
Accelerated EM-based clustering of large data sets

Jakob J. Verbeek (j.j.verbeek@uva.nl) , Jan R.J. Nunnink
(j.r.j.nunnink@uva.nl) and Nikos Vlassis (n.vlassis@uva.nl)
Informatics Institute, Faculty of Science, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract. Motivated by the poor performance (linear complexity) of the EM
algorithm in clustering large data sets, and inspired by the successful accelerated
versions of related algorithms like k-means, we derive an accelerated variant of the
EM algorithm for Gaussian mixtures that: (1) offers speedups that are at least linear
in the number of data points, (2) ensures convergence by strictly increasing a lower
bound on the data log-likelihood in each learning step, and (3) allows ample freedom
in the design of other accelerated variants. We also derive a similar accelerated
algorithm for greedy mixture learning, where very satisfactory results are obtained.
The core idea is to define a lower bound on the data log-likelihood based on a
grouping of data points. The bound is maximized by computing in turn (i) optimal
assignments of groups of data points to the mixture components, and (ii) optimal re-
estimation of the model parameters based on average sufficient statistics computed
over groups of data points. The proposed method naturally generalizes to mixtures
of other members of the exponential family. Experimental results show the potential
of the proposed method over other state-of-the-art acceleration techniques.

Keywords: Gaussian mixtures, EM algorithm, free energy, kd-trees, large data sets.

1. Introduction

Mixture models provide a rigorous framework for density estimation
and clustering, with many applications in machine learning and data
mining (McLachlan and Peel, 2000). The EM algorithm (Dempster
et al., 1977) and the k-means algorithm (Gersho and Gray, 1992) are
among the most popular learning algorithms for mixture models. How-
ever, both algorithms scale rather poorly for large data sets: each
update step requires a complete sweep over all data points, which limits
their applicability for large data sets.
Several authors (Omohundro, 1989; Moore, 1999; Moore and Pelleg,

1999; Kanungo et al., 2002) have proposed speedups of these algorithms
in which the data are first grouped and statistics of these groups are
cached, and then learning iterates only through these statistics instead
of the data themselves. In k-means this can be done in an exact way
by using geometrical reasoning and a recursive partitioning scheme
that allows groups of data to be assigned in bulk to specific compo-
nents (Moore and Pelleg, 1999; Kanungo et al., 2002). However, in EM

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18436572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

the assignment of data points to components is soft, therefore such
speedup schemes necessarily involve an approximation (Moore, 1999).
In this paper we propose a variant of the EM algorithm for Gaussian

mixtures that offers similar speedups without compromising stability.
As in (Moore, 1999), we first partition the data and cache some statis-
tics in each partition cell. A generalized view of the EM algorithm (Neal
and Hinton, 1998) can be used to compute optimal assignments of cells
to mixture components (E-step), which are further used to update the
mixture parameters (M-step). Both steps have cost that is independent
of the size of the data set, and is linear in the number of partition cells.
We derive an accelerated EM algorithm that strictly increases in each
step a lower bound on the data log-likelihood —independent of the
chosen partitioning— ensuring convergence.
To our knowledge, the proposed EM algorithm is the first provably

convergent EM clustering algorithm for large data sets. An important
feature of our algorithm is that it allows arbitrary data partitioning
schemes, without compromising convergence, where related techniques
rely on the use of fine partitions and lack convergence guarantees.
In the following, we first briefly review in Section 2 the framework

of Gaussian mixtures and the EM algorithm, in Section 3 we describe
the main idea of our accelerated EM algorithm, and in Section 4 we
discuss several data partitioning schedules. In Section 5 we show how
the same principle can be applied to the ‘greedy’ learning of Gaussian
mixtures. We compare with similar work in Section 6, and in Section 7
we show comparative experimental results. We conclude and discuss
possible future work in Section 8.

2. Gaussian mixtures and the EM algorithm

A k-component Gaussian mixture for a random vector x in IRd is
defined as the convex combination

p(x) =
k

∑

s=1

p(x|s)p(s) (1)

of k Gaussian densities p(x|s) which are in turn defined as

p(x|s) = (2π)−d/2|Cs|
−1/2 exp[−(x−ms)

>C−1
s (x−ms)/2], (2)

each parameterized by its meanms and covariance matrix Cs. The com-
ponents of the mixture are indexed by the random variable s that takes
values from 1 to k, and p(s) defines a discrete prior distribution over the
components. Given a set {x1, . . . , xn} of independent and identically

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.2

3

distributed samples from p(x), the learning task is to estimate the
parameter vector θ = {p(s),ms, Cs}

k
s=1 of the k components that max-

imizes the log-likelihood function L(θ) =
∑n

i=1 log p(xi; θ). Throughout
we assume that the likelihood function is bounded from above (e.g., by
placing lower bounds on the eigenvalues of the components covariance
matrices) in which case the maximum likelihood estimate is known to
exist (Lindsay, 1983).
Maximization of the data log-likelihood L(θ) can be carried out by

the EM algorithm (Dempster et al., 1977). In this work we consider a
generalization of EM in which we iteratively maximize a lower bound

of the data log-likelihood (Neal and Hinton, 1998). In our case, this
bound F(θ,Q) is a function of the current mixture parameters θ and a
factorized distribution Q =

∏n
i=1 qi(s), where each qi(s) corresponds to

a data point xi and defines an arbitrary discrete distribution over s. For
a particular realization of s we will refer to qi(s) as the ‘responsibility’
of component s for the point xi. This lower bound, analogous to the
(negative) free energy in statistical physics, can be expressed by the
following two equivalent decompositions:

F(θ,Q) =
n

∑

i=1

[log p(xi; θ)−D(qi(s)‖p(s|xi; θ))] (3)

=
n

∑

i=1

k
∑

s=1

qi(s)[log p(xi, s; θ)− log qi(s)], (4)

where D(·‖·) denotes Kullback-Leibler divergence between two distri-
butions, and p(s|xi) is the Bayes posterior over components of a data
point xi. The dependence of p on θ will be throughout assumed, and
we will often omit θ.
Since the Kullback-Leibler divergence between two distributions is

nonnegative, the decomposition (3) defines indeed a lower bound on the
log-likelihood. Moreover, the closer the responsibilities qi(s) are to the
posteriors p(s|xi), the tighter the bound. In the classical derivation of
EM (Dempster et al., 1977), each E-step of the algorithm sets qi(s) =
p(s|xi) in which case, and for the current value θ

t of the parameter
vector, holds F(θt, Q) = L(θt).
However, as pointed out in (Neal and Hinton, 1998), other (sub-

optimal) responsibilities qi(s) can also be used in the E-step of the
algorithm, provided that F increases (or at least does not decrease).1

This also leads to a convergent algorithm that increases in each step a
lower bound on the data log-likelihood L. Moreover, it can be shown
that (local) maxima of F are also (local) maxima of L.

1 This is why we use the more general term ‘responsibility’ for the distributions
q rather than e.g. ‘cluster posterior probability’.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.3

4

For particular values of the responsibilities qi(s), we can solve for the
unknown parameters of the mixture by using (4). It is easy to see that
maximizing F for the unknown parameters of a component s yields the
following solutions:

p(s) =

∑

i qi(s)

n
, (5)

ms =

∑

i qi(s)xi
np(s)

, (6)

Cs =

∑

i qi(s)xix
>
i

np(s)
−msm

>
s , (7)

where the sums run over all data points (i = 1, . . . , n), which is costly
for large n.

3. Locally shared responsibilities

As mentioned above, in the E-step of the EM algorithm we are allowed
to assign any responsibilities qi(s) to the data as long as this increases
F . The key idea in our algorithm is to assign equal responsibilities

to groups of data points that are nearby in the input space. In this
manner, we do not need to optimize over n distributions qi but only
over one distribution per group of data points. It turns out that for
this optimization only a few averaged sufficient statistics need to be
available per group of data points.
Consider a partition P of the data space into a collection of non-

overlapping cells {A1, . . . , Am}, such that each point in the data set
belongs to a single cell.2 To all points in a cell A ∈ P we assign the
same distribution qA(s) which we can compute in an optimal way as
we show next. Note from (4) that the objective function F can be
written as a sum of local parts F =

∑

A∈P FA, one per cell. If we
impose qi(s) = qA(s) for all data points xi ∈ A, then the part of F
corresponding to a cell A reads

FA = nA

k
∑

s=1

qA(s)
[

log
p(s)

qA(s)
+
1

nA

∑

xi∈A

log p(xi|s)
]

, (8)

where nA denotes the number of points in A. If we set the derivatives
of FA w.r.t. qA(s) to zero we find the optimal distribution qA(s) that
(globally) maximizes FA:

qA(s) ∝ p(s) exp〈log p(x|s)〉A, (9)

2 As we discuss in Section 6, our approach straightforwardly generalizes to the
case of overlapping cells.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.4

5

where 〈·〉A denotes average over all points in A. Such an optimal dis-
tribution can be separately computed for each cell A ∈ P, and only
requires computing the average joint log-likelihood of the points in A.

3.1. Speedup using cached statistics

We now show that it is possible to efficiently compute (i) the optimal
qA(s) for each cell A in the E-step and (ii) the new values of the
unknown mixture parameters in the M-step, if some statistics of the
points in each cell A are cached in advance. The averaging operation
in (9) can be written (we ignore the additive constant − d

2
log(2π) which

translates into a multiplicative constant in (9)

〈log p(x|s)〉A (10)

= −
1

2
[log |Cs|+m>s C

−1
s ms + 〈x

>C−1
s x〉A − 2m

>
s C

−1
s 〈x〉A]

= −
1

2
[log |Cs|+m>s C

−1
s ms +Trace{C

−1
s 〈xx>〉A} − 2m

>
s C

−1
s 〈x〉A],

from which we see that the mean 〈x〉A and the average outer product
〈xx>〉A of the points in A are averaged sufficient statistics for com-
puting the optimal responsibilities qA(s) in (9). The same statistics
can also be used for updating the mixture parameters θ. If we set the
derivatives of F w.r.t. θ to zero we obtain the update equations

p(s) =

∑

A nAqA(s)

n
, (11)

ms =

∑

A nAqA(s)〈x〉A
np(s)

, (12)

Cs =

∑

A nAqA(s)〈xx
>〉A

np(s)
−msm

>
s , (13)

in direct analogy to the update equations (5)–(7), with the advan-
tage that the linear complexity in the number of data points has been
replaced by a linear complexity in the number of cells of the partition.
Note that the proposed EM algorithm interacts with the data only

through the cached statistics of groups of data. Moreover, whatever
partition we choose, our algorithm strictly increases in each step a lower
bound on the data log-likelihood. In the limit, if we partition all data
points into separate cells, the algorithm is guaranteed to converge to a
(local) maximum of the data log-likelihood. In effect, our accelerated
EM algorithm is a ‘maximization-maximization’ or ‘coordinate ascent’
algorithm: both E- and M-steps involve a maximization of the free
energy F (over Q and θ respectively).

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.5

6

Finally, note that the result presented here for Gaussian mixtures
generally applies to mixtures of members of the exponential family.
This general applicability of the result follows from the facts that for
members of the exponential family (i) the expected log-likelihood over
a cell of data is given by a linear function of the average sufficient
statistics of the cell, and (ii) the maximum likelihood parameter is
uniquely determined by the averaged sufficient statistics.

3.2. Further speedup using diagonal covariance matrices

If the covariance matrices are constrained to be diagonal, the amount
of sufficient statistics and computation drops considerably since cor-
relations between variables do not need to be estimated. Rather than
caching the average outer products 〈xx>〉, in this case we only need to
cache the diagonal of this matrix, a vector denoted by 〈x2〉. Analogously
we write m2

s for the diagonal of msm
>
s . Obviously, 〈x

2〉 and m2
s can be

computed without forming the matrices 〈xx>〉 and msm
>
s .

In the M-step only the update for the covariance matrix changes;
we now set the diagonal of the covariance matrix to the diagonal of the
update (13), which can be written as

∑

A nAqA(s)〈x
2〉A/(np(s))−m2

s.
Also in the computation of the average log-likelihood 〈log p(x|s)〉 for a
cell, computational savings are obtained. Notably, the trace term can be
replaced by the inner product of 〈x2〉A and the diagonal of the inverse
covariance matrix.3

Concluding, by constraining the covariance matrices to be diagonal
the amount of computation needed in both the E-step and the M-
step (as well as the space needed to store the mixture parameters and
the averaged sufficient statistics) becomes linear in the data dimen-
sionality rather than quadratic when using full covariance matrices.
This saving is important when fitting Gaussian mixtures to data in a
high dimensional spaces, as is e.g. the case when employing Generative
Topographic Mapping (Bishop et al., 1998) for data visualization. It is
application dependent whether the independence assumption between
the variables within each cluster, as implemented by restricting the
covariance matrices to be diagonal, is realistic. In some applications it
may be worthwhile to settle for a more restrictive model with diagonal
covariance matrices so as to obtain computational savings and reduced
storage requirements.

3 The inverse covariance matrix is found in linear time since it is diagonal.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.6

7

4. Choosing a partition

The analysis presented in the previous sections applies to any partition,
as long as averaged sufficient statistics of the data have been stored
in the corresponding cells. As we showed above, for any partition we
obtain a convergent algorithm that strictly increases in each step a
lower bound on the data log-likelihood. Moreover, by refining a given
partition, the energy F cannot decrease, and in the limit (when each
data point is in a separate cell) the normal EM algorithm is obtained,
and after the E-step F = L. Clearly, various trade-offs can be made
between the computational cost and the approximation quality.
A convenient structure for storing statistics in a way that permits

the use of different partitions in the course of the algorithm is a kd-
tree (Bentley, 1975; Moore, 1999). This is a binary tree in which the
root contains all data points, and each node is recursively split by a
hyperplane that cuts through the data points contained in the node.
Typically, axis-aligned hyperplanes are used for splitting nodes. In our
experiments we used hyperplanes that cut along the bisector of the first
principal component of the points in the node, leading to irregularly
shaped cells (Sproull, 1991). Hyperplanes based on the principal com-
ponent allow the kd-tree to capture the clustered data structure at a
higher level in the tree. Note that the usual performance deterioration
of kd-trees in high dimensional spaces does not apply here directly,
since they are not used for search in this work. As in (Moore, 1999), we
store in each node of the kd-tree the average sufficient statistics of all
data points under this node. Building the kd-tree and storing statistics
in its nodes has cost O(n logn), but this needs to be done only once at
the beginning of the algorithm.
The outer nodes of a given expansion of the kd-tree form a partition

P of the data set. Further expanding the tree means refining a current
partition. In our implementations, as heuristic to guide the tree expan-
sion, we employ a best-first search strategy in which we expand the
node that leads to maximal increase in F . Note that computing the
change in F involves only a node and its children so it can be done in
time linear in the number of outer nodes.
We also need a criterion when to stop expanding the tree, and one

could use, among others, bounds on the variation of the data posteriors
inside a node like in (Moore, 1999), a bound on the size of the partition
(number of outer nodes at any step), or sampled approximations of the
difference between log-likelihood and F . Another possibility, which we
adopted in our experiments, is to control the tree expansion based on
the performance of the algorithm, that is, we refine a partition only if
this (significantly) improves the value of F .

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.7

8

Below we show in pseudocode the proposed accelerated EM algo-
rithm as described in Section 3, together with the partition sched-
ule outlined above. Input is a d-dimensional data set of n points xi,
and output is a Gaussian mixture with k components and parameters
{p(s),ms, Cs}

k
s=1.

1. Build a kd-tree on the data set {xi}, and store in each node A the required
data statistics 〈x〉A and 〈xx>〉A of the points x that are contained in A.
The complexity of this step is O(n log n).

2. Choose an initial configuration of the mixture using k components (several
initialization techniques from the literature can be used, e.g., random or
using k-means). Choose an initial partition P0 of the data by expanding
the tree to some depth (in our experiments we used depth 2).

3. E-step: For each cell A in the current partition Pt (that is: each node in the
fringe of the expanded tree) compute qA(s) for each component s of the
mixture using (9) and (10). Note that this step requires only the averaged
sufficient statistics already cached in the tree, and has complexity O(k|Pt|)
where |Pt| the size of the current fringe (typically |Pt| ¿ n).

4. M-step: For each mixture component k update its parameters using (11)–
(13). Set Fold = F , and compute the new energy F from (8). Note that
this step also uses the average sufficient statistics of the data in each cell,
and has also complexity O(k|Pt|).

5. If | F

Fold
− 1| < 1e-5 then set Ft = F , else go back to step 3.

6. Expand one-level-down a single node on the fringe of the tree to create
the new partition Pt+1: among all nodes in Pt choose the node that leads
to maximal increase of Ft. This step has complexity O(k|Pt|).

7. If | Ft

Ft−1
− 1| < 1e-5 then stop, else set t = t+ 1 and go back to step 3.

5. Greedy mixture learning

A recent approach to mixture learning involves building a mixture in a
‘greedy’ manner (Li and Barron, 2000; Sand and Moore, 2001; Vlassis
and Likas, 2002; Verbeek et al., 2003). The idea is to start with a
single component (which is trivial to find), and then alternate between
adding a new component to the mixture and updating the complete
mixture. In particular, given a k-component Gaussian mixture pk(x)
that has converged, the greedy method seeks a new component φ(x)
with mean mφ and covariance Cφ, and a mixing weight a ∈ (0, 1)
that maximizes the log-likelihood Lk+1 =

∑n
i=1 log pk+1(xi) of the two-

component mixture

pk+1(x) = (1− a)pk(x) + aφ(x;mφ, Cφ), (14)

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.8

9

where pk(x) is kept fixed. The advantages of greedy mixture learn-
ing are: (1) initializing the mixture is trivial, (2) local maxima of
L are easier to escape, and (3) model selection becomes more man-
ageable. Relations of such greedy methods to other machine learning
techniques like boosting can be found in (Zhang, 2002). The greedy
approach is somewhat similar to a deterministic annealing (Rose, 1998)
approach where components are ‘added’ at phase transitions. However,
only the greedy approach is guaranteed to iteratively increase the data
log-likelihood under the mixture.
In (Verbeek et al., 2003), the search for a good component to add

to pk(x) involves first splitting the data according to their ‘nearest’
(with highest posterior) component, then randomly generating a num-
ber of candidate components from the points in each subset, and finally
maximizing Lk+1 using only the data from the corresponding subset.
The same principle can also be applied in the case of pre-partitioned
data sets. In particular, in component allocation we divide all cells
A ∈ P into k disjoint subsets Ps (s = 1, . . . k) according to their
‘nearest’ (with highest responsibility) component: Ps = {A ∈ P : s =
argmaxs′ qA(s

′)}. Then we generate a component φ(x;mφ, Cφ) from
the data contained in a random subset of cells S ⊂ Ps as

mφ =
1

nS

∑

A∈S

nA〈x〉A, Cφ =
1

nS

∑

A∈S

nA〈xx
>〉A −mm>, (15)

where nS is the total number of points in S. (Note that both mφ and
Cφ can be calculated without requiring the data points themselves.)
Subsequently we update (a,mφ, Cφ) in (14) by maximizing a lower
bound of Lk+1 using only the cells in Ps. (Cells outside Ps will not
contribute significantly to the bound.) Let rA be the responsibility of
the new component φ(x;mφ, Cφ) for any cell A ∈ Ps, and 1 − rA the
responsibility of the old mixture pk. The free energy (8) for cell A under
the two-component mixture (14) then reads

Fk+1
A = nArA

[

log
a

rA
+ 〈log φ(x)〉A

]

+nA(1− rA)
[

log
1− a

1− rA
+ 〈log pk(x)〉A

]

. (16)

Since Fk
A is a lower bound on

∑

x∈A log pk(x) which we have already
computed from (8), we can replace the latter in (16) to get the bound

Fk+1
A ≥ nArA

[

log
a

rA
+ 〈log φ(x)〉A

]

+ nA(1− rA)
[

log
1− a

1− rA
+
Fk
A

nA

]

.

(17)

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.9

10

In the E-step we compute the optimal rA for each cell A ∈ Ps by setting
the derivative of (17) w.r.t. rA to zero. This gives:

rA =
a exp〈log φ(x)〉A

(1− a) exp(Fk
A/nA) + a exp〈log φ(x)〉A

, (18)

where 〈log φ(x)〉A can be computed fast using (10). Similarly, in the M-

step we maximize Fk+1
P =

∑

A∈P F
k+1
A using the rA found in (18). As

in (Verbeek et al., 2003), we set the responsibility of the new component
for all cells outside Ps to zero, in which case it is not difficult to see
that we get the following update equations:

a =

∑

A∈Ps
nArA

n
, (19)

mφ =

∑

A∈Ps
nArA〈x〉A
na

, (20)

Cφ =

∑

A∈Ps
nArA〈xx

>〉A
na

−mφm
>
φ . (21)

Note that the sums run over cells in Ps ⊂ P. We refer to (Nunnink,
2003) for more details.

6. Related work

The idea of using a kd-tree structure for accelerating the EM algorithm
for learning mixtures from large data sets was first proposed in (Moore,
1999). In that work in each EM step every node in the kd-tree is
assigned responsibility distribution equal to the Bayes posterior of the
centroid of the data points stored in the node, i.e., qA = p(s|〈x〉A),
cf. (9). If there is little variation in the posteriors within a node,
which is achieved by having relatively fine partitions, the approximation
qA = p(s|〈x〉A) will only slightly affect the update in the M-step and
therefore this will probably increase the data log-likelihood. However,
this is not guaranteed. Also, in (Moore, 1999) a different tree expansion
is computed in each EM step, while as stopping criterion for tree ex-
pansion bounds are used on the variation of the posterior probabilities
of the data inside a node of the kd-tree (a nontrivial operation that in
principle requires solving a quadratic programming problem).
The main advantage of our method compared to (Moore, 1999) is

that our algorithm strictly increases in each step a lower bound of
the data log-likelihood by computing the optimal responsibility dis-
tribution for each node, thus ensuring stability. Moreover, this optimal
distribution is independent of the size, shape, or other properties of the

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.10

11

node, allowing us to use even rough partitions. As mentioned above and
as demonstrated in the experiments below, by gradually refining the
partition while running the algorithm we can get close to the optima
of the log-likelihood in relatively few steps.
Our approach to compute optimal shared responsibilities may also

be used in other related accelerated EM algorithms to furnish them with
a guarantee to iteratively improve the free-energy bound on the data
log-likelihood. In (Bradley et al., 1998) an algorithm is proposed that
learns the mixture while reading data from disk. During learning some
data records are stored in memory while other groups of data records
are only stored by their average sufficient statistics, which frees memory
space for new records to be read from disk. In (Bradley et al., 1998) a
group A of data points are associated to the mixture components by
computing p(s|〈x〉A), as in (Moore, 1999).
In (McCallum et al., 2000) an approach more similar to that pre-

sented here was introduced. The main difference with the method
proposed here is that in the former the data is divided in overlapping

subsets. The data within each subset contributes to the update of one
fixed mixture component associated with that subset, and to the other
components only in the form of the expected value of the data points
in the subset, similar to Moore’s suboptimal responsibilities. Our ap-
proach of computing optimal shared posteriors can be straightforwardly
extended to a collection P of overlapping subsets of data points as fol-
lows.4 For each data point xi and subset A we introduce an association
variable βiA, such that

∑

A βiA = 1, and βiA = 0 if xi is not in subset A.
For example, the βiA could be set uniform over all subsets A to which
xi belongs. We can now define a slightly modified lower bound on the
data log-likelihood:

F ′ =
n

∑

i=1

[

log p(xi)−
∑

A∈P

βiAD(qA(s)‖p(s|xi))

]

(22)

=
∑

A∈P

[

n
∑

i=1

βiA

]

H(qA) +
k

∑

s=1

qA(s)

[

n
∑

i=1

βiA log p(xi, s)

]

. (23)

The derivations of optimal assignments and parameter re-estimation
equations are completely analogous to those presented in Section 3.5

A different way to speedup the EM algorithm for mixture learning
from large data sets was proposed in (Thiesson et al., 2001). The
authors propose to divide the data set into several random disjoint

4 We only require that each data point is contained in at least one subset.
5 In principle it is also possible, and straightforward, to optimize over the

association variables βiA.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.11

12

subsets of (about) equal size and then to process the data per sub-
set. For each subset, first for all points xi in the subset the optimal
responsibilities qi(s) are computed as the posteriors p(s|xi) (E-step),
then the parameter estimates are updated by taking into account the
newly computed posteriors for the data in the current subset. In this
manner, when computing the responsibilities for the next subset, we
already take into account information from the previous subset through
the updated parameter estimates. However, the reported speedups that
were obtained by this approach are modest; the authors do not report
speedups greater than 2.3 (i.e. the time needed until convergence for
the standard EM algorithm is 2.3 times greater than the time required
by their accelerated algorithm). in the experiments below, we report
similar findings.
An approach based on random projections to learn Gaussian mix-

tures in high dimensional spaces is presented in (Dasgupta, 1999). To
alleviate the large sample requirements for accurate parameter estima-
tion in high dimensional spaces, the data is first randomly projected to
a low dimensional linear subspace. The data are clustered in the low
dimensional space, and then the result is used to find the mixture in
the high dimensional space. Although a thorough theoretical analysis
is presented, in comparison to our method the above approach does
not directly resolve the computational burden associated with a large
number of data points, and moreover the approach is limited to learning
of Gaussian mixtures.

7. Experiments

We carried out synthetic experiments to evaluate the proposed acceler-
ated EM algorithm for learning a k-component Gaussian mixture, using
both the non-greedy and the greedy variant. We compare against the
standard EM algorithm, the greedy EM algorithm proposed in (Verbeek
et al., 2003), and the accelerated EM algorithms described in (Moore,
1999) and (Thiesson et al., 2001).
In our experiments we used synthetic data sets sampled from a

randomly chosen k-component Gaussian mixture in d dimensions with
a component separation6 of c. For each data set we built a kd-tree and
stored in its nodes the data statistics as explained above.

6 Following (Dasgupta, 1999), a Gaussian mixture is c separated if for each pair

(i, j) of component densities ||mi −mj || ≥ c
√

dmax{λmax(Ci), λmax(Cj)}, where
λmax(C) denotes the maximum eigenvalue of C.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.12

13

EM vs. accelerated EM

In the first experiment we compared the accelerated EM algorithm
described in Section 3 and Section 4 with the standard EM algorithm.
The training set consisted of 10,000 points drawn from a 10-component
3-separated Gaussian mixture in two dimensions, and we also sampled
a test set of 1000 points from the same mixture. We evaluate the
algorithms based on the log-likelihood the learned mixture assigns to
the test set in order to measure the ability to identify the generating
mixture rather than the training data drawn from that mixture. We
applied both algorithms to a mixture initialized with k-means.
We started the accelerated EM algorithm with an initial expansion

of the tree to depth two. We kept this partition fixed and ran the
algorithm until convergence. Convergence was measured in terms of
relative increase in F (we used threshold 10−5). We then refined the
partition by expanding the node of the tree that led to maximal increase
in F . Then we ran the algorithm again until convergence, refined the
partition by expanding best-first a single node of the tree, and so on. We
terminated the algorithm if F hardly improved between two successive
partitions. Note that refining a particular partition and computing the
new responsibilities can be viewed as applying an E-step which justifies
the use of the relative improvement of F as a convergence measure.
In Fig. 1 we show the speedup and the (negative) log-likelihood

obtained by the two algorithms vs. the true log-likelihood of the test
set, averaged over 20 trials. Speed was measured using the total number
of basic floating point operations needed for convergence.
With respect to run-time, the results show that: (1) the speedup

of the accelerated EM compared to the standard EM is at least linear
in the number of data points, as expected from the analysis, (2) the
number of dimensions and components have a negative effect on the
speedup, and (3) the amount of separation has a positive effect. The
lower speedup in high dimensions can be ascribed to the use of a
kd-tree, while many components or smaller separation lead to more
diverse responsibilities, thus making coarse partitions perform worse.
In general the accelerated EM requires more iterations to converge than
the standard EM, but it is still faster than the latter since the iterations
themselves are executed much faster.
With respect to solution quality, we note that both the standard EM

and its accelerated counterpart reach solutions that are on the average
suboptimal with respect to the true model. This is due to the k-means
initialization. However, the relative difference in log-likelihood between
the standard EM and our algorithm is small, even for mixtures with
many components or high dimensionality.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.13

14

Greedy EM vs. accelerated greedy EM

In a second experiment we compared the greedy EM algorithm de-
scribed in (Verbeek et al., 2003) with its ‘accelerated greedy’ coun-
terpart of Section 5. We started the accelerated greedy EM algorithm
with a partition of size four and expanded the tree one node at a time,
best first, as in the first experiment. We used a default data set of
10,000 points and a test set of 500 points drawn from a 5-component
2-separated mixture in two dimensions. In Fig. 2 we show the results av-
eraged over 20 trials. The accelerated greedy algorithm is always faster,
with a speedup that is linear in the size of the data set. Moreover, this
speedup comes almost ‘for free’: the log-likelihoods of both algorithms
are practically equal to that of the generating mixture.

Incremental EM vs. accelerated EM

In this experiment we compared our accelerated EM algorithm with the
incremental algorithm of (Thiesson et al., 2001). The training set was
sampled from a 10-component 3-separated Gaussian mixture density
in two dimensions. Both algorithms were initialized using k-means.
The accelerated algorithm was used as described above. After testing
multiple block sizes, we found that using the incremental algorithm the
largest speedup was obtained for a block size of 1/25 of the total data
set size.
The goal of this experiment was to point out the main difference

between the two algorithms in relation to speedup and performance.
The measure used to point out the difference in speed is the comparison
between the total time which the two algorithms need to convergence
and the time the standard EM algorithm needs to converge. The mea-
sure to depict the quality of both algorithms is the log-likelihood of a
test set under the learned mixtures. In Fig. 3, we show the obtained
speedups and the negative log-likelihoods.
The difference in speedup is clear and can be explained by an ob-

vious difference between the algorithms. The incremental algorithm
randomly divides the data set in equally sized blocks, and performs
partial EM-steps on each block iteratively. Each partial EM-step takes
far less time than performing one full EM-step on the entire data set.
The final speedup produced by Thiesson is a result of the fact that the
sum of the time needed to perform all partial EM-steps is smaller than
the time needed to perform a single EM-step on the entire data set.
Optimal speedup is obtained by finding the optimal trade-off between
doing partial EM-steps on small blocks and doing partial EM-steps on a
small amount of blocks. But as the algorithm still performs these partial
EM-steps using all the data-points in a single block, it eventually, after

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.14

15

having processed each block, performs EM on all data points in the
data set. Therefore, the time complexity is still linear with respect to
the amount of data points, as it is with normal EM.
With respect to the solution quality, the performance of the in-

cremental EM algorithm is comparable to that of the standard EM
algorithm as it does take all data points into account just as the
standard EM algorithm does. The relative difference in log-likelihood
between the incremental EM and our algorithm is small.

Very fast EM vs. accelerated EM

In this experiment we compared the accelerated EM algorithm with
the ‘Very fast EM’ algorithm proposed in (Moore, 1999). A training set
of 100.000 data points was sampled from a 3-component 2-separated
Gaussian mixture. Both algorithms were initialized using k-means. The
initial binary trees were constructed by doing a full expansion until
depth 6, thus resulting in a total tree-size of 127 nodes. The goal of
this experiment was to point out the main difference between the two
algorithms in relation to how they expanded the kd-tree.
With Moore’s algorithm, expansion is done from the root node

downwards. The criterion to expand a node is based on finding for
each component s the minimum and maximum of p(x|s) that can be
attained within the bounding box of the node. The node is expanded if
there is a component s for which the difference between the minimum
and the maximum of p(x|s) within the bounding box is bigger than a
certain threshold τ , times the prior probability of that component. The
higher τ is set, the smaller the expansion of the tree.
Finding the minimum and maximum of p(x|s) in the bounding box

can be formulated as finding the minimum and maximum of (x −
ms)

>Cs(x −ms) such that x is within the bounding box of the node.
The minimum and maximum can thus be found by solving a quadratic
program. To make our comparison independent of the computationally
costly operation of solving the quadratic program we did not compare
the algorithms directly in terms of running time. Instead, we used
the amount of expansion of the tree as a performance measure. The
expansion is a good performance measure as it depicts the amount of
nodes taken into account in every EM step, so a cumulative plot of
the amount of expanded leaf nodes is a proper representation of the
quantity of operations performed before convergence.7

No significant difference in the log-likelihood assigned to the test was
found between the mixtures learned using the two different algorithms.

7 Recall that both algorithms have a running time that is linear in the number
of nodes that is processed in each step.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.15

16

However, the amount of nodes that were expanded before convergence,
and thus the required amount of computation, is considerably larger for
Moore’s algorithm. This is explained by the fact that Moore’s algorithm
expands in each EM step the tree from the root down until it finds
nodes that fail to meet the expansion criterion. Therefore the cumula-
tive amount of expansion operations is much larger as can be seen in
Fig. 4. We conclude from these results that even without the additive
computational cost of solving the quadratic programs, the amount of
computation required by the very fast EM algorithm is much larger
than the amount required by our algorithm.

8. Conclusions and future work

We presented an accelerated EM algorithm that can be used to speed
up large data set applications of EM to learning mixtures of Gaus-
sians. Our algorithm strictly maximizes in each learning step a lower
bound on data log-likelihood, and that bound becomes tighter if we use
finer partitions. The algorithm finds mixture configurations near local
optima of the log-likelihood surface which are comparable with those
found by the standard EM algorithm, but considerably faster.
Moreover, we have a convergent algorithm that maximizes a lower

bound on data log-likelihood regardless of the particular partition of the
data. This allows us to use rough partitions where the true posteriors
differ heavily in each part, which might be needed when working on
large data sets and only limited computational resources are available.
In practice, we can start the algorithm with a rough partition for which
the EM iterations are performed very fast, refine the partition when
the algorithm converges, run EM again, and so on, thus balancing the
computational cost with the quality of the solution.
Comparing our work with (Moore, 1999), we conclude that with

less computational effort we can use the optimal shared responsibilities
instead of the posterior at the node centroid. Furthermore, we obtained
a provably convergent algorithm and have the freedom to use arbitrary
partitions of the data. Comparing with (Verbeek et al., 2003), it appears
that without compromising quality we can achieve speedups in greedy
mixture learning that are at least linear in the number of data points.
In the experiments reported on in this paper we used kd-trees to find

a hierarchical partitioning of the data set. For high-dimensional data,
other tree structures (such as ball-trees (Omohundro, 1989) and anchor
hierarchies (Moore, 2000)) have been reported to yield greater speedups
of nearest neighbor queries and related tasks in high-dimensional data
sets. More research is needed to determine the most efficient data struc-

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.16

17

tures to be used within our acceleration scheme. Advantages and disad-
vantages of overlapping vs. non-overlapping partition schemes need to
be identified as well. Similarly, there might be more efficient strategies
to refine the partitions in the course of the EM algorithm.
Finally, it would be interesting to see how the proposed framework

performs on other mixture models like, for instance, the Generative
Topographic Mapping (Bishop et al., 1998) or in supervised mixture
modelling (Titsias and Likas, 2001). As future work we would like to
consider the application of the proposed framework to the learning of
non-Gaussian mixtures, e.g. mixtures for discrete data, using AD-trees
and related techniques (Moore and Lee, 1998).

Acknowledgements

We would like to thank the reviewers for their useful comments which
helped to improve this manuscript. We are indebted to Tijn Schmits
for part of the experimental work. JJV is supported by the Technology
Foundation STW (project AIF 4997) applied science division of NWO
and the technology program of the Dutch Ministry of Economic Affairs.

References

Bentley, J. L.: 1975, ‘Multidimensional binary search trees used for associative
searching’. Communications of the ACM 18(9), 509–517.

Bishop, C. M., M. Svensén, and C. K. I. Williams: 1998, ‘GTM: the generative
topographic mapping’. Neural Computation 10, 215–234.

Bradley, P. S., U. M. Fayyad, and C. A. Reina: 1998, ‘Scaling EM (expectation
maximization) clustering to large databases’. Technical Report MSR-TR-98-35,
Microsoft Research.

Dasgupta, S.: 1999, ‘Learning mixtures of Gaussians’. In: Proceedings of the IEEE
Symposium on Foundations of Computer Science, Vol. 40. Los Alamitos, CA,
USA: IEEE Computer Society Press, pp. 634–644.

Dempster, A. P., N. M. Laird, and D. B. Rubin: 1977, ‘Maximum likelihood from
incomplete data via the EM algorithm’. Journal of the Royal Statistical Society.
Series B (Methodological) 39(1), 1–38.

Gersho, A. and R. M. Gray: 1992, Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers.

Kanungo, T., D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu:
2002, ‘An efficient k-means clustering algorithm: analysis and implementation’.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 881–892.

Li, J. Q. and A. R. Barron: 2000, ‘Mixture density estimation’. In: S. A. Solla and
T. K. Leen and K.-R. Müller (ed.): Advances in Neural Information Processing
Systems, Vol. 12. Cambridge, MA, USA: MIT Press, pp. 279–285.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.17

18

Lindsay, B. G.: 1983, ‘The geometry of mixture likelihoods: a general theory’. The
Annals of Statistics 11(1), 86–94.

McCallum, A., K. Nigam, and L. Ungar.: 2000, ‘Efficient clustering of high-
dimensional data sets with application to reference matching’. In: R. Ramakr-
ishnan and S. Stolfo (eds.): Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Vol. 6. New-York, NY,
USA: ACM Press.

McLachlan, G. J. and D. Peel: 2000, Finite Mixture Models. John Wiley & Sons.
Moore, A.: 1999, ‘Very fast EM-based mixture model clustering using multiresolution

kd-trees’. In: M. J. Kearns S. A. Solla and D. A. Cohn (ed.): Advances in Neural
Information Processing Systems, Vol. 11. Cambridge, MA, USA: MIT Press, pp.
543–549.

Moore, A. and D. Pelleg: 1999, ‘Accelerating exact k-means algorithms with geo-
metric reasoning’. In: Proc. of 5th Int. Conf. on Knowledge Discovery and Data
Mining. pp. 277–281.

Moore, A. W.: 2000, ‘The anchors hierarchy: using the triangle inequality to survive
high-dimensional data’. In: C. Boutilier and M. Goldszmidt (eds.): Proceedings
of the Annual Conference on Uncertainty in Artificial Intelligence, Vol. 16. San
Mateo, CA, USA, pp. 397–405, Morgan Kaufmann.

Moore, A. W. and M. S. Lee: 1998, ‘Cached Sufficient Statistics for Efficient Machine
Learning with Large Datasets’. Journal of Artificial Intelligence Research 8,
67–91.

Neal, R. M. and G. E. Hinton: 1998, ‘A view of the EM algorithm that justifies
incremental, sparse, and other variants’. In: M. I. Jordan (ed.): Learning in
Graphical Models. Boston, MA, USA: Kluwer, pp. 355–368.

Nunnink, J. R. J.: 2003, ‘Large scale Gaussian mixture modelling using a greedy
expectation-maximisation algorithm’. Master’s thesis, Informatics Institute,
University of Amsterdam. www.science.uva.nl/research/ias/alumni/m.sc.theses.

Omohundro, S. M.: 1989, ‘Five balltree construction algorithms’. Technical Report
TR-89-063, International Computer Science Institute, Berkeley.

Rose, K.: 1998, ‘Deterministic annealing for clustering, compression, classifica-
tion, regression and related optimization proble ms’. IEEE Transactions on
Information Theory 86(11), 2210–2239.

Sand, P. and A. W. Moore: 2001, ‘Repairing faulty mixture models using density
estimation’. In: C. E. Brodley and A. P. Danyluk (eds.): Proceedings of the
International Conference on Machine Learning, Vol. 18. San Mateo, CA, USA:
Morgan Kaufmann, pp. 457–464.

Sproull, R. F.: 1991, ‘Refinements to nearest-neighbor searching in k-dimensional
trees’. Algorithmica 6, 579–589.

Thiesson, B., C. Meek, and D. Heckerman: 2001, ‘Accelerating EM for large
databases’. Machine Learning 45(3), 279–299.

Titsias, M. and A. Likas: 2001, ‘Shared kernel models for class conditional density
estimation’. IEEE Transactions on Neural Networks 12(5), 987–997.

Verbeek, J. J., N. Vlassis, and B. J. A. Kröse: 2003, ‘Efficient greedy learning of
Gaussian mixture models’. Neural Computation 15(2), 469–485.

Vlassis, N. and A. Likas: 2002, ‘A greedy EM algorithm for Gaussian mixture
learning’. Neural Processing Letters 15(1), 77–87.

Zhang, T.: 2002, ‘A general greedy approximation algorithm with applications’. In:
T. G. Dietterich and S. Becker and Z. Ghahramani (ed.): Advances in Neural
Information Processing Systems, Vol. 14. Cambridge, MA, USA: MIT Press.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.18

19

10 20 27 35

5

10

15

20
sp

ee
du

p

points (x1000)
10 20 27 35

0

1

2

3

4

5

−l
og

−l
ik

el
ih

oo
d

points (x1000)

2 5 10

3

3.5

4

4.5

sp
ee

du
p

dimensions
2 5 10

0

5

10

15

−l
og

−l
ik

el
ih

oo
d

dimensions

10 20 30
2

2.5

3

3.5

4

sp
ee

du
p

components
10 20 30

0

2

4

6

−l
og

−l
ik

el
ih

oo
d

components

1 2 3 4
2

4

6

8

10

sp
ee

du
p

separation
1 2 3 4

0

1

2

3

4

5

−l
og

−l
ik

el
ih

oo
d

separation

Figure 1. Mixture learning with the standard EM vs. the accelerated EM. The
graphs show the speedup factor and the bar charts show the negative log-likelihood:
generating mixture (black), standard EM (light), accelerated EM (dark).

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.19

20

2 5 10 20
0

5

10

15

20

sp
ee

du
p

points (x1000)
2 5 10 20

0

1

2

3

4

−l
og

−l
ik

el
ih

oo
d

points (x1000)

2 5 8
7

8

9

10

11

sp
ee

du
p

dimensions
2 5 8

0

2

4

6

8

−l
og

−l
ik

el
ih

oo
d

dimensions

5 10 15
2

4

6

8

10

sp
ee

du
p

components
5 10 15

0

1

2

3

4

5

−l
og

−l
ik

el
ih

oo
d

components

1 1.5 2 2.5 3

8

10

12

14

sp
ee

du
p

separation
1 2 3

0

1

2

3

−l
og

−l
ik

el
ih

oo
d

separation

Figure 2. Greedy mixture learning vs. the accelerated greedy EM. The graphs show
the speedup factor and the bar charts show the negative log-likelihood: generating
mixture (black), greedy EM (light), accelerated greedy EM (dark).

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.20

21

10 20 30 40
0

5

10

15

20

points (x1000)

sp
ee

du
p

10 20 27 35
0

1

2

3

4

5

points (x1000)

−l
og

−l
ik

el
ih

oo
d

Figure 3. Accelerated EM vs. incremental EM. The graph shows the speedup factor:
accelerated EM (dotted line) and incremental EM (solid line). The bar chart shows
the negative log-likelihood: generating mixture (mid grey), standard EM (black),
incremental EM (light grey) and accelerated EM (dark grey).

1 3 5 7 9 11 13
0

20

40

60

80

100

ex
pa

ns
io

n
in

 %
 o

f t
re

es
iz

e

iterations
1 3 5 7 9 11 13

0

200

400

600

iterations

cu
m

ul
at

iv
e

ex
pa

ns
io

n

Figure 4. Accelerated EM vs. very fast EM (t = 0.5). Left panel shows the per-
centage of tree-expansion, right panel shows the cumulative expansions of nodes
as a percentage of the tree size. Results for very fast EM are in black, those for
accelerated EM in grey.

Verbeek04dmkd_rev.tex; 8/09/2005; 13:06; p.21

