
Analysis and Improvement of the Random Delay

Countermeasure of CHES 2009

Jean-Sébastien Coron and Ilya Kizhvatov

Université du Luxembourg
6, rue Richard Coudenhove-Kalergi

l-1359 Luxembourg

{jean-sebastien.coron, ilya.kizhvatov}@uni.lu

Abstract. Random delays are often inserted in embedded software to
protect against side-channel and fault attacks. At CHES 2009 a new
method for generation of random delays was described that increases
the attacker’s uncertainty about the position of sensitive operations. In
this paper we show that the CHES 2009 method is less secure than
claimed. We describe an improved method for random delay generation
which does not suffer from the same security weakness. We also show
that the paper’s criterion to measure the security of random delays can
be misleading, so we introduce a new criterion for random delays which
is directly connected to the number of acquisitions required to break
an implementation. We mount a power analysis attack against an 8-bit
implementation of the improved method verifying its higher security in
practice.

Keywords: Side channel attacks, DPA, countermeasures, random delays

1 Introduction

Embedded software implementations of cryptographic algorithms are threatened
by physical attacks like Differential Power Analysis (DPA) or fault injection.
The simplest method of protection against such attacks consists in randomizing
the flow of the operations by shuffling the order of the operations or inserting
random delays composed of dummy operations. These hiding countermeasures
offer less security than masking countermeasures but have smaller implementa-
tion and performance costs. For the general background on physical attacks and
countermeasures we refer the reader to the book [6].

Random delays in software. Software random delays are implemented as
loops of “dummy” operations that are inserted in the execution flow of an
algorithm being protected. A single delay can be removed relatively easy by
static alignment of side-channel traces, e.g. with cross-correlation techniques [4].
Therefore, the execution should be interleaved with delays in multiple places. To
minimize the performance overhead in this setting, individual delays should be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18437426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

possibly shorter. An attacker would typically face a cumulative sum of the delays
between the synchronization point (which would usually be at the start or at
the end of the execution) and the target event. So the cumulative delay should
increase the uncertainty of an attacker about the location of the target event in
time. For further discussion on random delays in software we refer the reader to
[3] and [8]. We also note that elastic alignment techniques were reported in [9] to
be able to reduce the effect of multiple delays. Within the scope of this paper we
do not verify these techniques, assuming an attacker without elastic alignment.

Previous work. An efficient method for random delay generation in embedded
software was suggested in CHES 2009 [3] under the name of Floating Mean. The
central idea of the method is to generate the delays non-independently within
one run of a protected algorithm. In this way, the adversary facing the effect of
the cumulative sum of the delays will have to cope with much larger variance
and thus will require significantly more side channel measurements compared
to other methods with independently generated random delays such as [8]. We
recall the Floating Mean method in Sect. 2.

Our contributions. Here we discover that the Floating Mean method of [3] can
suffer from an improper parameter choice, offering less security than expected.
We perform a detailed statistical analysis of the Floating Mean method of [3]
and we show how to choose correct parameters (see Sect. 3).

However these new parameters require longer delays, which means the num-
ber of delays should be relatively small to keep a reasonable performance over-
head. This is not good for security because, as discussed above, in general few
long delays are easier to detect and remove than multiple short delays. Therefore
we propose an improved method for random delay generation which can work
with short delays (Sect. 4). Our new method is easy to implement; we describe
a concrete implementation in assembly language (Appendix B).

We also show that the criterion in [3] to measure the efficiency of random
delays can be misleading and derive a new efficiency criterion that is information-
theoretically sound (Sect. 5). Finally, we mount a practical DPA attack against
the implementation of our improved method on an 8-bit AVR microcontroller to
verify its higher security. With these results, we target practical designers who
implement the timing randomization countermeasures for protection of their
embedded software implementations.

2 The Floating Mean Method

Here we recall the Floating Mean method introduced in [3]. Most methods for
random delay generation use independent individual delays; in this way, the cu-
mulative sum of many delays which an adversary is facing in an attack tends
to normal distribution with the variance being the sum of variances of the indi-
vidual delays. Instead the core idea of the Floating Mean method from [3] is to

generate random delays non-independently, in order to increase the variance of
the cumulative sum. More precisely, the delays are generated as follows:

1. Initially the integer parameters a and b are chosen so that b < a, where a
determines the worst-case delay and b determines the variance of the delays
within a single run of a protected algorithm;

2. Before each run of a protected algorithm, a integer value m is generated
independently and uniformly on [0, a− b];

3. Within each run, the integer lengths of individual delays are generated in-
dependently and uniformly on [m,m+ b].

0 0.5 1 1.5 2 2.5

x 10
4

2

4

6

x 10
−4

Cumulative delay

R
el

a
ti
v
e

fr
eq

u
en

cy

Plain uniform

Benoit-Tunstall

Floating Mean

Fig. 1. Empirical distributions of the sum of 100 delays for random delay generation
algorithms, for the case of equal means (based on [3]; delay length counted in atomic
delay units)

As shown in [3] the variance of the cumulative sum of the delays in an ex-
ecution becomes quadratic in the number N of delays instead of linear when
the delays are generated independently. This is a significant improvement over
the plain independent uniform delays or the table-based method of Benoit and
Tunstall [8]. An illustrative example of the distribution of the cumulative sum
of 100 delays for the Floating Mean compared to other methods is illustrated by
Figure 1 based on [3]. The parameters for the Floating Mean here are a = 200,
b = 40; the parameters for other methods are chosen so that all the methods
yield the same mean cumulative delay.

However in practice it is better to have many short random delays rather
than long delays, as recommended in [3]; this is because it is more complex to
distinguish and remove many short delays than just few long delays. Therefore
under this recommendation one should choose smaller values of a and b, for
example a = 18 and b = 3 as used in [3] for the practical implementation.
However in the next section we show that for such range of parameters the
Floating Mean method provides less security than expected.

3 The Real Behavior of Floating Mean

In this section, we show that the Floating Mean method from [3] provides less
security than expected for small a and b.

We begin with taking a detailed look at the distributions of different meth-
ods by simulating them with the exact experimental parameters used in the
implementation of [3]. In Figure 2 we present histograms of the distributions for
different methods. Namely, the number of delays in the sum is N = 32 and the
parameters of the Floating Mean method are a = 18, b = 3. The histograms
present the relative frequency of the cumulative delay against its duration1. We

0 100 200 300 400 500 600

0.005

0.01

0.015

Cumulative delay

R
el

a
ti
v
e

fr
eq

u
en

cy

Plain uniform

Benoit-Tunstall

Floating Mean

Fig. 2. Empirical distributions of the sum of 32 delays in the experiment of [3]

clearly see a multimodal distribution for the Floating Mean method: the his-
togram has a distinct shape of a saw with 16 cogs, and not a flat plateau as one
would expect from [3].

These cogs are not good for security since they make it easier for an attacker
to mount an attack. The classical DPA will be more efficient since the signal is
concentrated on the top of the 16 cogs instead of being spread over the clock
cycles. In case of an attack with windowing and integration [2], the attacker
would integrate the values around cog maximums, omit the minimums to reduce
the noise (assuming noise is the same in all the points of the trace) and thus
gain a reduction in the number of traces required for an attack.

1 As in Figure 1, the duration in Figure 2 is expressed in atomic delay units, i.e. as
the total number of delay loop iterations. To obtain the value in clock cycles one
should multiply this by the length of a single delay loop, which is 3 clock cycles in
the implementation of [3].

3.1 Explaining the Cogs

Here we explain how cogs arise in the distribution of the Floating mean and we
show how to choose the parameters to avoid the cogs.

The distribution for the Floating Mean is in fact a finite mixture [7] of a−b+1
components with equal weights. Every component corresponds to a given integer
valuem in [0, a−b]. For a givenm, the cumulative sum of random delay durations
is the sum of N random variables uniformly and independently distributed in
[m,m + b]. Therefore it can be approximated by a Gaussian distribution with
mean

µm = N · (m+ b/2)

and variance

V = N
(b + 1)2 − 1

12
.

Therefore the probability density of the distribution for random integer m ∈
[0, a− b] can be approximated by:

f(x) =

a−b∑

m=0

1

(a− b+ 1)σ
√
2π

exp

(

− (x− µm)2

2σ2

)

where all components have the same standard deviation σ =
√
V :

σ =
√
N ·

√

(b+ 1)2 − 1

12
.

The cog peaks are the modes of the components, located in their means µm.
The distance between the means of successive components is µm+1−µm = N . We
can consider the cogs distinguishable by comparing the standard deviation σ of
the components to the distance N between the means. Namely, the distribution
becomes multimodal whenever σ ≪ N . In the case of practical implementation
in [3], we have a = 18, b = 3 and N = 32, which gives σ = 6.3; therefore we
have σ < N which explains why the 16 cogs are clearly distinguishable in the
distribution in Figure 2. However for a = 200, b = 40 and N = 100 we get
σ = 118 so σ > N which explains why the cogs are indistinguishable in Figure 1
and a flat plateau is observed instead.

3.2 Choosing Correct Parameters

From the above we derive the simple rule of thumb for choosing Floating Mean
parameters. To ensure that no distinct cogs arise, parameter b should be chosen
such that σ ≫ N . For sufficiently large b we can approximate σ by:

σ ≃
√
3

6
· b ·
√
N

Therefore this gives the condition:

b≫
√
N . (1)

However as observed in [3] it is better to have a large number of short random
delays rather than a small number of long delays; this is because rare longer
delays are a priori easier to detect and remove than multiple short delays. But
we see that condition (1) for Floating Mean requires longer delays since by
definition the length of random delays is between [m,m+ b] with m ∈ [0, a− b].
In other words, condition (1) contradicts the requirement of having many short
random delays.

In the next section we describe a variant of the Floating Mean which does not
suffer from this contradiction, i.e. we show how to get short individual random
delays without having the cogs in the cumulative sum.

4 Improved Floating Mean

In the original Floating Mean method an integer m is selected at random in
[0, a − b] before each new execution and the length of individual delays is then
a random integer in [m,m+ b]. The core idea of the new method is to improve
the granularity of random delay generation by using a wider distribution for m.
More precisely the new method works as follows:

1. Initially the integer parameters a and b are chosen so that b < a; additionally
we generate a non-negative integer parameter k.

2. Prior to each execution, we generate an integer value m′ in the interval
[0, (a− b) · 2k[.

3. Throughout the execution, the integer length d of an individual delay is
obtained by first generating a random integer d′ ∈ [m′,m′ + (b+1) · 2k[and
then letting d← ⌊d′ · 2−k⌋.

4.1 Analysis

We see that as in the original Floating Mean method, the length of individual
delays is in the interval [0, a]. Moreover if the integer m′ generated at step 2 is
such that m′ = 0 mod 2k, then we can write m′ = m · 2k and the length d of
individual delays is uniformly distributed in [m,m+b] as in the original Floating
Mean method.

When m′ 6= 0 mod 2k, writing m′ = m · 2k + u with 0 ≤ u < 2k, the delay’s
length d is distributed in the interval [m,m+ b+ 1] with a slightly non-uniform
distribution:

Pr[d = i] =







1
b+1 · (1− u · 2−k) for i = m

1
b+1 for m+ 1 ≤ i ≤ m+ b

1
b+1 · u · 2−k for i = m+ b+ 1

Therefore when m′ increases from m · 2k to (m+ 1) · 2k the distribution of the
delay length d moves progressively from uniform in [m,m + b] to uniform in
[m+ 1,m+ b+ 1]. In Appendix A we show that for a fixed m′:

E[d] = m′ · 2−k +
b

2

Var[d] = E[d2]− E[d]2 =
(b+ 1)2 − 1

12
+ 2−k · u · (1− 2−k · u)

where u = m′ mod 2k.
For a fixed m′ the cumulative sum of random delay durations is the sum of N

independently distributed random variables. Therefore it can be approximated
by a Gaussian distribution with mean:

µm′ = N · E[d] = N ·
(

m′ · 2−k +
b

2

)

(2)

and variance

Vm′ = N · Var[d] = N ·
(
(b+ 1)2 − 1

12
+ 2−k · u · (1 − 2−k · u)

)

For random m′ ∈ [0, (a − b) · 2k[the probability density of the cumulative
sum can therefore be approximated by:

f(x) =

(a−b)·2k−1
∑

m′=0

1

(a− b)2kσm′

√
2π

exp

(

− (x− µm′)2

2σ2
m′

)

where σm′ =
√
Vm′ . We have:

σm′ > σ =
√
N ·

√

(b+ 1)2 − 1

12

where σ is the same as for the original Floating Mean method.
As previously we obtain a multimodal distribution. The distance between the

means of successive components is µm′+1−µm′ = N ·2−k and the standard devi-
ation of a component is at least σ. Therefore the cogs become indistinguishable
when σ ≫ N · 2−k which gives the condition:

b≫
√
N · 2−k

instead of b ≫
√
N for the original Floating Mean. Therefore by selecting a

sufficiently large k we can accommodate a large number of short random delays
(large N and small b). In practice, already for k as small as 3 the effect is
considerable; we confirm this practically in Sect. 5.3.

We now proceed to compute the mean and variance of the cumulative sum
for random m′. Let denote by SN the sum of the N delays. We have from (2):

E[SN] = E[µm′] = N ·
(a

2
− 2−k−1

)

which is the same as the original Floating Mean up to the 2−k−1 term.
To compute the standard deviation of SN , we represent an individual delay as

a random variable di = m+vi where m = ⌊m′ ·2−k⌋ and vi is a random variable
in the interval [0, b+ 1]. Since m′ is uniformly distributed in [0, (a− b) · 2k[, the
integer m is uniformly distributed in [0, a− b[; moreover the distribution of vi is
independent of m and the vi’s are identically distributed. From

SN =
N∑

i=1

di = Nm+
N∑

i=1

vi .

we get:
Var(SN) = N2 · Var(m) +N ·Var(v1)

For large N we can neglect the term N · Var(v1) which gives:

Var(SN) ≃ N2 · Var(m) = N2 · (a− b)2 − 1

12

which is approximately the same as for the original Floating Mean method. As
for the original Floating Mean the variance of the sum of N delays is in Θ

(
N2

)

in comparison to plain uniform delays and the method of [8] that both have
variances in Θ (N).

0 100 200 300 400 500 600

1

2

3

4

x 10
−3

Cumulative delay

R
el

a
ti
v
e

fr
eq

u
en

cy

Floating Mean Improved Floating Mean

Fig. 3. Improved Floating Mean with k = 3 compared to the original method of [3];
a = 18, b = 3 and N = 32 for both methods.

4.2 Illustration

The result is shown in Figure 3 compared to the original Floating Mean. The
parameters of both methods were the same as in Figure 2: a = 18, b = 3 and

N = 32. We take k = 3 for our Improved Floating Mean method. We can
see that we have flattened out the cogs while keeping the same mean. This is
because we still have σ ≃ 6.3 but the distance between successive cogs is now
N ·2−k = 32 ·2−3 = 4 instead of 32 so the cogs are now almost indistinguishable.

4.3 Full Algorithm

The Improved Floating Mean method is formally defined by Algorithm 1.1. Fol-
lowing [3], by DU [y, z[we denote discrete uniform distribution on [y, z[, y, z ∈ Z,
y < z. Note that as in [3] we apply the technique of “flipping” the mean in the
middle of the execution to make the duration of the entire execution independent
of m′. In Appendix B we show that Improved Floating Mean can be efficiently
implemented on a constrained platform by describing an implementation in as-
sembly language.

Algorithm 1.1 Improved Floating Mean

Input: a, b, k,M ∈ N, b ≤ a,N = 2M
m′
← DU [0, (a− b) · 2k[

for i = 1 to N/2 do

di ←
⌊(

m′ +DU
[

0, (b+ 1) · 2k
[)

· 2−k
⌋

end for

for i = N/2 + 1 to N do

di ←
⌊(

a · 2k −m′ −DU
[

0, (b+ 1) · 2k
[)

· 2−k
⌋

end for

Output: d1, d2, . . . , dN

5 The Optimal Criterion of Efficiency

In [3], the ratio σ/µ called coefficient of variation was suggested as a criterion for
measuring the efficiency of the random delays countermeasure, where σ is the
standard deviation of the cumulative sum of the delays, and µ the mean of the
cumulative sum2, where a higher ratio meant a better efficiency. Here we argue
that this measure is misleading and suggest a new criterion.

5.1 Drawbacks of the Coefficient of Variation

We first take a closer look at the experimental data from [3] and establish con-
sistency with the theoretical expectations. In Figure 4(a) we present the relation
between the standard deviation σ of the cumulative sum of 32 delays and the

2 Here σ is the standard deviation of the cumulative sum across various executions,
as opposed to Sections 2 and 4 where σ was the standard deviation for a single
execution with a fixed m

number Tcpa of traces required for a successful CPA attack on the implementation
without the random delays countermeasure (no delays, ND) and with different
random delay generation methods: plain uniform (PU), Benoit-Tunstall (BT),
Floating Mean (FM). The data were taken from Table 2 of [3].

0 100 200 300 400 500

1

2

3

4

5
x 10

4

σ

T
c
p
a

ND

BT

PU

FM

(a) Tcpa against σ

0 100 200 300

1

2

3

4

5
x 10

4

1/p̂

T
C

P
A

BT

FM

PU
ND

(b) Tcpa against 1/p̂

Fig. 4. Attack complexity as a function of cumulative sum distribution parameters

Following [2] and [5] one would expect that without integration, which was
the case for the experiments in [3], the number of traces grows quadratically
with the standard deviation σ. However, from Figure 4(a) one can see that Tcpa

exhibits growth with σ that is almost linear and not quadratic as one would have
expected.

The problem is that standard deviation σ is in general a very rough way to
estimate the number of traces which only works for very similar distributions
(like two normal distributions). If we look at the figures in Table 2 in [3], we
will see that σ for Floating Mean is 5.3 times larger than that for the plain
uniform delays. If one expects the number of traces to be in σ2 in the attack
without integration, then 5.32 = 28 more traces are expected to attack the
Floating Mean. But observed was only 45000/2500 = 18 times increase. This
means that by looking at the variance, one can overestimate the security level
of the countermeasure.

We illustrate this with a simple example. Consider the uniform distribution
U of integers on some interval [a, b], a, b ∈ Z, and the distribution X with Pr[X =
a] = Pr[X = b] = 1/2. We have Var(U) = ((a − b + 1)2 − 1)/12 and Var(X) =
(a−b)2/4, so Var(X) > Var(U). Therefore the efficiency ofX counted in σ/µ will
be higher than for U . But with X the DPA signal is only divided by 2 instead of
(b− a+1) with U , so the number of traces required to break an implementation

with U will be smaller than with X . So in this case the criterion from [3] is
misleading.

An accurate estimate is the maximum p̂ of the probability mass function
(p.m.f.)3 of the distribution of the cumulative sum. From [2] and [5] we recall
that the number of traces T required for a DPA attack is determined by the
maximal correlation coefficient ρmax observed in the correlation trace for the
correct key guess. Namely, the number of traces can be estimated as

T = 3 + 8




Zα

ln
(

1+ρmax

1−ρmax

)





2

(3)

where Zα is a quantile of a normal distribution for the 2-sided confidence interval

with error 1−α. For ρmax < 0.2, ln
(

1+x
1−x

)

≈ 2x holds, so we can approximate (3)

for Zα=0.9 = 1.282 as T ≈ 3/ρ2max. So the number of traces is in ρ−2
max. In turn,

the effect of the timing disarrangement on ρmax is in p̂ in case no integration is
used. So the number of traces is in 1/p̂2.

We now compute p̂ for the distributions shown in Figure 2 and plot Tcpa from
[3] against 1/p̂ in Figure 4(b). We can now see that quadratic dependency has
become clear, which can be verified by the computations: p̂ suggests that the
number of traces for the Floating Mean will be 13 times higher than for plain
uniform delays. Now we have underestimation, but the relation of the number
of traces to p̂ is still more accurate than to σ. Note that such calculations will
not hold for the case without delays since in this case ρmax was about 0.6 (see
Figure 5 in [3]), whereas in the other cases ρmax < 0.2 holds.

5.2 The New Criterion

We propose a better criterion for the efficiency E of the random delays counter-
measure:

E = 1/(2p̂ · µ)

where p̂ is the maximum of the probability mass function and µ is the mean of the
distribution of the cumulative sum of the delays. This criterion is normalized and
optimal with respect to the desired properties of the countermeasure, as shown
below.

With the countermeasure, we want to maximize the number of traces in an
attack, i.e. minimize p̂, while keeping the smallest possible overhead, i.e. smallest
mean µ. One can see that from all distributions with the given p̂, the one with
the smallest µ is uniform on [0, 1/p̂]. In this case, µ = 1/(2p̂) and the criterion
E is equal to 1. In all other cases (same p̂ but larger µ) the value of the criterion
will be smaller, and the closer to zero – the farther is the distribution from the
optimal one (i.e. the uniform one).

3 and not p.d.f. since the distribution is discrete

This tightly relates the criterion to the entropy of the distribution. Namely,
the new criterion is directly linked to min-entropy, which is defined for a random
variable S as

H∞(S) = − logmax
i

pi = −log p̂.

Note that H∞(S) ≤ H(S), where H(S) = −
∑

i pi log pi is the Shannon entropy,
so min-entropy can be considered as a worst-case measure of uncertainty. Now
we have p̂ = 2−H∞(S) and the new efficiency criterion is expressed as

E =
2H∞(S)−1

µ
.

Indeed, for a fixed worst-case cumulative delay, the distributions with the higher
entropy, i.e. maximizing uncertainty for the attacker, will have lower p̂, larger
number of traces to attack and thus more efficient as a countermeasure.

This criterion is easily computable once the designer have simulated the real
distribution for the concrete parameters of a method (taking into consideration
the number of clock cycles per delay loop) and obtained p̂.

5.3 Comparing Efficiency

In our example in Sect. 4.2 with parameters a = 18, b = 3 and N = 32, with the
Improved Floating Mean (IFM) method we have decreased p̂ by a factor 2, as
illustrated in Figure 3. So the number of traces for the successful straightforward
DPA attack will be in principle almost 4 times larger (around 160000), and
according to the optimal criterion the efficiency is almost 2 times higher. Table
1 below revises Table 2 of [3] with the new criterion and the new method.

Table 1. New efficiency criterion for different methods

ND PU BT [8] FM [3] IFM [this paper]

µ, cycles 0 720 860 862 953

p̂ 1 0.0144 0.0092 0.0040 0.0020

E = 1/(2p̂µ) − 0.048 0.063 0.145 0.259

Tcpa, traces 50 2500 7000 45000 > 150000

We have performed a practical power analysis attack against an AES-128
implementation with the new IFM method running on ATmega16, an 8-bit AVR
microcontroller. To be consistent with the previous results, the implementation
and the measurement setup were as in [3]. Namely, there were 10 random delays
per round, and 3 dummy rounds were added before and after the encryption,
so N = 32 delays occur between the start of the execution (the synchronization
point) and the 1-st S-Box lookup of the 1st encryption round the attack target.

The parameters for IFM were a = 19, b = 3, k = 3. Note that a different value
for a was chosen to ensure efficient implementation of the method as described
in Appendix B, so the mean for IFM is larger, but still the efficiency is 1.8
times higher. We could not break this implementation by a CPA attack [1] with
150 · 103 traces, which corresponds to the theoretical expectations.

Due to its definition, the new criterion reflects well the number of traces
observed in the experimental attack. For example, looking at the new criterion we
expect the number of traces for the Floating Mean be 0.1452/0.0632 = 5.3 times
higher than for the table method of Benoit and Tunstall [8]. In the experiment,
it was 45000/7000 = 6.4 times higher.

6 Conclusion

We have shown that the Floating Mean method for random delay generation in
embedded software [3] exhibits lower security if its parameters are improperly
chosen. We have suggested how to choose the parameters of the method so
that it generates a good distribution; however this requires to generate longer
delays while in practice it is preferable to have multiple shorter delays. We
have proposed an improved method that allows for a wider choice of parameters
while having an efficient implementation. Finally, we have suggested an optimal
criterion for measuring the efficiency of the random delays countermeasure.

References

1. E. Brier, C. Clavier, and O. Benoit. Correlation power analysis with a leakage model.
In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages
135–152. Springer, Heidelberg, 2004.

2. C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Ç. K. Koç and C. Paar, editors, CHES 2000,
volume 1965 of LNCS, pages 252–263. Springer, Heidelberg, 2000.

3. J.-S. Coron and I. Kizhvatov. An efficient method for random delay generation in
embedded software. In C. Clavier and K. Gaj, editors, CHES 2009, volume 5747 of
LNCS, pages 156–170. Springer, Heidelberg, 2009.

4. N. Homma, S. Nagashima, T. Sugawara, T. Aoki, and A. Satoh. A high-resolution
phase-based waveform matching and its application to side-channel attacks. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., E91-A(1):193–202, 2008.

5. S. Mangard. Hardware countermeasures against DPA – a statistical analysis of their
effectiveness. In T. Okamoto, editor, CT-RSA 2004, volume 2964 of LNCS, pages
222–235. Springer, Heidelberg, 2004.

6. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets

of Smart Cards. Springer, 2007.
7. G. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, 2000.
8. M. Tunstall and O. Benoit. Efficient use of random delays in embedded soft-

ware. In D. Sauveron, K. Markantonakis, A. Bilas, and J.-J. Quisquater, editors,
WISTP 2007, volume 4462 of LNCS, pages 27–38. Springer, Heidelberg, 2007.

9. J. G. J. van Woudenberg, M. F. Witteman, and B. Bakker.
Improving Differential Power Analysis by elastic alignment.
http://www.riscure.com/fileadmin/images/Docs/elastic paper.pdf, 2009.

A Distribution of Delay’s Length d

We have:

E[d] =
1

(b + 1)2k

m′+(b+1)·2k−1
∑

i=m′

⌊i · 2−k⌋

Write m′ = m · 2k + u with 0 ≤ u < 2k. This gives:

E[d] =
1

(b+ 1)2k

(m+b+1)2k+u−1
∑

i=m2k+u

⌊i · 2−k⌋

=
1

(b+ 1)2k





(m+1)2k−1
∑

i=m2k+u

⌊i · 2−k⌋+
(m+b+1)2k−1

∑

i=(m+1)2k

⌊i · 2−k⌋+
(m+b+1)2k+u−1

∑

i=(m+b+1)2k

⌊i · 2−k⌋





=
1

(b+ 1)2k



m · (2k − u) + 2k
m+b∑

j=m+1

j + (m+ b+ 1) · u





=
1

(b+ 1)2k

(

m · 2k + (b+ 1) · u+ b · 2k ·
(

m+
b+ 1

2

))

=
1

(b+ 1)2k

(

m · (b + 1) · 2k + (b + 1) · u+ b · 2k · b+ 1

2

)

= m+ u · 2−k +
b

2
= m′ · 2−k +

b

2

Similarly we have:

E[d2] =
1

(b + 1)2k

(m+b+1)2k+u−1
∑

i=m2k+u

⌊i · 2−k⌋2

=
1

(b + 1)2k





(m+1)2k−1
∑

i=m2k+u

⌊i · 2−k⌋2 +
(m+b+1)2k−1

∑

i=(m+1)2k

⌊i · 2−k⌋2 +
(m+b+1)2k+u−1

∑

i=(m+b+1)2k

⌊i · 2−k⌋2




=
1

(b + 1)2k



m2 · (2k − u) + 2k
m+b∑

j=m+1

j2 + (m+ b+ 1)2 · u





After simplifications this gives:

Var[d] = E[d2]− E[d]2 =
(b+ 1)2 − 1

12
+ 2−k · u(1− 2−ku)

B Efficient Implementation of Improved Floating Mean

Here we show that our new Improved Floating Mean method can be efficiently
implemented and introduces only a slight additional performance overhead com-
pared to the original Floating Mean (cf. Appendix B of [3]).

In the Improved Floating Mean method one has to generate the mean and
the individual delays in a broader range but then round them. The former is
done by modifying the mask for truncating the random numbers so it is k bits
longer, the latter – by shifting the register with the delay right by k bits.

As a reference, the new implementation of the delay loop in the 8-bit AVR
assembly (cf. [3]) for the Improved Floating Mean is:

rcall randombyte ; obtain a random byte in RND

and RND, MASKBK ; truncate to the desired length including k

add RND, FM ; add ’floating mean’

lsr RND ;

... ; logical shit right by k bits

lsr RND ;

tst RND ; balancing between zero and

breq zero ; non-zero delay values

nop

nop

dummyloop:

dec RND

brne dummyloop

zero:

ret

and the generation of m in register FM in the beginning of the execution looks
like:

rcall randombyte ; obtain a random byte in RND

and RND, MASKMK ; truncate to the desired length including k

mov FM, RND ; store ’floating mean’ on register FM

Here, the masks have the following form:

MASKBK = 0 . . . 0 1 . . .1
︸ ︷︷ ︸

t

1 . . . 1
︸ ︷︷ ︸

k

MASKMK = 0 . . . 0 1 . . .1
︸ ︷︷ ︸

s

1 . . . 1
︸ ︷︷ ︸

k

where 2t − 1 = b and 2s = a − b (we note that this choice of parameters is
slightly different from the one for efficient implementation of the Floating Mean,
and therefore a was set to 19 for b = 3 in our experiments reported in Sect 5.3).
To ensure that the operations are performed on a single register and no over-
flow occurs on an n-bit microcontroller, s, t, and k should be chosen such that
max(s, t) + k + 1 ≤ n.

Note that the number of cycles per delay loop itself did not change. What
changed is the additional overhead per delay. In the case of the 8-bit AVR im-
plementation it is k additional cycles required for k-bit shift right. For a small
k like k = 3 the impact is therefore insignificant.

