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Abstract Energy consumption is one of the main con-
cerns in mobile ad hoc networks (or MANETs). The

lifetime of its devices highly depends on the energy

consumption as they rely on batteries. The adaptive en-

hanced distance based broadcasting algorithm, AEDB,

is a message dissemination protocol for MANETs that
uses cross-layer technology to highly reduce the energy

consumption of devices in the process, while still provid-

ing competitive performance in terms of coverage and

time. We use two different multi-objective evolutionary
algorithms to optimize the protocol on three network

densities, and we evaluate the scalability of the best

found AEDB configurations on larger networks and dif-

ferent densities.

Keywords Broadcasting protocols · Optimization

algorithms · ad hoc networks · energy efficiency.

Patricia Ruiz
University of Luxembourg
Luxembourg
Tel.: +352-44-666445514
Fax: +352-44-666445500
E-mail: patricia.ruiz@uni.lu

Bernabe Dorronsoro
Interdisciplinary Center of Security,
Reliability, and Trust
Luxembourg
Tel.: +352-44-666445619
Fax: +352-44-666445500
E-mail: bernabe.dorronsoro@uni.lu

Pascal Bouvry
University of Luxembourg
Luxembourg
Tel.: +352-44-666445258
Fax: +352-44-666445500
E-mail: pascal.bouvry@uni.lu

1 Introduction

Broadcasting is considered as one of the most impor-

tant low level operations in networking, as many ap-

plications and even other protocols rely on its service.

In the case of wireless networks, these dissemination
algorithms are generally associated with the broadcast

storm problem [30]. However, due to the recently ap-

pearance of mobile ad hoc networks (MANETs), and

all the drawbacks inherited from them (battery life, mo-
bility of devices, limited transmission range, etc.), the

main problem in broadcasting is not only reducing the

number of forwardings but also trying to overcome all

these undesirable aspects.

One of the main drawbacks of MANETs is the de-

pendence on the battery life of the devices, as when they

run out of battery the network capabilities decrease,
and might lead to the disappearance of the network.

This is the reason why many researchers focus on re-

ducing the energy consumption of devices conforming

the MANET [28,33].

In this work, we are improving the performance of

the adaptive enhanced distance based broadcasting al-

gorithm (AEDB hereinafter) [32]. We look for robust
solutions that offer good performance for a number

of densities and scenarios of different sizes. AEDB is

an energy aware and distance based broadcasting al-

gorithm that uses a cross-layer design to reduce the

energy consumption. The mechanism of AEDB relies
on some thresholds that allow every device to make de-

cisions on whether to forward the received message or

not, and what transmission energy to use when forward-

ing. These thresholds have been experimentally chosen.
In this work, we optimize the values of these thresholds

using some multiobjective techniques, and some of the

proposed solutions are analyzed.
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The contribution of this paper is threefold. First, we

provide a new multi-objective definition of the problem

of optimizing AEDB performance, more precise that the

one studied in [34], which is considering the broadcast

time as a constraint and is taking into account the total
number of forwardings in the network. This is done in

order to avoid the undesirable situation in which most

(or even all) devices forward the message using very low

transmission power, causing a high use of the channel.
Second, we perform a comparison on the scalability of

the multi-objective algorithms when optimizing AEDB

for different network densities. Third, we analyze the

scalability of the best chosen solutions on a number of

networks of different sizes and densities, comparing the
results with the best previously existing AEDB config-

uration.

The rest of the paper is organized as follows. Next

section provides a brief state of the art in energy aware

broadcasting algorithms for MANETs and on the use

of metaheuristics for protocol optimization. In Sect. 3,
the description of AEDB is presented. Section 4 intro-

duces the problem in hands, and Sect 5 the optimiza-

tion algorithms used. The configuration used for both

algorithms as well as its simulation parameters are ex-
plained in Sect. 6. The results obtained are presented

and analyzed in Sect. 7. And finally, we conclude the

paper in Sect. 8.

2 Related Work

We describe in this section the most outstanding related
papers to our work. In Sect. 2.1, we revise the state of

the art on broadcasting protocols with energy efficiency

considerations for MANETs. Then, we summarize the

main existing works using optimization algorithms to

enhance the performance of protocols for MANETs in
Sect. 2.2.

2.1 Energy Aware Broadcasting Protocols for
MANETs

As we mentioned before, the energy consumption in

mobile ad hoc networks is a hot topic, since devices
can run out of battery provoking the network degrada-

tion. Many researchers are focused on this aspect and

therefore much work has been done. Below, we mention

some of the most outstanding solutions that have been

proposed for saving energy in broadcasting algorithms
dealing with ad hoc networks.

Gomez et al. showed in [20] that a variable transmis-

sion range can outperform a common range transmis-

sion approach in terms of power saving, with the possi-

bility of increasing the capacity too. They also claimed

that there is an optimal setting for the transmission

range, not necessarily minimum, which maximizes the

available capacity of the nodes in presence of mobility.

In [8], nodes exchange information in the beacons in

order to know the transmission power needed to reach

the two hop neighbors. The source node examines if

the furthest node in the one hop neighbor is reach-
able through any other neighbor, if so, it calculates

the power needed via two hops. If the sum of powers

needed using two hops is less than the power of sending

the message directly, the source node will exclude the
furthest node from the neighborhood and reduce the

transmission range to reach the new furthest neighbor.

In [28] the transmission range is set in terms of the
local density. To estimate the local density, a node cal-

culates the number of neighbors by listening the radio

channel and evaluating the distance from each neighbor

(signal strength or timing differential).

Extensive studies on energy efficient algorithms for

finding the minimum-energy broadcast tree (MEBT)

have been proposed [6,7]. Also, in [29], a minimum en-

ergy shared multicast tree built in a distributed fash-
ion is presented, where the transmission power is either

fixed or adjustable.

In [38] each node continuously monitors, records
and updates the transmission power level it needs to

reach all its neighbors by overhearing all messages, even

the ones that are not intended for it. This is not a

broadcasting approach, so when sending a message, the

source node will use the power needed to reach the in-
tended neighbor.

In vehicular ad hoc networks, it is also a tendency

to adjust the transmission range used in order to re-
duce the number of collisions, interferences, etc. In [31]

nodes exchange beacons periodically with other vehicles

in range containing information about the path loss,

and neighbors are sorted according to the average path
loss. There is an specific target number of neighbors to

reach, so that when a broadcast message is received, the

node checks the transmission power necessary to reach

the targeted number of nodes.

Ruiz and Bouvry proposed in [33] an enhanced dis-

tance based broadcasting algorithm (called EDB) that

not only considerably reduces the number of collisions

but also the energy consumption in the broadcast pro-
cess without degrading the network connectivity. Later

in [32] the authors improved the protocol by making

it adaptive to discard some one hop neighbors in very

dense networks in order to save energy.

Another distance based adaptive protocol is

DDAPF [24], that dynamically adjusts the probability
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of forwarding algorithm in terms of the distance to the

source node.

2.2 Protocols Optimization for MANETs with

Metaheuristics

We can find in the literature some works dealing with
metaheuristics to optimize a number of different prob-

lems on mobile ad hoc networks. Many of these works

consider the use of metaheuristics in the network el-

ements to optimize some problem (as finding efficient

routing paths) [1,9,11,23,36,39]. They are often imple-
mented in the devices or in some centralized structure.

However, these approaches are in general very difficult

to use in real MANETs because they require either in-

tensive computations in the battery limited devices or
the presence of some infrastructure in the network.

There are in the literature a few papers presenting

the use of metaheuristics to optimize the behavior of
protocols for MANETs. In this case, the protocol opti-

mization is an offline process that (usually) looks for the

optimal configuration of the considered protocol to en-

hance some aspect of the network. Some examples are

optimizing the network QoS, the network use, or the
energy used, as it is the case considered in this work.

Probably, the first studies in this line were those by

Alba et al. [2–4], in which a broadcasting protocol for

MANETS called DFCN [22] was optimized for three dif-
ferent environments, namely, a shopping mall, an urban

area, and a highway scenario. The problem was solved

with multi-objective techniques, since the protocol was

optimized in terms of its coverage (number of devices

reached by the broadcasting message), the network use,
and the total broadcasting time. After these initial pa-

pers, a number of works appeared studying the same

problem in the literature [14–16,26,27].

Garćıa-Nieto et al. published some works on the op-

timization of the parameters of AODV routing proto-

col for vehicular ad hoc networks [17] and a file transfer

protocol [18]. Later, Toutouh et al. [37] presented a par-
allel genetic algorithm to optimize the energy used by

the OLSR routing algorithm in VANETs subject to ac-

ceptable QoS requirementes. Contrary to the previously

commented works, in these two ones the authors are us-

ing single-objective techniques to optimize a weighted
sum of the defined goals. The consequence is that the

algorithm is providing only one solution to the prob-

lem, which is strongly biased by the weights used in

the fitness function, while a multi-objective technique
would offer a wide range of very diverse solutions to the

problem, none better than the other, that will allow the

protocol designer to choose the most appropriate one.

Recently, Ruiz et al. [34,35] propose the use of the

CellDE multi-objective algorithm to optimize the per-

formance of EDB and AEDB broadcasting protocols in

MANETs by maximizing the coverage achieved in the

dissemination process and minimizing the time and the
energy used. In this work, we define a different problem

to optimize AEDB. It lies in maximizing the coverage

and minimizing the energy used and the number of for-

warded messages in the network. This latter objective
is added as an attempt to avoid the undesirable case in

which many messages are sent with very low transmis-

sion range, since it would cause a network congestion.

The optimization is carried out subject to a constraint

on the maximum allowed broadcasting time.

3 Adaptive Enhanced Distance Based
Broadcasting Algorithm, AEDB

In the minimum energy broadcasting problem every
node is able to adjust the transmission range in order

to reduce the power consumption of the dissemination

process while still guaranteeing full coverage in the net-

work. In a real scenario with obstacles, devices moving,
fading, path loss, packet loss, etc. guaranteeing the full

coverage might be very ambitious or impossible (due to

network partitioning), and in some cases even unneces-

sary. In safety, control or important messages it might

be worth the overhead needed for delivering the mes-
sage to all nodes in the network. But for all the other

messages (info, ads, etc.), it would rather be more ef-

ficient to consider the possibility of not guaranteeing

full coverage, and thus, saving all the overhead derived
from acknowledgements, retransmissions, etc.

In this work, we consider this second family of pro-

tocols, where full coverage is not required.

The adaptive enhanced distance based broadcasting

algorithm (AEDB hereinafter) aims at saving energy in
sparse networks as well as in dense ones. AEDB [32] is

an extension of EDB [33], a broadcasting algorithm that

reduces the transmission power for disseminating a mes-

sage. As any distance based broadcasting algorithm,
nodes are candidates to forward the message if the dis-

tance to the source node is higher than a predefined

threshold. Thus, there exists a forwarding area, and

only nodes located in it are potential forwarders. In this

case, we are using a crosslayer technique that informs
the upper layers about the signal strength of messages

received. Therefore, the decision is not taken in terms

of distance (m) but power (dBm). This predefined value

for the energy is called the borders Threshold.
EDB tries to save energy by reducing the transmis-

sion power when forwarding the broadcasting message.

The new transmission power is the one that reaches
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the furthest neighbor. The energy needed is estimated

according to the reception energy detected in the bea-

cons exchanged (every 1 second). In order to be aware

of the nodes mobility, an extra fixed amount of energy

is added to the one estimated. This is called the mar-

gin Threshold.

In denser networks, the probability of having a node

close to the limit transmission range is higher, therefore,

EDB does not reduce the transmission power. Indeed,

when the network is very dense the connectivity is usu-
ally very high. Thus, reducing the transmission power

allowing the loss of some one hop neighbors will save en-

ergy without any detriment in the performance of the

broadcasting process. Contrary, when the network is
sparse, the node must maintain the network connectiv-

ity, as not doing so would make more difficult to spread

a message through the whole network.

AEDB considers the possibility of discarding some

neighbors from the one hop neighborhood in dense net-
works. In fact, the algorithm is able to adapt its be-

haviour to the network density. Potential forwarders set

a random delay before resending. If, during this time,

many nodes located in the forwarding area are detected
(called neighbors Threshold), the transmission range is

reduced and some one hop neighbors are discarded. The

new furthest neighbor is the node located in the for-

warding area that is the closest one to the source node.

A more detailed explanation can be found in [32].

Algorithm 1 Pseudocode of the new Adaptive EDB.
Data: m: the incoming broadcast message.
Data: r : the node receiving broadcast message.
Data: s: the node that sent m.
Data: p: the received signal strength of m sent by s.
Data: pmin: the minimum signal strength received from any s.
Data: potentialForwarders: # neighbors in the forwarding area.

1: if m is received for the first time then

2: calculate p;
3: update pmin;
4: if pmin > borders Threshold then

5: r → drop message m;
6: else

7: waiting ← true;
8: wait time rand ∈ [delay interval];
9: end if

10: else if waiting then

11: calculate p;
12: if p > pmin then

13: update pmin;
14: end if

15: end if

16: if pmin > borders Threshold then

17: r → drop message m;
18: else

19: if # potentialForwarders > neighbors Threshold then

20: estimate p to reach closest neighbor to borders Threshold
21: else

22: discard s from the one hop neighbors list.
23: estimate p to reach furthest neighbor
24: end if

25: transmit m;
26: end if

27: waiting ← false;

4 Optimization of AEDB Protocol

The quality of the performance of a broadcasting al-

gorithm in ad hoc networks is usually related to some

standard measurements. The aspects we are consider-

ing and that are the most common ones in these kind

of protocols are:

1. the coverage obtained, i.e., the number of de-
vices that after the dissemination process receive

the broadcast message;

2. the energy used by the broadcast process, mea-

sured as the sum of the energy every device con-

sumes to forward the message;
3. the number of forwardings, considered as the

amount of nodes that after receiving the broadcast-

ing message decide to resend it;

4. and the broadcast time, considered as the time
needed to spread a message in the network, since

the source node sends the message until the last

node receives it.

Previously in [34], AEDB was optimized considering

three objectives: (1) the energy used, (2) the coverage

achieved, and (3) the broadcast time. The optimiza-
tion algorithm used found many solutions where the

value of the borders Threshold was close to the upper

limit (-70 dBm). That meant the algorithm was pro-

moting lower transmission power and higher number of

forwardings. The number of forwardings itself was not
optimized in that work, but was intrinsically related be-

cause the higher the number of forwardings the longer

the broadcasting time.

In this work, apart from comparing two different
optimization algorithms, selecting the most appropriate

values for the parameters and analyzing them in large

scale networks, we considered it was worth verifying

the hint concluded in [34]. Therefore, in this case, we

are considering the number of forwardings as another
objective for the optimization algorithm.

From the point of view of the designer of the broad-

casting algorithm, the higher the number of objectives

the more complex the decision making and the opti-
mization process. Thus, for this work, we consider only

three objectives and a constraint.

We can observe in the results obtained in [34] that

the best solutions found do not take longer than 2

seconds for disseminating the broadcasting message.
Therefore, in the evaluation process of the optimization

we consider a solution is no longer valid if the broad-

casting time is higher than 2 seconds, and analyze the

following three objectives: (1) energy used, (2) coverage
achieved, and (3) number of forwardings used.

As mentioned in Sect. 3, AEDB has a set of fixed

parameters whose values determine the behaviour of
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the protocol. Those thresholds are explained after and

listed here: borders Threshold, margin Forwarding, the

delay interval, and neighbors Threshold.

– The value of the borders Threshold sets the size of

the forwarding area. The higher the threshold, the

higher the number of potential forwarders, the cov-
erage, the network resources and the number of col-

lisions.

– The margin Forwarding is related to both the en-

ergy saved and the coverage achieved. It is the extra
amount of energy added to the estimated transmis-

sion power. The higher the margin value, the higher

the coverage reached as well as the energy used.

– The value of the delay interval sets the waiting time

and also affects the behaviour of the protocol. If
the delay is very high, the time used to spread the

message will be high, but if it is very small, the

number of collisions will probably increase.

– Finally, the neighbors Threshold that fixes the min-
imum number of neighbors in the forwarding area

needed to discard some nodes. It affects the use of

the network and the energy used. The lower the

value, the lower the energy used and the higher num-

ber of forwardings.

The purpose of this work is to tune all these param-
eters using multi-objective techniques (based on Pareto

dominance) in order to obtain the best possible be-

haviour of the protocol, considering the three objectives

and the constraint explained above. Below, we include
a formal definition of the problem.

s : instance of the ns3 simulator

dmin = d1 ∈ R|d1 ∈ minimum delay

dmax = d2 ∈ R|d2 ∈ maximum delay

b = b1 ∈ R|b1 ∈ border threshold

m = m1 ∈ R|m1 ∈ margin threshold

n = n1 ∈ R|n1 ∈ neighbor threshold

z = (e, c, f, bt)

s(dmin, dmax, d,m, n) = z

f(dmin, dmax, b,m, n) =







min {e}

max {c}

min {f}

; s. t. bt < 2 (1)

where z is the set of objectives: e stands for en-

ergy saved, c for coverage, f for number of broad-

castings and bt is the broadcasting time. The domain
of the variables minimum delay, maximum delay, bor-

der threshold, margin threshold, and neighbor threshold

are presented in detail in Table 1.

5 The Optimization Algorithms

Metaheuristics [19] are iterative stochastic optimization

tools that are able to provide good solutions in reason-

able time for highly complex optimization problems.

Generally, metaheuristics make no assumptions about

the problem to solve, so they are generic tools that
only need an adequacy (or fitness) function to guide

the search towards better solutions.

Evolutionary Algorithms (EAs) [5] are a popular

family of metaheuristics. One important feature of EAs
is that they work with several candidate solutions at

the same time, therefore simultaneously exploring sev-

eral different regions of the search space. This allows

EAs to better explore the search space and reducing

the probabilities of getting stuck in local optima with
respect to other metaheuristics families.

In this paper, our problem is defined as a three-

objectives one, since to optimize the protocol perfor-

mance we need to maximize its coverage, and minimize
the energy used and the number of forwarded messages

by the devices. Therefore, we rely on multi-objective op-

timization algorithms. Specifically, we use NSGAII [10],

which is probably the most referenced multi-objective

algorithm in the literature, and CellDE, because it is
a highly competitive evolutionary algorithm for multi-

objective optimization that has proven to perform spe-

cially well for three-objectives problems with contin-

uous variables [12], as it is the case of our problem.
In this work, we used the implementations of the al-

gorithms available in jMetal framework [13], with the

configurations provided in their original papers (set by

default in jMetal).

The use of these two multi-objective optimization
algorithms will allow us to find a finite set of non-

dominated configurations (none is better than the oth-

ers for the three objectives) for our AEDB protocol

containing the solutions with the best possible trade-
off among the three objectives. This will help in under-

standing the impact of the different parameters on the

behavior of the protocol, as well as choosing the best

possible solution for our particular scenario.

6 Empirical Setup

As mentioned before, we use in this paper CellDE and
NSGAII algorithms to look for the optimal configura-

tion of the AEDB parameters (defined in Sect. 4) to get

the best possible performance of the considered broad-

casting protocol. Measuring the quality of a given pa-
rameter configuration (i.e., a tentative solution to the

problem) is a complex task that must evaluate the so-

lution in terms of the coverage, the energy used, the
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number of forwarded messages, and the broadcasting

time obtained by the optimized protocol in any net-

work configuration.

Therefore, we rely on a simulator to evaluate every

solution. The simulator we used is the network simula-

tor ns3 [25], a highly realistic discrete event simulator
written in C++ that allows us to deal with mobile ad

hoc networks. As an attempt to obtain concluding re-

sults in the evaluation of solutions, we simulate every

protocol configuration (i.e., every solution) on 10 dif-

ferent networks. The fitness value for every objective is
defined as the average of the values obtained for the 10

networks in every objective. We always used the same

10 different seeds in our ns3 simulations to evaluate the

solutions.

As we previously stated in Sect. 5, we used the im-

plementation of CellDE and NSGAII provided in jMetal
framework [13], and we used the default configurations,

which match the ones proposed by the authors of the al-

gorithms. The termination condition of the algorithms

was set to 10, 000 evaluations performed. Individuals
are encoded as an array of 5 real values, and the values

for the integer variables are rounded to the next integer

value for evaluation.

These two algorithms try to find the combination of

parameters that gives the best possible values for the

different objectives. The parameters (defined in Sect. 4)
are: (1) minimum value for the delay, (2) maximum

value for the delay, (3) value for the border Threshold,

(4) value for the margin Threshold and (5) value for

the neighbors Threshold.

The objectives (presented also in Sect. 4) are: (1) the

energy used, (2) the coverage achieved and (3) the num-
ber of forwarded messages. Additionally, the broadcast

time is considered as a problem constraint, rejecting

those solutions that require more than two seconds in

the broadcast process.

To measure the quality of each solution found, the

multi-objective algorithms call ns3, giving as input the
values of the parameters in that solution, and ns3 re-

turns the values obtained for the different objectives

using this configuration. In order to have reliable re-

sults, we perform 10 executions of ns3 every time the
optimization algorithms check the quality of the solu-

tion (this happens 10, 000 times), thus, we analyze the

behaviour of AEDB over 10 different networks.

We choose an interval for each parameter in order

to find reasonable solutions and limit the search space.

These values are shown in Table 1. The algorithm orig-
inally creates a set of random feasible solutions (values

chosen from the intervals shown in Table 1), and auto-

matically evolves them to better solutions.

Table 1 Domain of the variables to optimize

minimum delay [0, 1] s
maximum delay [0, 5] s
border Threshold [-95, -70] dBm
margin Threshold [0, 3] dBm
neighbors Threshold [0, 50]

Regarding the configuration of ns3 for the simula-

tion of the broadcasting algorithm, the mobility model

used to emulate the movements of the devices is the

random walk, also known as brownian motion mobility

model [21]. In it, nodes move with a randomly chosen

speed and direction during a fixed amount of time (20

seconds in our case). After that, other random values

for the speed and direction are chosen. The simulation
environment used is a square area of 500 m side. The

speed of the nodes can vary from 0 to 2m/s (i.e., be-

tween 0 and 7.2km/h).

We study different network densities in the opti-

mization process. The first one is a sparse network with

100 devices/km2, the second one has 200 devices/km2,
and finally the densest one with 300 devices/km2. All

the parameters are summarized in Table 2.

Table 2 Configuration of ns3 for the simulations

Devices/km2 100-200-300
Speed [0, 2] m/s
Size of the area 500 m × 500 m
Default transmission power 16.02 dBm
Direction and speed change every 20 s

In the simulations, the network evolves for 30 sec-

onds in order to have the nodes uniformly distributed

in the area. Then, after these 30 seconds, a node starts

the broadcasting process. The simulation stops after 40
seconds.

7 Simulation Results

We present and analyze in this section the results ob-

tained in our experimentation. Section 7.1 shows the

results obtained by the optimization algorithms, com-

paring their performance for the different network den-

sities considered. After that, we analyze the solutions
reported by the algorithms in Sect. 7.2. A subset of the

solutions contained in the Pareto front that are com-

promised with the three studied objectives are selected

in Sect. 7.3, and a scalability study is performed in
Sect. 7.4. Finally, the best compromised solutions from

the designer of the protocol point of view are suggested

in Sect. 7.5.
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7.1 Algorithms Performance Comparison

We compare in this section the performance of the two

studied multi-objective algorithms on the optimization

of AEDB for the three different network densities con-

sidered. To evaluate the quality of the Pareto front ap-

proximations computed by the algorithms, several met-
rics measuring different aspects of the fronts are used,

as it is common in the literature. Specifically, we rely

on I+ǫ , I∆, and IHV , measuring the accuracy of the

front, the diversity of solutions, and both of them, re-
spectively. They are defined next:

– Epsilon (I+ǫ ). It measures the smallest distance
needed to translate every solution in the front so

that it dominates the optimal Pareto front of the

problem. More formally, given z1 = (z11 , . . . , z
1
n) and

z2 = (z21 , . . . , z
2
n), where n is the number of objec-

tives:

I1ǫ+(A) = inf
{

ǫ ∈ R|∀z2∈PF∗∃z1∈A :z1≺ǫ z
2
}

(2)

where, A is the front to evaluate, PF∗ is the optimal

Pareto front for this problem, and z1 ≺ǫ z2 if and

only if ∀1 ≤ i ≤ n : z1i < ǫ+ z2i .
Fronts with small I+ǫ values are desirable.

– Spread (I∆). It quantifies the diversity of solutions

in the front by means of how well they are spread

along the front. It is defined as:

I∆ =
df + dl +

∑N−1
i=1

∣

∣di − d̄
∣

∣

df + dl + (N − 1)d̄
, (3)

where di is the Euclidean distance between consecu-

tive solutions, d̄ is the mean of these distances, and

df and dl are the Euclidean distances to the extreme

solutions of the optimal Pareto front in the objec-
tive space. This indicator takes value zero for an

ideal distribution, which has a perfect spread of the

solutions in the Pareto front.

– Hypervolume (IHV ). This indicator calculates the
volume, in the objective space, covered by members

of a non-dominated set of solutions Q, for problems

where all objectives are to be minimized [40]. Math-

ematically, for each solution i ∈ Q, a hypercube vi
is constructed with a reference point W and the so-
lution i as the diagonal corners of the hypercube.

The reference point can simply be found by con-

structing a vector of worst objective function values.

Thereafter, a union of all hypercubes is found and
its hypervolume (HV ) is calculated as:

IHV = volume





|Q|
⋃

i=1

vi



 . (4)

The higher the value of IHV , the better the approx-

imated Pareto front is.

It can be observed in Eq. 2 that the I+ǫ indicator

makes use of the optimal Pareto front. Because it is un-

known for the considered problem, we build a reference

Pareto front from the solutions reported by the two al-

gorithms in the 30 independent runs (they are shown in
Fig. 2). In order to avoid possible bias in the computa-

tion of these indicators due to the different dimensions

of the problem objectives, this reference Pareto front is

also used to normalize the approximated fronts.

7.1.1 CellDE versus NSGAII

In Fig. 1, we compare the performance of CellDE ver-

sus NSGAII for the three problem densities studied

according to the three suggested metrics. In order to
get strong statistical evidence, these results are com-

puted after performing 30 independent runs of every

algorithm for each problem density. In the displayed

boxplots, the bottom and top of the boxes represent
the lower and upper quartiles of the data distribution,

respectively, while the line between them is the median.

The whiskers are the lowest datum still within 1.5 IQR

of the lower quartile, and the highest datum still within

1.5 IQR of the upper quartile. The circles are data not
included between the whiskers. Finally, the notches in

the boxes display the variability of the median between

samples. If the notches of two boxes are not overlapped,

then it means that there are statistical significant dif-
ferences in the data with 95% confidence.

The results in Fig. 1 show significant differences be-

tween the algorithms in all cases but the I+ǫ indica-

tor for the 200 and 300 devices network. We can see

that NSGAII is providing more accurate results than
CellDE, as the boxplots for I+ǫ and IHV show. Differ-

ences are small for I+ǫ , and more important in the case

of IHV . However, CellDE provides the decision maker

with a much broader choice of tradeoff solutions, as the
I∆ plots demonstrate.

Now, we will pay attention on how the algorithms

scale with the problem size. The relative performance

of the two algorithms is similar for all problem sizes:
NSGAII is better for I+ǫ and IHV , and worse for I∆.

For I+ǫ , the boxes are overlapped for the three net-

work densities, meaning that the solutions in the first

quartile of CellDE are better than those in the third

quartile of NSGAII. Moreover, no significant differences
were found between the algorithms for the densest net-

works. Regarding I∆, we can see that the performance

of CellDE with respect to NSGAII improves with the

problem density, as it can be appreciated by the over-
lapping degree of the whiskers in the boxplots: very high

for the 100 devices problem, almost null for 200 devices

one, and far from being overlapped for the densest net-
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Fig. 1 Comparison of the quality of the fronts computed by the algorithms

work. Finally, we observe that the difference between

the two algorithms is lower for the small network than

for the other two in the case of IHV too. However, the

difference between the algorithms does not increase be-
tween 200 and 300 devices problems in this case (indeed,

it slightly decreases).

7.2 Studying the Optimization Results

We analyze in this section the quality of the obtained

results, and we validate them with the performance of

the three original AEDB configurations (three different
values of neighbors Threshold parameter were proposed

according to the network density). Additionally, we se-

lect the five best configurations for every density, and

evaluate them when scaling the network size and den-
sity.

As mentioned before, all the different solutions ob-

tained for each optimization algorithm were considered

to build one single Pareto front approximation with the

best non-dominated solutions found for every network

density. They are displayed in Fig. 2. The maximum
size for these fronts was set to 100 solutions, so when

more than 100 non-dominated solutions are available,

the best 100 ones, according to the crowding distance

used in NSGAII, are selected.

In the Pareto front approximations shown in Fig. 2,
it stands out that the fronts have two clear sets of solu-

tions in the three scenarios. For the lowest energy val-

ues in the approximated range [−20, 20] dBm, solutions

provide very low coverage and high number of forward-
ings, following a linear relationship between these two

objectives in which the coverage value is similar to the

number of forwardings. These are typically solutions

in which devices are only broadcasting the message to

their closest one, and therefore the number of forward-

ings is very close to the number of devices receiving

the message (i.e., the coverage). However, for higher
energy values over 20 dBm, the shape of the Pareto

front changes, and we can see a clearly defined front

of solutions in which coverage values are growing much

faster than the number of forwardings. This region of

the front is the one in which we are more interested,
since it is providing high coverage at a reasonable num-

ber of forwardings and energy requirements.

We compared these Pareto front approximations to

the solution obtained with the original configurations

of AEDB for the three network densities. Looking for
fair comparisons, AEDB with the initial settings was

executed on 10 different networks using the same seeds

as in the optimization algorithms. The average values

for each of the objectives is compared to the solutions
of the Pareto front. In case, at least one objective of

the solution is better than AEDB and better or equal

for the rest of the objectives, the solution is said to be

dominant. AEDB was executed with values 8, 10, and

12 for neighbors Threshold parameter (as in the orig-
inal paper) and the best solution among those three

ones was compared to the ones obtained in the Pareto

front . We found 11, 6 and 1 solutions dominating the

original configuration of AEDB (i.e., providing better
results for the three objectives) for the three different

configurations: 100, 200 and 300 devices/km2, respec-

tively.
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Fig. 2 The reference Pareto fronts obtained after merging all the Pareto front approximations obtained. Black filled circles
are the solutions that were chosen in this work according to their performance

7.3 Selecting solutions from the Pareto front

Considering the solutions in the Pareto front approxi-

mations, none is better than another (they are all non-
dominated). However, from the point of view of the pro-

tocol designer, a decision must be taken to choose the

most appropriate one according to the expected perfor-

mance. In this work, we selected some solutions from

the Pareto front applying the following restrictions: we
consider that the coverage must be at least 80% of the

total number of devices, and the number of forwardings

should be less than 30%. Moreover, from those solu-

tions that already have less than 30% forwardings and
more than 80% coverage, we calculate the percentage of

the energy saved. The five solutions with higher energy

saved are the ones selected for each network density. In

the case of the solutions found for the 300 devices con-

figuration, we restricted the percentage of forwardings

to 15% as there are many solutions achieving 80% cov-

erage. All the solutions chosen are represented as black
filled circles in Fig. 2, and they were obtained by the

NSGAII optimization algorithm.

We give below some general hints of the values of

the variables in the selected configurations:

– For the 100 devices configuration: the value of the
borders Threshold varies between -90.57 and 91.58

dBm for the five solutions. The highest value of

the margin Threshold is 0.74 dBm and most of

the solutions have around value 22 for the neigh-

bors Threshold except one that is 47.

– For the 200 devices configuration: the value of the

borders Threshold is around -93.5 dBm in general.
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Themargin Threshold ranges between 0.22 and 0.83

dBm. For the neighbors Threshold there is not a

common pattern: the values are different in all cases,

varying from 11 to 42.

– For the 300 devices configuration: the value of the
borders Threshold also varies around -93.5 dBm but

the values are a bit higher than for the 200 configu-

ration in general. The margin Threshold gets higher

values than in the other configurations being the
highest value 2.109 dBm. However, the values ob-

tained for the neighbors Threshold are lower being

the smallest 5 and the highest 28 (only one solution

has such a high value).

7.4 Scalability analysis of the selected solutions

For better analyzing these solutions and studying their

scalability, we execute each of those 15 solutions in 6
different densities and 3 different scenarios for 100 times

in order to get confident results. The densities consid-

ered are: 50, 100, 200, 300, 400 and 500 devices/km2.

The three different scenarios are:

1. 500 m × 500 m → 0.25 km2 (original scenario);

2. 500 m × 1000 m → 0.5 km2 (medium scenario);

3. 1000 m × 1000 m → 1 km2 (largest scenario).

Being the first one the original scenario used in the
optimization process, the second one double the size of

the first, and the third one is four times bigger than the

original scenario.

7.4.1 Performance of the selected solutions

All the tables of results concerning these experiments

are compiled in the Appendix A. Below, we analyze
the general behaviour of each solution in the different

densities and scenarios. We first study the differences

between the set of solutions of each density used by the

optimization algorithms, i.e. solutions obtained for the

100, 200 and 300 devices/km2 configurations.

The results obtained regarding the percentage of the

coverage achieved are shown in tables 4, 5 and 6. We

can observe that the set of solutions of the 100 devices

configuration is the one that behaves always better, for

any scenario or density. Comparing this set of solutions
in terms of the different scenarios we can see that the

coverage achieved is higher for the 500 m × 500 m (the

one used for the optimization), and similar for the other

two. Even though the third scenario has double size and
the second scenario is four times bigger than the orig-

inal, the coverage is not half or one quarter. In fact,

the set of solutions is scaling well and for 100 devices

there is only a maximum of 18.94% and 13.62% differ-

ence with the second and third scenarios respectively.

And for 50 devices the maximum difference is 28.58% in

case of the biggest scenario and 17.52% for the medium

scenario. The other two configurations (200 and 300
devices) do not behave as good as the 100 devices con-

figuration in terms of the coverage achieved.

The percentage of forwardings per device reached is

shown in tables 7, 8, and 9. It is computed consider-

ing the number of devices reached is 100% of the po-

tential forwarders. Therefore, it is the percentage of
those devices that received the broadcasted message

and forwarded it. The solutions of 300 devices send

less forwardings in general. Among the three different

scenarios, the behaviour is similar. The solutions scale
very well considering the number of forwardings. As

expected, the number of forwardings decreases as the

density increases.

In terms of the energy savings, we show in ta-

bles 13, 14 and 15 the percentage of energy saved per

forwarding. The energy saved is calculated as:

EgSaved =
#forwardings ∗DefTx− EgUsed

#forwardings
(5)

That is, the difference between the energy used in

case all the nodes sending the message are using the

default transmission power and the actual energy used

by the protocol (in miliWatts), divided by the number
of forwardings.

In order to better understand the behavior of the

protocol for the different configurations, we include a

graph (see Fig. 3) representing the mean value of the

percentage of the energy saved for the 5 solutions in

each density and scenario. This was obtained by aver-
aging the values shown in tables 13, 14, and 15.

We can observe in Fig. 3 that, for the highest densi-
ties in the three scenarios, the solutions obtained for the

100 devices configuration are behaving better because,

in general, they are using less energy (see tables 10, 11

and 12) and more forwardings (tables 7, 8, 9). For the
sparsest densities, the 300 devices configuration is the

one that saves more energy but we must remark that

it is also the one with lowest coverage. As mentioned

in Sect. 7.3, the 300 devices configuration has around

-93.5 dBm for the borders Threshold (small forwarding
area), low neighbors Threshold over 5 (always reduce

the transmission power), and 2.109 dBm for the mar-

gin Threshold. All these values mean that even in sparse

networks, as the neighbors Threshold is very low, the
protocol reduces the transmission power, thus, saving

more energy but reaching less devices. In dense net-

works, the high value of the margin Threshold makes
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Fig. 3 Energy saved per forwarding for each of the scenarios studied

Table 3 Domain of the variables of the chosen solutions

min. delay max. delay borders Threshold margin Threshold neighbors Threshold
Sol1 0.09275885919476065 0.8193490129680125 −90.5793140592024 0.3923234188788317 24.665973963478013
Sol2 0.09275885919476065 0.9170220922018384 −90.5793140592024 0.20311624654997962 21.82887963879373
Sol3 0.41699935691906936 0.6144875063114115 −90.672110892589 0.07548924788699646 21.678919262045863

the energy saving very low (see values for 500 devices

in Table 15).
We have also included in the Appendix A the tables

regarding the broadcasting time. Tables 16, 17 and 18

show the time needed to broadcast a message in the

network for the six densities at hands and for each of

the three configurations studied in this work. As we ex-
plained before, the broadcast time is not optimized in

this work but it is considered as a constrain by the op-

timization algorithms. We explained in Section 4, that

during the optimization process, the algorithms con-
sider a solution is not feasible if its broadcast time is

higher than 2 seconds. This value was obtained from

previous work [34]. The results show that none of the

solutions are over 2 s when studying the original sce-

nario of 500m × 500m (except Sol2 in the 300 devices
configuration for the highest density). Therefore, the

solutions are scaling well when dealing with lower or

higher densities. As expected, for the other two larger

scenarios (i.e., 500m × 1000m and 1000m × 1000m),
this restriction generally failed for all solutions of the

three optimized configurations. In general the larger the

scenario, the longer the broadcasting time.

7.5 Best scalable solutions

As we previously mentioned, the result of any multi-
objective technique is not an specific value but a set of

them that makes the dissemination algorithm promote

one objective or another. As the designer of the broad-

casting protocol, we are looking for a value for each
threshold that generally makes the algorithm behaving

better than other values in any kind of scenario for the

three objectives. For example, obtaining high savings

in energy but poor coverage is not a good solution from

the designer point of view. Therefore, in this work, we
try to find a tradeoff between the different objectives.

We suggest to use the solutions obtained for the

100 devices configuration. We consider that the higher
number of forwardings and lower energy savings are sac-

rificed to guarantee higher coverage in sparse networks

where the dissemination of the message is difficult. For

the highest densities, the number of forwardings are

reasonable (highest difference with 300 devices configu-
ration is 5.1%) and the energy savings show the same or

even better performance than any other configuration.

Considering now the set of solutions selected in the
100 devices configuration, we can see that Sol1, Sol2

or Sol3 show, in general, the best overall behavior. The

values of the variables of those three solutions are pre-

sented in Table 3.

As we can see, the values of the variables are similar.

The main difference is found in the values of the delay

between Sol3 and the other two. The interval is smaller,
but the minimum delay is 0.32424 units higher. That

means, the broadcast time will take longer as the other

solutions have a probability of having the value of the

random delay lower than 0.417. This is confirmed in
Table 16.

Also notice that the value of the margin Threshold

of Sol3 is lower than Sol1 or Sol2, but it is not reflected
in the energy savings (obtaining higher values). The

reason is because it is compensated with the slightly

higher value of the borders Threshold.
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8 Conclusion and Future Work

In this work, we have optimized the Adaptive Enhanced
Distance Based broadcasting algorithm (AEDB) using

two different multi-objective optimization algorithms

from the state of the art: CellDE and NSGAII. The set

of parameters of AEDB have been optimized in terms
of three different objectives: (1) the energy used for the

dissemination process; (2) the coverage achieved by the

message, and (3) the number of forwardings used to get

the mentioned coverage. From a previous study [34], we

can establish an upper bound for the broadcast time, 2
s. Therefore, we have included a restriction in our op-

timization process. The set of parameters proposed by

the optimization algorithm is only a feasible solution if

the broadcasting time is lower than 2 s. Otherwise, the
solution is discarded.

We optimized AEDB in a square scenario of 500

m side, for three different densities: 100, 200 and 300

devices/km2, for each of the optimization algorithms.

The solutions obtained of each optimization algorithm
were merged in a unique Pareto front for each density.

A comparison between the performance of both opti-

mization algorithms was done, paying attention on how

they scale with the network density.

From the point of view of the optimization, there
is no solution better than another among those in the

Pareto front. However, from the point of view of the

protocol designer, a decision must be taken in order to

have a compromise for each objective, i.e., a solution
with minimum energy used but very low coverage (or

high coverage and high number of forwardings) has no

sense for a broadcasting algorithm. Therefore, five so-

lutions of each Pareto front were selected for further

analysis.

The scalability capabilities of those solutions were

studied. For that, they were executed in 6 densities:

50, 100, 200, 300, 400 and 500 devices/km2. And in

3 different scenarios. The original one with 0.25 km2,

another with double size (0.5 km2), and a third one four
times larger (1 km2). All the solutions were executed in

100 different networks in order to get confident results.

A deep study was performed in order to analyze the

scalability of the different solutions in terms of: (1) the
percentage of the coverage achieved; (2) the percent-

age of forwardings per device reached in the broadcast-

ing process; and (3) the percentage of energy used and

saved both in miliWatts. Finally, the broadcast time

was also included in the analysis.

From all the results, we suggested that the set of so-

lutions that generally behave and scale better were the

ones found in the Pareto front approximation obtained

for 100 devices/km2 density. Among the five solutions

selected, 3 were identified as the best overall ones.

It is necessary to highlight that except for the neigh-
bors Threshold, the other values obtained are quite

similar to the original ones used in AEDB (i.e., AEDB

was already quite well fine tuned). Therefore, it is

pointed out as a decisive parameter on the performance
of the protocol.

As future work, we plan to make the parameters

adaptive, so that, the protocol itself will change the
value of the neighbors threshold or any other value in

terms of, for example, the network density.

A Appendix

The tables obtained for the 6 different densities in each of
the three different scenarios studied are presented in this ap-
pendix. We are showing only the tables regarding: (1) the
percentage of the coverage achieved; (2) the percentage of
the number of forwardings per device reached, (3) the energy
used per forwarding in miliWatts; (4) the percentage of the
energy saved per forwarding also in miliWatts; and finally (5)
the broadcast time.

The results obtained using the solutions of the optimiza-
tion algorithms for 100, 200, and 300 devices/km2 for the
metrics mentioned above are shown in that order.
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Table 4 Percentage of the coverage achieved for the 100 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 45.33±25.77 74.96±23.01 95.44±7.25 98.00±2.45 98.82±0.61 99.13±0.38

500 500 Sol2 47.25±28.13 73.56±23.41 95.36±6.87 98.41±0.77 98.76±1.83 99.10±0.48

500 500 Sol3 48.08±27.06 77.24±24.19 92.42±13.73 98.08±1.46 98.91±0.55 99.17±0.19

500 500 Sol4 41.17±25.37 68.84±23.46 90.96±14.48 96.44±8.37 98.63±1.76 99.02±0.95

500 500 Sol5 48.50±24.91 74.00±24.10 93.20±11.82 97.91±2.68 98.51±2.02 99.13±0.30

1000 1000 Sol1 25.40±19.49 65.23±30.64 97.95±3.90 99.40±0.84 99.71±0.16 99.80±0.00

1000 1000 Sol2 23.60±17.25 65.00±32.67 98.48±2.05 99.54±0.49 99.72±0.23 99.78±0.14

1000 1000 Sol3 22.64±19.20 63.11±32.64 96.62±12.52 99.39±1.40 99.70±0.29 99.80±0.02

1000 1000 Sol4 19.20±15.80 49.90±30.00 95.33±5.71 99.14±1.07 99.54±0.53 99.74±0.20

1000 1000 Sol5 19.92±17.59 63.45±29.96 97.88±2.92 99.38±0.68 99.67±0.25 99.74±0.22

500 1000 Sol1 30.12±22.22 62.96±29.34 95.83±10.01 98.90±1.11 99.44±0.18 99.56±0.20

500 1000 Sol2 29.60±22.80 67.82±27.63 96.63±7.24 98.96±1.06 99.47±0.25 99.57±0.19

500 1000 Sol3 30.56±20.39 65.10±27.59 94.88±12.61 99.11±0.64 99.40±0.38 99.56±0.18

500 1000 Sol4 29.12±20.79 55.22±28.47 93.27±13.07 98.15±2.63 99.38±0.33 99.51±0.35

500 1000 Sol5 31.88±21.52 62.82±26.59 90.68±16.12 98.34±5.70 99.32±0.58 99.52±0.41

Table 5 Percentage of the coverage achieved for the 200 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 38.33±20.75 51.40±23.53 76.82±19.92 81.39±22.09 88.90±20.43 94.86±11.60

500 500 Sol2 38.17±23.03 54.36±24.46 76.72±22.54 91.23±13.65 96.86±4.66 96.32±10.42

500 500 Sol3 38.17±19.72 49.32±22.65 71.74±21.68 84.61±20.78 92.08±13.12 95.23±10.33

500 500 Sol4 37.42±21.86 48.92±21.65 71.50±23.72 81.28±21.43 88.14±15.90 96.51±5.29

500 500 Sol5 36.75±21.26 50.32±20.49 64.42±24.23 77.08±21.09 84.79±18.74 90.14±17.65

1000 1000 Sol1 14.22±10.48 23.81±16.20 55.31±26.90 80.56±24.35 94.35±11.78 97.98±8.84

1000 1000 Sol2 14.52±11.03 28.52±20.37 72.33±27.01 92.63±15.61 97.94±9.29 99.21±1.19

1000 1000 Sol3 13.42±8.49 25.88±16.61 58.50±27.37 86.96±18.65 94.56±13.23 98.35±4.01

1000 1000 Sol4 16.48±10.90 21.46±14.07 46.02±27.42 77.92±26.35 87.98±22.80 95.92±10.48

1000 1000 Sol5 14.36±9.09 19.07±11.36 37.30±23.65 68.61±26.31 81.80±24.06 94.49±13.94

500 1000 Sol1 22.00±13.50 33.34±18.59 61.23±25.18 78.61±24.57 88.39±19.21 93.28±13.65

500 1000 Sol2 27.20±14.95 38.40±21.73 70.32±23.10 90.15±16.40 97.04±4.87 97.10±11.04

500 1000 Sol3 23.68±15.30 30.02±16.49 55.91±28.05 80.22±21.47 85.52±24.30 96.62±6.81

500 1000 Sol4 21.40±12.49 31.26±16.76 51.52±26.96 76.83±22.87 82.68±25.24 94.47±13.19

500 1000 Sol5 24.04±12.85 31.74±16.80 43.11±23.18 61.67±26.56 79.22±24.30 90.36±17.54

Table 6 Percentage of the coverage achieved for the 300 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 33.67±19.57 44.88±19.26 58.82±22.33 71.49±22.72 85.70±16.91 88.70±17.15

500 500 Sol2 35.50±20.05 45.64±17.98 56.62±25.01 77.36±22.45 82.51±21.36 86.21±21.34

500 500 Sol3 31.17±21.04 47.72±20.24 60.42±26.78 78.57±21.18 83.26±21.33 89.95±16.23

500 500 Sol4 32.42±21.38 44.00±18.92 57.34±19.40 74.39±22.11 74.58±23.62 81.06±23.38

500 500 Sol5 35.42±21.92 53.52±27.18 80.82±23.51 92.28±15.37 96.46±8.65 97.70±5.36

1000 1000 Sol1 12.40±7.98 15.58±9.79 31.50±19.74 52.81±28.90 73.20±28.57 91.43±13.97

1000 1000 Sol2 12.02±7.25 18.46±10.69 37.14±23.03 60.43±29.94 81.98±22.25 92.02±17.90

1000 1000 Sol3 12.74±8.10 17.64±11.45 37.60±20.74 64.77±29.67 88.43±17.96 92.65±17.80

1000 1000 Sol4 12.50±7.45 17.54±9.74 30.17±21.31 48.16±27.15 68.32±28.96 80.93±22.57

1000 1000 Sol5 15.38±11.64 28.32±21.89 72.88±29.52 91.90±19.45 97.75±9.08 99.60±0.52

500 1000 Sol1 22.76±12.89 25.14±14.20 36.93±19.89 59.93±26.01 71.97±24.99 81.99±23.92

500 1000 Sol2 24.32±13.27 28.40±16.59 43.18±23.31 62.42±27.30 76.56±25.12 88.70±18.48

500 1000 Sol3 21.76±13.31 25.08±15.80 47.34±23.18 66.15±27.62 75.78±26.21 89.39±19.94

500 1000 Sol4 23.44±13.84 27.92±14.91 37.62±19.67 56.90±23.75 66.13±22.80 78.93±23.90

500 1000 Sol5 26.08±14.87 37.94±23.80 71.40±25.60 90.65±17.67 97.18±8.24 98.09±8.72

7. Cagalj, M., Hubaux, J.P., Enz, C.C.: Energy-efficient
broadcasting in all-wireless networks. Wirel. Netw. 11(1-
2), 177–188 (2005)

8. Chen, X., Faloutsos, M., Krishnamurthy, S.V.: Power
adaptive broadcasting with local information in ad hoc
networks. In: Conference on Network Protocols, p. 168.
IEEE Computer Society (2003)

9. Chiang, T., Liu, C., Huang, Y.: A near-optimal multicast
scheme for mobile ad hoc networks using a hybrid genetic
algorithm. Expert Systems with Applications 33(3), 734–
742 (2007)

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast
and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

11. Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: An-
tHocNet: An adaptive nature-inspired algorithm for rout-
ing in mobile ad hoc networks. Eur. Trans. on Telecom.
16(5), 443–455 (2005)

12. Durillo, J., Nebro, A., Luna, F., Alba, E.: Solving three-
objective optimization problems using a new hybrid cel-
lular genetic algorithm. In: Parallel Problem Solving
from Nature (PPSN X), LNCS, vol. 5199, pp. 661–670.
Springer (2008)

13. Durillo, J.J., Nebro, A.J.: jMetal: A java framework for
multi-objective optimization. Advances in Engineering
Software 42, 760–771 (2011)

14. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study
of master-slave approaches to parallelize NSGA-II. In:
Nature Inspired Distributed Computing (NIDISC) Work-
shop of the (IPDPS), p. 11 (2008)
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Table 7 Percentage of the number of forwardings used per device reached (i.e., coverage) for the 100 devices optimized
configurations

50 100 200 300 400 500
500 500 Sol1 52.76 35.70 21.96 16.26 12.73 10.69
500 500 Sol2 53.26 34.64 22.57 16.38 12.80 10.97
500 500 Sol3 50.09 35.42 22.55 16.71 12.99 11.53
500 500 Sol4 43.12 30.33 19.15 14.18 11.33 9.47
500 500 Sol5 46.91 32.32 21.22 14.97 12.03 9.82

1000 1000 Sol1 49.53 34.42 21.68 15.44 12.21 4.98
1000 1000 Sol2 48.81 35.48 21.77 15.52 12.58 11.11
1000 1000 Sol3 47.44 35.65 21.78 16.01 12.85 5.36
1000 1000 Sol4 41.15 29.28 19.17 13.91 10.84 9.11
1000 1000 Sol5 44.38 32.69 20.55 14.69 11.64 9.47

500 1000 Sol1 48.61 34.40 21.88 16.00 12.75 10.59
500 1000 Sol2 46.89 35.98 22.23 15.99 12.88 11.19
500 1000 Sol3 51.83 35.73 22.51 16.43 13.06 11.35
500 1000 Sol4 41.21 30.39 19.68 14.19 11.23 9.37
500 1000 Sol5 48.31 33.24 20.70 15.27 11.84 9.72

Table 8 Percentage of the number of forwardings used per device reached (i.e., coverage) for the 200 devices optimized
configurations

50 100 200 300 400 500
500 500 Sol1 34.35 20.31 13.72 9.94 8.64 7.08
500 500 Sol2 35.37 22.08 14.52 11.66 9.19 7.71
500 500 Sol3 35.81 19.87 13.58 10.46 8.51 7.28
500 500 Sol4 33.41 18.32 13.03 10.14 7.96 7.04
500 500 Sol5 33.33 18.12 11.80 9.41 7.57 6.52

1000 1000 Sol1 29.96 19.57 13.40 10.45 8.43 7.02
1000 1000 Sol2 32.78 22.09 15.13 11.45 9.12 7.56
1000 1000 Sol3 28.32 20.60 13.96 10.85 8.63 7.36
1000 1000 Sol4 29.25 19.25 12.80 10.18 8.18 6.91
1000 1000 Sol5 26.60 17.41 11.73 9.57 7.78 6.66

500 1000 Sol1 29.82 19.26 14.06 10.41 8.58 7.15
500 1000 Sol2 32.79 22.19 15.05 11.59 9.23 7.72
500 1000 Sol3 31.25 19.12 13.56 10.66 8.74 7.47
500 1000 Sol4 28.04 19.77 12.99 10.00 8.36 7.08
500 1000 Sol5 29.62 19.41 11.20 9.27 7.97 6.69

Table 9 Percentage of the number of forwardings used per device reached (i.e., coverage) for the 300 devices optimized
configurations

50 100 200 300 400 500
500 500 Sol1 27.48 14.80 10.47 8.50 7.18 6.30
500 500 Sol2 25.12 15.25 10.67 9.20 7.42 6.32
500 500 Sol3 32.09 16.93 11.82 9.16 7.59 6.45
500 500 Sol4 31.11 15.27 10.50 8.48 6.70 6.16
500 500 Sol5 36.94 22.65 15.84 11.86 9.38 8.07

1000 1000 Sol1 24.35 14.76 10.87 8.84 7.36 6.34
1000 1000 Sol2 26.62 15.55 11.32 9.25 7.63 6.59
1000 1000 Sol3 25.75 15.93 11.99 9.35 7.90 6.68
1000 1000 Sol4 24.16 15.45 10.71 8.42 7.18 6.17
1000 1000 Sol5 30.56 22.67 15.76 11.90 9.40 7.89

500 1000 Sol1 25.31 15.19 10.32 8.83 7.34 6.31
500 1000 Sol2 26.64 16.97 11.30 9.26 7.69 6.63
500 1000 Sol3 27.94 17.70 11.47 9.65 7.83 6.68
500 1000 Sol4 26.28 17.26 9.91 8.48 7.03 6.11
500 1000 Sol5 30.52 21.98 15.29 12.02 9.52 8.10

15. Garćıa, S., Luque, C., Cervantes, A., Galván, I.: Mul-
tiobjective algorithms hybridization to optimize broad-
casting parameters in mobile ad-hoc networks. In: Pro-
ceedings of the 10th International Work-Conference on
Artificial Neural Networks Part I: Bio-Inspired Systems:
Computational and Ambient Intelligence, Lecture Notes

in Computer Science, vol. 5517, pp. 728–735. Springer-
Verlag Heidelberg (2009)

16. Garćıa, S., Luque, C., Cervantes, A., Galván, I.: Multiob-
jective algorithms hybridization to optimize broadcasting
parameters in mobile ad-hoc networks. In: Proceedings

of the 10th International Work-Conference on Artificial
Neural Networks: Part I: Bio-Inspired Systems: Compu-
tational and Ambient Intelligence, pp. 728–735 (2009)

17. Garćıa-Nieto, J., Alba, E.: Automatic parameter tuning
with metaheuristics of the AODV routing protocol for
vehicular ad-hoc networks. In: Applications of Evolu-
tionary Computation, EvoApplications 2010, LNCS, vol.
6025, pp. 21–30. Springer-Verlag Heidelberg (2010)

18. Garćıa-Nieto, J., Toutouh, J., Alba, E.: Automatic tuning
of communication protocols for vehicular ad hoc networks
using metaheuristics. Eng. App. of Artificial Intelligence
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Table 10 Energy used per forwarding (miliWatts) for the 100 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 19.50±15.18 28.29±10.96 31.59±8.06 37.93±5.07 34.89±4.49 31.10±4.33

500 500 Sol2 11.78±8.68 25.10±10.71 33.78±8.03 29.77±3.31 34.02±4.13 32.15±4.24

500 500 Sol3 20.53±7.06 29.55±12.56 30.06±7.98 31.03±4.78 35.72±4.94 29.29±3.72

500 500 Sol4 11.11±12.03 23.68±10.19 34.55±7.71 31.31±8.31 31.28±3.92 35.97±3.80

500 500 Sol5 18.10±10.10 32.45±10.06 35.12±7.13 37.67±4.15 36.98±3.64 31.51±3.80

1000 1000 Sol1 21.78±17.26 32.80±25.20 36.54±8.60 36.28±9.05 37.76±9.78 16.75±3.83

1000 1000 Sol2 25.46±17.36 29.83±26.01 36.99±13.56 36.44±6.39 34.18±5.83 29.62±6.72

1000 1000 Sol3 20.03±18.64 31.39±23.01 34.24±16.81 37.04±9.44 34.28±6.20 15.46±5.06

1000 1000 Sol4 26.95±17.29 34.09±26.29 37.44±15.26 37.52±7.64 36.96±10.48 36.52±8.54

1000 1000 Sol5 19.80±13.94 33.43±20.54 35.01±14.29 38.09±7.67 37.41±10.71 37.30±10.17

500 1000 Sol1 18.39±15.10 32.36±19.25 37.42±10.48 37.31±8.05 35.53±5.54 33.54±6.71

500 1000 Sol2 15.81±10.34 26.82±17.82 34.02±10.37 36.63±5.77 35.24±6.22 32.30±5.52

500 1000 Sol3 23.36±15.83 29.94±17.61 32.77±14.23 34.68±7.35 36.55±7.74 30.22±6.94

500 1000 Sol4 27.82±12.51 29.30±21.23 34.43±14.74 38.80±8.29 35.80±6.29 34.93±6.73

500 1000 Sol5 22.20±15.13 28.97±15.21 35.69±12.72 35.64±7.68 36.27±6.27 35.02±5.83

Table 11 Energy used per forwarding (miliWatts) for the 200 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 14.42±10.23 24.50±9.26 25.93±6.71 25.48±10.16 34.48±10.35 31.64±6.95

500 500 Sol2 12.77±8.07 34.82±10.76 31.20±8.84 39.25±7.73 38.37±4.81 31.34±7.00

500 500 Sol3 17.58±6.99 20.84±7.21 35.65±8.27 33.40±9.90 36.87±10.17 34.45±8.44

500 500 Sol4 13.89±8.33 17.24±6.28 30.60±8.60 26.44±9.29 26.31±10.62 32.69±6.18

500 500 Sol5 9.99±7.46 18.14±5.37 32.80±7.59 28.97±9.04 30.17±8.00 30.35±7.22

1000 1000 Sol1 11.93±12.31 29.86±16.89 37.23±21.15 35.52±24.74 38.70±21.18 37.34±15.40

1000 1000 Sol2 15.74±10.21 27.69±18.37 38.87±23.08 39.09±17.78 38.90±13.01 38.05±8.95

1000 1000 Sol3 24.65±7.86 26.60±13.18 34.27±25.62 36.33±20.79 37.57±17.01 35.15±12.90

1000 1000 Sol4 15.55±14.95 21.61±12.58 36.31±22.19 38.08±21.69 38.40±20.37 36.20±14.49

1000 1000 Sol5 25.01±7.33 22.20±10.37 35.45±17.87 37.32±24.73 36.90±23.95 37.51±17.08

500 1000 Sol1 16.38±5.00 19.71±9.86 33.23±15.62 32.40±19.44 32.96±12.81 37.07±10.38

500 1000 Sol2 14.86±8.55 23.97±10.93 34.63±13.83 37.04±14.95 39.18±9.57 38.14±13.65

500 1000 Sol3 20.72±7.86 31.84±7.77 32.99±20.34 37.77±13.92 38.92±14.78 32.42±6.92

500 1000 Sol4 12.33±12.81 18.32±7.97 33.21±16.63 34.12±15.15 37.66±14.80 37.30±9.38

500 1000 Sol5 20.10±5.21 18.41±6.29 34.88±14.19 33.52±17.73 35.86±20.70 32.73±16.05

Table 12 Energy used per forwarding (miliWatts) for the 300 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 7.90±9.50 24.37±4.03 20.07±10.78 30.35±9.42 26.93±7.23 39.61±7.08

500 500 Sol2 7.59±10.59 27.07±3.72 19.11±6.65 28.09±8.10 26.63±9.01 36.64±8.74

500 500 So3 7.19±17.32 15.45±4.65 28.91±8.24 28.97±7.46 29.19±9.64 29.40±7.53

500 500 Sol4 7.62±16.84 23.22±4.68 18.57±7.28 33.47±7.50 39.29±9.14 27.63±11.13

500 500 Sol5 15.73±6.19 17.61±8.18 30.23±10.85 29.80±11.12 28.96±6.63 37.92±5.47

1000 1000 Sol1 14.10±7.29 19.97±11.16 37.07±15.68 39.87±25.31 37.04±24.90 39.65±18.45

1000 1000 Sol2 15.98±6.60 33.92±8.93 32.11±19.29 38.13±23.36 35.03±23.44 37.06±21.97

1000 1000 Sol3 16.61±7.70 32.37±9.93 28.71±16.94 34.30±25.52 39.74±21.14 39.81±22.55

1000 1000 Sol4 15.47±4.46 28.04±11.01 30.71±21.27 31.71±24.77 36.57±24.35 38.59±20.31

1000 1000 Sol5 17.51±9.11 30.38±22.27 39.77±25.76 38.94±21.61 38.79±12.69 37.26±7.43

500 1000 Sol1 14.51±4.83 32.12±6.45 34.45±15.40 38.84±15.34 34.92±18.50 39.15±17.30

500 1000 Sol2 18.20±4.26 21.64±6.83 36.88±15.35 35.31±14.36 37.55±18.44 37.32±16.69

500 1000 Sol3 15.53±5.00 16.93±12.76 29.48±13.96 34.60±14.27 38.43±14.20 39.27±13.31

500 1000 Sol4 14.11±5.11 20.49±7.95 32.14±13.79 28.92±12.22 31.07±15.02 30.50±19.04

500 1000 Sol5 31.30±6.69 23.45±14.78 38.88±19.18 34.80±12.40 36.33±7.83 38.73±9.27

Table 13 Percentage of the energy saved per forwarding (miliWatts) for the 100 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 51.24 29.27 21.03 5.18 12.78 22.24
500 500 Sol2 70.56 37.26 15.54 25.59 14.95 19.61
500 500 Sol3 48.68 26.11 24.85 22.44 10.69 26.78
500 500 Sol4 72.22 40.80 13.62 21.72 21.81 10.06
500 500 Sol5 54.76 18.89 12.19 5.83 7.54 21.23

1000 1000 Sol1 45.55 18.00 8.64 9.29 5.61 58.12
1000 1000 Sol2 36.36 25.42 7.51 8.90 14.56 25.95
1000 1000 Sol3 49.93 21.53 14.40 7.39 14.30 61.35
1000 1000 Sol4 32.62 14.78 6.40 6.21 7.60 8.71
1000 1000 Sol5 50.51 16.43 12.48 4.78 6.46 6.74

500 1000 Sol1 54.01 19.09 6.44 6.72 11.17 16.15
500 1000 Sol2 60.46 32.94 14.95 8.43 11.90 19.24
500 1000 Sol3 41.59 25.15 18.06 13.30 8.64 24.45
500 1000 Sol4 30.45 26.75 13.91 3.00 10.49 12.69
500 1000 Sol5 44.50 27.59 10.78 10.90 9.32 12.45
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Table 14 Percentage of the energy saved per forwarding (miliWatts) for the 200 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 63.95 38.76 35.19 36.30 13.81 20.89
500 500 Sol2 68.07 12.95 22.01 1.87 4.08 21.64
500 500 Sol3 56.06 47.91 10.88 16.49 7.84 13.87
500 500 Sol4 65.27 56.90 23.49 33.91 34.23 18.28
500 500 Sol5 75.03 54.64 17.99 27.58 24.58 24.13

1000 1000 Sol1 70.17 25.35 6.92 11.20 3.25 6.65
1000 1000 Sol2 60.65 30.77 2.82 2.28 2.74 4.88
1000 1000 Sol3 38.38 33.50 14.33 9.18 6.07 12.14
1000 1000 Sol4 61.12 45.97 9.23 4.81 4.00 9.49
1000 1000 Sol5 37.49 44.49 11.37 6.71 7.76 6.22

500 1000 Sol1 59.05 50.73 16.93 18.99 17.59 7.33
500 1000 Sol2 62.85 40.08 13.42 7.39 2.04 4.66
500 1000 Sol3 48.19 20.39 17.53 5.57 2.70 18.96
500 1000 Sol4 69.18 54.21 16.98 14.70 5.85 6.75
500 1000 Sol5 49.75 53.98 12.79 16.20 10.35 18.18

Table 15 Percentage of the energy saved per forwarding (miliWatts) for the 300 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 80.26 39.09 49.83 24.13 32.67 0.97
500 500 Sol2 81.02 32.32 52.22 29.78 33.43 8.40
500 500 Sol3 82.03 61.36 27.73 27.57 27.04 26.49
500 500 Sol4 80.96 41.95 53.57 16.32 1.78 30.92
500 500 Sol5 60.67 55.98 24.43 25.51 27.59 5.20

1000 1000 Sol1 64.76 50.07 7.33 0.33 7.39 0.88
1000 1000 Sol2 60.05 15.20 19.72 4.68 12.43 7.34
1000 1000 Sol3 58.49 19.08 28.23 14.26 0.64 0.48
1000 1000 Sol4 61.33 29.89 23.22 20.72 8.58 3.52
1000 1000 Sol5 56.22 24.05 0.57 2.64 3.03 6.86

500 1000 Sol1 63.73 19.71 13.88 2.91 12.71 2.12
500 1000 Sol2 54.49 45.91 7.80 11.71 6.12 6.69
500 1000 Sol3 61.19 57.66 26.30 13.50 3.93 1.84
500 1000 Sol4 64.72 48.78 19.64 27.71 22.33 23.74
500 1000 So5 21.74 41.39 2.81 13.01 9.18 3.16

Table 16 Broadcast time (nanoseconds) for the 100 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 6, 6154E008 1, 3099E009 1, 4179E009 1, 1462E009 8, 9515E008 9, 1945E008

±6,5157E008 ±6,5754E008 ±5,7336E008 ±4,2729E008 ±2,7830E008 ±2,7952E008

500 500 Sol2 7, 7402E008 1, 3798E009 1, 4874E009 1, 2039E009 1, 0575E009 1, 0559E009
±7,0499E008 ±7,4075E008 ±4,7012E008 ±3,5424E008 ±2,8721E008 ±2,8283E008

500 500 Sol3 7, 2361E008 1, 6432E009 1, 7656E009 1, 6909E009 1, 6640E009 1, 7074E009
±6,2011E008 ±8,0836E008 ±5,2148E008 ±3,6623E008 ±3,1593E008 ±3,0946E008

500 500 Sol4 6, 2314E008 1, 6055E009 1, 8259E009 1, 5942E009 1, 4997E009 1, 3610E009
±6,7361E008 ±9,1984E008 ±7,4059E008 ±5,2176E008 ±3,9238E008 ±3,8485E008

500 500 Sol5 5, 4429E008 1, 0291E009 1, 2588E009 1, 1579E009 1, 0984E009 1, 0194E009
±4,5984E008 ±5,2180E008 ±4,7901E008 ±2,9422E008 ±2,7771E008 ±2,3924E008

1000 1000 Sol1 1, 3333E009 3, 1248E009 2, 8321E009 2, 2839E009 1, 9492E009 8, 2658E008
±1,2498E009 ±1,6045E009 ±5,9579E008 ±4,5698E008 ±3,9714E008 ±1,5656E008

1000 1000 Sol2 1, 4491E009 3, 4549E009 3, 0808E009 2, 5054E009 2, 2131E009 2, 2314E009
±1,2790E009 ±1,9259E009 ±6,2124E008 ±4,8589E008 ±3,4848E008 ±3,5992E008

1000 1000 Sol3 1, 3911E009 4, 0641E009 4, 0530E009 3, 6081E009 3, 8044E009 2, 1550E009
±1,2918E009 ±2,2789E009 ±9,9518E008 ±5,3206E008 ±4,9928E008 ±3,8050E008

1000 1000 Sol4 1, 1990E009 3, 5028E009 4, 3003E009 3, 2706E009 2, 8835E009 2, 7360E009
±1,1615E009 ±2,2853E009 ±1,0163E009 ±6,3141E008 ±5,7864E008 ±4,1883E008

1000 1000 Sol5 8, 6453E008 2, 8506E009 2, 8817E009 2, 5613E009 2, 2964E009 2, 2621E009
±9,5478E008 ±1,5637E009 ±6,8224E008 ±4,3662E008 ±3,8654E008 ±3,2175E008

500 1000 Sol1 8, 0690E008 1, 9209E009 2, 2875E009 1, 8635E009 1, 5096E009 1, 5124E009
±7,9467E008 ±1,1444E009 ±6,7315E008 ±4,9219E008 ±3,4822E008 ±3,2009E008

500 1000 Sol2 9, 6769E008 2, 3584E009 2, 6191E009 2, 0392E009 1, 7045E009 1, 7138E009
±1,1539E009 ±1,2235E009 ±8,9059E008 ±5,6597E008 ±4,7228E008 ±3,5770E008

500 1000 Sol3 1, 0418E009 2, 4724E009 3, 2953E009 3, 0209E009 2, 9158E009 2, 9255E009
±8,7463E008 ±1,2656E009 ±8,6244E008 ±6,4367E008 ±5,5982E008 ±5,2940E008

500 1000 Sol4 8, 7580E008 2, 1287E009 3, 1361E009 2, 6859E009 2, 4299E009 2, 1783E009
±9,0799E008 ±1,3190E009 ±9,9381E008 ±8,3037E008 ±6,0552E008 ±4,7697E008

500 1000 Sol5 8, 1295E008 1, 6994E009 2, 2036E009 1, 9222E009 1, 8257E009 1, 7702E009
±7,0898E008 ±8,9772E008 ±7,5509E008 ±4,3763E008 ±3,4859E008 ±3,7212E008

32(5), 795–805 (2010)
19. Gendreau, M., Potvin, J.Y. (eds.): Handbook of Meta-

heuristics, International Series in Operations Research

& Management Science, vol. 146. Springer (2010)
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Table 17 Broadcast time (nanoseconds) for the 200 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 3, 8473E008 7, 0653E008 1, 2367E009 1, 2160E009 1, 2838E009 1, 3175E009

±3,5955E008 ±5,3501E008 ±5,7901E008 ±5,5660E008 ±4,8499E008 ±3,8031E008

500 500 Sol2 3, 3366E008 6, 7061E008 9, 8390E008 9, 8617E008 8, 7748E008 7, 8587E008
±3,7953E008 ±4,7525E008 ±6,0591E008 ±4,4023E008 ±3,4996E008 ±3,1416E008

500 500 Sol3 2, 6836E008 4, 8495E008 7, 7340E008 9, 0347E008 9, 0723E008 8, 8091E008
±2,7974E008 ±3,8184E008 ±3,7093E008 ±4,0174E008 ±3,6177E008 ±3,5860E008

500 500 Sol4 4, 4468E008 7, 7261E008 1, 3790E009 1, 5884E009 1, 7597E009 1, 8604E009
±4,6683E008 ±5,0474E008 ±6,8913E008 ±6,8037E008 ±5,5813E008 ±5,3811E008

500 500 Sol5 2, 0153E008 3, 9766E008 5, 4718E008 6, 5278E008 6, 5218E008 6, 7129E008
±2,5981E008 ±2,7527E008 ±4,1590E008 ±3,5166E008 ±2,6928E008 ±3,0243E008

1000 1000 Sol1 5, 5419E008 1, 1016E009 2, 6040E009 3, 0484E009 3, 1454E009 2, 8905E009
±5,2270E008 ±7,9488E008 ±1,3856E009 ±9,9830E008 ±8,2776E008 ±5,8808E008

1000 1000 Sol2 4, 5357E008 1, 2241E009 2, 3816E009 2, 1594E009 1, 7313E009 1, 4629E009
±5,6815E008 ±1,0471E009 ±1,1164E009 ±6,7732E008 ±4,9498E008 ±3,1132E008

1000 1000 Sol3 3, 3547E008 9, 3129E008 1, 8607E009 2, 1473E009 2, 0904E009 1, 8898E009
±3,3832E008 ±6,7096E008 ±8,8969E008 ±6,8109E008 ±5,6618E008 ±4,0811E008

1000 1000 Sol4 8, 1496E008 1, 4076E009 2, 8766E009 4, 1745E009 4, 0799E009 4, 0103E009
±6,5592E008 ±1,1208E009 ±1,8131E009 ±1,5639E009 ±1,3725E009 ±9,4025E008

1000 1000 Sol5 3, 0186E008 5, 2312E008 1, 0488E009 1, 5907E009 1, 6533E009 1, 5618E009
±2,9279E008 ±3,8334E008 ±7,5293E008 ±6,8288E008 ±6,4644E008 ±4,6857E008

500 1000 Sol1 3, 9663E008 8, 4166E008 1, 7439E009 2, 0709E009 2, 0848E009 2, 2743E009
±3,2049E008 ±6,1614E008 ±8,1038E008 ±8,6187E008 ±6,5696E008 ±6,9881E008

500 1000 Sol2 4, 9451E008 8, 2345E008 1, 4756E009 1, 5406E009 1, 3806E009 1, 2884E009
±4,4850E008 ±6,5631E008 ±7,0885E008 ±6,0786E008 ±4,8222E008 ±4,5390E008

500 1000 Sol3 3, 3486E008 5, 3345E008 1, 1007E009 1, 5087E009 1, 5301E009 1, 4779E009
±3,5190E008 ±3,8792E008 ±6,6910E008 ±5,7664E008 ±6,0122E008 ±4,2202E008

500 1000 Sol4 5, 4797E008 1, 0685E009 1, 8265E009 2, 5653E009 2, 7664E009 3, 0535E009
±4,8582E008 ±7,3099E008 ±1,2154E009 ±1,0178E009 ±1,1283E009 ±7,5592E008

500 1000 Sol5 2, 9512E008 5, 1555E008 6, 8394E008 9, 7871E008 1, 1203E009 1, 1674E009
±2,6466E008 ±4,3231E008 ±4,7181E008 ±5,3208E008 ±5,5042E008 ±4,2527E008

Table 18 Broadcast time (nanoseconds) for the 300 devices optimized configurations

50 100 200 300 400 500
500 500 Sol1 2, 4370E008 4, 8394E008 8, 0567E008 8, 8758E008 1, 0372E009 1, 0101E009

±3,2218E008 ±4,1833E008 ±5,6656E008 ±5,1117E008 ±5,0100E008 ±4,6429E008

500 500 Sol2 4, 5934E008 8, 9021E008 1, 3705E009 1, 9096E009 1, 9622E009 2, 0932E009
±5,4414E008 ±6,2886E008 ±9,1303E008 ±8,6020E008 ±7,7064E008 ±9,1611E008

500 500 Sol3 4, 0056E008 8, 3080E008 1, 1859E009 1, 5581E009 1, 5576E009 1, 6584E009
±4,4921E008 ±4,9611E008 ±7,4509E008 ±6,4637E008 ±6,4913E008 ±6,6446E008

500 500 Sol4 3, 9501E008 6, 6917E008 1, 0750E009 1, 4236E009 1, 4213E009 1, 5923E009
±4,4984E008 ±4,6996E008 ±5,5631E008 ±6,8233E008 ±7,1921E008 ±6,3581E008

500 500 Sol5 4, 6171E008 1, 0135E009 1, 5221E009 1, 5607E009 1, 4186E009 1, 2863E009
±5,3161E008 ±7,4636E008 ±8,2773E008 ±6,0374E008 ±5,9295E008 ±4,0319E008

1000 1000 Sol1 4, 2980E008 6, 7359E008 1, 4251E009 1, 9249E009 2, 2417E009 2, 3394E009
±4,5043E008 ±6,3772E008 ±9,1059E008 ±1,0629E009 ±9,9529E008 ±7,3389E008

1000 1000 Sol2 7, 9543E008 1, 3505E009 2, 9138E009 4, 3003E009 4, 9831E009 4, 6277E009
±6,9023E008 ±9,6943E008 ±1,8516E009 ±2,3198E009 ±1,6411E009 ±1,3018E009

1000 1000 Sol3 6, 7438E008 1, 0828E009 2, 5991E009 3, 5805E009 4, 1442E009 3, 8973E009
±6,8036E008 ±9,5325E008 ±1,6092E009 ±1,8187E009 ±1,3096E009 ±1,1496E009

1000 1000 Sol4 5, 3604E008 9, 8223E008 1, 7442E009 2, 8747E009 3, 5981E009 3, 8231E009
±4,6847E008 ±6,3039E008 ±1,3274E009 ±1,6867E009 ±1,7472E009 ±1,2681E009

1000 1000 Sol5 7, 6854E008 1, 7120E009 3, 4070E009 3, 4964E009 2, 8966E009 2, 5658E009
±9,0763E008 ±1,4397E009 ±1,6814E009 ±1,1201E009 ±6,2255E008 ±4,7560E008

500 1000 Sol1 3, 9571E008 5, 2176E008 8, 5055E008 1, 4086E009 1, 5623E009 1, 5048E009
±4,3867E008 ±4,6797E008 ±6,3590E008 ±8,1541E008 ±8,1779E008 ±6,5074E008

500 1000 Sol2 7, 9610E008 1, 1812E009 1, 7858E009 2, 7796E009 3, 2281E009 3, 5302E009
±6,6290E008 ±8,9912E008 ±1,1731E009 ±1,5296E009 ±1,3317E009 ±1,1674E009

500 1000 Sol3 5, 8195E008 8, 9663E008 1, 7125E009 2, 3231E009 2, 5175E009 2, 7898E009
±5,8967E008 ±7,9297E008 ±9,4261E008 ±1,2440E009 ±1,0664E009 ±9,5770E008

500 1000 Sol4 5, 7973E008 8, 7965E008 1, 1981E009 1, 9644E009 2, 2335E009 2, 5888E009
±4,8739E008 ±5,9160E008 ±8,0013E008 ±1,0828E009 ±9,3333E008 ±1,1191E009

500 1000 Sol5 6, 7928E008 1, 0986E009 2, 3604E009 2, 5768E009 2, 3050E009 2, 0901E009
±6,0651E008 ±9,0160E008 ±1,1008E009 ±9,3751E008 ±6,4480E008 ±6,2535E008
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