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Abstract 

We are seeking linear projections of supervised high- 
dimensional robot observations and an appropriate en- 
vironment model that optimize the robot localization 
task. V~b show that an appropriate risk function to 
minimize is the conditional entropy of the robot po- 
sitions given the projected observations. We propose 
a method of iterative optimization through a proba- 
bilistic model based on kernel smoothing. To obtain 
good starting optimization solutions we use canonical 
correlation analysis. We apply our method on a real 
experiment involving a mobile robot equipped with an 
omnidirectional camera in an otfice setup. 

1 I n t r o d u c t i o n  

Current trend in mobile robot technology is towards 
building fully autonomous mobile robots, i.e., robots 
that  can operate without external guidance in unstruc- 
tured or natural  environments. To localize themselves 
accurately and then plan paths in their workspace the 
robots must use their perception mechanism, e.g., vi- 
sion, often in combination with a dead-reckoning de- 
vice, e.g., an odometer.  

From a statistical viewpoint the robot localization task 
can be regarded as a prediction problem. Given an 
a priori model of the environment and a new sensor 
observation the task is to predict the position of the 
robot as accurately as possibly. Such a model, called 
map, is often built through supervised learning from 
a set of known robot positions-sensor observations [7, 

11, 5, 12]. 

Sensor technology provides high-dimensional data  
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such as images or range profiles. To deal with the 
abundance and the inherent redundancy in the data  
(e.g., too many correlated measurements) an appro- 
priate feature extraction scheme should precede the 
modeling step. The extracted features can be natu- 
ral landmarks, i.e., distinctive features of the environ- 
ment [1] or landmarks formed by some mathematical  
transformation on the original observations [11, 5, 12]. 

In this paper we deal with the latter case, specifically 
the extraction of linear features from omnidirectional 
image data  to be used for map building and localiza- 
tion. Previous work in our group has investigated the 
use of principal component analysis (PCA) for this 
purpose [5, 12]. However, PCA is an unsupervised 
method which optimizes a reconstruction error and 
may not be necessarily good for localization. 

In this paper we look for supervised linear projections 
of the robot observations and an appropriate environ- 
ment model so that  the localization performance of 
the robot is optimized. In the following we describe 
the proposed model, the localization criterion to opti- 
mize, and the optimization method we use to get the 
optimal features. We demonstrate  our method on a 
real robot equipped with an omnidirectional camera 
in an office environment. The results show that  our 
method outperforms PCA as a linear feature extrac- 
tion method for robot localization. 

2 T h e  r o b o t  l o c a l i z a t i o n  p r o b -  
l e m  
 

Imagine a (point) robot at an unknown position x* E 
]R 2 of its two-dimensional workspace, observing a d- 



dimensional vector 1 z*, e.g., an image. The robot lo- 
calization problem concerns the prediction of x* given 
Z*. 

To deal with the noise inherent in robot sensing we 
adopt a probabilistic framework. Let x be a stochastic 
vector describing the position of the robot and p(xlz*) 
the conditional density of x given a robot observation 
z*, call it posterior density henceforth. The localiza- 
tion problem can be formulated as finding an estimate 
of the posterior density as peaked as possible to the 
real robot position x*. 

First we note that  due to perceptual alias the pos- 
terior density may exhibit multiple modes in different 
regions of the workspace. In other words, for the same 
observation z* two or more positions in the workspace 
can be candidates for x*. This implies that  a solu- 
tion to the localization problem would be to directly 
model the posterior density p(xlz* ) as a mixture of 
conditional densities and fit it from the data  [9]. 

However, for realistic robot  localization this approach 
is not adequate since we need to integrate old position 
estimates and actions into a single position estimate. 
One way to achieve this is by means of the Bayes' rule. 
We write the posterior density as 

p(xlz .  ) _ p(z* Ix)p(x) (1) 
p(z*) 

where p(z* Ix) is the likelihood of the observation given 
x, p(x) a prior density on the robot positions, and 
p(z*) the unconditional density of observations alone. 
By repeatedly applying (1) using the posterior density 
as prior for the next estimate, and independently up- 
dating the prior from robot actions, we get a localiza- 
tion procedure that  can be used for robot navigation. 
Kalman filters and hidden Markov models are exam- 
ples of iterative localization procedures. See [11] for 
details and references. 

3 F e a t u r e  e x t r a c t i o n  

We see from the above that  robot localization requires 
a model for p(zlx),  the conditional density of obser- 
vations given robot positions. To build such a model 
we assume we are given a supervised training set in 
the form D = {xn,z,~},n = 1 , . . .  ,N ,  consisting of N 
pairs of known robot positions with their associated 
observations. 

In pat tern recognition there are many ways to fit con- 
ditional densities like p(zlx ) from a training set by us- 
iAll vectors are assumed column vectors. 
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ing parametric,  e.g., a neural network, or nonparamet-  
ric methods [9]. However, in both cases the efficiency 
of the learning machine is highly influenced by the 
dimensionality of the observations, and it turns out 
that  for accurate modeling of high-dimensional data  
we need a very large number of training points [3, 
ch. 6.12]. 

This fact suggests reducing the dimensionality of the 
observations prior to modeling, in other words, ex- 
tracting appropriate features from the original high- 
dimensional data  to be used for robot localization. 
We restrict our at tention to linear features, thus for 
a q-dimensional (q < d) vector y extracted from an 
observation z we can write 

y = W T z ,  (2) 

with W a d × q projection (or feature) matrix. 

A usual statistical requirement in such problems is 
that  the components of y must be uncorrelated. This 
can be interpreted as a geometrical constraint on the 
matrix W if the data  z are already sphered, i.e., ro- 
tated and scaled so that  their covariance matr ix is the 
identity matrix. This is always possible and is equiv- 
alent to applying principal component analysis and 
scaling all components to unit variances [6, 4]. The 
constraint of uncorrelatedness becomes then a con- 
straint of orthonormali ty 2 for the matr ix W 

w T w  = Iq (3) 

where Iq stands for the q-dimensional identity matrix. 
In the following we will assume that  the original z 
points have already been sphered and have zero mean. 
The mapping (2) under the constraint (3) in effect 
rotates the sphered z space and then retains only the 
first q most 'useful' coordinates for localization. 

Since the mapping (2) is deterministic, the robot local- 
ization problem can be reformulated in the projected 
space by building a model of p(ylx; 0) in this space 
parametrized 3 on 0. Since each observation z corre- 
sponds to some projected vector y~ the Bayes rule (1) 
can be equally applied substituting y for z, while for 
building a model ofp(y[x)  we can use the transformed 
training set D'  = {xn, Yn}, n = 1 . . . .  , N. 

The rest of the paper concerns building such a model 
and estimating in a supervised manner,  i.e., using both 
the z~ and xn points of the training set, the projection 
matrix W that  gives good localization. For that  we 
need a 'goodness' measure. 

2Since E[yy T] = E[WTzzTW] = WTE[zzT]W = w T w .  
3In the sequel, the dependence of the model on the parame- 
ters will be assumed and thus skipped. 
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Figure 1: The predicted posterior p(x]y*) and the 
delta-peaked density q(x) on the real robot position 
X*. 

4 T h e  l o c a l i z a t i o n  c r i t e r i o n  

In our analysis we consider the worst case where the 
robot localizes with a flat prior p(x). Moreover, to 
simplify matters, we assume that the points xn in the 
training set were sampled from the same prior p(x), an 
assumption which leads to mathematical tractability 
in the models below. 

Suppose the robot is at the position x* and observes 
a vector y* derived from (2). Assume also a selected 
model p(ylx) which, through Bayes, gives a posterior 
density p(x[y*). A measure of closeness of the pre- 
dicted posterior and the real robot position can be 
derived by taking the cross-entropy between a delta- 
peaked density q(x) on x* and the posterior (Fig. 1) 

c = - f q(x)logp(xlY*)dx ~ - logp(x*[y*), (4) 

the approximation justified by the fact that q(x) is 
peaked on x*. 

Averaging the above loss function over the joint x - y  
space we arrive at the definition of the conditional en- 
tropy [8] of the positions x given the projected vectors 
Y 

f f p ( x ,  y)logp(x[y)dxdy (5) H(x[y) 
J J  

as the expected risk using the model p(y[x) and the 
mapping (2). The integral can be approximated using 
the empirical distribution of the training points to get 
the empirical risk 

N N 
1 1 P(xn,yn) 

R = - ~ E l o g p ( x n l Y n ) = - ~ E l o g  P(Yn) 
n = l  n = l  

(6) 
which can also be regarded as the negative log- 
likelihood of the training set with respect to the den- 
sity p(xn[Yn)- Optimal localization is then achieved 

by minimizing (6). 
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5 M o d e l  d e s c r i p t i o n  

To minimize the empirical risk (6) we need models for 
the densities p(x,y)  and p(y). An attractive choice 
that makes no particular assumptions about the sta- 
tistical nature of the observations is through kernel 
smoothing [13, 9]. A spherical multivariate Gaussian 
kernel of width h is centered on each training vector 
(xn, Yu), giving rise to the approximations 

where 

1 N 

p(x,y)  = ~ E 
n = l  

N 
1 p(x) = 

1 N 
;(Y) = N Z  

K2(x - xn)Kq(y - Yn) (7) 

K2(x - x.) (8) 

Kq(y - Yn) (9) 

1 _ [2 
K 2 ( x - x ~ ) -  27rh 2 exp ( I l x ~ n l  ) (10) 

1 ( [ [ y  - y~112~(11 ) 
Kq(y - y~) - (27rh2)q/2 exp - ~ ] 

a bivariate and q-variate Gaussian kernel, respectively. 
The width h reflects the degree of smoothness or over- 
fitting of the model and its value for a particular prob- 
lem can be computed by, e.g., cross-validation tech- 
niques [13, 9]. Finally, the use of kernel smoothing 
for density estimation provides the model p(y]x) for 
localization as 

p(ylx) - p(x, y) 
p(x) (12) 

with p(x, y) and p(x) from (7) and (8), respectively. 
Although direct implementation of the risk quan- 
tity (6) using the above formulas is possible, its com- 
putational cost is O(N2), with N the size of the train- 
ing set, which can be regarded infeasible for large 
data sets. However, a very efficient implementation 
through binned kernel density estimators and the Fast 
Fourier Transform drops the cost to O(N) [10, 13]. 

6 O p t i m i z a t i o n  

Using the estimates (7)-(11) and substituting the y 
from (2), the empirical risk (6) becomes a smooth 
function of the matrix W under the constraint (3) 
and can be minimized with constrained nonlinear op- 
timization [2]. Alternatively we can follow an iterative 
 



approach. We first solve for a one-dimensional fea- 
ture which minimizes the risk, then for a second one 
which is orthogonal to the first, and so on for a specific 
number of features or until the risk gets no significant 
decrease. 

For one-dimensional projections y = wTz the only 
constraint that  is imposed from (3) is that  the norm 
of the projection vector w must be one. Thus the 
transformation 

w 

- I l w l l  (13) 
and computation of the risk using y = @Tz reduces 
the problem to an unconstrained nonlinear optimiza- 
tion problem which can be solved by regular tech- 
niques [2]. To compute the gradient of the risk (6) 
with respect to the vector w we need the gradient of 
y which is 

W T Z  Z T --  ( '~¢Tz)~-T 

Vwy = Vw Ilwll = Ilwll (14) 

However, care must be taken when using gradient- 
based optimization because due to the nonlinearities 
of the risk (6) and the kernels (10) and (11) the ob- 
jective function may easily get stuck in local minima. 

6 .1  C a n o n i c a l  c o r r e l a t i o n  a n a l y s i s  

One way to obtain a good starting solution for the 
optimization routine is through canonical correlation 
analysis (CCA) [6]. This statistical method seeks lin- 
ear transformations of two data  sets so that  the cor- 
relation between transformed variables from different 
sets is maximized. In our case we apply CCA be- 
tween the z points and each coordinate of x = [xl, x2] 
separately to find two projection directions and then 
choose the direction with the smallest risk. 

Formally, CCA finds an optimal projection vector wi 
so that  the correlation coefficient between the pro- 
jected variable y = w~Tz and the i-th coordinate xi 
of x (i = 1, 2) is maximized. For xi of zero mean and 
unit variance and sphered z the CCA optimal solution 
becomes [6] 

wi = E[x~z] (15) 

which, in effect, maximizes the effectiveness of z in 
predicting xi. The vector w~ that  gives the smallest 
risk for i = 1, 2 can be used as initial guess in the 
optimization rout ine3 

4The use of CCA to obta in  a good first solut ion to the  opti-  
mizat ion problem can also be justified by the  following consid- 
eration. Assume a one-dimensional  projec ted  variable y and a 
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6 . 2  E x t r a c t i n g  m o r e  f e a t u r e s  

Assume at some iteration that  r feature vectors have 
been extracted forming the columns of the projection 
matrix W .  This matrix forms an r-dimensional basis 
in the z space and we can find its orthogonal com- 
plement W ±  by orthogonalizing W (e.g., with Gram- 
Schmidt) so that  

w T W _ L  ---- 0.  (18)  

Then we project the data  points z on the complemen- 
tary subspace by multiplying them with W ±  and ap- 
ply the one-dimensional optimization procedure de- 
scribed above to get an optimal feature W L in this 
space. The resulting vector is transformed back to 
the original space by w = W ~ w ±  and is orthogonal 
to all other features (columns) of W .  Moreover, the 
constraint (3) ensures that  the new projected variable 
y = wTz is uncorrelated with all other projected vari- 
ables (components) of y. We can iteratively apply this 
procedure for a specific number of features or until the 
risk gets no significant decrease. 

7 E x p e r i m e n t s  

For our experiments we used the MEMORABLE robot 
database. This database is provided by the Tsukuba 
Research Center, Japan, for the Real World Comput- 
ing Project,  and contains a supervised set of about  
8000 robot positions and associated measurements of 
sonars, infrared sensors, and images from an omnidi- 
rectional camera (Fig. 2), taken by a Nomad mobile 
robot moving in a typical office environment (Fig. 3). 

To check our method we used a subset of 300 im- 
ages obtained randomly from the whole environment. 
The omnidirectional images were first transformed to 
64 × 256 pixels panoramic images and then sphered 
through PCA to 299-d. The x data  were normal- 
ized to unit variance per dimension. The optimization 

one-dimensional  x and expand the  condit ional  entropy (5) as 

H(xly) = H(ylx ) + H(x) - -  H(y). (16) 

The  first t e rm reflects the  noise after the  project ion while the  
second and th i rd  t e rms  are the  entropies  of x and y, respec- 
tively. Let us then  t ry to find the  bes t  mapp ing  y = f (x)  tha t  
minimizes  (16). In the low noise limit the  first te rm can be 
ignored while for the  t e rm H(y) we can wri te  [8, p. 565] 

H(y) < H(x) + Ez[log I/'(x)l] (17) 

wi th  equali ty if f has a unique inverse. This  implies a way of 
minimizing (16) by seeking invertible mappings  f .  One such 
solution is, e.g., the  linear mapping,  and maximiza t ion  of the  
correlat ion coefficients th rough  CCA corresponds  to x-y  depen-  
dences tha t  are as linear as possible. 



Figure 2: A snapshot of the omnidirectional camera. 
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Figure 3: The office environment.  

method described in the previous sections was used to 
extract  the opt imal  features. 

To compute the first feature we applied CCA between 
the z points and each individual coordinate Xl and x2 
of x to get two solutions wl  and w2, respectively. It  
appeared that  wl  had the smallest risk and this vector 
was used as initial guess in the nonlinear optimization 
routine. In the left par t  of Fig. 4 we show the pro- 
jections of the z points on the first linear feature as 
a function of the x coordinates after nonlinear opti- 
mization. To compare  with results from our previous 
research on PCA we show in the right par t  the pro- 
jection of the da ta  on the first principal component.  
We note that  in the first case there is an almost linear 
relationship between the projected variable and the 
robot positions, a natural  indication of good localiza- 
tion performance.  

We iterated the procedure to compute  the first 10 fea- 
tures. In Fig. 5 we show the risk as a function of 
the number  of features (keeping the kernel width con- 
stant)  for the proposed method and for PCA. We see 
tha t  for small number  of features our method outper-  
forms PCA while for larger number  of features the two 
methods converge. For nonlinear optimizat ion we used 
the BFGS algorithm [2] while for the kernels width we 
empirically found that  h = N -2/7 gives good general- 

ization performance.  
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Figure 5: The risk as a function of the number  of 
features. 

8 Conc lus ions -d i scuss ion  

We proposed a method  for supervised linear feature 
extract ion for robot localization. The main idea is the 
use of a supervised projection scheme tha t  optimizes 
an appropr ia te  localization criterion, a sort of super- 

vised projection pursuit  with a localization index [4]. 
The use of nonparametr ic  density est imation provides 
a smooth objective function which can be optimized 
with respect to the projection mat r ix  with nonlinear 
optimization,  while canonical correlation analysis pro- 
vides good star t ing solutions to the optimization rou- 
tine. As the experiments  indicate the method outper- 
forms PCA as a linear feature extract ion method for 
small number  of features. 

A similar approach to the problem of opt imal  feature 
extraction was proposed in [11] where a neural net- 
work was used to extract  nonlinear features from im- 
ages. In principle, nonlinear feature extract ion can 
provide more relevant features for localization than  a 
linear feature extract ion method,  however issues like 
model selection (e.g., deciding on the architecture of 
the neural network) or overfitting are more difficult to 
deal with than  in the linear case. 

Our method compares favorably to the method in [11] 
since it uses an objective function which can be com- 
puted in O(N) ,  with N the size of the training set, 
in contrast  to the objective function in [11] which is 
O(N3).  Moreover, canonical correlation analysis pro- 
vides good initial solutions to the optimization prob- 
lem possibly avoiding the local min ima of the objective 
function. 

In our analysis we assumed a constant  value of the 
kernels width h and focussed on the optimal  projec- 
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Figure 4: Projected observations on the first linear feature as a function of x. (Left) Supervised projection: 

R = 0.2897. (Right) Projection on the first principal component: R = 0.7763. 
tion matrix W. An interesting problem which we cur- 
rently investigate is the estimation from the data, us- 
ing cross-validation techniques, of the optimal h and 
optimal number of features that lead to good gener- 
alization, especially when the size of the training set 
is small. Finally, recent experiments showed that con- 
straint nonlinear optimization can provide better so- 
lutions than iterative optimization; these results to- 
gether with mathematical details will appear else- 
where. 
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