

It is also a Lorentzian constant curvature space, but of curvature 1 rather than −1. The de Sitter space is dual
to the hyperbolic space, rather than analogous to it, see e.g. [26].

For n = 2, however, AdS2 and dS2 are very similar, since AdS2 is isometric to dS2 with a reversed sign (in
other terms, there is a map from AdS2 to dS2 which only changes the sign of the scalar product).

AdS3. The 3-dimensional AdS space, AdS3, has some very specific properties, see [25]. One reason for this is that
AdS3/(Z/2Z) is isometric to PSL2(R) with its Killing metric. As a consequence, PSL2(R) acts isometrically on
AdS3/(Z/2Z) by left and right multiplication. This identifies PSL2(R)×PSL2(R) with the identity component
of the isometry group of AdS3/(Z/2Z).

2.3. AdS geometry and hyperbolic surfaces. G. Mess, in his celebrated work [25], showed that the map
Φ′ is meaningful in AdS context. We recall here how Mess connected the map Φ′ to AdS geometry. This
connection will play a fundamental role in the rest of the paper.

The relation between AdS and hyperbolic surfaces arises from the fact that AdS manifolds are locally modeled
on the model AdS3/(Z/2Z) whose isometry group is PSL2(R)× PSL2(R). Moreover, the boundary at infinity
of AdS3/(Z/2Z) is naturally identified to ∂H2 × ∂H2. The action of PSL2(R) × PSL2(R) on AdS3/(Z/2Z)
extends to the boundary. In fact, the action on the boundary coincides with the product action.

Given two Fuchsian representations ρl, ρr : π1(S) → PSL2(R), there exists a unique homeomorphism φ of
∂H2 conjugating their actions on RP 1 = ∂H2 ([1]).
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Notice that the pair ρ = (ρl, ρr) can be regarded as a representation in PSL2(R)×PSL2(R). The graph Γρ

of φ turns out to be an invariant subset of ∂H2 × ∂H2. In fact, it is the minimal non-empty invariant closed
subset, like the limit set of a quasifuchsian representation.

Mess showed that there exists an open convex subset Ω = Ω(ρ) in AdS3/(Z/2Z) that is invariant under ρ
such that the action of ρ on Ω is free and properly discontinuous and the quotient M(ρ) = Ω/ρ is a globally
hyperbolic AdS-manifold diffeomorphic to S × R. In fact, such Ω can be chosen maximally, in the sense that
any other domain satisfying the same properties is contained in Ω.

Spacetimes M(ρ) constructed in this way completely classify globally hyperbolic AdS structures on S × R.

Proposition 2.1. [25] Let M be a globally hyperbolic AdS spacetime diffeomorphic to S × R. Then there is a
pair of Fuchsian representations ρ = (ρl, ρr) of π1(S) such that M isometrically embeds into M(ρ).

Given a pair of Fuchsian representations ρ = (ρl, ρr), the set Γρ is contained in the closure of Ω(ρ) in

AdS3/(Z/2Z), see [25]. Thus the convex hull C(M̃ (ρ)) of Γρ in AdS3/(Z/2Z) is contained in Ω and it projects
to a convex subset C(M(ρ)) of M(ρ). This subset turns out to be the convex core of M(ρ), in the sense that
it is a non-empty convex closed subset of M(ρ) that is contained in every non-empty closed convex subset of
M(ρ). Here we say that K ⊂ M(ρ) is convex if any any geodesic segment with endpoints in K is contained in
K. With this definition any non-empty convex subset is a deformation retract of M(ρ).

If ρl and ρr are conjugate, then C(M(ρ)) is a totally geodesic space-like surface homeomorphic to S, and
the restriction of the metric on C(M(ρ)) makes it isometric to H

2/ρl. If ρl and ρr represent two different
points in T then C(M(ρ)) is homeomorphic to S × [−1, 1] and it is a strong deformation retract of M(ρ). The
boundary components of C(M(ρ)) are achronal C0,1-surfaces (achronal means that time-like paths meet these
sets in at most one point). We denote by ∂−C(M(ρ)) (resp. ∂+C(M(ρ))) the past (resp. future) component of
∂C(M(ρ)).

The minimality condition implies that ∂−C(M(ρ)) and ∂+C(M(ρ)) are totally geodesic space-like surfaces
bent along geodesic laminations L− and L+ respectively. Since space-like planes in AdS3 and in AdS3/(Z/2Z)
are isometric to H

2, the boundary components of C(M(ρ)) are equipped with a hyperbolic structure. Moreover,
it is possible to equip L− and L+ with transverse measures µ− and µ+ that measure the amount of bending
[25].

Mess [25] noticed that the right earthquake along 2λ+ = (L+, 2µ+) transforms H2/ρl into H
2/ρr and analo-

gously the left earthquake along 2λ− = (L−, 2µ−) transforms H2/ρl into H
2/ρr. With our notation, we have

(5) Φ′(ρl, ρr) = (2λ−, 2λ+)

so that Φ′ appears as twice the map Φ in Section 1.
Thus, the problem of determining the image of Φ′ is equivalent to the problem of determining which pairs

of laminations can be realized as bending laminations of some AdS globally hyperbolic structure on S × R. A
first constraint for (λ−, λ+) to lie in the image of Φ′ is that they have to fill the surface.

Lemma 2.2. If u 6= v then Φ′(u, v) is a pair of measured laminations that fill the surface S.

Proof. By Formula (5), the statement is equivalent to the fact that the bending laminations of every GHMC
AdS spacetime homeomorphic to S × R fill S.

This fact can be proved along the same line as the analogous result for quasifuchsian manifold. Suppose that
a curve c meets neither λ+ nor λ−. Then c can be realized as an unbroken geodesic both in ∂+C(M(ρ)) and in
∂−C(M(ρ)). Thus two geodesic representatives of c should exists in M . But this contradicts the fact that for
any free homotopy class of loop in M there is a unique geodesic representative (see [25, 5]). �

Remark 2.3. The description of globally hyperbolic AdS manifolds, including the geometry of the boundary
of the convex core, is strongly reminiscent of quasifuchsian hyperbolic manifolds. In the quasifuchsian case
the convex core also exists; its boundary has an induced metric which is hyperbolic and it is pleated along
a measured lamination. However the measured bending laminations on the boundary satisfy an additional
condition: the weight of any closed curve is less than π.

The reason why such a restriction is not needed in AdS case lies on the fact that in AdS geometry, and
more generally in Lorentzian geometry, the angle between two space-like totally geodesic planes is a well defined
number in [0,+∞) (see Equation (4)).

3. Existence of fixed points for small laminations

3.1. General setup. Let ∆ denote the diagonal of T × T . In this section we will prove that there is a
neighborhood Û of ∆ in T × T such that the restriction of Φ to U = Û \∆ is a homeomorphism onto an open
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set V ⊂ FMLS . Moreover, we will show that Û can be chosen such that for any (λ, µ) ∈ FMLS we have that
(tλ, tµ) ∈ V for t sufficiently small.

3.2. Infinitesimal earthquakes and the length function. For a given measured geodesic lamination λ on
S, the following semi-group law holds:

Etλ
l ◦ Esλ

l = E
(t+s)λ
l .

We consider the infinitesimal left earthquake eλl (u) =
d
dtE

tλ
l (u), which is a vector field on T . It follows from

the semi-group relation that (Etλ
l )t≥0 corresponds to the flow of eλl for positive time.

Analogously one can define the infinitesimal right earthquake eλr and remark that (Etλ
r )t≥0 is the flow for

positive time of this field. Moreover, since Eλ
r = (Eλ

l )
−1 we have that eλr = −eλl for every λ.

A basic standard property is that these fields continuously depend on the lamination λ. For the convenience
of the reader, we will sketch the proof of this fact.

Proposition 3.1. Let Γ(TT ) denote the space of vector fields on T equipped with the C∞-topology. The map

MLS ∋ λ 7→ eλl ∈ Γ(TT )

is continuous.

Proof. Let lγ denote the length function of the lamination λ, which is a smooth function on T . A celebrated
result of Wolpert states that the field eλl is the symplectic gradient of lλ with respect to the Weil-Petersson form
(see [33]). Thus it is sufficient to prove that the map

MLS ∋ λ 7→ lλ ∈ C∞(T )

is continuous.
Consider T as the Fuchsian locus of the space of quasifuchsian metrics QF on S × R, that is in a natural

way a complex manifold. Bonahon [7] proved that the function lλ can be extended to a holomorphic function
— still denoted by lλ — on QF .

Let O(QF) be the space of holomorphic functions on QF . The map

l : MLS ∋ λ 7→ lλ ∈ O(QF)

is locally bounded and continuous with respect to the pointwise topology on O(QF). Montel’s theorem shows
that it is continuous if O(QF) is equipped with the C∞-topology. �

The results of this section will be based on a transversality argument that has been developed in [23, 28, 8].

Proposition 3.2. [8] Let λ, µ ∈ MLS be two measured laminations. The intersection between eλl and eµr ,
considered as submanifolds in the total space of the bundle TT , is transverse. Moreover if λ and µ fill up the
surface then these sections meet in exactly one point k0(λ, µ). Otherwise they are disjoint.

Remark 3.3. The point k0(λ, µ) continuously depends on λ and µ and it is the unique minimum point for the
proper function lλ + lµ. The fact that eλl and eµr transversely intersect in k0(λ, µ) is a consequence of the fact
that the Hessian of lλ + lµ at k0(λ, µ) is positive definite (see [23]).

3.3. Bending laminations near the Fuchsian locus. Through this section, for (λ, µ) ∈ FMLS , we denote
by k0(λ, µ) the unique point of T where eλl is equal to eµr .

Using the transversality result of Proposition 3.2, we prove that for every pair of laminations λ, µ that fill
the surface the composition Etµ

l ◦ Etλ
l admits a fixed point for small t.

Proposition 3.4. Let λ0 and µ0 be laminations that fill up the surface and u0 = k0(λ0, µ0). There exist ǫ > 0,
a neighborhood V of (λ0, µ0) ∈ FMLS, a neighborhood U of u0, and a continuous map

k : V × [0, ǫ) → U

such that:

• For t > 0, k(λ, µ, t) is the unique fixed point of Etµ
l ◦ Etλ

l lying in U .
• For all (λ, µ) ∈ V , k(λ, µ, 0) = k0(λ, µ).

The first idea to prove this proposition could be to consider the function Eλ
l ◦ Eµ

l : TS → TS , considered as
depending on the parameter (λ, µ) ∈ MLS × MLS , prove that it has a fixed point as (λ, µ) → 0, and apply
the Implicit Function Theorem. This is broadly speaking the argument we use, but some care is needed. One
reason is that the map is critical as (λ, µ) → 0, so that a blow-up procedure is necessary. Another, related
reason is that (0, 0) 6∈ FMLS .

A more exact description of the argument of the proof is as follows. First, for any (λ, µ) ∈ FMLS and t ≥ 0
we point out a smooth function φλ,µ,t : T → R

6g−6 such that
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• φ−1
λ,µ,0(0) contains only k0(λ, µ).

• φ−1
λ,µ,t(0) is the set of fixed points of Etµ

l ◦ Etλ
l when t > 0.

In particular, u0 is a solution of the equation φλ0,µ0,0(u) = 0. Using the transversality given by Proposition 3.2
we show that the differential

(

dφλ0,µ0,0

)

u0
is not singular. The proof is then concluded by a simple application

of the Implict Function Theorem. We state for the reader’s convenience the Implicit Function Theorem in the
form we will use below.

Lemma 3.5. Let X be a topological space and M be a differentiable manifold of dimension n. Consider a
family of smooth maps {φx : M → R

n}x∈X indexed by the elements of X so that the induced map

X ∋ x 7→ φx ∈ C∞(M,Rn)

is continuous.
Suppose that for some x0 ∈ X and u0 ∈ R

n we have φx0
(u0) = 0 and d(φx0

)u0
is not singular. Then, there

is a neighborhood V of x0 and a neighborhood U of u0 such that for any x ∈ V the equation

φx(u) = 0

admits a unique solution u(x) lying in U . Moreover the map

V ∋ x 7→ u(x) ∈ U

is continuous.

Proof of Proposition 3.4. Finding a fixed point of Etλ
l ◦ Etµ

l is equivalent to finding a point u such that

(6) Etλ
l (u) = Etµ

r (u) .

Let us fix a global diffeomorphism

x : T → R
6g−6 .

(We could for instance use the Fenchel-Nielsen coordinate for some pant decomposition of S, but the choice is
irrelevant here.)

Consider the R
6g−6-valued functions on T defined by Etλ

l = x ◦ Etλ
l and Etµ

r = x ◦ Etλ
r .

Notice that Etλ
l − Etµ

r forms a family of smooth maps from T to R
6g−6 indexed by FMLS × [0,∞). Unfor-

tunately, for t = 0, Etλ
l = Etµ

r , so the difference is 0 everywhere and we cannot apply Lemma 3.5.
For this reason we blow up the difference. More precisely, we consider the family of maps

φλ,µ,t(u) =
Etλ
l (u)− Etµ

r (u)

t
.

Clearly, if we fix (λ, µ) and u ∈ T then limt→0 φλ,µ,t(u) = dxu(e
λ
l (u)− eµr (u)), where we are implicitly using the

canonical identification of T
x(u)R

6g−6 with R
6g−6.

Moreover, putting

(7) φλ,µ,0(u) = dxu(e
λ
l (u)− eµr (u)) ,

Proposition 3.1 implies that the induced application

φ : FMLS × [0,+∞) → C∞(T ,R6g−6)

is continuous.
By the choice of u0 we have φλ,µ,0(u0) = 0. On the other hand, since dx provides a trivialization of the

tangent bundle of T , Proposition 3.2 implies that the graphs of the functions

X0(u) = dxu(e
λ0

l ) , Y0(u) = dxu(e
µ0

r )

transversely meet over u0. Since φλ0,µ0,0 = X0 − Y0 we conclude that d
(

φλ0,µ0,0

)

u0
is non-singular.

From Lemma 3.5 there is a neighborhood V of (λ0, µ0) in FMLS , ǫ > 0, a neighborhood U of u0, and a
continuous function

k : V × [0, ǫ) → U

such that k(λ, µ, t) is the unique point in U such that

φλ,µ,t(k(λ, µ, t)) = 0 .

Therefore, for t > 0, k(λ, µ, t) is the unique fixed point for Etµ
l ◦Etλ

l lying in U . On the other hand, Equation
(7) implies that k(λ, µ, 0) = k0(λ, µ). �
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Let FML1 be a hypersurface in FMLS that intersects every ray of FMLS exactly once. By Proposition
3.4, there exists an open covering {Vi}i∈I of FML1 and a family of maps

(8) k(i) : Vi × [0, ǫi) → Ui ⊂ T

such that, for all i ∈ I,

(1) k(i)(λ, µ, 0) = k0(λ, µ).

(2) If t > 0, then k(i)(λ, µ, t) is the unique fixed point of Etµ
l ◦ Etλ

l lying in Ui.

The following lemma shows how these maps can be glued to a global map.

Lemma 3.6. There are an open neighborhood V ∗ of FML1 ×{0} in FML1 × [0,+∞) and a continuous map
k∗ : V ∗ → T such that:

(1) If (λ, µ, t0) ∈ V ∗ then (λ, µ, t) ∈ V ∗ for every t ∈ [0, t0].
(2) k∗(λ, µ, 0) = k0(λ, µ).

(3) For t > 0 k∗(λ, µ, t) is a fixed point for Etµ
l ◦ Etλ

l .

Proof. Let k(i) : Vi × [0, ǫi) → Ui ⊂ T be the family of maps defined in (8) indexed by i ∈ I. The uniqueness
property of the function k(·) shows that, for i and j in I, the subset of

(

Vi × [0, ǫi)
)

∩
(

Vj × [0, ǫj)
)

where k(i)

and k(j) concide is open. Since k(i) = k(j) on Vi ∩ Vj × {0} the corresponding maps k(i) and k(j) coincide on
the whole

(

Vi × [0, ǫi)
)

∩
(

Vj ∩ [0, ǫj)
)

. It follows that on the set

V ∗ =
⋃

i

Vi × [0, ǫi)

the map k∗ can be defined by gluing the maps k(i). �

Let

π : FML1 × (0,+∞) → FMLS

be the homeomorphism defined by π(λ, µ, t) = (tλ, tµ). Let us define V = π
(

V ∗ \ (FML1 × {0})
)

where V ∗ is

the open subset defined in Lemma 3.6. On the set V we can consider the map k = k∗ ◦π−1. Notice that k(λ, µ)
is a fixed point of Eµ

l ◦Eλ
l . By means of this map, we can construct on V a right inverse of the map Φ′ defined

in (3).

Corollary 3.7. The open set V verifies the following properties.

(1) For every (λ, µ) ∈ FMLS there is t > 0 such that (tλ, tµ) ∈ V .
(2) If (λ, µ) ∈ V then (tλ, tµ) ∈ V for every t ∈ (0, 1).
(3) There is a continuous map σ : V → T × T that is a right inverse for the map Φ′. Moreover

lim
t→0

σ(tλ, tµ) = (k0(λ, µ), k0(λ, µ)) .

Proof. The first two properties follow directly from the definition on V . Using the fact that k sends (λ, µ) to a
fixed point of Eµ

l ◦ Eλ
l , the map σ can be defined by putting

(9) σ(λ, µ) = (k(λ, µ), Eλ
l (k(λ, µ))) .

�

3.4. All metrics near the Fuchsian locus are obtained. Through this section we use the same notations
as in the previous section. In particular we consider the map σ constructed in Corollary 3.7. This map is clearly
injective, so by the Theorem of the Invariance of Domain the image of σ is an open set U in T ×T . Notice that
the restriction map Φ′|U is a homeomorphism of U onto V .

Proposition 3.8. Û = U ∪∆ is an open neighborhood of the diagonal ∆ in T × T .

To prove Proposition 3.8, we need two technical results about the behavior of the map Φ′ near the diagonal.

Lemma 3.9. Let (uk, vk)k∈N ∈ T 2 be a sequence converging to (u, u) ∈ ∆ ⊂ T 2 and (tk)k∈N be a sequence
of positive numbers such that, putting Φ′(uk, vk) = (tkλk, tkµk), we have that (λk) converges to a measured
lamination λ 6= 0. Then the sequence of measured laminations (µk) also converges to a measured lamination µ.
Moreover λ and µ fill the surface and u is the point k0(λ, µ) where eλl and eµr meet.
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Proof. We have

Etkλk

l (uk) = Etkµk
r (uk)

so by considering the Taylor expansion we deduce that

eλk

l (uk)− eµk
r (uk) = O(tk) .

Taking the limit for k → +∞ we have that

lim
k→+∞

eµk
r (uk) = eλl (u) .

Since the map ML× T ∋ (µ, u) 7→ eµr (u) ∈ TT is a homeomorphism (see [23]) we deduce that (µk) converges
to a measured lamination µ such that

eλl (u) = eµr (u) .

Thus, since we are assuming λ 6= 0, we have that λ and µ fill the surface and u = k0(λ, µ). �

Lemma 3.10. If (uk, vk) ∈ T 2 converges to (u, u), then there exists a sequence of positive numbers (tk)k∈N

such that if we put Φ′(uk, vk) = (tkλk, tkµk) then {(λk, µk)} is precompact in FMLS.

This lemma states that the two factors of Φ′(uk, vk) approach zero with the same speed.

Proof. We fix a sequence tk → 0 such that if we put Φ′(uk, vk) = (tkλk, tkµk) we have that the sequence λk

is precompact in ML \ {0}. By Lemma 3.9, for every subsequence kj such that λkj
converges we have that

(λkj
, µkj

) converges to a point in FMLS . This proves that the set {(λk, µk)} is precompact in FMLS . �

We can prove now Proposition 3.8.

Proof of Proposition 3.8. Suppose by contradiction that Û is not a neighborhood of ∆. There is a sequence
(uk, vk) ∈ T × T converging to some point (u, u) ∈ ∆ such that (uk, vk) /∈ Û .

By Lemma 3.10, there is a sequence of positive numbers tk → 0 such that if we put Φ′(uk, vk) = (tkλk, tkµk)
then — up to passing to a subsequence — (λk, µk) → (λ, µ) ∈ FMLS . By property (1) of Corollary 3.7, there
is ǫ > 0 such that (tλ, tµ) ∈ V for t < 2ǫ. Since V is open we have that (ǫλk, ǫµk) lies in V for k sufficiently
large. On the other hand, for k large enough, tk < ǫ and, by property (2) of Corollary 3.7 we deduce that
Φ′(uk, vk) = (tkλk, tkµk) lies in V . Thus (uk, vk) = σ(tkλk, tkµk) and this contradicts our assuption on the
sequence (uk, vk). �

4. An upper bound on the length of laminations

4.1. The main estimate. The goal of this section is to prove the following key estimate on pairs of laminations
that fill a surface.

Proposition 4.1. There exist constants ǫ0, h0 > 0 (depending only on the genus of S) as follows. Let (λ, µ) ∈
FMLS, and let g ∈ TS be such that Eλ

r (g) = Eµ
l (g). Then i(λ, µ) ≥ ǫ0lg(λ)min(lg(λ), h0).

This proposition will be used twice below. In particular, note that the inequality it contains is qualitatively
different, depending on whether lg(λ) is small or not. When it is small the inequality is quadratic in lg(λ) and
that fact will be important in Section 6 where Proposition 4.1 will be a key tool for understanding the behavior
of the pleating lamination in the neighborhood of the Fuchsian locus. On the other hand, it is only linear in
lg(λ) when lg(λ) is large. In that form, it will play a key role in Section 5 in the proof of the main compactness
statement, Proposition 5.1. In fact, in that section we will use the following simple consequence of Proposition
4.1.

Corollary 4.2. For all C1 > 0 there exists C2 > 0 such that, if i(λ, µ) ≤ C1 and if Eλ
l (g) = Eµ

r (g), then
lg(λ) ≤ C2 and lg(µ) ≤ C2.

The proof of Proposition 4.1 is based on the geometry of 3-dimensional AdS manifolds. The fact that
Eλ

r (g) = Eµ
l (g) means that g is the left representation of a globally hyperbolic AdS manifold for which the

bending lamination on the upper boundary of the convex core is λ+ = λ/2, while the bending lamination on
the lower boundary of the convex core is λ− = µ/2. The left representation is then Eλ

l (g).
Proposition 4.1 will be proved by bounding i(λ+, λ−) in terms of the length of λ+ for the induced metric on

the upper boundary of the convex core. This will be done by first considering the case when λ+ is a weighted
simple closed geodesic. In this case, the estimate will come from the area of a timelike geodesic annulus which
hits the top in this closed geodesic and hits the bottom in a curve transverse to λ−. In particular we want to
measure the “width” of the convex core of M in certain directions.



12 FRANCESCO BONSANTE AND JEAN-MARC SCHLENKER

r

Q
P

FQ y
FR

F
P ′

xn−1

FR

FQ

r

FP

Figure 1. The proof of (11).

4.2. The width of the convex core of a MGHC AdS spacetime. Let M be a globally hyperbolic AdS
spacetime homeomorphic to S ×R whose upper lamination λ+ is a weighted curve (c, w). We fix x ∈ c and we
consider a timelike geodesic τ through x that is orthogonal to a face containing x. In this section we find an
estimate from below for the length of τ ∩ C(M). This estimate will be a key point in the proof of Proposition
4.1.

It is based on the next two technical statements in AdS geometry. Recall (see Section 2.3) that space-like
surfaces in AdS3 have a hyperbolic induced metric, as do pleated surfaces in H3. However there are some
diferences between the geometry of pleated surfaces in the AdS and the hyperbolic case, as displayed in the
following statement.

Sublemma 4.3. Let ∆+ be a convex surfaces obtained by bending a spacelike plane in ˜AdS3 along a locally

finite measured lamination λ̃+. Let σ be any geodesic path in ∆+ joining a point x ∈ λ̃+ to some point y. Let
P be the space-like plane through x extending the face of ∆+ that does not meet σ. Analogously let Q be the
spacelike plane extending the face containing y (if y lies on a bending line, we choose the face that does not meet
σ). Then P and Q meet along a spacelike line r. Moreover the following two properties hold:

• If α(P,Q) denotes the angle between P and Q (as defined in Section 2.2),

(10) α(P,Q) ≥ i(σ, λ̃+) .

• If dP (x, r) is the distance from x to r on the plane P and dQ(y, r) is the distance from y to r on Q,
then

(11) dP (x, r) + dQ(y, r) ≤ l(σ) ,

where l(σ) is the length of σ.

Proof. Suppose that P and Q are disjoint. Then, up to exchanging P and Q, P lies in the future of Q. On
the other hand, ∆+ is contained in I−(Q) and meets P at x (recall that I−(Q) is the past of Q, as defined in
Section 2). This gives a contradiction.

In order to prove (10) first notice that we can easily reduce to the case where y lies on a bending line. Indeed

let y′ be the point on σ ∩ λ̃+ contained in the same face as y: if (10) holds for the segment of σ joining x to y′,
then it can be easily checked that it holds for σ.

Assuming that y lies on some bending line, we proceed by induction on the number of bending lines between x
and y. Let x1 = x, . . . , xn = y be the intersection points of σ with λ̃+. For the case n = 2, we consider the plane

R extending the face through x containing σ. Lemma 6.15 of [5] states α(P,Q) ≥ α(P,R)+α(R,Q) = i(λ̃+, σ).
Consider now the inductive step. Let σ′ be the segment of σ between x and xn−1 and R be the plane extending

the face containing both xn−1 and y. It follows from the inductive hypothesis that α(P,R) ≥ i(σ′, λ̃+). Still

applying Lemma 6.15 of [5] to the planes P,R,Q, we obtain that α(P,Q) ≥ i(σ′, λ̃+) + α(R,Q). Notice that

the last term is i(σ, λ̃+) so (10) is proved.
Let us prove now (11). Again in this case we can suppose that y lies on a bending line. We use again an

induction on the number of points x1 = x, . . . , xn = y of σ ∩ λ̃+.
When n = 2, let FR be the face containing x and y and let R be the plane extending it. We consider the

following surfaces with boundary: FP = P ∩ I−(Q) ∩ I+(R), FQ = Q ∩ I−(P ) ∩ I+(R) (see Figure 1). Let ∆′

be the surface obtained by replacing in ∆+ the face FR with FP ∪ FQ.
Let χ be the geodesic segment connecting x to y in FP ∪ FQ. Then σ and χ determine a time-like plane in

AdS3, isometric to AdS2. In AdS2, space-like geodesics are maximizing length among space-like curves with the
same endpoints (this can be checked easily by writing the AdS metric as a warped product, −dt2 + cos2(t)dx2,
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Figure 2. Sublemma 4.4.

with the geodesic segment contained in the line where t = 0 – see [4] for a more general viewpoint). So χ is
shorter than σ. In other terms, the geodesic in ∆′ connecting x to y is shorter than σ, and (11) easily follows.

Consider now the case n > 2. Let R be the plane extending the face FR containing y and xn−1 and P ′ be
the plane extending the face containing xn−2 and xn−1 (see Figure 1). Let us set

FP ′ = P ′ ∩ I−(Q) ∩ I+(R) , FQ = Q ∩ I−(P ′) ∩ I+(R) .

Consider the bent surface ∆′ obtained by replacing in ∆+ the face FR by (FP ′ ∪ FQ). Let σ′ be the geodesic
path of ∆′ joining x to y. We claim that σ′ is shorter than σ. Indeed consider the path χ in ∆′ that is the
composition of the geodesic χ1 joining x to xn−1 and the geodesic χ2 joining xn−1 to y. Then χ1 is the segment
of σ with endpoints x and xn−1, whereas, as before, χ2 is shorter than the segment [xn−1, y]. Thus χ is shorter
than σ. Since σ′ is shorter than χ, the claim is proved.

Let y′ be the intersection point of σ′ with P ′ ∩ Q and σ′′ be the segment on σ′ between x and y′. By the
inductive hypothesis we have that dP (x, r) + dQ(y

′, r) ≤ l(σ′′) so we deduce that dP (x, r) + dQ(y, r) ≤ l(σ′) ≤
l(σ). �

Sublemma 4.4. Let T be a triangle in AdS2 formed by two spacelike rays l1, l2 starting from a point p and a
complete spacelike geodesic l0 joinining the ideal end-points of l1 and l2. Let q be the point on l1 whose distance
from p is 1 and τ be the time-like ray through q orthogonal to l1. If we put θ0 = l(τ ∩ T ), then

θ0 = arctan

(

e
sinhκ

1 + coshκ

)

,

where κ is the angle between l1 and l2.

Proof. We identify AdS2 with the quadric in R
3 given by the equation x2 − y2 − z2 = −1 and equipped with

the metric induced by the form dx2 − dy2 − dz2. Under such identification the boundary of AdS2 is identified
with the set of light-like vectors up to multiplication by a positive factor (see Section 2.2).

Under this identification we can suppose that p = (0, 1, 0) and that the ideal end-point of l1 is the class of
x1 = (1, 1, 0). Imposing that the angle between l1 and l2 is κ we deduce that the ideal end-point of l2 is the
class of x2 = (−coshκ, 1,−sinhκ) (see Figure 2). In particular the line l0 is the intersection of AdS2 with the
linear plane generated by x1 and x2. So its equation is

(12) (x− y)sinhκ− z(1 + coshκ) = 0 .

On the other hand, the coordinates of q are (sinh 1, cosh 1, 0), so a parameterization of τ is given by
(cos(θ)sinh (1), cos(θ)cosh (1),− sin θ). Imposing that τ(θ0) ∈ l0 we get the result. �

We can now state the estimate we need.

Lemma 4.5. There exist κ0, ǫ1 > 0 as follows. Let M be an AdS globally hyperbolic spacetime homeomorphic
to S × R such that the upper lamination λ+ is a weighted curve (c, w). Let x ∈ c and let τ be the past-directed
geodesic starting from x and orthogonal to some face F .
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Figure 3. Proof of Lemma 4.5.

Given any geodesic σ of ∂+C(M) that intersects F only at its end-point x and such that its length is equal 1
we have

(13) l(τ ∩ C(M)) ≥ ǫ1 min(κ0, i(σ, λ+)).

Proof of Lemma 4.5. We lift the problem to the universal covering. Let ∆+ be the upper boundary of the lift

of C(M̃) in ˜AdS3, and let x be a lift of x. We consider the lifts τ and σ̄ of τ and σ from x. Inequality (13) is

equivalent to l(τ ∩C(M̃ )) ≥ ǫ0 min(κ0, i(σ̄, λ̃+))
Let y be the end-point of σ̄ and consider the plane P through x orthogonal to τ (that is, the support plane

of ∆+ which extends the face that does not meet σ̄) and the plane Q extending the face of ∆+ that contains
y (if y lies on a bending line we choose the face that does not meet σ̄). By Sublemma 4.3, the distance on P
between x and the line r = P ∩Q is less than 1. So there exists a geodesic r′ ⊂ P ∩ I+(Q) at distance 1 from

x. Let us consider the plane Q′ containing r′ and such that the angle between P and Q′ is κ = i(σ̄, λ̃+) (see
Figure 3).

By Sublemma 4.3, the angle between P and Q is larger than κ. This implies that Q′ cannot meet the
half-plane Q ∩ I−(P ). Otherwise the surface obtained as the union of P ∩ I−(Q), Q ∩ I−(P ) ∩ I−(Q′) and
Q′ ∩ I−(Q) would be a space-like surface bent along the geodesics P ∩ Q and Q ∩ Q′, contradicting Equation
(10) in Sublemma 4.3.

In particular the surface ∆ = (P ∩ I−(Q′))∪ (Q′ ∩ I−(P )) is contained in the future of ∆+. Let C(∆) be the

convex hull of ∆. Clearly the past boundary of C(∆) is contained in the future of the past boundary of C(M̃).

It follows that l(τ ∩ C(M̃)) is larger than l(τ ∩ C(∆)).
Now consider the timelike plane Π through x that is orthogonal to the bending line r′ of C(∆). Notice that

C(∆)∩Π is a convex set whose upper boundary is made of two geodesic rays lP and lQ′ meeting at some point
z. Let T be the triangle in Π bounded by lP , lQ′ and by the geodesic joining the ideal end-point of lP and lQ′ .
T is contained in C(∆). The vertex z is the point on r′ realizing the distance from x, so the distance between
x and z is 1. Moreover, the angle between lP and lQ′ is κ. By Sublemma 4.4 the length l(τ ∩ T ) is larger than

some constant depending only on κ and proportional to κ as κ → 0. Since l(τ ∩C(M̃)) ≥ l(τ ∩C(∆)) ≥ l(τ ∩T )
the estimate is proved. �

Remark 4.6. Choosing κ0 sufficiently small, we can suppose that ǫ1κ0 ≤ π/3. We make this hypothesis in the
rest of this section.

4.3. Pleated surfaces in AdS3. We will be using a technical statement from 2-dimensional hyperbolic geom-
etry. The proof can be found in Appendix A. Consider any hyperbolic metric g on S, and a closed oriented
geodesic c for g. Given a point x ∈ c, we consider the compact geodesic segment σl

x (resp. σr
x) of length 1

starting from x in the direction orthogonal to c towards the left (resp. right). We denote by nl(x) (resp. nr(x))
the number of intersections of σl

x (resp. σr
x) with c, including x. Let λ be the measured geodesic lamination

with support c and weight w.
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Lemma 4.7. There exists β0 > 0 (depending only on the genus of S) such that

lg({x ∈ c | i(σr
x, λ) ≤ β0lg(λ)}) ≤ lg(c)/2 .

In other terms, if the length of c is much larger than 1
β0

then, in at least half of c, the orthogonal segment of

length 1 on either side of c intersects c many times.
Lemma 4.7 and Lemma 4.5, taken together, lead to a lower bound on the area of a totally geodesic time-like

strip in the convex core of a globally hyperbolic AdS manifold. Here we fix a globally hyperbolic manifold M
and we call C(M) its convex core, λ+ and λ− the upper and lower measured bending laminations, and m+,m−

the upper and lower induced metrics on the boundary of C(M). We use the constants κ0 and ǫ1 appearing in
Lemma 4.5.

Lemma 4.8. Suppose that the support of λ+ is a closed geodesic curve c, on which we choose an orientation.
Let A be the time-like totally geodesic annulus in C(M), with boundary contained in ∂C(M), such that c =
A ∩ ∂+C(M), and which is orthogonal to the face on the left of c. Then the area of A is bounded from below:

Area(A) ≥
lm+

(c)

4
ǫ1 min(κ0, β0lm+

(λ+)) .

Proof. Let w > 0 be the weight of c for λ+, and let ci ⊂ c be the subset of c defined as

ci = {x ∈ c | i(σr
x, λ+) ≥ β0lm+

(λ+)} .

Lemma 4.7 indicates that the length of ci is at least

(14) lm+
(ci) ≥ lm+

(c)/2 .

Let x ∈ ci, and let τx be the past-directed geodesic segment on A starting from x in the direction orthogonal
to c. Because x ∈ ci the intersection of σr

x with the lamination λ+ is larger than β0lm+
(λ+). Applying Lemma

4.5, we deduce that l(τx) ≥ L1 where

L1 := ǫ1 min(κ0, β0lm+
(λ+)) .

Note that, by the choice made in Remark 4.6,

(15) L1 ≤ π/3 .

Consider the map
τ : ci × [0, L1] → A

(x, s) 7→ τx(s) .

The Jacobian of τ at (x, s) is equal to the norm at τx(s) of the Jacobi field along τx which is orthogonal to τx
and of unit norm at s = 0. Recall that orthogonal Jacobi fields along time-like geodesics in AdS3 behave as
cos(s) (it follows from the fact that the curvature is −1, see e.g. [19, 4.4]). So the Jacobian of τ at (x, s) is
equal to cos(s), and therefore at least 1/2 by Equation (15).

As a consequence,

Area(A) ≥ Area(τ(ci × [0, L1])) ≥
lm+

(ci)L1

2
.

The result therefore follows from the definition of L1 and from Equation (14). �

4.4. Proof of the main estimate. The proof of Proposition 4.1 follows from Lemma 4.8 and from the following
basic statement on Lorentz geometry.

Lemma 4.9. Let Π be a time-like plane in AdS3, and let P,Q be two space-like planes, such that Π, P and Q
meet exactly at one point. Then the angle in Π between Π ∩ P and Π ∩ Q is smaller than the angle between P
and Q.

Proof. Let x be the intersection point of Π, P and Q, and let Hx ⊂ TxAdS3 be the surface containing the
future-oriented unit timelike vectors. Clearly Hx is isometric to the hyperbolic plane. The unit future-pointing
vectors NP and NQ that are orthogonal to P and Q respectively lie in Hx. Equation (4) shows that the angle
between P and Q is equal to the hyperbolic distance between NP and NQ in Hx.

On the other hand the set of future-pointing unit vectors tangent to Π at x is the geodesic l = Hx ∩ TxΠ
of Hx. The future-pointing unit vectors in TxΠ that are orthogonal to P ∩ Π and Q ∩ Π are the orthogonal
projections of NP and NQ on l.

The result therefore follows from the fact that the orthogonal projection on a hyperbolic geodesic is distance-
decreasing. �
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Let c− be the lower boundary of A. Although c− is not geodesic, it is not difficult to see that the geometric
intersection of λ− with c− is equal to i(c, λ−). The previous lemma, along with an approximation of c− by
a sequence of polygonal curves, shows that the geometric intersection of λ− with c− is at least equal to the
geodesic curvature of c− as boundary of A, which by the Gauss-Bonnet theorem is equal to the area of A (see
[3, 13]). So we obtain the following estimate.

Corollary 4.10. Under the hypothesis of Lemma 4.8, if λ− is the measured bending lamination on the lower
boundary of C(M), then i(c, λ−) ≥ Area(A), so that

i(λ+, λ−) ≥
lm+

(λ+)

4
ǫ1 min(κ0, β0lm+

(λ+)) .

We can prove now Proposition 4.1.

Proof of Proposition 4.1. We first find constants ǫ0, h0 that work assuming that λ is a weighted curve (c, w).
By a density argument we then conclude that those constants work for every measured geodesic lamination.

According to Theorem 1.5, there is a unique GHMC AdS manifold M for which the left representation is g,
the upper bending lamination of the convex core is λ+ := λ/2, and the lower bending lamination of the convex
core is λ− := µ/2. Then the upper and lower induced metrics on the boundary of the convex core are

m+ = Eλ/2
r (g) , m− = E

µ/2
l (g) .

We can now apply Corollary 4.10, which shows that

i(λ+, λ−) ≥
lm+

(λ+)

4
ǫ1 min(κ0, β0lm+

(λ+)) .

But g = E
λ+

l (m+), so that lg(λ+) = lm+
(λ+), and it follows that

i(λ, µ) ≥
lg(λ)

2
ǫ1min(κ0, β0lg(λ)/2) .

So the constants

ǫ0 = β0ǫ1/4 , h0 = 2κ0/β0

work.
Consider now the general case. We can consider a sequence of weighted curves λn converging to λ such that

λn = (cn, wn).

Let µn be the lamination such that Eλn

l (g) = Eµn
r (g). Notice that (µn) converges to µ as n → +∞. Indeed,

µn is the right factor of Φ′(g, Etλn(g)).
Since the inequality

i(λn, µn) > ǫ0lg(λn)min(h0, lg(λn))

holds for every n and i(·, ·) is a continuous function of ML2
S , passing to the limit we get the estimate for λ and

µ. �

5. Compactness

5.1. Limits of fixed points of compositions of earthquakes. The rather technical result in the previous
section can be used to prove the following compactness statement, which is a key point in the proof of the main
result.

Proposition 5.1. Let (λn)n∈N, (µn)n∈N be two sequences of measured laminations on S, converging respectively
to λ, µ. Suppose that λ and µ fill S. Let (gn)n∈N be a sequence of hyperbolic metrics on S such that, for all

n ∈ N, Eλn

l (gn) = Eµn
r (gn). Then, after extracting a subsequence, (gn) converges to a limit g ∈ TS, and

Eλ
l (g) = Eµ

r (g).

We recall a well-known result needed in the proof.

Lemma 5.2 (Kerckhoff [22]). Let λ, µ ∈ MLS be two measured laminations that fill a surface. The function

Lλ,µ : TS → R

g 7→ lg(λ) + lg(µ)

is proper and convex along earthquakes paths.
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Proof of Proposition 5.1. Since i(·, ·) is continuous, there exists a constant C1 > 0 such that for all n ∈ N,
i(λn, µn) ≤ C1. So it follows from Corollary 4.2 that both lgn(λn) and lgn(µn) are bounded by a constant C2.
It follows from Lemma 5.2 that, for all n ∈ N,

gn ∈ Kn := L−1
λn,µn

([0, 2C2]) .

Since by Lemma 5.2 the subsets Kn are compact and convex for earthquake paths, Kn → K := L−1
λ,µ([0, 2C2]).

So gn remains in a compact subset of TS and, after taking a subsequence, (gn) converges to a limit g.
The fact that Eλ

l (g) = Eµ
r (g) is clear since El and Er are continuous functions of both arguments. �

6. Proofs of the main results

In this section we combine results of Sections 3 and 5 to prove Theorems 1.1, 1.4 and 1.6.
Consider the map Φ′ described at the beginning of Section 2. Proposition 5.1 precisely states that this map

is proper. In particular the degree of Φ′ can be defined. The main idea of the argument is to show that the
degree of Φ′ is 1. As a consequence, we will deduce that Φ′ is surjective, and this will prove Theorem 1.1 and
Theorem 1.4.

6.1. Proof of Theorem 1.1 and Theorem 1.4. Let us consider the set

X = {(u, v) ∈ T 2|Φ′−1Φ′(u, v) = {(u, v)}} .

Proposition 6.1. X̂ = ∆ ∪X is a neighbourhood of ∆ in T 2.

Proof. By contradiction, suppose there exists a sequence (uk, vk) /∈ X converging to (u, u) ∈ ∆. By Proposition
3.8, there exists another sequence (u′

k, v
′
k) ∈ T such that

Φ′(u′
k, v

′
k) = Φ′(uk, vk) .

By Lemma 3.10 there is an infinitesimal sequence of positive numbers tk such that

Φ′(u′
k, v

′
k) = Φ′(uk, vk) = (tkλk, tkµk)

with {(λk, µk)} running in some compact set of FMLS . Taking a subsequence we can suppose that (λk, µk) →
(λ, µ) and u is the point k0(λ, µ) where eλl and eµr meet.

By Proposition 4.1 we have

t2ki(λk, µk) ≥ ǫ0t
2
klu′

k
(λk)

2

so we get that lu′

k
(λk) is bounded by some constant independent of k. Analogously we deduce that lu′

k
(µk) is

bounded. Since (λk, µk) runs in a compact set of FMLS , the functions

l(λk) + l(µk)

are uniformly proper by Lemma 5.2.
So we deduce that (u′

k) runs in some compact set of T (and analogously for (v′k)). Moreover, by Lemmas 3.9
and 3.10, any convergent subsequence of (u′

k) (resp. (v
′
k)) must converge to k0(λ, µ) = u. Thus we deduce that

(u′
k, v

′
k) → (u, u).

By Corollary 3.7, there is a neighbourhood U of (u, u) ∈ T 2 such that the map Φ′|U\∆ is a homeomorphism
onto an open set in FMLS . But for k >> 0 both (uk, vk) and (u′

k, v
′
k) lie in U and this is a contradiction. �

Corollary 6.2. There is an open set V ∈ FMLS such that the restriction of Φ′ to Φ′−1(V ) is a homeomorphism
onto V .

Proof. There is an open neighbourhood U of ∆ contained in X . Let us put V = Φ′(U). Clearly the restriction
of Φ′ on U is injective so V is an open set. By definition of X the inverse image of any point x ∈ V consists
only of one point. Thus Φ′−1(V ) = U . �

Corollary 6.3. The degree of the map Φ′ is 1. In particular, Φ′ is surjective.

Proof. This follows from Corollary 6.2, since a continuous (proper) map which restricts to a homeomorphism
from an open subset to its image has degree one, see [20]. �

Since Φ′ has degree one, it is surjective, and this proves Theorem 1.1. We have already mentioned that
Theorem 1.4 is equivalent to Theorem 1.1.
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Figure 4. Sublemma A.2
.

6.2. Proof of Theorem 1.6. Let (λ, µ) ∈ FMLS . We have to prove that for t sufficiently small (tλ, tµ) are
uniquely realized as the bending laminations of the convex core of a GHMC AdS spacetime. By Equation (5),
this is equivalent to showing that Φ′−1(tλ, tµ) contains exactly one point for t small.

We consider the right inverse of Φ′, σ : V → T × T , defined in Corollary 3.7. There is ǫ > 0 such that
(tλ, tµ) ∈ V for t < ǫ. In particular σ(tλ, tµ) is in Φ′−1(tλ, tµ). On the other hand, σ(tλ, tµ) approaches the
diagonal ∆ as t → 0. By Proposition 6.1, there is ǫ′ ≤ ǫ such that Φ′−1(tλ, tµ) = {σ(tλ, tµ)}.

6.3. Surfaces with cone singularities. As pointed out in the introduction, the arguments given for the proof
of Theorem 1.1 and of Theorem 1.4 can be extended basically as they are to surfaces with cone singularities
of angle θi ∈ (0, π), and to GHMC AdS manifolds with “particles” of the same angles. Thurston’s Earthquake
Theorem is then replaced by its version with “particles” as described in [11], where the geometry of GHMC
AdS manifolds with particles was also studied. This leads directly to the proof of Theorem 1.10 or, equivalently,
Theorem 1.11.

Appendix A. Proof of Lemma 4.7

Recall that we consider a hyperbolic metric g on S, and a closed oriented geodesic c for g. Given x ∈ c, σl
x

(resp. σr
x) is the compact geodesic segment of length 1 starting from x in the direction orthogonal to c towards

the left (resp. right), and nl(x) (resp. nr(x)) is the number of intersections of σl
x (resp. σr

x) with c, including
x. Lemma 4.7 is a direct consequence of the following statement.

Lemma A.1. There exists β0 > 0 (depending only on the genus of S) such that

lg({x ∈ c | nr(x) ≤ β0lg(c)}) ≤ lg(c)/2

for every simple closed geodesic c.

The proof uses an elementary statement from plane hyperbolic geometry.

Sublemma A.2. There exists γ0 > 0 as follows. Let D0, D1 be two disjoint lines in H
2, and let x ∈ H

2 be in
the connected component of H2 \ (D0∪D1) having both D0 and D1 in its boundary. Suppose that d(x,D0) ≤ γ0,
d(x,D1) ≤ γ0. Then the geodesic segment of length 1 starting orthogonally from D0 and containing x intersects
D1.
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Proof. It is sufficient to find γ0 assuming that D0 is a fixed geodesic and that the end-point on D0 of the
minimizing geodesic segment going from x to D0 is a fixed point y0. Finally we can assume that x is contained
in a fixed half-plane P0 bounded by D0.

Let x0 ∈ P0 be the end-point of the geodesic segment of length 1 starting from y0 and orthogonal to D0, and
let l1, l2 be the two complete geodesics that share an ideal end-point with D0 and pass through x0.

Notice that either D1 meets the segment [y0, x0] or its distance from y0 is larger than the distance δ of the
lines li from y0. Now, taking γ0 = δ/2, the distance between D1 and y0 is less than d(D1, x)+d(x, y0) ≤ 2γ0 = δ,
so D1 intersects [y0, x0]. �

Proof of Lemma A.1. We take here some β0 > 0, and will later see how it has to be chosen so as to obtain the
desired result. Let

ci := {x ∈ c | nr(x) ≤ β0lg(c)} .

Fix γ0 as in Sublemma A.2 and consider the normal exponential map:

exp : ci × [0, γ0] → S
(s, r) 7→ σr

s(r) .

This map is dilating, so it increases the area.
Moreover, Sublemma A.2 shows that each point x ∈ S has at most n0 inverse images in ci × [0, γ0], where n0

is the integer part of β0lg(c). Indeed, suppose that x is the image of (y1, r1), . . . , (yn, rn) . Let x, y1, y2, . . . , yn
be lifts of x, y1, . . . , yn to the universal cover H

2 of (S, g) chosen so that some lift of exp(yj , [0, γ0]) contains
both x and yj . Finally let Di be the lift of c passing through yi.

For i 6= j, Di and Dj are disjoint. Indeed, since the segment [x, yi] is orthogonal to Di, the lines Di and Dj

cannot coincide.
Up to changing the indices, we can suppose that there are half-planes P1 and P2 bounded by D1 and D2

respectively that do not meet any other leaf Di. Up to exchanging D1 and D2 we can in particular suppose
that x /∈ P1. For i ≥ 2 either Di disconnects D1 from x or x is contained in the region bounded by D1 and
Di. In the latter case Sublemma A.2 can be applied since the distance of x from D1 and Di is less than γ0. In
both cases, the segment of length 1 starting from y1 and passing through x — which is a lift of σr

y1
— meets

Di. Since σr
y1

meets c at most n0 times (including y1), we conclude that n ≤ n0.
Since the area of (S, g) is 2π|χ(S)|, it follows that

γ0lg(ci) ≤ 2πn0|χ(S)| ≤ 2πβ0lg(c)|χ(S)| .

The result clearly follows, with a choice of β0 = γ0/(4π|χ(S)|). �

Appendix B. Flat case

Let R2,1 be the standard 3-dimensional Minkowski space, that is R3 equipped with the flat Lorentzian metric
dx2

1 + dx2
2 − dx2

3. The isometry group of R2,1 is the affine group of transformations whose linear part preserves
the Minkowski product. Thus we have

Isom(R2,1) = R
3
⋊O(2, 1)

where O(2, 1) acts on R
3 by multiplication.

In this section we will consider the hyperboloid model of H2, that is the set of future-pointing unit time-
like vectors in R

2,1. Using this model, we identify the orientation-preserving isometry group of H2 with the
connected component to the identity of O(2, 1), which we denote by SO+(2, 1).

Finally we will identify the Teichmüller space of S with the set of conjugacy classes of faithful and discrete
representations h : π1(S) → SO+(2, 1).

For any Fuchsian representation
h : π1(S) → SO+(2, 1)

the cones I+(0) and I−(0) are invariant subsets of R2,1 and the quotients I+(0)/h and I−(0)/h are globally
hyperbolic flat spacetimes homeomorphic to S × R.

Now consider an affine deformation of h, that is, a representation ρ : π1(S) → R
3
⋊ SO+(2, 1) which is of

the form
ρ(α) = h(α) + τ(α)

where τ(α) ∈ R
3 is the translation part. In [25], Mess showed that there are two maximal convex domains in

R
2,1 — say Ω+(ρ) and Ω−(ρ) — such that:

• They are invariant for the action of ρ(π1(S)). The restriction of the action of ρ(π1(S)) on them is free
and properly discontinuous.
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• M+(ρ) = Ω+(ρ)/ρ and M−(ρ) = Ω−(ρ)/ρ are globally hyperbolic spacetimes homeomorphic to S × R.
• Ω+(ρ) is complete in the future: if a point x lies in Ω+(ρ) then every future-directed timelike path
starting at x is contained in Ω+(ρ). Analogously Ω−(ρ) is complete in the past.

Mess proved that all globally hyperbolic flat spacetimes homeomorphic to S×R are contained in a spacetime
of this form.

Proposition B.1. [25] Let M be a time-oriented globally hyperbolic flat spacetime homeomorphic to S × R.
There is an affine deformation of some Fuchsian representation

ρ : π1(S) → R
3
⋊ SO+(2, 1)

such that M isometrically embeds either in M+(ρ) or in M−(ρ).

We denote by H the set of conjugacy classes of representations ρ : π1(S) → R
3
⋊SO+(2, 1) whose linear part

is faithful and discrete. The Fuchsian locus of H — that we will denote by H0 — corresponds to representations
that are conjugate to Fuchsian representations.

We have a projection map πH : H → T , sending ρ to its linear part. The fiber over h ∈ T consists of all the
elements of the form

ρ = h+ τ

where τ : π1(S) → R
3 represents the translation part. Then ρ is a representation if and only if τ satisfies the

cocycle condition

τ(αβ) = τ(α) + h(α)τ(β) .

Thus τ is an element of Z1
h(π1(S),R

3), which is the group of 1-cocycles of π1(S) with values in R
3, where the

action of π1(S) on R
3 is induced by h.

Two representations obtained by two cocycles τ, τ ′ are conjugate if and only if τ − τ ′ is a coboundary. So
the fiber of h is identified to the cohomology group H1

h(π1(S),R
3).

It turns out that the fibers of πH have a natural structure of vector spaces. In fact, the map πH : H → T is
a vector bundle of rank 6g − 6 (see [25]). Notice that H0 is the image of the zero section.

B.1. Laminations associated to an affine deformation. Given some ρ = h + τ ∈ H, we consider the
distance of points in Ω+(ρ) from the boundary, that is, the function defined by the formula

t̃(x) = sup
y∈∂Ω+∩I−(x)

(

− 〈(x− y), (x− y)〉
)1/2

.

This function is C1,1 and its level sets are achronal [25, 10]. It induces a function t on M+(ρ) and we consider
the level surface S+ = t−1(1).

Notice that when ρ is a Fuchsian representation, then we simply have S+ = H
2/ρ. In the general case,

Mess showed that S+ is obtained by grafting the hyperbolic surface corresponding to the linear part of ρ along
a measured geodesic lamination λ+. More precisely, the induced metric on S+ is isometric to the “grafted
metric” which, if λ+ is a weighted multicurve, is obtained by replacing in the hyperbolic metric associated to
ρ each leave of λ+ by a flat cylinder of width equal to the weight. Through this section λ+ is called the upper
lamination of ρ.

In the same way, the surface S− ⊂ M−(ρ) of points at distance 1 from the boundary is obtained by grafting
the hyperbolic surface corresponding to the linear part of ρ along a measured geodesic lamination λ−, which is
called the lower lamination of ρ.

We consider the map

Φ0 : H → ML2
S

defined by Φ0(ρ) = (λ+, λ−). Notice that if ρ is a Fuchsian representation then Φ0(ρ) = (0, 0). In this section
we study the map Φ0 outside the Fuchsian locus. In particular we prove the following theorem.

Theorem B.2. The map

Φ0 : H \H0 → ML2
S

is a homeomorphism onto FMLS.

In [25], it is proved that given a measured geodesic λ and a Fuchsian representation h, there is a unique
cocycle τ+ ∈ H1

h(π1(S),R
3) such that λ is the upper lamination of h+τ+. Analogously there is a unique cocycle

τ− ∈ H1
h(π(S),R

3) such that the lower lamination of h+ τ− is λ.
In this way, for a fixed λ, we determine two sections τλ+, τ

λ
− : T → H by requiring that λ is the upper (resp.

lower) lamination of h+ τλ+(h) (resp. h+ τλ−(h)).
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These sections are explicitly described in [25]. For the reader’s convenience we describe the simple case
where the lamination λ is a weighted multicurve, referring to [25, 5] for details. Given a Fuchsian representation

h : π1(S) → SO+(2, 1), we realize λ as a weighted geodesic multicurve in H
2/h. Let λ̃ be its lift to H

2. Now let

us fix a point x0 ∈ H
2 \ λ̃. For any α ∈ π1(S), we consider the intersection points — say p1, . . . , pN — of the

geodesic segment [x0, h(α)(x0)] with λ̃. Then we define the following vector in R
3:

(16) τ(α) =

N
∑

i=1

miwi ,

where mi is the weight of the leaf through pi and wi ∈ R
3 is the unit vector orthogonal to the leaf through pi

pointing towards α(x0). It turns out that τ is a cocycle and (up to a coboundary) we have

(17) τλ+(h)(α) = τ τλ−(h)(α) = −τ .

Notice that if Φ0(h + τ) = (λ+, λ−) then we clearly have τ = τ
λ+

+ (h) = τ
λ−

− (h). In particular, the sections

τ
λ+

+ and τ
λ−

− meet over h. Conversely if for some given λ, µ ∈ MLS there is h ∈ T such that τλ+(h) = τµ−(h)

then Φ(h + τλ(h)) = (λ, µ). Thus there is a 1-to-1 correspondence between Φ−1
0 (λ, µ) and the intersection of

τλ+ and τµ−.

The following proposition combined with Proposition 3.2 shows that τλ+ and τµ− are disjoint if λ and µ does
not fill, whereas they intersect at exactly one point otherwise. This shows that the image of Φ0 is FMLS and
that Φ0 is injective.

Proposition B.3. There is a vector bundle isomorphism

ξ∗ : H → TTS

such that ξ∗ ◦ τ
λ
+ = eλr and ξ∗ ◦ τ

λ
− = eλl .

Proof. We consider on R
3 the Minkowski vector product: given x = (x1, x2, x3) and y = (y1, y2, y3) it is defined

by

x× y = (x2y3 − x3y2, x3y1 − x1y3, −x1y2 + x2y1) .

We refer to [14] for the details. Given x ∈ R
3, the linear operator ξ(x) defined by ξ(x)(y) = x × y is skew-

symmetric with respect to the Minkowski product 〈·, ·〉, so it lies in the Lie algebra o(2, 1) of SO+(2, 1). The
induced map ξ : R3 → o(2, 1) is an isomorphism. Moreover we have

ξ(Ax) = Ad(A)ξ(x) .

Given h ∈ T and an element τ ∈ Z1
h(π1(S),R

3) we have that τ∗ = ξ ◦ τ : π1(S) → o(2, 1) satisfies the cocycle
rule

τ∗(αβ) = τ∗(α) +Ad(h(α))τ∗(β) .

In particular, τ∗ represents an infinitesimal deformation of the representation h. Moreover τ∗ is a trivial deforma-
tion if and only if τ is a coboundary. Using the canonical identification between ThT and H1

Ad◦h(π1(S), o(2, 1))
(see [18]) we obtain an isomorphism

ξ∗,h : H1
h(π1(S),R

3) → ThT

defined by ξ∗,h([τ ]) = [τ∗].
Since H1

h(π1(S),R
3) is the fiber of the projection πH : H → T over h, the maps ξ∗,h produce a fiber bundle

isomorphism

ξ∗ : H → TT .

To conclude the proof, we have to prove that ξ∗ ◦ τ
λ
+(h) = eλr (h) and ξ∗ ◦ τ

λ
−(h) = eλl (h). Since τλ− = −τλ+

and eλl = −eλr it is sufficient to prove only the first equality.
We will prove that the equality holds when λ is a weighted curve. The general case follows by a simple

approximation argument.
We denote by λ̃ the measured geodesic lamination on H

2 that projects on the geodesic lamination on H
2/h

that realizes λ. We fix a point x0 ∈ H
2 \ λ̃. Given α ∈ π1(S), let l1, . . . , lN be the leaves of λ̃ meeting the

segment [x0, α(x0)] at points x1, . . . , xN respectively. We denote by mi the weight of li and by wi ∈ R
3 the unit

spacelike vector orthogonal to li and pointing towards α(x0).
It can be easily checked that the transformation ξ(wi) is an infinitesimal generator of the hyperbolic group

of transformations with axis li. More precisely, for m > 0, a simple computation shows that exp(mξ(wi)) is the
hyperbolic transformation of axis li and translation length equal to m moving α(x0) to the right of x0.
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Let us put ht = Etλ
r (h). It follows from computations in [16] that

ht(α) = exp(tm1ξ(w1)) ◦ · · · ◦ exp(tmNξ(wN ))h(γ) .

Taking the derivative at t = 0,
dht(γ)

dt
|0 = (Rh(γ))∗

(

∑

miξ(wi)
)

.

So the cocycle representing the derivative at 0 of such a deformation (that is, the cocycle corresponding to
eµr (h) via the identification of ThT with H1

Adρ(π1(S),R
3)) is

eλr (h)(α) =
∑

miξ(wi) = ξ
(

∑

miwi

)

.

Comparing this formula with Equations (16) and (17) we deduce that eλr (h) = ξ∗(τ
λ
−(h)). �
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