
A Domain Extender for the Ideal Cipher

Jean-Sébastien Coron2, Yevgeniy Dodis1, Avradip Mandal2, and Yannick Seurin3,4

1 New York University
2 University of Luxembourg

3 University of Versailles
4 Orange Labs

Abstract. We describe the first domain extender for ideal ciphers, i.e. we show a construction that is
indifferentiable from a 2n-bit ideal cipher, given a n-bit ideal cipher. Our construction is based on a 3-
round Feistel, and is more efficient than first building a n-bit random oracle from a n-bit ideal cipher (as in
[6]) and then a 2n-bit ideal cipher from a n-bit random oracle (as in [7], using a 6-round Feistel). We also
show that 2 rounds are not enough for indifferentiability by exhibiting a simple attack. We also consider
our construction in the standard model: we show that 2 rounds are enough to get a 2n-bit tweakable block-
cipher from a n-bit tweakable block-cipher and we show that with 3 rounds we can get beyond the birthday
security bound.

Key-words: ideal cipher model, indifferentiability, tweakable block-cipher.

1 Introduction

A block cipher is a primitive that encrypts a n-bit string using a k-bit key. The standard security notion
for block-ciphers is to be indistinguishable from a random permutation, for a polynomially bounded
adversary, when the key is generated at random in {0, 1}k. A block-cipher is said to be a strong pseudo-
random permutation (or chosen-ciphertext secure) when computational indistinguishability holds even
when the adversary has access to the inverse permutation.

When dealing with block-ciphers, it is sometimes useful to work in an idealized model of compu-
tation, in which a concrete block-cipher is replaced by a publicly accessible random block-cipher (or
ideal cipher); this is a block cipher with a k-bit key and a n-bit input/output, that is chosen uniformly
at random among all block ciphers of this form; this is equivalent to having a family of 2k independent
random permutations. All parties including the adversary can make both encryption and decryption
queries to the ideal block cipher, for any given key; this is called the Ideal Cipher Model (ICM). Many
schemes have been proven secure in the ICM [3, 8, 10, 12, 16, 17, 22]; however, it is possible to construct
artificial schemes that are secure in the ICM but insecure for any concrete block cipher (see [2]). Still,
a proof in the ideal cipher model seems useful because it shows that a scheme is secure against generic
attacks, that do not exploit specific weaknesses of the underlying block cipher.

It was shown in [6, 7] that the Ideal Cipher Model and the Random Oracle Model are equivalent;
the random oracle model is similar to the ICM in that a concrete hash function is replaced by a
publicly accessible random function (the random oracle). The authors of [6] proved that a random
oracle (taking arbitrary long inputs) can be replaced by a block cipher-based construction, and the
resulting scheme will remain secure in the ideal cipher model. Conversely, it was shown in [7] that an
ideal cipher can be replaced by a 6-round Feistel construction, and the resulting scheme will remain
secure in the random oracle model. Both directions were obtained using an extension of the classical
notion of indistinguishability, called indifferentiability, introduced by Maurer et al. in [20].

Since a block cipher can only encrypt a string of fixed length, one must consider the encryption
of longer strings. A mode of operation of a block-cipher is a method used to extend the domain of
applicability from fixed length strings to variable length strings. Many modes of operations have been
defined that provide both privacy and authenticity (such as OCB [23]). A mode of operation can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18437307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

also be a permutation; in this case, one obtains an extended block cipher that must satisfy the same
property as the underlying block-cipher, i.e. it must be a (strong) pseudo-random permutation. Many
constructions of domain extender for block-ciphers have been defined that satisfy this security notion,
for example PEP [4], XCB [11], HCTR [25], HCH [5] and TET [15].

However, it is easy to see that none of those constructions provide the indifferentiability property
that enables to get a 2n-bit ideal cipher from a n-bit ideal cipher. This is because these constructions
were proposed with privacy concerns in mind (mainly for disk encryption purposes) and proven secure
only in the classical pseudo-random permutation model; they are generally based on keyed universal
hashing, a primitive that cannot be analysed in the indifferentiability framework. Consider for example
the public-key encryption scheme of Pointcheval and Phan [22]; the scheme requires a public random
permutation with the same size as the RSA modulus, say 1024 bits. In order to replace a 1024-bit
random permutation by a construction based on a smaller primitive (for example a 128-bit block
cipher), indifferentiability with respect to the 1024-bit random permutation is required. Given a 128-
bit block-cipher, none of the previous constructions can provide such property; therefore nothing can
be said about the security of the previous constructions when plugged into the Pointcheval and Phan
scheme, even in the ideal cipher model for the underlying 128-bit block cipher.

In this paper we construct the first domain extender for the ideal cipher; that is we provide a
construction of an ideal cipher with 2n-bit input from an ideal cipher with n-bit input. Given an ideal
cipher with n-bit input/output, one could in principle use the construction in [6] to get a random
oracle with n-bit output, and then use the 6-round Feistel in [7] to obtain an ideal cipher with 2n-bit
input/output, but that would be too inefficient. Moreover the security bound in [7] is rather loose,
which implies that the construction only works for large values of n.1 In this paper we describe a more
efficient construction, based on a 3-round Feistel only, and with a better security bound; we view this
as the main result of the paper. More precisely, we show that the 3-round construction in Figure 1
(left) is enough to get a 2n-bit random permutation from a n-bit ideal cipher, and that its variant in
Figure 1 (right) provides a 2n-bit ideal cipher. We also show that 2 rounds are not enough by providing
a simple attack. Interestingly, in the so called honest-but-curious model of indifferentiability [9], we
show that 2 rounds are sufficient.

E1

E2

E3

L R

X

S

S T

E1

E2

E3

L R

X

S

S T

K

K

K

Fig. 1. Construction of a 2n-bit permutation given a n-bit ideal cipher with n-bit key (left). Construction of a 2n-bit
ideal cipher with k-bit key, given a n-bit ideal cipher with (n + k)-bit key (right).

1 The security bound in [7] for the 6-round Feistel random oracle based construction is q16/2n, where q is the number of
distinguisher’s queries. This implies that for q = 264, one must take at least n = 1024, which corresponds to a 2048-bit
permutation.

3

Finally, we also analyze our construction in the standard model. In this case, we use a tweakable
block-cipher as the underlying primitive. Tweakable block-ciphers were introduced by Liskov, Rivest
and Wagner in [18] and provide an additional input - the tweak - that enables to get a family of
independent block-ciphers; efficient constructions of tweakable block-ciphers were described in [18],
given ordinary block-ciphers. In this paper we show that our construction with 2 rounds enables to get
a 2n-bit tweakable block-cipher from a n-bit tweakable block-cipher. Moreover we show that with 3
rounds we achieve a security guarantee beyond the birthday paradox; we view this as the second main
result of the paper.

2 Definitions

We first recall the notion of indifferentiability of random systems, introduced by Maurer et al. in [20].
This is an extension of the classical notion of indistinguishability, where one or more oracles are publicly
available, such as random oracles or ideal ciphers.

As in [20], we define an ideal primitive as an algorithmic entity which receives inputs from one
of the parties and delivers its output immediately to the querying party. In this paper, we consider
ideal primitives such as random oracle, random permutation and ideal cipher. A random oracle [1]
is an ideal primitive which provides a random output for each new query; identical input queries are
given the same answer. A random permutation is an ideal primitive that provides oracle access to a
random permutation P : {0, 1}n → {0, 1}n and to P−1. An ideal cipher is a generalization of a random
permutation that models a random block cipher E : {0, 1}k × {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}k

defines an independent random permutation Ek = E(k, ·) on {0, 1}n. The ideal primitive also provides
oracle access to E and E−1; that is, on query (0, k, m), the primitive answers c = Ek(m), and on query
(1, k, c), the primitive answers m such that c = Ek(m). We stress that in the ideal cipher model, the
adversary has oracle access to a publicly available ideal cipher and must send both the key and the
plaintext in order to obtain the ciphertext; this is different from the standard model in which the key
is privately generated by the system.

The notion of indifferentiability [20] enables to show that an ideal primitive P (for example, a
random permutation) can be replaced by a construction C that is based on some other ideal primitive
E ; for example, C can be the Feistel construction illustrated in Fig. 1 (left).

Definition 1 ([20]). A Turing machine C with oracle access to an ideal primitive E is said to be
(tD, tS , q, ε)-indifferentiable from an ideal primitive P if there exists a simulator S with oracle access
to P and running in time at most tS, such that for any distinguisher D running in time at most tD
and making at most q queries, it holds that:

∣

∣

∣
Pr

[

DCE ,E = 1
]

− Pr
[

DP,SP

= 1
]
∣

∣

∣
< ε

CE is simply said to be indifferentiable from P if ε is a negligible function of the security parameter n,
for polynomially bounded q, tD and tS.

The previous definition is illustrated in Figure 2, where C is our 3-round construction of Figure
1 (left), E is an ideal cipher, P is a random permutation and S is the simulator. In this paper, for a
3-round construction, we denote these ideal ciphers by E1, E2, E3 (see Fig. 1). Equivalently, one can
consider a single ideal cipher E and encode in the first 2 key bits which round ideal cipher E1, E2, or
E3 is actually called. The distinguisher has either access to the system formed by the construction C
and the ideal cipher E, or to the system formed by the random permutation P and a simulator S. In
the first system (left), the construction C computes its output by making calls to the ideal cipher E
(equivalently the 3 ideal ciphers E1, E2 and E3); the distinguisher can also make calls to E directly.
In the second system (right), the distinguisher can either query the random permutation P , or the

4

E1

E2

E3 E P S

D
0/1

Fig. 2. The indifferentiability notion.

simulator that can make queries to P . If the distinguisher first makes a call to the construction C, and
then makes the corresponding calls to ideal cipher E, he will get the same answer. This must remain
true when the distinguisher interacts with permutation P and simulator S. The role of simulator S is
then to simulate the ideal ciphers Ei’s so that 1) the output of S should be indistinguishable from that
of ideal ciphers Ei’s and 2) the output of S should look “consistent” with what the distinguisher can
obtain independently from P . We note that in this model the simulator does not see the distinguisher’s
queries to P ; however, it can call P directly when needed for the simulation.

It is shown in [20] that the indifferentiability notion is the “right” notion for substituting one ideal
primitive with a construction based on another ideal primitive. That is, if CE is indifferentiable from
an ideal primitive P, then CE can replace P in any cryptosystem, and the resulting cryptosystem is at
least as secure in the E model as in the P model; see [20] or [6] for a proof.

3 An Attack against 2 Rounds

In this section we show that 2 rounds are not enough when the inner ideal ciphers are publicly accessible,
that is we exhibit a property for 2 rounds that does not exist for a random permutation.

E1

E2

L R

S

S T

Fig. 3. The 2-round Feistel construction Ψ2(L, R).

Formally, the 2 round construction is defined as follows (see Fig. 3). Let E1 : {0, 1}n × {0, 1}n →
{0, 1}n be a block cipher, where c = E1(K, m) is the n-bit ciphertext corresponding to n-bit key K and

5

n-bit input message m; let E2 be defined similarly. We define the permutation Ψ2 : {0, 1}2n → {0, 1}2n

as:

Ψ2(L, R) :=
(

E1(R, L), E2(E1(R, L), R)
)

It is easy to see that this defines an invertible permutation over {0, 1}2n. Namely, given a ciphertext
(S, T) the value R is recovered by “decrypting” T with block-cipher E2 and key S, and the value L is
recovered by “decrypting” S with block-cipher E1 and key R.

The attack against permutation Ψ2 is straightforward; it is based on the fact that the attacker can
arbitrarily choose both R and S. More precisely, the attacker selects R = 0n and S = 0n and queries
L = E−1

1 (R, S) and T = E2(S, R). This gives Ψ2(L, R) = (S, T) as required. However, it is easy to see
that with a random permutation P and a polynomially bounded number of queries, it is impossible
to find L, R, S, T such that P (L‖R) = S‖T with both R = 0n and S = 0n, except with negligible
probability. Therefore, the 2-round construction cannot replace a random permutation.

Theorem 1. The 2-round Feistel construction Ψ2 is not indifferentiable from a random permutation.

In Appendix A we also analyse existing constructions of domain extender for block ciphers and show
that they are not indifferentiable from an ideal cipher; more precisely, we show that the CMC [13] and
EME [14] constructions are not indifferentiable from an ideal cipher. We stress that our observations
do not imply anything concerning their security in the classical pseudo-random permutation model.

4 Indifferentiability of 3-round Feistel Construction

We now prove our first main result: the 3-round Feistel construction is indifferentiable from a random
permutation. To get an ideal cipher, it suffices to prepend a key K to the 3 ideal ciphers E1, E2 and
E3; one then gets a family of independent random permutation, parametrised by K, i.e. an ideal cipher
(see Fig. 1 for an illustration).

Formally, the 3 round permutation Ψ3 : {0, 1}2n → {0, 1}2n is defined as follows, given block ciphers
E1, E2 and E3 with n-bit key (first variable) and n-bit input/output (second variable):

X = E1(R, L)

S = E2(X, R)

T = E3(S, X)

Ψ3(L, R) := (S, T)

The 3 round block cipher Ψ ′
3 : {0, 1}k×{0, 1}2n → {0, 1}2n is defined as follows, given block ciphers

E1, E2 and E3 with (k + n)-bit key and n-bit input/output:

X = E1(K‖R, L)

S = E2(K‖X, R)

T = E3(K‖S, X)

Ψ ′
3(K, (L, R)) := (S, T)

Theorem 2. The 3-round Feistel construction Ψ3 is (tD, tS , q, ε)-indifferentiable from a random per-
mutation, with tS = O(qn) and ε = 5q2/2n. The 3-round block-cipher construction Ψ ′

3 is (tD, tS , q, ε)-
indifferentiable from an ideal cipher, with tS = O(qn) and ε = 5q2/2n.

Proof. We only consider the 3-round permutation Ψ3; the extension to block-cipher Ψ ′
3 is straightfor-

ward. We must construct a simulator S such that the two systems formed by (Ψ3, E) and (P,S) are
indistinguishable (see Fig. 2).

6

Our simulator maintains an history of already answered queries for E1, E2 and E3. Formally, when
the simulator answers X for a E1(R, L) query, it stores (1, R, L, X) in history; the simulator proceeds
similarly for E2 and E3 queries. We write that the simulator “simulates” E1(R, L) ← X when it first
generates a random X ∈ {0, 1}n \B, where B is the set of already defined values for E1(R, ·), and then
stores (1, R, L, X) in history, meaning that E1(R, L) = X; we use similar notations for E2 and E3. The
distinguisher’s queries are answered as follows by the simulator:

E1(R, L) query: E−1
1 (R, X) query E2(X, R) query:

1. Simulate E1(R, L)← X 1. Simulate E−1
1 (R, X)← L 1. Simulate E−1

1 (R, X)← L
2. (S, T)← Adapt(L, R, X) 2. (S, T)← Adapt(L, R, X) 2. (S, T)← Adapt(L, R, X)
3. Return X 3. Return L 3. Return S

Adapt(L, R, X):

1. S‖T ← P (L‖R)
2. Store (2, X, R, S) in history (E2(X, R) = S)
3. Store (3, S, X, T) in history (E3(S, X) = T)
4. Return (S, T).

The procedure for answering the other queries is essentially symmetric; we provide it for complete-
ness:

E−1
3 (S, T) query: E3(S, X) query E−1

2 (X, S) query:

1. Simulate E−1
3 (S, T)← X 1. Simulate E3(S, X)← T 1. Simulate E3(S, X)← T

2. (L, R)← Adapt−1(S, T, X) 2. (L, R)← Adapt−1(S, T, X) 2. (L, R)← Adapt−1(S, T, X)
3. Return X 3. Return T 3. Return R

Adapt−1(S, T, X):

1. L‖R← P−1(S‖T)
2. Store (2, X, R, S) in history (E2(X, R) = S)
3. Store (1, R, L, X) in history (E1(R, L) = X)
4. Return (L, R)

Finally, the simulator aborts if for some Ei and some key K, it has not defined a permutation for
Ei(K, ·); that is the simulator aborts if it has defined Ei(K, X) = Ei(K, Y) for some X 6= Y or it has
defined E−1

i (K, X) = E−1
i (K, Y) for some X 6= Y . This completes the description of the simulator.

As a consistency check, it is easy to see that if the distinguisher makes a single query for P (L‖R) and
then queries the simulator for X ← E1(R, L), S ← E2(X, R) and T ← E3(S, X), then the distinguisher
obtains S‖T = P (L‖R) as required.

We now proceed to prove that the systems (Ψ3, E) and (P,S) are indistinguishable. We consider a
distinguisher D making at most q queries to the system (Ψ3, E) or (P,S) and outputting a bit γ. We
define a sequence Game0, Game1, . . . of modified distinguisher games. In the first game the distinguisher
interacts with the system (Ψ3, E). We incrementally modify the system so that in the last game the
distinguisher interacts with the system (P,S), where S is the previously defined simulator. We denote
by Si the event that in game i the distinguisher outputs γ = 1.

• Game0: the distinguisher interacts with Ψ3 and the ideal ciphers Ei.

• Game1: we modify the way Ei queries are answered, without actually changing the value of the answer.
We also maintain an history of already answered queries for E1, E2 and E3. We proceed as follows:

E1(R, L) query: E−1
1 (R, X) query E2(X, R) query:

1. Let X ← E1(R, L) 1. Let L← E−1
1 (R, X) 1. Let L← E−1

1 (R, X)
2. (S, T)← Adapt′(L, R, X) 2. (S, T)← Adapt′(L, R, X) 2. (S, T)← Adapt′(L, R, X)
3. Return X 3. Return L 3. Return S

7

P S

D

EΨ3

D

E

S’

T

Ψ3 P

D

E

P S’

T’

D

Game 1Game 0 Game 2 Game 3

Fig. 4. Sequence of games for proving indifferentiability.

Adapt′(L, R, X):

1. S‖T ← Ψ3(L‖R)
2. Store (2, X, R, S) in history (E2(X, R) = S)
3. Store (3, S, X, T) is history (E3(S, X) = T).
4. Return (S, T)

The queries to E−1
2 (X, S), E3(S, X) and E−1

3 (S, T) are answered symmetrically.
For example, when given a query to E1(R, L), we first query ideal cipher E1 for X ← E1(R, L); then

instead of X being returned immediately as in Game0, we let S‖T = Ψ3(L‖R), which gives S = E2(X, R)
and E3(S, X) = T ; we then store (2, X, R, S) and (3, S, X, T) in history. Therefore, the value that get
stored in history is exactly the same as the value from ideal ciphers E2 and E3; the only difference is
that this value was obtained indirectly by querying Ψ3 instead of directly by querying E2 and E3. It
is easy to see that this holds for any query made by the distinguisher, who receives exactly the same
answers in Game0 and Game1; this implies:

Pr[S1] = Pr[S0]

As illustrated in Fig. 4, we have actually constructed a simple simulator S ′ that makes queries to a
subsystem T that comprises the construction Ψ3 and the ideal ciphers E1, E2 and E3. The difference
between S ′ in Game1 and the main simulator S defined previously is that 1) S ′ calls ideal cipher E1(R, L)
instead of simulating it and 2) S ′ makes calls to Ψ3(L‖R) instead of P (L‖R).

• Game2: we modify the way the permutation queries are answered. Instead of using Ψ3 as in system
T , we use the random permutation P in the new system T ′ (see Fig. 4).

We must show that the distinguisher’s view has statistically close distribution in Game1 and Game2.
For this, we consider the subsystem T with the 3-round Feistel Ψ3 and the ideal ciphers Ei’s in Game1,
and the subsystem T ′ with the random permutation P and ideal ciphers Ei’s in Game2. We show that
the output of systems T and T ′ is statistically close; this in turn shows that the distinguisher’s view
has statistically close distribution in Game1 and Game2. Note that the indistinguishability of T and T ′

only holds for the particular set of queries made by the distinguisher and the simulator; it could not
hold for any possible set of queries.

In the following, we assume that the distinguisher eventually makes a sequence of Ei queries cor-
responding to all previous Ψ3 queries that he has made. More precisely, if the distinguisher has made
a Ψ3(L, R) query, then eventually the distinguisher makes the sequence of queries X ← E1(R, L),
S ← E2(X, R) and T ← E3(S, X) to the simulator; the same holds for Ψ−1

3 (S, T) queries. This is
without loss of generality, because from any distinguisher D we can build a distinguisher D′ with the
same output that satisfies this property.

The outputs to Ei queries provided by subsystem T in Game1 and by subsystem T ′ in Game2 are
the same, since in both cases these queries are answered by ideal ciphers Ei. Therefore, we must show

8

that the output to P/P−1 queries provided by T and T ′ have statistically close distribution, when the
outputs to Ei queries provided by T or T ′ are fixed.

We consider a forward permutation query L‖R made by either the distinguisher or the simulator S ′.
If this L‖R query is made by the distinguisher, since we have assumed that the distinguisher eventually
makes the Ei queries corresponding to all his permutation queries, this L‖R query will also be made
by the simulator S ′, by definition of S ′. Therefore we can consider L‖R queries made by the simulator
S ′ only.

We first consider the answer to S‖T = Ψ3(L‖R) in Game1. In this case the answer S‖T is computed
as follows:

X = E1(R, L)

S = E2(X, R)

T = E3(S, X)

By definition of the simulator S ′, when the simulator S ′ makes a query for Ψ3(L‖R), it must have
made an ideal cipher query to E1(R, L) before, or an ideal cipher query to E−1

1 (R, X) before, with
L = E−1

1 (R, X).

If the simulator S ′ has made an ideal cipher query for E1(R, L) to subsystem T , then from the
definition of the simulator a call to Adapt′(L, R, X) has occurred, where X = E1(R, L); in this Adapt′

call the values E2(X, R) and E3(S, T) are defined by the simulator; therefore the simulator does not
make these queries to sub-system T . This implies that the values of E2(X, R) and E3(S, X) are not
included in the subsystem T output; therefore these values are not fixed in the probability distribution
that we consider; only the value X = E1(R, L) is fixed.

Moreover, for fixed X, R the distribution of S = E2(X, R) is uniform in {0, 1}n \ B, where B is
the set of already defines values for E2(X, ·). Since there are at most q queries, the statistical distance
between the distribution of E2(X, R) and the uniform distribution in {0, 1}n is at most 2q/2n; the same
holds for the distribution of T = E3(S, X). Therefore, we obtain that for a fixed X, the distribution
of (S, T) is statistically close to the uniform distribution in {0, 1}2n, with statistical distance at most
4q/2n.

If the simulator has made an ideal cipher query for E−1
1 (R, X), then the same analysis applies and

we obtain that for a fixed L = E−1
1 (R, X) the distribution of (S, T) is statistically close to the uniform

distribution in {0, 1}2n, with statistical distance at most 4q/2n. Therefore we obtain that in Game1 the
statistical distance of S‖T = Ψ3(L‖R) with the uniform distribution is always at most 4q/2n.

In Game2, the output to permutation query L‖R is S‖T = P (L‖R); since there are at most q queries
to P/P−1, the statistical distance between P (L‖R) and the uniform distribution in {0, 1}2n is at most
2q/22n.

Therefore the statistical distance between Ψ3(L, R) in Game1 and P (L‖R) in Game2 is at most
4q/2n + 2q/22n ≤ 5q/2n. The same argument applies to inverse permutation queries. This holds for a
single permutation query; since there are at most q such queries, we obtain that the statistical distance
between outputs of systems T and T ′ to permutation queries and Ei queries, is at most 5q2/2n; this
implies:

|Pr[S2]− Pr[S1]| ≤
5q2

2n

• Game3: eventually the distinguisher interacts with system (P,S). The only difference between the
simulator S ′ in Game2 and the simulator S in Game3 is that instead of querying ideal ciphers Ei in
Game2, these ideal ciphers are simply simulated in Game3, while the answer to permutation queries are
exactly the same. Therefore, the distinguisher’s view has the same distribution in Game2 and Game3,

9

which gives:
Pr[S2] = Pr[S3]

and finally:

|Pr[S3]− Pr[S0]| ≤
5q2

2n

which terminates the proof of Theorem 2. ⊓⊔

We note that the security bound in q2/2n for our 3-round ideal cipher based construction is much
better than the security bound in q16/2n obtained for the 6-round Feistel construction in [7] (based on
random oracles).

4.1 Practical Considerations

Extending the Key. So far, we showed how to construct an ideal cipher Ψ3 with 2n-bit message
and k-bit key from three ideal ciphers E1, E2, E3 on n-bit message and (n + k)-bit key. As already
mentioned, we can actually implement E1, E2, E3 from a single n-bit ideal cipher E whose key length
is n + k + 2. However, if only a block-cipher with smaller key-size is available (as it is the case with for
example AES-128), we need a procedure to extend the key size. To handle such cases, we notice the
following simple lemma; we provide the proof in Appendix B.

Lemma 1. Assume E : {0, 1}k × {0, 1}n → {0, 1}n is an ideal cipher and H : {0, 1}t → {0, 1}k is a
random oracle. Define E′ : {0, 1}t × {0, 1}n → {0, 1}n by E′(K ′, X) = E(H(K ′), X), E′−1(K ′, Y) =
E−1(H(K ′), Y). Then E′ is (tD, tS , q, ε)-indifferentiable from an ideal cipher, where tS = O(q(n + t))
and ε = O(q2/2k).

Using this observation, given a single ideal cipher E on n-bit messages and k-bit key and a random
oracle H with output size k bits, we can first build an ideal cipher E′ with n-bit message and (n+k′+2)-
bit key, and then from Theorem 2 we can obtain an ideal cipher Ψ3 on 2n-bit messages and k′-bit key.
It remains to remove the assumption of having random oracle H; this can easily be accomplished by
sacrificing 1 key bit from E, and then using one of the two resulting (independent) ideal ciphers to
efficiently implement H using any of the methods from [6].

Going Beyond Double? Another natural question is to extend the domain of the ideal cipher
beyond doubling it. One way to accomplish this task is to apply our 3-round construction recursively,
each time doubling the domain. However, in this case it is not hard to see that, to extend the domain by
a factor of t, the original block cipher E will have to be used O(tlog2 3) times.2 This makes the resulting
constructions somewhat impractical for large t. In retrospect, this is not surprising, since even the
classical result of Luby-Rackoff, when viewed as a domain doubling of a pseudo-random permutation,
was never meant to be used recursively. Instead, more dedicated methods were subsequently obtained
to extend the domain of a traditional block cipher in linear time [21, 4, 11, 25, 5, 15]. We hope that
future work will do the same for extending the domain of the ideal cipher by a large factor.

In the meanwhile, however, our result can be used for practical applications which only need to
extend the domain by a moderate constant factor. To give an important example, let us consider the
applications of [12, 22], where one needs to apply a random permutation to the domain of an RSA
modulus. Taking the length of modulus N to be 1024 bits and the underlying block-cipher size to be
n = 128 (as in AES), then the exact security of the recursive construction will be O(q2/2128), which

2 In essence, this is because we call E three times for each doubling. Actually, this is not counting the calls to the
independent variable length random oracle H to hash down the key, as above. However, because the constructions of
such an H in [6] are so efficient, it is not hard to see that, even when implementing H using E itself, the dominant
term remains O(tlog2 3) (although the constant is slightly worse).

10

requires q ≪ 264. In contrast, assume that we first build a length-preserving random oracle H on 512
bits (using [6]), and then use the 6-round Feistel construction [7] to get our permutation. In this case,
we get the exact security dominated by the term O(q16/2512) from [7], which requires q ≪ 232. And
this discrepancy will become even worse for the OAEP++ application of Johnson [16], who needed an
ideal cipher whose message and key fully fit inside the RSA modulus.

To summarize, the recursive method is currently practical only for moderate domain extensions
(by a constant factor), although those already seem important for applications.

4.2 Indifferentiability for 2 Rounds in the Honest-but-curious Model

In this section we also consider the honest-but-curious model of indifferentiability introduced by Dodis
and Puniya [9], which is a variant of the general indifferentiability model. We show that in the honest-
but-curious model, 2 rounds as depicted in Fig 3 are actually sufficient to get indifferentiability.

First, we briefly recall the model; for more details we refer to [9]. In the honest-but-curious model
of indifferentiability, the distinguisher cannot make direct queries to the inner primitive E. Instead
it can only query the global construction C and get the results of the internal queries made by the
construction to the inner primitive E. There are actually two types of queries made by the distinguisher:
those for which it asks for the transcript of the queries made by the construction to the primitive E,
and those for which it does not. When the distinguisher interacts with (P,SP), the second queries are
sent directly to P (and are not seen by the simulator), while the first ones are sent to the simulator
S, which must simulate the transcript of the construction’s inner queries to E. Another important
difference with general indifferentiability is that here the simulator cannot make its own additional
queries to P.

Theorem 3. The 2-round construction is (tD, tS , q, ǫ)-indifferentiable in the honest-but-curious model
from a random permutation, with tS = O(qn) and ǫ = 2q2/2n, where q is the total number of distin-
guisher queries and n is the domain size of the inner ciphers.

Proof. The proof is given in Appendix C.

Remark 1. Indifferentiability in the honest-but-curious model has been shown to imply indifferentia-
bility in the general model for so-called transparent constructions [9]. A construction is said to be
transparent if there exists an efficient algorithm which can compute the value of the inner primitive
E on any input x by making a polynomial number of queries to the construction and receiving the
transcript of the inner queries of the construction to E. Since the 2-round construction is not indif-
ferentiable in the general model, this shows that it is also not transparent: namely it is impossible
to efficiently compute E2(S, R) for some arbitrary value S, or E−1

1 (R, S) for some arbitrary value R,
given only oracle access + transcript to Ψ2(L, R) and Ψ−1

2 (S, T).

5 Domain Extension of Tweakable Block Cipher

In this section, we also analyse our construction in the standard model, and we use a tweakable block-
cipher as the underlying primitive. Our second main result in this paper is to show that a 3-round
construction enables to get a security guarantee beyond the birthday paradox.

Tweakable block-ciphers were introduced by Liskov, Rivest and Wagner in [18] and provide an
additional input - the tweak - that enables to get a family of independent block-ciphers. Efficient
constructions of tweakable block-ciphers were described in [18], given ordinary block-ciphers.

Definition 2. A tweakable block-cipher is an efficiently computable function Ẽ : {0, 1}k × {0, 1}ω ×
{0, 1}n → {0, 1}n that takes as input a key K ∈ {0, 1}k, a tweak W ∈ {0, 1}ω and a message m ∈ {0, 1}n

and returns a ciphertext c ∈ {0, 1}n. For every K ∈ {0, 1}k and W ∈ {0, 1}ω, the function Ẽ(K, W, ·)
is a permutation over {0, 1}n.

11

The security notion for a tweakable block-cipher is a straightforward extension of the corresponding
notion for block-ciphers. A classical block-cipher E is a strong pseudo-random permutation if no
adversary can distinguish E(K, ·) from a random permutation, where A can make calls to both E
and E−1, and K ← {0, 1}k. For tweakable block-ciphers, the adversary can additionally choose the
tweak, and E(K, ·, ·) should be indistinguishable from a family of random permutations, parametrised
by W ∈ {0, 1}ω:

Definition 3. A tweakable block-cipher is said to be (t, q, ε)-secure if for any adversary A running in
time at most t and making at most q queries, the adversary’s advantage in distinguishing Ẽ(K, ·, ·)
with K ← {0, 1}k from a family of independent random permutation Π̃(·, ·) is at most ε, where A can
make calls to both Ẽ and Ẽ−1.

Ẽ1K

Ẽ2K

L R

S

S T

W

W

Ẽ1K

Ẽ2K

Ẽ3K

L R

X

S

S T

W

W

W

Fig. 5. The tweakable block ciphers Ψ̃2 (left) and Ψ̃3 (right), with key K and tweak W

We first show that 2 rounds are enough to get a 2n-bit tweakable block-cipher from a n-bit tweakable
block-cipher (see Fig. 5, left). Formally, our 2-round domain extender for tweakable block-cipher works
as follows. Let E1 and E2 be two tweakable block-ciphers with the same signature:

Ẽi : {0, 1}k × {0, 1}ω × {0, 1}n → {0, 1}n

The tweakable block cipher Ψ̃2 : {0, 1}k×{0, 1}ω−n×{0, 1}2n → {0, 1}2n is then defined as follows; the
difference with Fig. 3 is that the R and S inputs go to the tweak (concatenated with the main tweak
W) instead of the key.

S = E1(K, W‖R, L)

T = E2(K, W‖S, R)

Ψ̃2(K, W, (L, R)) = (S, T)

Theorem 4. The tweakable block-cipher Ψ̃2 is a (t′, q, ε′)-secure tweakable block-cipher, if Ẽ1 and Ẽ2

are both (t, q, ε)-secure tweakable block-ciphers, where ε′ = 2 · ε + q2/2n + q2/22n and t′ = t−O(qn).

Proof. See Appendix D.

12

Now we state the second main result of this paper. We define the 3 round tweakable block cipher
Ψ̃3 in a similar manner as Ψ̃2 (see Fig. 5 for an illustration). The 3-round construction enables to go
beyond the birthday security bound. Namely instead of having a bound in q2/2n as in the 2-round
construction, the bound for the 3-round construction is now q2/22n, which shows that the construction
remains secure until q < 2n instead of q < 2n/2.

Theorem 5. The tweakable block-cipher Ψ̃3 is a (t′, q, ε′)-secure tweakable block-cipher, if Ẽ1, Ẽ2 and
Ẽ3 are all (t, q, ε)-secure tweakable block-ciphers, where ε′ = 3 · ε + q2/22n and t′ = t−O(qn).

Proof. See Appendix E.

One drawback of our construction is that it shrinks the tweak size from ω bits to ω − n bits. We
show a simple construction that extends the tweak size, using a keyed universal hash function; this
construction can be of independent interest.

Definition 4. A family H of functions with signature {0, 1}ω
′

→ {0, 1}ω is said to be ε-almost uni-
versal if Prh[h(x) = h(y)] ≤ ε for all x 6= y, where the probability is taken over h chosen uniformly at
random from H.

Let Ẽ be a tweakable block-cipher with tweak in {0, 1}ω. Given a family H of hash functions h with
signature {0, 1}ω

′

→ {0, 1}ω and ω′ > ω, our tweakable block-cipher Ẽ with extended tweak length ω′

is defined as:

Ẽ′((K, h), W ′, m) = Ẽ(K, h(W ′), m)

Theorem 6. The tweakable block cipher Ẽ′ is a (q, t′, ε′)-secure tweakable block cipher if Ẽ is a
(q, t, ε1)-secure tweakable block cipher and the hash function family H is ε2-almost universal, with
ε′ = ε1 + q2 · ε2 and t′ = t−O(q).

Proof. See Appendix F.

We note that many efficient constructions of universal hash function families are known, with
ε2 ≃ 2−ω. Therefore the new tweakable block-cipher can have the same level of security as the original
one, up to the birthday bound for the tweak, i.e. for q ≤ 2ω/2.

6 Conclusion

We have described the first domain extender for ideal ciphers, i.e. we have showed a construction that
is indifferentiable from a 2n-bit ideal cipher, given a n-bit ideal cipher. Our construction is based on a
3-round Feistel, and is more efficient and more secure than first building a n-bit random oracle from a
n-bit ideal cipher (as in [6]) and then a 2n-bit ideal cipher from a n-bit random oracle (as in [7]). We
have also shown that in the standard model, our construction with 2 rounds enables to get a 2n-bit
tweakable block-cipher from a n-bit tweakable block-cipher and that with 3 rounds we get a security
guarantee beyond the birthday paradox.

References

1. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, In Proceedings
of the 1st ACM Conference on Computer and Communications Security (1993), 62 -73.

2. J. Black, The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash Function, Proceedings of
FSE 2006: 328-340.

3. J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block Cipher-Based Hash-Function Constructions
from PGV, in Advances in Cryptology - CRYPTO 2002, California, USA.

13

4. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.
In Proceedings of FSE ’06, LNCS 4047, pp. 293–309, 2006.

5. D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme using the hash-encrypt-hash approach.
In Proceedings of Indocrypt ’06, LNCS 4329, pp. 287–302, 2006.

6. J.S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-Damg̊ard Revisited: How to Construct a Hash Function.
Proceedings of CRYPTO 2005: 430-448.

7. J.S. Coron, J. Patarin and Y. Seurin, The Random Oracle Model and the Ideal Cipher Model are Equivalent. Proceed-
ings of CRYPTO 2008. Full version available at Cryptology ePrint Archive, Report 2008/246, http://eprint.iacr.org/.

8. A. Desai, The security of all-or-nothing encryption: Protecting against exhaustive key search, In Advances in Cryp-
tology - Crypto’ 00 (2000), LNCS vol. 1880, Springer-Verlag.

9. Y. Dodis and P. Puniya, On the Relation Between the Ideal Cipher and the Random Oracle Models. Proceedings of
TCC 2006: 184-206.

10. S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom permutation, In Advances in
Cryptology - ASIACRYPT’ 91 (1992), LNCS vol. 739, Springer-Verlag, pp. 210 -224.

11. S.R. Fluhrer and D.A. McGrew. The extended codebook (XCB) mode of operation. Technical Report 2004/078,
IACR eprint archive, 2004.

12. L. Granboulan, Short signature in the random oracle model. Proceedings of Asiacrypt 2002, LNCS 2501.

13. S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor, Advances in Cryptology, CRYPTO

’03, 2007.

14. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In Proceedings of CT-RSA 2004, LNCS 2964, pp. 292–
304, 2004.

15. S. Halevi. Invertible Universal hashing and the TET Encryption Mode. In Proceedings of CRYPTO ’07, LNCS 4622,
pp. 412–429, 2007.

16. J. Jonsson, An OAEP variant with a tight security proof, available at http://eprint.iacr.org/2002/034/.

17. J. Kilian and P. Rogaway, How to protect DES against exhaustive key search (An analysis of DESX), Journal of
Cryptology 14, 1 (2001), 17 -35.

18. M. Liskov, R. Rivest and D. Wagner, Tweakable Block Ciphers. Proceedings of CRYPTO 2002, LNCS vol. 2442.

19. M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions, SIAM Journal
of Computing, 17(2):373-386, 1988.

20. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results on Reductions, and Applications
to the Random Oracle Methodology. Theory of Cryptography - TCC 2004, Lecture Notes in Computer Science,
Springer-Verlag, vol. 2951, pp. 21-39, Feb 2004.

21. M. Naor and O. Reingold, On the construction of pseudorandom permutations: Luby-Rackoff revisited, J. of Cryp-
tology, 1999. Preliminary Version: STOC 1997.

22. D. H. Phan and D. Pointcheval. Chosen-Ciphertext Security without Redundancy. Proceedings of Asiacrypt ’03,
LNCS 2894.

23. P. Rogaway, M. Bellare and J. Black, OCB: A block-cipher mode of operation for efficient authenticated encryption.
ACM Conference on Computer and Communication Security 2001: 196-205.

24. V. Shoup, Sequences of games: a tool for taming complexity in security proofs. Available electronically at
http://eprint.iacr.org/2004/332/.

25. P. Wang, D. Feng, and W. Wu. HCTR: A variable-input-length enciphering mode. In Proceedings of CISC ’05, LNCS
3822, pp. 175–188, 2005.

A Previous Constructions are not Indifferentiable

We analyse previous constructions of domain extender for block ciphers and show that they are not
indifferentiable from an ideal cipher. This is not surprising as all these constructions were proposed
with privacy concerns in mind (mainly for disk encryption purposes) and proven secure in the classical
Luby-Rackoff model. Most of this constructions use two layers of keyed universal hashing and cannot
be analysed in the indifferentiability framework: this is the case for example of PEP [4], XCB [11],
HCTR [25], HCH [5] and TET [15].

Other constructions however use nothing more than the underlying block cipher. The two most
prominent of them are CMC [13] and EME [14] proposed by Halevi and Rogaway. We now show that
these two constructions are not indifferentiable from an ideal cipher.

14

A.1 The CMC construction

CMC was proposed by Halevi and Rogaway [13] and uses two layers of CBC and an intermediate
mixing layer. This is a tweakable mode but we don’t consider the tweak in our description (that is we
set the tweak to T = 0n) since it is not relevant for our attack.

CMC uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n and turns it into a tweakable block cipher
E with tweak space {0, 1}n, key space {0, 1}k × {0, 1}k, and message space

⋃

m≥2{0, 1}mn. A message
P1 · · ·Pm of m n-bit blocks is encrypted under key K, K ′ and tweak T as follows:

1. T← EK′(T)
2. PPP0 ← T

3. for i = 1 to m do PPPi ← EK(Pi ⊕ PPPi−1)
4. M ← 2(PPP1 ⊕ PPPm)
5. for i = 1 to m do CCCi ← PPPm+i−1 ⊕M
6. CCC0 ← 0n

7. for i = 1 to m do Ci = EK(CCCi)⊕ CCCi−1

8. C1 ← C1 ⊕ T

9. return C1 · · ·Cm

The attack on CMC proceeds as follows (we describe the attack for two blocks only, it can be easily
extended to any number of blocks).

If first fixes two arbitrary keys K ′ and K, and computes T = EK′(T). It then simply consists
in computing P1 = E−1

K (0n). One can then verify that the encryption of (P1 ⊕ T)|P1 is EK,K′((P1 ⊕
T)‖P1) = EK(0)‖(EK(0)⊕T). Hence one has been able to find to values A and B such that EK,K′((A⊕
T)‖A) = B‖(B ⊕ T) for some fixed value T, which would be possible with only negligible advantage
for a random permutation.

A.2 The EME construction.

EME was proposed as CMC by Halevi and Rogaway [14], and improves on CMC since it is parallelizable.
It uses to layers of ECB and an intermediate mixing layer. As CMC it is tweakable but we will set the
tweak to 0n in our attack.

CMC uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n and turns it into a tweakable block cipher
E with tweak space {0, 1}n, key space {0, 1}k, and message space

⋃

m≥2{0, 1}mn. A message P1 · · ·Pm

of m n-bit blocks is encrypted under key K and tweak T = 0n as follows:

1. L← 2EK(0n)
2. for i = 1 to m do PPPi = Ek(Pi ⊕ 2i−1L)
3. MP ← PPP1 ⊕ PPP2 ⊕ · · · ⊕ PPPm

4. MC ← EK(MP)
5. M ←MP ⊕MC
6. for i = 2 to m do CCCi = PPPi ⊕ 2i−1M
7. CCC1 ←MC ⊕ CCC2 ⊕ · · · ⊕ CCCm

8. for i = 1 to m do Ci ← EK(CCCi)⊕ 2i−1L
9. return C1 · · ·Cm

The attack on EME for two-blocks messages proceeds as follows:

1. choose an arbitrary key K and compute L = 2EK(0n)
2. compute the value MP corresponding to MC = 0n, MP = E−1

K (0n); note that consequently
M = MP ⊕MC = MP

3. fix P1 = 0n and compute PPP1 = EK(P1 ⊕ L)

15

4. compute PPP2 = MP ⊕ PPP1 and deduce P2 = E−1
K (PPP2)⊕ 2L

5. compute CCC1 = CCC2 = PPP2 ⊕ 2MP

6. compute C1 = EK(CCC1)⊕ L and C2 = EK(CCC2)⊕ 2L = EK(CCC1)⊕ 2L

Hence this attack enables to find P1, P2, C1, C2 such that EK(P1‖P2) = C1‖C2, P1 = 0n and C1⊕C2 =
L⊕2L for some fixed value L. This would be possible with only negligible advantage for a truly random
permutation.

B Proof of Lemma 1

We need to construct a simulator S for H and E, such that the two systems formed by (E′, (H, E))
and (E ′,S) are indistinguishable, where E ′ is an ideal cipher with t-bit key and n-bit message.

Our simulator maintains an “H-table” of pairs (K ′, K) corresponding to answered queries K =
H(K ′); it also maintains an “E-table” of triples (K, X, Y) of answered queries Y = E(K, X). Our
simulator S answers the distinguisher’s queries as follows:

1. H(K ′) query: pick a random K ← {0, 1}k, record the pair (K ′, K) in the “H-table” and return K.

2. E(K, X) query: if there exists a tuple (K, X, Y) in the E-table, return Y . Else, if there exists a
tuple (K ′, K) in the “H-table”, query the value Y = E ′(K ′, X), record (K, X, Y) in the “E-table”
and return Y . Else, pick a random Y ← {0, 1}n, record (K, X, Y) in the “E-table”, while making
sure that no collision is created for E(K, ·); otherwise, a new Y is generated. The simulator returns
Y .

3. E−1(K, Y) query: if there exists a tuple (K, X, Y) in the E-table (see below), return X. Else, if
there exists a tuple (K ′, K) in the “H-table”, query the value Y = E ′−1(K ′, Y), record (K, X, Y) in
the “E-table” and return X. Else, pick a random X ← {0, 1}n, record (K, X, Y) in the “E-table”,
while making sure that no collision is created for E−1(K, ·), and return X.

This completes the description of the simulator. Now we show that the system (E′, (H, E)) is
indistinguishable from the system (E ′,S), where:

E′(K ′, X) = E(H(K ′), X)

is the construction with extended key-size. We consider a distinguisher D making at most q queries
and outputting a bit γ. We define a sequence Game0, Game1, . . . of modified distinguisher games. In the
first game Game0, the distinguisher interacts with the system formed by (E ′,S). We denote by Si the
event in game i that the distinguisher outputs γ = 1.

Game0: the distinguisher interacts with the simulator S and the ideal cipher E ′.

Game1: we slightly modify the way H and E queries are answered by the simulator. In Game1, given
a query K ′ for H, instead of letting K ← {0, 1}k, the new simulator S ′ makes a query for random
oracle H and returns K = H(K ′). Similarly, for a E(K, X) query, instead of generating a random
Y ← {0, 1}n, the simulator queries ideal cipher E and returns E(K, X); similarly for E−1. Since we
have simply replaced one set of random variables by a different, but identically distributed, set of
random variables, we have:

Pr[S0] = Pr[S1]

Game2: we modify the way E ′ queries are answered by the system. Instead of returning E ′(K ′, m) with
ideal cipher E ′, the system returns E′(K ′, m) = E(H(K ′), m) by calling ideal cipher E and random
oracle H.

We must show that the distinguisher’s view has statistically close distribution in Game1 and Game2.
For this, we consider the subsystem T with the ideal cipher E ′ and ideal cipher E and random oracle

16

H in Game1, and the subsystem T ′ with construction E′ and ideal cipher E and random oracle H in
Game2. We show that the output of systems T and T ′ is statistically close; this in turn shows that the
distinguisher’s view has statistically close distribution in Game1 and Game2.

The outputs to E queries provided by subsystem T in Game1 and by subsystem T ′ in Game2 are the
same, since in both cases these queries are answered by ideal cipher E. Therefore, we must show that
the output to E ′ queries provided by T and T ′ have statistically close distribution, when the outputs
to E and H queries provided by T or T ′ are fixed.

We consider a E ′(K ′, m) query made either by the distinguisher or by the simulator (the argument
for a E ′−1 query is similar). In Game2 the answer c is computed as E(H(K ′), m); we have that condi-
tioned on the event that no collision occurs for H, the output distribution of E(H(K ′), m) in Game2 is
exactly the same as the distribution of E ′(K ′, m) in Game1. Let denote by bad the event that a collision
occurs for H; since there are at most q queries from the distinguisher, we have:

Pr[bad] ≤
q2

2k

and we obtain:

|Pr[S2]− Pr[S1]| ≤ Pr[bad] ≤
q2

2k

Game3: the distinguisher interacts with system (E′, (H, E)). We have that the system (E′, (H, E))
provides the same output as the system in Game2, which gives:

Pr[S3] = Pr[S2]

From the previous inequalities, we obtain the following upper bound on the distinguisher’s advantage:

|Pr[S3]− Pr[S0]| ≤
q2

2k

which terminates the proof of Lemma 1.

C Proof of Theorem 3

We restrict ourself to distinguishers which do not make twice the same query (or the inverse query
corresponding to a previous query). Note however that the distinguisher could query L‖R first as a
type I query (i.e. without asking for the transcript, and not seen by the simulator) and then as a type
II query (when asking for the transcript, and sent to the simulator).

We first describe our simulator S. It maintains an history of already defined values for E1 and E2.
Upon a query of the distinguisher, it runs as follows:

– on input a direct query (+, L‖R):
1. query P (L‖R) = S‖T
2. if E1(R, L) or E−1

1 (R, S) is already defined, abort
3. else E1(R, L)← S and add E1(R, L) = S to the history
4. if E2(S, R) or E−1

2 (S, T) is already defined, abort
5. else E2(S, R)← T and add E2(S, R) = T to the history
6. return E1(R, L) = S, E2(S, R) = T

– on input an inverse query (−, S‖T):
1. query P−1(S‖T) = L‖R
2. if E2(S, R) or E−1

2 (S, T) is already defined, abort
3. else E−1

2 (S, T)← R and add E2(S, R) = T to the history
4. if E1(R, L) or E−1

1 (R, S) is already defined, abort

17

5. else E−1
1 (R, S)← L and add E1(R, L) = S to the history

6. return E−1
2 (S, T) = R, E−1

1 (R, S) = L

We prove the indifferentiability through a sequence of games Gamei. We will note Si the event that
the distinguisher outputs 1 in Gamei. We start with:

Game0: the distinguisher D interacts with (P,S)

Game1: it is similar to Game0 except that P now returns uniformly random answers. Looking at D and
S as a distinguisher D′ making at most q queries to P , it is easy to see that

|Pr[S1]− Pr[S0]| ≤
q2

2 · 22n
.

Game2: we modify the way the answers to type I queries (those not seen by the simulator S) are
computed. Instead of being asked directly to the permutation P , they are “intercepted” by an algorithm
M which forwards them to the simulator S.M then computes the answer toD using the values returned
by S.

As long as the simulator does not abort, the output ofM in Game2 is the same as the output of P
in Game1. Moreover as long as the simulator does not abort, its output is also the same in Game2 as in
Game1 since it does not depend on the additional queries made byM. Hence:

|Pr[S2]− Pr[S1]| ≤ Pr
Game2

[S aborts].

Let bad denote the event that there exists 1 ≤ j < i ≤ q such that the i-th and j-th queries of the
distinguisher are such that

(Ri = Rj) ∧ (Si = Sj) ∧ (Li 6= Lj ∨ Ti 6= Tj).

It is easy to see that as long as bad does not happen, the simulator does not abort since it is always
able to define the values of the internal ciphers. Therefore:

Pr
Game2

[S aborts] ≤ Pr
Game2

[bad]

Moreover, defining badi as the event that bad happens exactly at the i-th query of the distinguisher,
we get:

Pr
Game2

[bad] =

q
∑

i=1

Pr
Game2

[badi]

Assume that the i-th query is a direct one: (+, Li|Ri); the argument for inverse queries is similar. Note
that this query cannot have been done to P yet. Since there are at most i− 1 values Sj in the history
of P and since P returns uniformly random answers, we obtain:

Pr
Game2

[badi] ≤
i− 1

2n

which gives:

Pr
Game2

[bad] =

q
∑

i=1

Pr
Game2

[badi] ≤
q2

2 · 2n

and eventually:

|Pr[S2]− Pr[S1]| ≤
q2

2 · 2n
.

18

Game3: we remove the permutation P and modify the simulator into a new simulator S ′ which, upon
reception of a direct query L‖R, defines S = E1(R, L) uniformly at random and T = E2(S, R) uniformly
at random, and symmetrically for inverse queries. Looking at D andM as a distinguisher D′, one can
see that the output of S in Game2 and S ′ in Game3 are exactly the same, which gives:

Pr[S3] = Pr[S2]

Game4: the distinguisher interacts with the construction and the ideal ciphers E1, E2. We have that
Game3 and Game4 are identical unless some collision happens in Game3 when defining two values for the
same key. Hence:

|Pr[S4]− Pr[S3]| ≤ 2
q2

2 · 2n
=

q2

2n
.

Putting everything together yields

|Pr[S4]− Pr[S0]| ≤ 2
q2

2 · 22n
+

q2

2n
≤

2q2

2n
.

D Proof of Theorem 4

We consider an adversary making a sequence of exactly q queries. There are two types of queries A
can make: either (+, W, L, R) which is a query to Ψ̃2(K, W, L‖R), or (−, W, S, T) which is a query to

Ψ̃2
−1

(K, W, S‖T). For the i-th query, we denote the by (W, Li, Ri, Si, Ti) the corresponding 5-uple.

Game0: the queries are answered using Ψ̃2, as illustrated in Fig. 5.

Game1: we replace the tweakable block-ciphers E1 and E2 by 2 independent family of random permu-
tations. From an attacker against Ψ̃2 running in time t′, we can construct an attacker against E1 or E2

running in time at most:

t = t′ +O(qn)

Since by assumption E1 and E2 are both (t, q, ε)-secure, we must have:

|Pr[S1]− Pr[S0]| ≤ 2 · ε

Game2: the queries are now answered using the following process R. Given the i-th query:

1. If (+, W, L, R) is queried and for some 1 ≤ j < i the j-th 4-uple is (W, L, R, S, T), then S‖T is
answered.

2. If (−, W, S, T) is queried and for some 1 ≤ j < i the j-th 4-uple is (W, L, R, S, T), then L‖R is
answered.

3. If neither 1 nor 2 holds, then a uniformly distributed 2n-bit string is returned.

We denote by bad the following event: there exists 1 ≤ i < j ≤ q such that the i-th answer
(Wi, Li, Ri, Si, Ti) and the j-th answer (Wj , Lj , Rj , Sj , Tj) satisfy one of the following conditions:

1. Wi = Wj and Ri = Rj and Li 6= Lj and Si = Sj

2. Wi = Wj and Li = Lj and Ri = Rj and Si 6= Sj

3. Wi = Wj and Si = Sj and Ti = Tj and Ri 6= Rj

We have that conditioned on ¬bad, the output of R in Game2 has the same distribution as the output
of Ψ̃2 in Game1, which gives:

Pr[S2|¬bad] = Pr[S1]

19

Moreover we have that Pr[bad] ≤ q2/2n, which gives using the Difference Lemma [24]:

|Pr[S2]− Pr[S1]| ≤ Pr[bad] ≤
q2

2n

Game3: the adversary interacts with a family of random permutation Π̃ ′. We consider the following
event bad′ in Game2: there exists 1 ≤ i < j ≤ q such that the i-th answer (Wi, Li, Ri, Si, Ti) and the
j-th answer (Wj , Lj , Rj , Sj , Tj) satisfy one of the following conditions:

1. Wi = Wj and (Li, Ri) = (Lj , Rj) and (Si, Ti) 6= (Sj , Tj)

2. Wi = Wj and (Li, Ri) 6= (Lj , Rj) and (Si, Ti) = (Sj , Tj)

We have that conditioned on ¬bad′, the distribution of R in Game2 and the distribution of P in Game3

are the same; therefore:

Pr[S2|¬bad′] = Pr[S3]

Moreover, we have Pr[bad′] ≤ q2/22n, which gives:

|Pr[S3]− Pr[S2]| ≤ Pr[bad′] ≤
q2

22n

Combining the previous inequalities, we get:

|Pr[S3]− Pr[S0]| ≤ 2 · ε +
q2

2n
+

q2

22n

Therefore we can take ε′ = 2 · ε + q2/2n + q2/22n, which terminates the proof of Theorem 4.

E Proof of Theorem 5

We prove the following theorem.

Theorem 7. The 3-round block-cipher construction Ψ3 (see Figure 6) is ǫ-indistinguishable from an
ideal cipher with ǫ = (q

2n)2 for an attacker making q block-cipher queries with q < 2n.

The above theorem and the following sequence of games completes the proof of Theorem 5. We denote
Si the event that the distinguisher outputs 1 in Gamei.

Game0: the queries are answered using Ψ̃3, as illustrated in Fig. 5.

Game1: we replace the tweakable block-ciphers E1, E2, E3 by 3 independent family of random permu-
tations. From an attacker against Ψ̃3 running in time t′, we can construct an attacker against E1, E2

or E3 running in time at most:

t = t′ +O(qn)

Since by assumption E1, E2 and E3 are all (t, q, ε)-secure, we must have:

|Pr[S1]− Pr[S0]| ≤ 3 · ε

Game2: the adversary interacts with a family of random permutation Π̃ ′. By Theorem 7 we must have:

|Pr[S2]− Pr[S1]| ≤
q2

22n

20

E.1 Proof of Theorem 7

Ei’s are actually random permutaion such that Ei : Y × Y → Y . So, Ψ3, Π̃ ′ : Y × Y → Y × Y .
Here Y = {0, 1}n. The (i + 1)th query can either be a forward permutation query or a backward
permutation query. Without loss of generality we can assume if (i + 1)th query is a forward query
(Li+1, Ri+1) is distinct from (L, R) tuples in previous queries (responses), and similarly for a backward
query (Si+1, Ti+1) is distinct from (S, T) tuples in previous queries (responses). Whether the attacker
interacts with Ψ3 or ideal cipher Π̃ ′, input collision means output collision and output collision means
input collision. So we can also assume (i+1)th output pair (si+1, ti+1) is distinct from previous output
pairs, previous input pairs are distinct among themselves and previous output pairs are distinct among
themselves.

When the attacker interacts with Ψ3 after i queries the underlying permutations E1, E2, E3 have
been fixed at some points, and at other points E1, E2, E3’s behave randomly. Also input-output of
jth query is actually a 4-tuple (Lj , Rj , sj , tj). We let Vi = ((L1, R1, s1, t1), · · · , (Li, Ri, si, ti)) be the
attacker view after making the ith query.

To prove Theorem 7 we will use the following lemma which shows for i = 1, · · · , q−1 the advantage
for (i + 1)th query is actually bounded by 2i

|Y |2−i
.

Lemma 2. For i ∈ {1, · · · , q−1}, Advi+1 be the distinguishing advantage for the (i+1)th query, then,

Advi+1 =
1

2

∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣ ≤
2i

|Y |2 − i

where OP i = {(s1, t1), · · · , (si, ti)}.

If for any attacker making q queries Adv(q) is the distinguishing advantage, then it is not hard to
show that Adv(q) ≤

∑q−1
i=1 Advi+1. Hence by Lemma 2 we get,

Adv(q) ≤

q−1
∑

i=1

Advi+1 ≤

q−1
∑

i=1

2i

|Y |2 − i
<

q−1
∑

i=1

2i

|Y |2 − q
=

q2 − q

|Y |2 − q
<

q2

|Y |2
As q < |Y | = 2n

⊓⊔

E1

E2

E3

L R

X

S

S T

Fig. 6. The 3-round Feistel construction Ψ3(L, R).

21

E.2 Proof of Lemma 2

We will give a proof when the (i + 1)th query is forward permutaion query, for backward permutation
query the proof works in a similar fashion. From the attacker point of view

X̄ = (X1, · · · , Xi) = (E1(R1, L1), · · · , E1(Ri, Li))

is actually a random variable which satisfies Vi.

Now we say any i-tuple x̄ = (x1, · · · , xi) is feasible if Pr[X̄ = x̄|Vi] is non zero. F be the set of all
feasible x̄. Now we will state another lemma, loosely speaking which gives an estimate of Advi+1 for an
fixed x̄ ∈ F .

Lemma 3. For all x̄ ∈ F ,

∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣ ≤
4i

|Y |2 − i

Lemma 3 actually almost immediately proves Lemma 2 as follows,

Advi+1

=
1

2

∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣

≤
1

2

∑

(s,t)∈Y 2\OPi

∑

x̄∈F

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣× Pr[X̄ = x̄|Vi]

=
1

2

∑

x̄∈F

∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣× Pr[X̄ = x̄|Vi]

≤
1

2

∑

x̄∈F

4i

|Y |2 − i
× Pr[X̄ = x̄|Vi] =

2i

|Y |2 − i

E.3 Proof of Lemma 3

At first we would like define some notations and state some important observations. For a feasible
i-tuple x̄ = (x1, · · · , xi) we define X j

x̄ = {α ∈ Y |α appears in x̄ exactly j times }. Note,

i
∑

j=1

j|X j
x̄ | = i (1)

Similarly considering the tuple s̄ = (s1, · · · , si), we define Sj = {α ∈ Y |α appears in s̄ exactly j times }.
Also we have,

i
∑

j=1

j|Sj | = i (2)

When the attacker is making (i + 1)th query the tuple s̄ is already fixed. So we do not include the
subscript s̄ in the defination of Sj . We define,

Xx̄ =
i

⋃

j=1

X j
x̄ and S =

i
⋃

j=1

Sj

22

Hence we also have,

|Xx̄| =
i

∑

j=1

|X j
x̄ | and |S| =

i
∑

j=1

|Sj | (3)

For the query (Li+1, Ri+1), we say Xi+1 is new with respect to x̄ if Xi+1 /∈ Xx̄.We also say Xi+1 is
k-collision with respect to x̄ if Xi+1 ∈ X

k
x̄ .

Now for a fixed x̄ = (x1, · · · , xi), depending on the value of Xi+1 we define S ′x̄(Xi+1) ⊆ S as
follows.

S ′x̄(Xi+1) = {α ∈ Y |α = sj and xj = Xi+1 for some j ∈ [1, i]}

Intuitively S ′x̄(Xi+1) is the set of fixed outputs for E2(Xi+1, .). If Xi+1 is new then S ′x̄(Xi+1) is empty,
and if Xi+1 ∈ X

k
x̄ then |S ′x̄(Xi+1)| = k. This is true because if |S ′x̄(Xi+1)| < k, then we would have

xj1 = xj2 = Xi+1 and sj1 = sj2 for some j1, j2 ∈ [1, i] and j1 6= j2. As E2(Xi+1, .) is a permutation
this implies Rj1 = Rj2 = r. E1(r, .) being a permutation this implies Lj1 = Lj2 as well, which is a
contradiction because we have assumed previous input tuples are distinct.

Now we partition S ′x̄(Xi+1) as follows,

S ′x̄(Xi+1) = (S ′x̄(Xi+1) ∩ S
1) ∪ (S ′x̄(Xi+1) ∩ S

2) ∪ · · · ∪ (S ′x̄(Xi+1) ∩ S
i)

If we denote |S ′x̄(Xi+1)∩S
j | = kj , and if Xi+1 ∈ X

k
x̄ then clearly

∑i
j=1 kj = k. We state this result

as Lemma 4.

Lemma 4. If Xi+1 is new, then S ′x̄(Xi+1) is empty, and if Xi+1 ∈ X
k
x̄ then k = |S ′x̄(Xi+1)| =

∑i
j=1 kj, where kj = |S ′x̄(Xi+1) ∩ S

j |.

Say Bi+1 ⊆ [1, i] be the set such that for all j ∈ Bi+1 we have Ri+1 = Rj . As all the previous input
tuples are distinct all xj ’s are also distinct for any feasible x̄ = (x1, · · · , xi) and j ∈ Bi+1. Hence we
get the following Lemma.

Lemma 5. If Bi+1 ⊆ [1, i] be the set such that for all j ∈ Bi+1 we have Ri+1 = Rj, then |Bi+1| ≤ |Xx̄|.

Proof.
|Bi+1| ≤ number of distinct elements in any feasible tuple x̄ = |Xx̄|

⊓⊔

Now we will break the expression
∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣

in some separate terms so it will help us to compute the desired bound.
∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣

≤
∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new]

− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣× Pr[Xi+1 is new |Vi ∧ X̄ = x̄]

+
i

∑

k=1

∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision]

− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣× Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

= A× Pr[Xi+1 is new |Vi ∧ X̄ = x̄] +
i

∑

k=1

Ck × Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄] (4)

23

Where,

A =
∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new]

− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣ (5)

Ck =
∑

(s,t)∈Y 2\OPi

∣

∣ Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision]

− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]
∣

∣ (6)

Now our goal is to find good upper bound of A, Ck and Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄] for
k = 1, · · · , i. Clearly,

Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄] =
|X k

x̄ |

|Y | − |Bi+1|
(7)

For upper bounding A, Ck, we will use the following lemma which states the value of Pr[Ψ3(Li+1, Ri+1) =
(s, t)|Vi ∧ X̄ = x̄ ∧ Xi+1 is new] and Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧ Xi+1 is k-collision] for
k = 1, · · · , i.

Lemma 6. For any Vi = ((L1, R1, s1, t1), · · · , (Li, Ri, si, ti)) and x̄ ∈ F , Ψ3(Li+1, Ri+1) has the fol-
lowing conditional probability distribution

Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is new]

=

{

1
|Y | ×

1
|Y | if (s, t) ∈ (Y \ S)× Y. Note |(Y \ S)× Y | = (|Y | − |S|)|Y |

1
|Y | ×

1
|Y |−j if (s, t) ∈ (Sj × Y) \ OP i. Note |(Sj × Y) \ OP i| = |S

j |(|Y | − j)

Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄ ∧Xi+1 is k-collision]

=

1
|Y |−k ×

1
|Y | if (s, t) ∈ (Y \ S)× Y. Note |(Y \ S)× Y | = (|Y | − |S|)|Y |

1
|Y |−k ×

1
|Y |−j if (s, t) ∈ ((Sj \ S ′x̄(Xi+1))× Y) \ OP i. Note |((Sj \ S ′x̄(Xi+1))× Y) \ OP i|

= (|Sj | − kj)(|Y | − j)
0 if (s, t) ∈ (S ′x̄(Xi+1)× Y) \ OP i. Note |(S ′x̄(Xi+1)× Y) \ OP i|

= k|Y | −
∑i

ℓ=1
ℓkℓ

where OP i = {(s1, t1), · · · , (si, ti)}, S
j = {α ∈ Y |α appears in (s1, · · · , si) exactly j times }, S =

⋃i
j=1 S

j, S ′x̄(Xi+1) = {α ∈ Y |α = sj and xj = Xi+1 for some j ∈ [1, i]} and kj = |S ′x̄(Xi+1) ∩ S
j |.

Also we know, Π̃ ′ being a random permutation,

Pr[Π̃ ′(Li+1, Ri+1) = (s, t)] =
1

|Y |2 − i

for all (s, t) ∈ |Y |2 \ OP i. Now we are ready to estimate A and Ck.
By Equation (5), we have:

A = (|Y | − |S|)|Y | ×
(1

|Y |2 − i
−

1

|Y |2

)

+
i

∑

j=1

|Sj |(|Y | − j)×
(1

|Y |(|Y | − j)
−

1

|Y |2 − i

)

=
(|Y | − S)i

|Y |(|Y |2 − i)
+

i
∑

j=1

(j|Y | − i)|Sj |

|Y |(|Y |2 − i)

24

By Equation (2) and (3), we have
∑i

j=1 j|Sj | = i and
∑i

j=1 |S
j | = |S|; this gives:

A =
(|Y | − S)i

|Y |(|Y |2 − i)
+

i|Y | − i|S|

|Y |(|Y |2 − i)
≤

2i

|Y |2 − i

By Equation (6), we have:

Ck =
(

k|Y | −
i

∑

ℓ=1

ℓkℓ

)

×
(1

|Y |2 − i
− 0

)

+ (|Y | − |S|)|Y | ×
(1

(|Y | − k)|Y |
−

1

|Y |2 − i

)

+
i

∑

j=1

(|Sj | − kj)(|Y | − j)×
(1

(|Y | − k)(|Y | − j)
−

1

|Y |2 − i

)

≤
k|Y |

|Y |2 − i
+

(k|Y | − i)(|Y | − |S|)

(|Y | − k)(|Y |2 − i)
+

i
∑

j=1

(|Sj | − kj)(k|Y |+ j|Y | − i− kj)

(|Y | − k)(|Y |2 − i)

=
k|Y |

|Y |2 − i
+

(k|Y | − i)(|Y | − |S|)

(|Y | − k)(|Y |2 − i)
+

i
∑

j=1

(|Sj | − kj)(k|Y | − i)

(|Y | − k)(|Y |2 − i)
+

i
∑

j=1

j(|Sj | − kj)

|Y |2 − i

By Equation (2) and (3), we have
∑i

j=1 j|Sj | = i and
∑i

j=1 |S
j | = |S|, and by Lemma 4, we have

∑i
j=1 kj = k; this gives:

Ck ≤
k|Y |

|Y |2 − i
+

(k|Y | − i)(|Y | − |S|)

(|Y | − k)(|Y |2 − i)
+

(k|Y | − i)(|S| − k)

(|Y | − k)(|Y |2 − i)
+

i

|Y |2 − i

=
k|Y |

|Y |2 − i
+

k|Y | − i

|Y |2 − i
+

i

|Y |2 − i

=
2k|Y |

|Y |2 − i

Now putting the upper bounds of A and Ck in Equation (4) we get,

∑

(s,t)∈Y 2\OPi

|Pr[Ψ3(Li+1, Ri+1) = (s, t)|Vi ∧ X̄ = x̄]− Pr[Π̃ ′(Li+1, Ri+1) = (s, t)|Vi]|

≤
2i

|Y |2 − i
× Pr[Xi+1 is new |Vi ∧ X̄ = x̄] +

i
∑

k=1

2k|Y |

|Y |2 − i
× Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

=
2i

|Y |2 − i

(

Pr[Xi+1 is new |Vi ∧ X̄ = x̄] +
i

∑

k=1

Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]
)

+
i

∑

k=1

2(k|Y | − i)

|Y |2 − i
× Pr[Xi+1 is k-collision|Vi ∧ X̄ = x̄]

=
2i

|Y |2 − i
+

i
∑

k=1

2(k|Y | − i)

|Y |2 − i
×

|X k
x̄ |

|Y | − |Bi+1|
By Equation (7)

=
2i

|Y |2 − i
+

2|Y |
∑i

k=1 k|X k
x̄ | − 2i

∑i
k=1 |X

k
x̄ |

(|Y |2 − i)(|Y | − |Bi+1|)

=
2i

|Y |2 − i
+

2i

|Y |2 − i
×
|Y | − |Xx̄|

|Y | − |Bi+1|
By Equation (1) & (3) ,

i
∑

k=1

k|X k
x̄ | = i and

i
∑

k=1

|X k
x̄ | = |Xx̄|

≤
4i

|Y |2 − i
By Lemma 5 we have |Xx̄| ≥ |Bi+1|

25

E.4 Proof of Lemma 6

Note Ψ3(Li+1, Ri+1) = (s, t) actually means,

s = E2(Xi+1, Ri+1)

t = E3(s, Xi+1)

We know E2, E3 are random permutations. That means if at some point of time, for some particular
key K, (I1, O1), · · · , (Iℓ, Oℓ) input-output pairs have already been fixed for the random permutation
E2(K, .), then at the next invokation of E2(K, .),

Pr[E2(K, x) = y] =
1

|Y | − ℓ

for all x ∈ Y \ {I1, · · · , Iℓ} and y ∈ Y \ {O1, · · · , Oℓ}. The same is true for E3 random permutation.
Hence if Xi+1 is new, then

Pr[E2(Xi+1, Ri+1) = s] =
1

|Y |

for all s ∈ Y .
If Xi+1 is k-collision, then

Pr[E2(Xi+1, Ri+1) = s] =
1

|Y | − k

for all s ∈ Y \ S ′x̄(Xi+1). And

Pr[E2(Xi+1, Ri+1) = s] = 0

for all s ∈ S ′x̄(Xi+1), because otherwise we have a duplicate query.
Similarly, if s ∈ Y \ S, then

Pr[E3(s, Xi+1) = t] =
1

|Y |

for all t ∈ Y .
And if s ∈ Sj , then

Pr[E3(s, Xi+1) = t] =
1

|Y | − j

for all t ∈ Y \ Set of t values corresponding to s in Vi. Using the above probability values it is easy to
see why Lemma 6 holds. ⊓⊔

F Proof of Theorem 6

We consider a (q, t′, ε′)-adversaryA′ against our construction Ẽ′. We must describe a (q, t, ε1)-adversary
A against the original tweakable block cipher Ẽ. Our adversary A has oracle access to F and F−1,
where either F = Ẽ(K, ·, ·) or F = Π̃(·, ·); it must output a bit γ, representing its guess as to whether
F = Ẽ(K, ·, ·) or F = Π̃(·, ·).

We first generate a random h ∈ H. When A′ queries for F ′(W ′, m), we compute h(W ′) and return
F (h(W ′), m), and similarly for a F ′−1 query. Eventually, A′ outputs a bit γ, which is returned by our
adversary A.

When F = Ẽ(K, ·, ·), we have that adversary A′ interacts with F ′ = Ẽ′((K, h), ·, ·), exactly as in
the security definition, which gives:

Pr[γ = 1|F = Ẽ(K, ·, ·)] = Pr[γ = 1|F ′ = Ẽ′((K, h), ·, ·)]

26

When F = Π̃(·, ·) we must show that the view of adversary A′ is statistically close to that of A′ in
the original security definition. In the security definition, A′ interacts with a family Π̃ ′ of independent
random permutation parametrised with W ′. Here instead the adversary A′ interacts with Π̃(h(·), ·).
The key observation is that if no collision occurs for h, then the distribution seen by A′ is exactly the
same as the one obtained from Π̃ ′. Let denote by bad the event that such collision occurs; since H is
a family of ε2-almost universal hash functions and there are at most q queries, we have:

Pr[bad] ≤ q2 · ε2

Moreover we obtain:
Pr[γ = 1|F = Π̃ ∧ ¬Bad] = Pr[γ = 1|F ′ = Π̃ ′]

which gives:
|Pr[γ = 1|F = Π̃]− Pr[γ = 1|F ′ = Π̃ ′]| ≤ Pr[bad] ≤ q2 · ε2

Eventually denoting:

δ = |Pr[γ = 1|F = Ẽ(K, ·, ·)]− Pr[γ = 1|F = Π̃]|

δ′ = |Pr[γ = 1|F ′ = Ẽ′((K, h), ·, ·)]− Pr[γ = 1|F ′ = Π̃ ′]|

we obtain:
δ′ ≤ δ + q2 · ε2

Since by assumption δ ≤ ε1, we obtain δ′ ≤ ε1 + q2 · ε2; therefore we can take:

ε′ = ε1 + q2 · ε2

which terminates the proof of Theorem 6.

