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We study the free expansion of a dilute two-component Fermi gas with attractive interspecies interaction in
the Bardeen-Cooper-Schrieffer–Bose-Einstein condensate �BCS-BEC� crossover. We apply a time-dependent
parameter-free density-functional theory by using two choices of the equation of state: an analytic formula
based on Monte Carlo data and the mean-field equation of state resulting from the extended BCS equations.
The calculated axial and transverse radii and the aspect ratio of the expanding cloud are compared to experi-
mental data on vapors of 6Li atoms. Remarkably, the mean-field theory shows a better agreement with the
experiments than the theory based on the Monte Carlo equation of state. Both theories predict a measurable
dependence of the aspect ratio on expansion time and on scattering length.
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I. INTRODUCTION

Current experiments with cold vapors of 6Li and 40K at-
oms can operate in the regime of deep Fermi degeneracy.
The available experimental data on two-hyperfine-
component Fermi gases are concentrated across a Feshbach
resonance, where the s-wave scattering length aF of the in-
teratomic potential varies from large negative to large posi-
tive values �1–4� and where a crossover from a Bardeen-
Cooper-Schrieffer �BCS� superfluid to a Bose-Einstein
condensate �BEC� of molecular pairs has been predicted
�5–7�. In these experiments, the Fermi cloud is dilute be-
cause the effective range R0 of the interaction is much
smaller than the mean interparticle distance, i.e., kFR0�1,
where kF= �3�2n�1/3 is the Fermi wave vector and n is the
gas number density. Even in this dilute regime the s-wave
scattering length aF can be made very large: the interaction
parameter kFaF diverges and changes sign at a Feshbach
resonance, despite kFR0 remaining small �1–3,8�.

Recent experimental and theoretical investigations studied
the density profiles �9–11�, collective excitations
�9,10,12–17�, condensate fraction �18–21� and vortices
�22,23� of the fermion cloud through the BCS-BEC cross-
over. In this Brief Report we analyze the free expansion of
the Fermi gas through this crossover by using a parameter-
free time-dependent density-functional theory �16,17� based
on the bulk equation of state of the superfluid, and including
a quantum-pressure term. We adopt two possible equations
of state: a reliable analytical interpolating formula based on
bulk Monte Carlo results �17� and the mean-field equation of
state based on extended BCS equations �5–7,14�. Experimen-
tally, the free expansion of superfluid 6Li clouds was ob-
served by O’Hara et al. �1� and by Bourdel et al. �4�. The
comparison of our theory with these experimental data
shows that the effects of interaction could be detected during
the expansion if the thermal component was negligible. In
addition, by using local scaling equations, we investigate the
long-time dynamics of the Fermi gas predicting novel and
measurable effects of interaction on the time evolution of the
expansion process.

II. THEORY

To describe the dynamics of a zero-temperature Fermi
cloud in the external potential U�r , t� we use a hydrodynamic
model with a von Weizsäcker quantum-pressure term. This
theoretical approach is expected to be reliable for studying
the collective dynamics of the Fermi gas �16,17�. The action
functional A��� of the theory depends on the superfluid order
parameter ��r , t� as follows:

A =� dtd3rL��,�t�,��� , �1�

where the Lagrangian density reads

L = i � �*�t� +
�2

2m
�*�2� − U���2 − E����2����2. �2�

E represents the bulk energy per particle of the system,
which is conveniently expressed as a function of the number
density n= ���2 by the following equation:

E�n� =
3

5

�2kF
2

2m
f�y� , �3�

where f�y� is a function of the inverse interaction parameter
y= �kFaF�−1. In the weakly attractive regime �y�−1� one ex-
pects a BCS Fermi gas of weakly bound Cooper pairs where
the superfluid gap energy � is exponentially small. In the
so-called unitarity limit �y=0� one expects that the energy
per particle is proportional to that of a noninteracting Fermi
gas with a n-independent coefficient f�0�=0.42 �24�. In the
weak-coupling BEC regime �y�1�, a weakly repulsive Bose
gas of dimers of mass mB=2m and density nB=n /2 is ex-
pected. Such Bose-condensed molecules interact with a posi-
tive scattering length aB=0.6aF �25,26�. The function f�y� is
modeled by the analytical formula

f�y� = �1 − �2 arctan��3y
�1 + �y�
�2 + �y�� �4�

recently derived �17� from Monte Carlo �MC� simulations
�26,27� and asymptotic expressions. Table 1 of Ref. �17� re-
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ports the values of the interpolating �1, �2, �3, �1, and �2.
In the present investigation we take an axially symmetric

harmonic potential as a confining trap

U�r,t� =
m

2
�	̄
�t�2�x2 + y2� + 	̄z�t�2z2� , �5�

where 	̄ j�t�=	 j��−t�, with j=1,2 ,3=
 ,
 ,z and ��t� is the
step function, so that, after the external trap is switched off at
t�0, the Fermi cloud performs a free expansion. The Euler-
Lagrange equation for the field ��r , t� is obtained by mini-
mizing the action functional of Eqs. �1� and �2�. This leads to
a time-dependent nonlinear Schrödinger equation �TDNLSE�

i � �t� = 	−
�2

2m
�2 + U + 
����2�
� . �6�

The nonlinear term 
 is the bulk chemical potential of the
system. Like the energy E of Eq. �3�, also the bulk chemical
potential 
 is a function of the number density n. The MC
chemical potential is related to the MC energy by the ther-
modynamical formula


�n� =
�„nE�n�…

�n
=

�2kF
2

2m
	 f�y� −

y

5
f��y�
 . �7�

Instead of the MC equation of state �7� based on Eq. �4�,
in the TDNLSE �6� one can plug the mean-field equation of
state, obtained from the extended BCS �EBCS� equations
�5–7�. In this scheme, the chemical potential 
 and the gap
energy � of the uniform Fermi gas are found by solving the
following EBCS equations:

−
1

aF
=

2�2m�1/2

��3 �1/2I1�


�
� , �8�

n =
�2m�3/2

2�2�3 �3/2I2�


�
� , �9�

where I1�x� and I2�x� are two monotonic functions which can
be expressed in terms of elliptic integrals �20,28�. By solving
these two EBCS equations we obtain the chemical potential

 as a function of n and aF, which can be inserted into the
TDNLSE �6�.

III. EXPANSION OF FERMI GAS AND SCALING
EQUATIONS

The free expansion of a droplet of 1.5�105 6Li atoms in
the unitarity limit �y�0� was investigated experimentally in
Ref. �1�. The harmonic potential is anisotropic with �
=	z /	
=0.035. The scattering length for the applied mag-
netic field B=910 G is aF=−0.38 
m=−0.14az �30�, which
corresponds to y=−0.16 at the droplet center. Here az
= �� / �m	z��1/2. Figure 1�a� compares the observed full width
half maximum �FWHM� of the transverse and axial size of
the expanding cloud as a function of time �1� with the ones
obtained by the numerical integration of the TDNLSE, based
on the MC and EBCS equation of state. The TDNLSE is
solved numerically by using a finite-difference algorithm
�31� on a real-space grid.

Figure 1�a� shows that the expanding gas accelerates more
strongly in the radial direction, where the confinement is
tighter than axially. Accordingly, the cloud undergoes a
shape transition: from a cigar to disk. This is a consequence
of superfluidity and interaction: a noninteracting or a normal
Fermi gas would undergo a ballistic expansion, leading even-
tually to a spherical shape �8�. In Fig. 1 the TDNLSE results
are plotted as dot-dashed lines and show a fair agreement
with the experimental data. It is important to observe that the
present theory does not rely on any fitting parameters, while
the model curves shown in Ref. �1� critically depend on the
choice of the initial widths. The initial profile for the
TDNLSE is obtained by running the code integrating Eq. �6�
in imaginary time until the confined ground state is filtered
out. Figure 1�b� plots the droplet aspect ratio showing that
the theory overestimates the experimental data.

From the TDNLSE one can deduce Landau’s hydrody-
namic equations of superfluids at zero temperature, by set-
ting ��r , t�=�n�r , t�eiS�r,t� and v�r , t�= �� /m��S�r , t�, and
neglecting the quantum-pressure term �−�2�2�n� / �2m�n�,
that is expected to be comparably small for a large number N
of particles �16,17,29�. These hydrodynamic equations are

�tn + � · �nv� = 0, �10�

m�tv + �	
�n� + U�r,t� +
1

2
mv2
 = 0. �11�

In this approximation, the stationary state in the trap is given
by the Thomas-Fermi profile n0�r�=
−1�
̄−U�r ,0��. Here

FIG. 1. �Color online� Expansion of a cloud of 1.5�105 6Li
atoms released from a trap as realized in Ref. �1�, with anisotropy
�=	z /	
=0.035. �a� Transverse and axial radii of the 6Li atomic
cloud close to the unitarity limit: aF=−0.14az which corresponds to
y=−0.16. �b� Aspect ratio of the cloud as function of the time t.
Circles and squares: experimental data of Ref. �1�; dot-dashed lines:
TDNLSE with the MC equation of state; solid lines: LSE with the
MC equation of state; dashed lines: LSE with the EBCS equation of
state.
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̄, the chemical potential of the inhomogeneous system, is
fixed by the normalization condition N=
d3rn0�r�. We im-
pose that the hydrodynamic equations satisfy the scaling so-

lutions n�r , t�=n0(x /b1�t� ,y /b2�t� ,z /b3�t�) / b̄�t� and v�r , t�
= (xḃ1�t� /b1�t� ,yḃ2�t� /b2�t� ,zḃ3�t� /b3�t�), where b̄�t�
=�k=1

3 bk�t�. We obtain three differential equations for the
scaling variables bj�t�, with j=1,2 ,3=
 ,
 ,z. These scaling
differential equations depend also on the space vector r.
Only if the chemical potential satisfies a polytropic power
law 
�n�=Cn� then the space dependence drops out �14,16�.
In our problem 
�n� is not a power law but we expect that
the dynamics can be well approximated by evaluating the
scaling differential equations at the center �r=0� of the cloud
�32�. In this case the variables bj�t� satisfy the local scaling
equations �LSE�

b̈j�t� + 	̄ j�t�2bj�t� =
	 j

2

b̄�t�

��
/�n��n0�0�/b̄�t��
��
/�n��n0�0��

. �12�

The coupled ordinary differential equations �12� are inte-
grated accurately and efficiently to arbitrary time by standard
algorithms. We check the reliability of the LSE approach by
comparing their numerical solutions to the expansion ob-
tained by using the full TDNLSE �6�, both within the MC
equation of state �7�. Figure 1 reports the LSE results as solid
lines, clearly showing that the LSE are extremely accurate:
solid lines are practically superimposed to dotted-dashed
lines �relative difference �1%, see the inset of Fig. 1�b��.
Figure 1�a� also reports the transverse and axial radii ob-
tained by solving the LSE with the chemical potential 
�n�
given by the EBCS equations �8� and �9�. Remarkably the
mean-field EBCS results are closer to the experimental data
than the MC results. The two theories essentially coincide for
the aspect ratio.

In Ref. �4� the free expansion of 7�104 cold 6Li atoms
was studied for different values of y= �kFaF�−1 around the
Feshbach resonance �y=0�. Unfortunately, in this experiment
the thermal component is not negligible and thus the com-
parison with the present T=0 theory is not fully satisfactory.
Figure 2 compares the experimental data of Ref. �4� with the
LSE based on both the MC and EBCS equations of state.
Figure 2 shows that the aspect ratio predicted by the two T
=0 theories exceeds the finite-temperature experimental re-
sults. This is not surprising because the thermal component
tends to suppress the hydrodynamic expansion of the super-
fluid. On the other hand, the released energy of the atomic
gas is well described by the two T=0 theories, and again the
mean-field theory seems more accurate, also probably due to
the thermal component. For completeness, Fig. 2�c� reports
the actual released energy 
d3rn0�r�E(n0�r�).

In the two experiments of Refs. �1,4� the time evolution is
sufficiently short for a full TDNLSE simulation. It would be
computationally impractical to integrate the TDNLSE for
times much longer than 	H

−1, where 	H= �	

2	z�1/3. As the

LSE are very reliable at small and intermediate times, we use
them to investigate the time evolution of the Fermi cloud for
longer times. Figure 3 shows the aspect ratio of the expand-
ing cloud as a function of the inverse interaction parameter y

at subsequent time intervals. At t=0 the aspect ratio equals
the trap anisotropy �=0.34. According to these calculations,
during the cloud expansion the aspect ratio in the BCS re-
gime �y�−1� is measurably different from the one of the
BEC regime �y�1�. Thus the free expansion enables one to

FIG. 2. �Color online� Properties of a 6Li cloud after 1.4 ms
expansion from the trap realized in Ref. �4�, of anisotropy �
=	z /	
=0.34. �a� Aspect ratio of the 6Li atomic cloud as a function
of the inverse interaction parameter y= �kFaF�−1. �b� Released en-
ergy of the same cloud defined as in Ref. �4� based on the rms
widths of the cloud. �c� Actual released energy of the atomic cloud.
Squares report the experimental data of Ref. �4�; solid lines: LSE
with the MC equation of state; dashed lines: LSE with the EBCS
equation of state.

FIG. 3. �Color online� Successive frames of the aspect ratio of
the Fermi gas as a function of the inverse interaction parameter y
= �kFaF�−1 in the experimental conditions of Ref. �4�. At t=0 the
Fermi cloud is cigar-shaped with a constant aspect ratio equal to the
initial trap anisotropy �=	z /	
=0.34. Solid lines: LSE with the
MC equation of state; dashed lines: LSE with the EBCS equation of
state.
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recognize the regime involved. Figure 3 predicts a novel in-
teresting effect: initially �t	H�3� the cloud aspect ratio
evolves faster in the BCS region, but then at some interme-
diate time �here t	H�4� the BEC side reaches and eventu-
ally overtakes the BCS side at larger times �here t	H�5�. Of
course, the detailed sequence of deformations depends on the
experimental conditions and in particular on the initial aniso-
tropy, but the qualitative trend of an initially faster reversal
on the BCS side, later surpassed by the BEC gas, is predicted
for the expansion of any initially cigar-shaped interacting
fermionic cloud. Similarly, starting from a disk-shaped cloud
���1�, the aspect ratio reduces more quickly initially on the
BCS side, and later on the BEC side.

IV. DISCUSSION

Comparison of the EBCS �dashed lines� and MC �solid
lines� data shows that beyond mean-field effects do not alter

qualitatively the general trend, but they affect the aspect ratio
quantitatively, to an extent which could be appreciated by
very accurate experiments carried out at extremely low tem-
perature. In particular, the mean-field curves flatten to the
asymptotic values �for �y � �1� closer to the unitary limit than
the MC ones. Present-day experimental data, including mea-
surements of collective oscillation frequencies �9,10,12–17�,
are equally well compatible with the EBCS mean field and
the MC-based analysis accounting for beyond mean-field ef-
fects. New experiments could shed light on these correlation
effects and verify the predictions of the present calculations.
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