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Abstract. Mixtures of Principal Component Analyzers can be used
to model high dimensional data that lie on or near a low dimensional
manifold. By linearly mapping the PCA subspaces to one global low
dimensional space, we obtain a ‘global’ low dimensional coordinate sys-
tem for the data. As shown by Roweis et al., ensuring consistent global
low-dimensional coordinates for the data can be expressed as a penal-
ized likelihood optimization problem. We show that a restricted form
of the Mixtures of Probabilistic PCA model allows for a more efficient
algorithm. Experimental results are provided to illustrate the viability
method.

1 Introduction

With increasing sensor capabilities, powerful feature extraction methods are be-
coming increasingly important. Consider a robot sensing its environment with a
camera yielding a stream of 100 × 100 pixel images. The observations made by
the robot often have a much lower intrinsic dimension than the 10.000 dimen-
sions the pixels provide. If we assume a fixed environment, and a robot that can
rotate around its axis and translate through a room, the intrinsic dimension is
only three. Linear feature extraction techniques are able to do a fair compression
of the signal by mapping it to a much lower dimensional space. However, only in
very few special cases the manifold on which the signal is generated is a linear
subspace of the sensor space. This clearly limits the use of linear techniques and
suggests to use non-linear feature extraction techniques.

Mixtures of Factor Analyzers (MFA) [2] can be used to model such non-linear
data manifolds. This model provides local linear mappings between local latent
spaces and the data space. However, the local latent spaces are not compatible
with each other, i.e. the coordinate systems of neighboring factor analyzers might
be completely differently oriented. Hence, if we move through the data space from
one factor analyzer to the next we cannot predict the latent coordinate of a data
point on the one factor analyzer from the latent coordinate on the other factor
analyzer.

Recently, a model was proposed that integrates the local linear models into
a global latent space, allowing for mapping back and forth between the global
latent and the data-space [5]. The idea is that there is a linear map for each
factor analyzer between the data-space and the global latent space. The model,
which is fitted by maximizing penalized log-likelihood with an algorithm closely
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related to the Expectation-Maximization (EM) algorithm [4], is discussed in the
next section. In Section 3, we show how we can reduce the number of parameters
to be estimated and simplify the algorithm of [5]. These simplifications remove
the iterative procedure from the M-step and remove all matrix inversions from
the algorithm. The price we pay is that the covariance matrices of the Gaussian
densities we use are more restricted, as discussed in the same section. Experi-
mental results are given in Section 4. A discussion and conclusions are provided
in Section 5.

2 The density model

To model the data density in the high dimensional space we use mixtures of a
restricted type of Gaussian densities. The mixture is formed as a weighted sum
of its component densities, which are indexed by s. The mixing weight and mean
of each component are given by respectively ps and µs. The covariance matrices
of the Gaussian densities are constrained to be of the form:

C = σ2(ID + ρΛΛ>), Λ>Λ = Id, ρ > 0 (1)

whereD and d are respectively the dimension of the high-dimensional/data-space
and the low-dimensional/latent space. We use Id to denote the d-dimensional
identity matrix. The d columns of Λ, in factor analysis known as the loading

matrix, areD-dimensional vectors spanning the local PCA. Directions within the
PCA subspace have variance σ2(1+ρ), other directions have σ2 variance. This is
as the Mixture of Probabilistic Principal Component Analyzers (MPPCA) model
[7], with the difference that here we do not only have isotropic noise outside the
subspaces but also isotropic variance inside the subspaces. We use this density
model to allow for convenient solutions later. In [9] we provide a Generalized
EM algorithm to find maximum likelihood solutions for this model.

The same model can be rephrased using hidden variables z, which we use to
denote ‘internal’ coordinates of the subspaces. We scale the coordinates z such
that: p(z | s) = N (z; 0, Id). The internal coordinates allow us to clearly express
the link to the global latent space, for which we denote coordinates with g. All
mixture components have their own linear mapping to the global space, given by
a translation κ and a matrix A, i.e. p(g | z, s) = δ(κs+Asz), where δ(·) denotes
the distribution with mass 1 at the argument. The generative model reads:

p(x | z, s) = N (x;µs +
√
ρsσsΛsz, σ

2
sID), (2)

p(x) =
∑

s

psN (x;µs, σ
2
s(ID + ρsΛsΛ

>
s )), p(g) =

∑

s

psN (g;κs,AsA
>
s ). (3)

We put an extra constraint on the projection matrices:

As = αsσs

√
ρsRs, R>s Rs = Id, αs > 0, (4)

hence Rs implements only rotations plus reflections.



Note that the model assumes that locally there is a linear correspondence
between the data space and the latent space. It follows that the densities p(g |
x, s) and p(x | g, s) are Gaussian and hence both p(g | x) and p(x | g) are
mixtures of Gaussian densities. In the next section we discuss how this density
model allows for an efficient learning scheme, as compared to the expressive but
expensive MFA model proposed in [5].

3 The learning algorithm

The goal is, given observable data {xn}, to find a good density model in the
data-space and mappings {As,κs} that give rise to ‘consistent’ estimates for
the hidden {gn}. With consistent we mean that if a point x in the data-space
is well modeled by two PCA’s, then the corresponding estimates for its latent
coordinate g should be close to each other, i.e. the subspaces should ‘agree’ on
the corresponding g.

Objective Function: To measure the level of agreement, one can consider
for all data points how uni-modal the distribution p(g | x) is. This idea was
also used in [10]. There the goal was to find a global linear low-dimensional
projection of supervised data, that preserves the manifold structure of the data.
In [5] it is shown how the double objective of likelihood and uni-modality can
be implemented as a penalized log-likelihood optimization problem. Let Q(g |
xn) = N (g;gn,Σn) a Gaussian approximation of the mixture p(g | xn) and
Q(s | xn) = qns. We define:

Q(g, s | xn) = Q(s | xn)Q(g | xn). (5)

As a measure of uni-modality we can use a sum of Kullback-Leibler divergences:

∑

ns

∫

dg Q(g, s | xn) log

[

Q(g, s | xn)

p(g, s | xn)

]

=
∑

n

DKL(qns ‖ pns) +
∑

ns

qnsDns

where Dns = DKL(Q(g | xn) ‖ p(g | xn, s)) and pns = p(s | xn). The total
objective function, combining log-likelihood and the penalty term, then becomes:

Φ =
∑

n

log p(xn)−DKL({qns} ‖ {pns})−
∑

s

qnsDns (6)

=
∑

ns

∫

dg Q(g, s | xn)
[

− logQ(g, s | xn) + log p(xn,g, s)
]

. (7)

The objective corresponds to a constrained EM procedure, c.f. [8] where the
same idea is used to derive a probabilistic version of Kohonen’s Self-Organizing
Map [3]. Our density model differs with that of [5] in two aspects: (i) we use an
isotropic noise model outside the subspaces (as opposed to diagonal covariance
matrix) and (ii) we use isotropic variance inside the subspace (as opposed to
general Gaussian). Also, using our density model it turns out that to optimize
Φ with respect to Σn, it should be of the form1 Σn = β−1

n Id. Therefore we
1 Once we realize that the matrices Vs in [5] are of the form cId with our density
model, it can be seen easily by setting ∂Φ/∂Σn = 0 that Σn = β−1Id.



work with βn from now on. Using our density model and gns = gn − κs and
xns = xn − µs

we can write (7) as:

Φ =
∑

ns

qns

[

− d

2
log βn − log qns −

ens

2σ2
s

− vs

2

[

dβ−1
n +

g>nsgns

ρs + 1

]

(8)

−D log σs +
d

2
log

vs

ρs + 1
+ log ps

]

+ const. with

ens = ‖ xns − α−1
s ΛsR

>
s gns ‖2 and vs =

ρs + 1

σ2
sρsα2

s

, (9)

where vs is the inverse variance of p(g | s,x) and ens is the squared distance
between xn and gn mapped into the data space by component s.

Optimization: To optimize Φ we use an EM-style algorithm, a simplified
version of the algorithm provided in [5]. The simplifications are: (i) the iterative
process to solve for the Λs,As is no longer needed; an exact update is possible
and (ii) the algorithm no longer involves matrix inversions. The same manner
of computation is used: in the E-step, we compute the uni-modal distributions
Q(s,g | xn), parameterized by βn,gn and qns. Let 〈gn〉s = Ep(g|xn,s)[g] denote
the expected value of g given xn and s. We use the following identities:

〈gn〉s = κs +RsΛ
>
s xnsαsρs/(ρs + 1), (10)

Dns =
vs

2

[

dβ−1
n + ‖ gn − 〈gn〉s ‖2

]

+
d

2
[log βn − log vs]. (11)

The distributions Q can be found by iterating the fixed-point equations:

βn =
∑

s

qnsvs, gn = β−1
n

∑

s

qnsvs〈gn〉s, qns =
pns exp−Dns

∑

s′ pns′ exp−Dns′

,

where we used pns = p(s | xn). In the M-step, we update the parameters of the
mixture model. Using notation:

Cs =
∑

n

qns ‖ gns ‖2, Es =
∑

n

qnsens, Gs = d
∑

n

qnsβ
−1
n , (12)

the update equations are:

κs =

∑

n qnsgn
∑

n qns

, µs =

∑

n qnsxn
∑

n qns

, αs =
Cs +Gs

∑

n qns(g>nsRsΛ>s xns)
,

ρs =
D(Cs +Gs)

d(α2
sEs +Gs)

, σ2
s =

Es + ρ−1
s α−2

s [Cs + (ρs + 1)Gs]

(D + d)
∑

n qns

, ps =

∑

n qns
∑

ns′ qns′

.

Note that the above equations require Es which in turn requires ΛsR
>
s via

equations (9) and (12). To find ΛsR
>
s we have to minimize:

∑

n

qnsens =
∑

n

qns ‖ xns − α−1
s ΛsR

>
s gns ‖2= −

∑

n

qnsx
>
ns(ΛsR

>
s )gns + const.



This problem is known as the ‘weighted Procrustes rotation’ [1]. Let

C = [
√
q1sx1s · · ·

√
qnsxns][

√
q1sg1s · · ·

√
qnsgns]

>, with SVD: C = ULΓ>,

where the gns have been padded with zeros to form D-dimensional vectors, then
the optimal ΛsR

>
s is given by the first d columns of UΓ>.

4 Experimental Illustration

To demonstrate the method, we captured 40 × 40 pixel gray valued images of
a face with a camera. The face has two degrees of freedom, namely looking up-
down and left-right. We learned a coordinated mixture model with 1000 images.
We used a global PCA projection to 22 dimensions, preserving over 70% of the
variance in the data set. We used a latent dimensionality of two and 20 mixture
components. We initialized the coordinated mixture model by clamping the la-
tent coordinates gn at coordinates found by Isomap [6] and clamping the βn at
small values for the first 50 iterations. The qns were initialized uniformly random,
and updated from the start. The obtained coordinated mixture model was used
to map 1000 ‘test’ images. For each test image xn we approximated p(g | xn)
with a single Gaussian Qn = argminQ DKL(Q ‖ p(g | xn)) with a certain mean
and standard deviation. In Figure 1 we show these means (location of circle)
and standard deviations (radius). To illustrate the discovered parametrization
further, two examples of linear traversal of the latent space are given.

5 Conclusions and Discussion

We showed how a special case of the density model used in [5] leads to a more
efficient algorithm to coordinate probabilistic local linear descriptions of a data
manifold. The M-step can be computed at once, the iterative procedure to find
solutions for a Riccati equation is no longer needed. Furthermore, the update
equations do not involve matrix inversion anymore. However, still d singular
values and vectors of a D ×D matrix have to be found.

The application of this method to partially supervised data sets is an in-
teresting possibility and a topic of future research. Another important issue,
not addressed here, is that often when we collect data from a system with lim-
ited degrees of freedom we actually observe sequences of data. If we assume
that the system can vary its state only in continuous manner, these sequences
should correspond to paths on the manifold of observable data. This fact might
be exploited to find a low dimensional embedding of the manifold. In [9] we
report on promising results of experiments where we used this model to map
omni-directional camera images, recorded through an office, to a 2d latent space
(the location in the office), where the data was ’supervised’ in the sense that 2d
workfloor coordinates are known.
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Fig. 1. Latent coordinates and linear trajectories in the latent space.
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