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resumo  
 
 

Atualmente, a poluição atmosférica constitui uma das principais causas 
ambientais de mortalidade. Cerca de 30% da população europeia residente em 
áreas urbanas encontra-se exposta a níveis de poluição atmosférica 
superiores aos valores- limite de qualidade do ar legislados para proteção da 
saúde humana, representando o tráfego rodoviário uma das principais fontes 
de poluição urbana. Além dos poluentes tradicionais avaliados em áreas 
urbanas, os poluentes classificados como perigosos para a saúde (Hazard Air 
Pollutants - HAPs) têm particular relevância devido aos seus conhecidos 
efeitos tóxicos e cancerígenos. Neste sentido, a avaliação da exposição torna-
se primordial para a determinação da relação entre a poluição atmosférica 
urbana e efeitos na saúde.  
O presente estudo tem como principal objetivo o desenvolvimento e 
implementação de uma metodologia para avaliação da exposição individual à 
poluição atmosférica urbana relacionada com o tráfego rodoviário. De modo a 
atingir este objetivo, foram identificados os parâmetros relevantes para a 
quantificação de exposição e analisados os atuais e futuros potenciais 
impactos na saúde associados com a exposição à poluição urbana. Neste 
âmbito, o modelo ExPOSITION (EXPOSure model to traffIc-relaTed aIr 
pOllutioN) foi desenvolvido baseado numa abordagem inovadora que envolve 
a análise da trajetória dos indivíduos recolhidas por telemóveis com tecnologia 
GPS e processadas através da abordagem de data mining e análise geo-
espacial. O modelo ExPOSITION considera também uma abordagem 
probabilística para caracterizar a variabilidade dos parâmetros microambientais 
e a sua contribuição para exposição individual. Adicionalmente, de forma a 
atingir os objetivos do estudo foi desenvolvido um novo módulo de cálculo de 
emissões de HAPs provenientes do transporte rodoviário. 
Neste estudo, um sistema de modelação, incluindo os modelos de transporte-
emissões-dispersão-exposição, foi aplicado na área urbana de Leiria para 
quantificação de exposição individual a PM2.5 e benzeno. Os resultados de 
modelação foram validados com base em medições obtidas por monitorização 
pessoal e monitorização biológica verificando-se uma boa concordância entre 
os resultados do modelo e dados de medições. A metodologia desenvolvida e 
implementada no âmbito deste trabalho permite analisar e estimar a 
magnitude, frequência e inter e intra-variabilidade dos níveis de exposição 
individual, bem como a contribuição de diferentes microambientes, 
considerando claramente a sequência de eventos de exposição e relação 
fonte-recetor, que é fundamental para avaliação dos efeitos na saúde e 
estudos epidemiológicos. O presente trabalho contribui para uma melhor 
compreensão da exposição individual em áreas urbanas, proporcionando 
novas perspetivas sobre a exposição individual, essenciais na seleção de 
estratégias de redução da exposição à poluição atmosférica urbana, e 
consequentes efeitos na saúde. 
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abstract  
 
 
 

Currently, air pollution represents one of the main environmental causes of 
mortality. About 30% of European citizens in urban areas are exposed to air 
pollution levels that exceed the air quality limits set by the legislation for the 
protection of human health, with road transport being the most significant 
pollution source. In addition to the traditional air pollutants evaluated in urban 
areas, the hazardous air pollutants (HAPs) has been the subject of particular 
concern because of their known toxic and carcinogenic effects. In this sense, the 
evaluation of exposure becomes essential in determining the relationship 
between urban air pollution and health effects. 
The main objective of the current study is the development and implementation 
of a consistent approach for the quantification of individual exposure to traffic-
related air pollutants. For this purpose, relevant parameters of exposure 
quantification were identified and the current and future potential impacts on 
human health associated with exposure to urban air pollution were analysed. In 
this context, the ExPOSITION model (EXPOSure model to traffIc-relaTed aIr)
was developed by using a novel approach based on the trajectory analysis of 
the individuals collected by mobile phones with GPS and processed using the 
data mining approach and geo-spatial analysis within GIS. Also, the 
ExPOSITION model considers a probabilistic approach to characterize the 
variability of microenvironmental parameters and its contribution to personal 
exposure. Additionally, in order to achieve the objectives of the current study, a 
new module to quantify emissions of traffic-related HAPs was developed. 
In this study, a modelling system, including transport-emissions-dispersion-
exposure models was applied to the Leiria urban area for quantification of 
individual exposure to PM2.5 and benzene. The modelling results were validated 
based on measurements obtained by personal monitoring and biological 
monitoring evidencing a good agreement between the model results and 
measurement data. The methodology developed and implemented in this work 
allows to estimate and analyse the magnitude, frequency and the inter and intra-
variability of personal exposure levels, as well as the contribution of different 
microenvironments, clearly addressing the sequence of exposure events and 
source-receptor relationship, which is essential for health impact assessment
and epidemiological studies. This research work contributes to a better 
understanding of individual exposure in urban areas, providing new perspectives 
on individual exposure, essential in the selection of strategies to reduce 
exposure to urban air pollution and related health effects. 
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1. GENERAL INTRODUCTION  

 

“The quality of the exposure data is still regarded as the 

Achilles’ heel of air quality epidemiology – an improved 

understanding of personal exposure to air pollution is 

required.” 

Frank Kelly 
 Air Quality and Emissions conference,  

Telford, 2013  
 
 
 

Urban air pollution has emerged as one of the major and complex health problems 

and environmental concerns in Europe, with direct consequences for the health and well-

being of European citizens. Considerable progress has been made in the past twenty years 

in improving urban air quality, but issues remain. Although, emissions of many air pollutants 

have decreased resulting for some pollutants in improved air quality, the European 

Environment Agency evaluated that about 30% of Europe's urban population is still 

exposed to air pollution concentrations exceeding the European Union (EU) air-quality 

limits set to protect human health (EEA, 2012a). By 2050, according to the Organisation for 

Economic Co-operation and Development (OECD), air pollution is anticipated to become 

the biggest environmental cause of mortality worldwide, overtaking the lack of clean water 

and poor sanitation (OECD, 2012). In this context, the World Health Organization 

considered urban air pollution as one of the most important global health priorities (WHO, 

2011). 

Road transport is likely to be the largest source of air pollutants that have a 

substantial impact on health (HEI, 2010). In addition to the traditional major air pollutants, 

such as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx) and non-

methane volatile organic compounds (NMVOC), road transport is still one of the major 
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sources of substances known as hazardous air pollutants (HAPs) especially in urban areas, 

contributing about 68% of HAPs total emissions (Tam and Neumann, 2004; HEI, 2010).  

Given the need for understanding the impact of air pollutants on human health, 

outdoor air pollution measurements are performed. For this purpose, centrally located air 

quality monitoring stations are usually used to characterize air quality and considered as an 

indicator of human exposure to traffic-related air pollutant in urban areas, as needed for 

health impact assessment and for the design of air pollution control policies. However, 

individual exposure assessment based on fixed-site air measurements is unavoidably 

affected by assumptions implicit in the application of this approach. The challenge, 

however, is that exposure levels depend not only on environmental conditions, such as air 

pollution but also on the behaviour of an individual, making a personal exposure to urban 

air pollution a unique situation, occurring both in indoor and outdoor environments and thus 

is not straightforward to quantify. 

Understanding of the complex chain of events, from traffic activities to emissions, 

ambient air quality, exposure and health effects would help decision-makers to focus their 

efforts and enable a more forceful reduction of adverse effects. Thus, the implementation of 

improved and comprehensive approaches to address exposure at the spatial and temporal 

scale imposed by the individual is required and has been identified as a priority area in the 

exposure research (Briggs, 2008; Nuckols et al., 2010; de Nazelle et al., 2011).  

 

1.1. Human exposure in urban areas: origin and conc epts 
 

Urban areas with their complex pollution problems are identified as the main target 

of the current research. Human exposure to air pollution in urban areas and subsequent 

health effects results from a dynamic process and multifaceted iterations between the 

individual and urban air. In the following sections, crucial questions such as “What are the 

main sources of air pollution and current air pollution levels in urban areas?”; “How human 

exposure to air pollution may be defined?” and “Why personal exposure assessment is 

needed?” will be addressed. Also, important exposure-related concepts and key elements 

required to understand the human exposure science are described. 
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1.1.1. What are the main sources and current air po llution levels in urban 
areas? 

Rapid urbanization and industrialization, increase in the road traffic and energy 

consumption, have contributed towards the increase in ambient air pollution concentrations 

and consequent deterioration of ambient air quality. Urban environment, where currently 

around 75% of the European population lives and this is projected to increase to about 80% 

by 2020 (EEA, 2010), is particularly affected. Air pollution levels are still rising on many 

fronts. However, air pollution is enacted on all geographical and temporal scales, ranging 

from strictly “here and now” problems related to human health, over regional phenomena 

with a time horizon of decades, to global phenomena, which over the next centuries can 

change the conditions for human being and environment over the entire globe. Although 

most environmental and health issues are not exclusive to urban areas, some are 

exacerbated within them, because of the specific urban complexity of interrelations 

between environmental, social and economic demands (RCEP, 2007; DEFRA, 2008). 

People in urban areas use more energy for cooking, air conditioning, home heating, 

transportation, vehicle refuelling etc., and industry uses energy for production (Godish, 

2004). Consequently, these activities of high energy consumption emit a large amount of 

air pollutants into the atmosphere, bringing serious air quality issues. 

Emissions from road transport are especially important and deserve distinctive 

attention in urban areas. Road transport represents a major source of deterioration of the 

urban air quality throughout the world (Hoek et al., 2002; EEA, 2012a). Twofold differences 

in the concentrations of several traffic-related air pollutants in locations with high and low 

traffic activity have been reported (Martuzevicius et al., 2008). Several findings also 

suggest that the demand of transportation will exceed improvements related with emission 

reduction technologies (Delucchi, 2000). Since 1990, some traffic–related air pollutants 

emissions, such as nitrogen oxides (NOx), carbon monoxide (CO), or non-methane volatile 

organic compounds (NMVOC) have decreased (EEA, 2010) in European Union, mainly due 

to the introduction of new technologies (i.e. three way catalytic converters on passenger 

cars) and stricter regulation of emissions from heavy duty vehicles (Regulation 595/2009). 

Diesel particulate filter technology was also introduced to mitigate PM emissions. Emission 

trends compiled for the period 2000–2008 indicate that particulate matter with an equivalent 

aerodynamic diameter of less than 10 µm (PM10) emissions decreased by 8%, while 

particulate matter with an equivalent aerodynamic diameter of less than 2.5 µm (PM2.5) 

was reduced by 13% (EEA, 2010). But in spite of these reductions in air pollutant 

emissions, the demand for road transport has been growing much faster than anticipated. 

In Europe, between 1995 and 2010, passenger transport demand by car increased by 

nearly 21.5%. The car dominates passenger transport mode share accounting for 84% in 

terms of passenger-km (excluding powered two wheels), followed by bus (9%) and rail 
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(7%). Also, road transport dominates freight transport mode share with 77% (EEA, 2012a). 

Road transport remains the most important source of NMVOCs, PM2.5 and PM10 

emissions (Figure 1.1) (EEA, 2010; EEA, 2012a). The trends in emissions of PM2.5 have 

been tempered by the increased market penetration of diesel vehicles since 1990, as also 

reflected in the final energy consumption by fuel indicator and by the growth in car 

registrations by fuel type in the EEA (EEA, 2012b). 

 

Figure 1.1. The contribution of the road transport sector to emissions of PM10 and PM2.5 in 2010 EEA-32 

(EEA, 2010).  

 

Among the extended number of air pollutants emitted by the road transport in urban 

areas, hazardous air pollutants (HAPs), referred also as air toxics, have been targeted for 

special attention due to their link with mortality and morbidity at levels usually experienced 

by individuals in urban areas and the need for action to minimize these risks (Monn, 2001; 

USEPA, 2007; HEI, 2007; Anderson, 2009; HEI, 2010). Given the toxic and carcinogenic 

proprieties of such pollutants, a list of 188 HAPs associated with anthropogenic sources 

was defined in Clean Air Act by the US Environmental Protection Agency (USEPA, 2004a), 

identifying the benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, naphthalene 

and diesel particulate matter (PM) as the major HAPs emitted by mobile sources (USEPA, 

2007). Emissions of HAPs are mainly related with incomplete combustion (e.g. benzene) 

and by-products formed during incomplete combustion (e.g. formaldehyde, acetaldehyde, 

and 1,3-butadiene), but evaporative processes of fuel components are also important. For 

benzene, defined as one of the most important health-based European Union priority HAPs 

(Bruinen de Bruin et al., 2008), the highest outdoor exposures are also likely to occur in 
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during the refuelling at fuel stations and near gasoline fuel stations within urban areas 

(Wallace, 1996; HEI, 2010). 

Currently, the evidence that the human exposure to current and future traffic-related 

air pollutants within urban areas exerts significant health effects is well established (Pope 

and Dockery, 2006; Samet and Krewski, 2007; Anderson, 2009; Russell and Brunekreef, 

2009; USEPA, 2009a; Brook et al., 2010) and have been widely recognized by both 

national governments and multilateral development organizations as a threat to urban 

populations. Thus, climate change may exacerbate existing environmental and health 

problems. Changes in the temperature, humidity, wind, and precipitation that may follow 

future climate can deeply impact air quality because of induced changes in the transport, 

dispersion, and transformation of air pollutants at multiple scales (Bernard et al., 2001; 

NRC, 2001; Carvalho et al., 2010). The potential impact of climate change on traffic-related 

air pollution, namely PM, is of a major concern since future changes in their concentrations 

are likely the most important component of changes in mortalities attributable to air 

pollution in future scenarios (West et al., 2007).  

The European Union has introduced and implemented air quality directives to 

regulate ambient air quality by setting air pollutant standards and limit values in order to 

avoid, prevent or reduce harmful effects on human health and the environment as a whole 

(Directive 2008/50/EC). These directives imply that member states undertake 

measurements at outdoor locations by fixed-site air quality monitoring networks in order to 

assess compliance with agreed standard target and limit values that are set with respect to 

whether short-term or long-term exposure. 

Even though the regulatory efforts, such air quality measurements indicates that the 

Member States of the European Union still have difficulty complying with the legislated 

limits of traffic related pollutants (EEA, 2012a). In the period 2001–2010, 18 – 41% of the 

Europe's urban population was potentially exposed to ambient concentrations of PM10 

above the EU daily limit value set for the protection of human health (i.e. a daily average 

concentration of 50 µg.m-3 cannot be exceeded more than 35 days per year). Moreover, in 

2010 the PM10 daily limit value was exceeded at 33% of the traffic stations and 29% of 

urban background stations within the EU (Figure 1.2). These figures have increased for 

traffic locations compared to 2009 (EEA, 2012b). For PM2.5, its annual target value (25 

µg.m-3) was exceeded at 6% of traffic sites and 14% of urban background sites. In the case 

of benzene, except at four stations, measured concentrations in Europe are well below the 

limit value (annual average concentration of 5 µg.m-3). However, it should be mentioned 

that benzene starts to be measured recently at a relatively small number of stations in 

Europe. Therefore, information on their spatial and temporal variation is limited. 
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Figure 1.2. Percentage frequency distribution of stations in the EU Member States versus the various 

concentration classes of PM10 and PM2.5 in 2010 (EEA, 2012c). 

 

Overall, road transport has become the dominant source to outdoor air pollution in 

urban areas and besides the current EU air quality policy framework, many citizens still live 

in urban areas where air quality limits set for the protection of human health are exceeded, 

causing premature death and widespread aggravation to health. In order to protect public 

health it is necessary to reduce the levels of these exposures and to do so adequately a 

deeper understanding of source-receptor relationship and interaction between exposure 

and health effects is needed. Characterizing the magnitude of those exposures and 

quantifying the average exposure burden imposed by living near traffic are among the 

problems that need to be addressed.  

 

1.1.2. How human exposure to urban air pollution is  defined? 

A review of the literature in the diverse fields of exposure assessment, 

environmental policy and management, risk assessment, environmental health, toxicology, 

and epidemiology reveals inconsistent definitions of “exposure”, depending on the needs 

and objectives of the different research areas. Thus, several researchers discuss exposure 
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as a quantitative measure of the environmental pollutant like “the concentrations of 

pollutant in the ambient air, soil, food and water” (IPCS, 1994; Landers and Yu, 1995; 

Moriarty, 1999), or is mentioned as a qualitative measure of the severity of the 

environmental pollution. Moreover, in epidemiology, according to the book “Principles of 

Exposure Measurement in Epidemiology”, exposure is defined as “any of a subject's 

attributes or any agent with which he or she may come in contact that may be relevant to 

his or her health”, suggesting that a behaviour, such as smoking, is an exposure 

(Armstrong et al., 1992; White et al., 2008). Other references define exposure as a 

“potential cause of disease” (Monson, 1980; Kriebel et al., 2007), or “the opportunity of a 

susceptible host to acquire an infection by either a direct or indirect mode of transmission” 

(Lisella, 1994). Besides the diversity of exposure definitions in the scientific literature, some 

references use the term “exposure” without defining it at all (IPCS, 1994). On the other 

hand, for human studies, the concentration at the boundary of contact is the most relevant 

quantity. However, the boundary of contact is not clearly defined, thus contributing to the 

misunderstanding as to exposure exact meaning (Moschandreas and Saksena, 2002). 

Also, the word exposure has different meanings in different contexts. The Monitoring 

Ambient Air Quality for Health Impact Assessment guidelines (WHO, 1999) distinguishes 

personal exposure and populational exposure, defining thus personal exposure as true 

integrated concentrations experienced by individuals and states that populational exposure 

summarizes the exposure of everyone in the population. Under these guidelines, ambient 

air quality levels can be used as surrogates of personal exposure. 

Despite the discrepancies in the use and definitions of exposure-related terms in 

the diverse fields of exposure assessment, there is a predominant definition of exposure 

involving the contact between a physical, chemical or biological agent and the organism 

target (e.g. human) (Duan et al., 1989; Lioy, 1991; Duan and Ott, 1992; Georgopoulos and 

Lioy, 1994; Nieuwenhuijsen, 2003; USEPA, 2005; Frumkin, 2005). Under this approach, for 

human exposure to occur it is necessary a contact between the agent and the external 

boundary of the human body, such as the airways, the skin and the mouth. As to human 

exposure to air pollution discussed in this study, the breathing zone is considered the most 

important point of contact, and inhalation is considered the most important pathway of 

exposure (WHO, 2000; Moschandreas and Saksena, 2002; Klepeis, 2006).  

Several references, however, recognized that it was important to address the time 

interval over which contact occurs in an exposure event for a quantitative definition of 

exposure (NRC, 1991; USEPA, 1992; Georgopolous and Lioy, 1994; Zartarian et al., 1997; 

Zartarian et al., 2004), i.e. exposure duration. Under this context, in 1999, the International 

Programme on Chemical Safety (IPCS) of the World Health Organization (WHO) initiated a 

Harmonization Project with an Exposure Assessment Planning Workgroup to confront the 
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issues hindering harmonization in the area of exposure assessment (Callahan et al., 2001; 

Hammerstrom et al., 2002; WHO, 2004). In 2004, the IPCS glossary was adopted as the 

official glossary of the International Society of Exposure Analysis (ISEA) (Zartarian et al., 

2004) defining thus exposure as the “concentration or amount of a particular agent that 

reaches a target organism, system, or (sub)population in a specific frequency for a defined 

duration” (WHO, 2004; Van Leeuwen et al., 2007; IPCS, 2009). Recently, the increasing 

evidence that each individual is subject to his own individual exposure due to his daily 

activity patterns (Elliott et al., 2000; Monn, 2001; Sexton et al., 2007; Hinwood et al., 2007) 

highlights that human exposure to air pollution is not a static phenomenon, also making a 

clear distinction between population exposure and personal exposure. In attempt to focus 

at individual level, Branis (2010) defines personal exposure to air pollution as the 

measurement of a pollutant of concern performed by a monitor (or sampler) worn by a 

person while the sample is taken from a point near the breathing zone of the person.  

To characterize human exposure to air pollution, three aspects are also recognized 

as important: magnitude – “What is the pollutant concentration?”; frequency – “How often?”; 

and duration of contact – “For how long?”. The magnitude of exposure is a critical 

characteristic in determining adverse effects. Similarly, both the frequency and the duration 

of exposures can have an important impact. Exposure can be continuous, intermittent, 

cyclic or random depending upon the source of the air pollutant and individual activities that 

lead to contact with the pollutant. Also, in order to evaluate the real impacts of urban air 

pollution in the human health it is important to distinguish between short- and long-term 

exposures because of the differences in their health effects. Thus, the long-term (i.e. years 

or lifetime) is related to extended time periods of exposure leading to chronic health effects, 

whereas in the short-term (i.e. minutes to days), high exposure may show acute effect on 

human beings unless extremely high concentrations are reached. 

Exposure is characterized as a function of concentration and time and can be 

represented by several time exposure metrics. Depending on the time of exposure, 

instantaneous, time-integrated and time-average exposure could be distinguished (USEPA, 

1992; Ott, 1995; Monn, 2001). The instantaneous exposure is the exposure at an instant in 

time and it is expressed in the same unit as the concentration (e.g. µg.m-3), while the time-

integrated exposure is the integral of instantaneous exposures over the duration of 

exposure (units: ppmh or µg.m-3 h) (Equation 1.1). (Lioy, 1990; Zhang and Lioy, 2002).  

∫=
2

1

),,,(
t

t

ii dttzyxCE      (1.1)  

where Ei is the time-integrated exposure experienced by the individual i, Ci (x,y,z,t) is the 

concentration occurring at a particular point occupied by the individual i at time t and spatial 

coordinate (x,y,z), corresponding t1 and t2 to the starting and ending times of the exposure 
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event, respectively. This type of exposure can be estimated by measurements (e.g. via 

personal air monitors) that usually provide incremental data on exposure (NRC, 1991; 

USEPA, 1992).  

Other possible formulations of exposure that depend on the time of exposure 

include time-averaged exposure and peak exposure (units: ppm or µg.m-3) (Armstrong et 

al., 1992; Ott, 1995; Zhang and Lioy, 2002). Time-averaged exposure is determined by 

dividing the time-integrated exposure by the duration of the exposure (t1– t2) (Equation 1.2). 

This can be a useful formulation for many environmental applications (e.g. daily average 

exposure) and is relevant for long-term exposure and chronic health effects. The peak 

exposure is usually relevant for short-term exposure and acute toxic effects (Duan et al., 

1990; Nieuwenhuijsen, 2003). 
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A hypothetical exposure time profile or the exposure time-series. i.e. a plot of 

concentration as a function of time is presented in Figure 1.3 illustrating several time 

exposure metrics that may be derived from this profile. The time period to consider in the 

exposure time profile should be defined under the scope of the exposure analysis (e.g. a 

biologically relevant time period). 

 

Figure 1.3. Hypothetical exposure time profile and exposure metrics (Duan et al., 1990; Monn, 2001). 

 

In a pragmatic and static approach, the exposure is simply deduced by the air 

pollutant concentration in ambient (outdoor) air (Sexton and Ryan, 1988; Monn, 2001; 

Zhang and Lioy, 2002; Özkaynak et al., 2008). However, it is important to mention that 

there is a clear distinction between the air pollution concentration and exposure 

concentration. High air pollution concentrations do not necessarily result in high exposures. 

The concentration of a specific air pollutant is a quantitative expression of the presence of a 
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pollutant in ambient air at a particular place and time (i.e. µg.m-3 or ppm) and is subject to 

high variability in space and over time depending on variations of emission sources, 

meteorology, land use and terrain lead (Zanetti, 2003; Wilson and Zawar-Reza, 2006). 

Exposure concentration, in turn, requires the simultaneous occurrence of two events: an air 

pollutant concentration at a particular place and time, and the presence of a person at that 

place and time (Duan, 1992; Ott, 1995; Zartarian et al., 1997; Zartarian et al., 2004), and is 

characterized by the spatial and temporal dynamics of air pollution concentrations and 

time-activity patterns of individuals (Gulliver and Briggs, 2005; Georgopoulos et al., 2009; 

Son et al., 2010; HEI, 2010; Dons et al., 2011) as discussed in section 1.1.3. 

External exposure should also be differentiated from internal exposure. Once the 

pollutant has crossed a physical boundary (e.g. skin, alveolar epithelial cells) of an 

individual, the concept of internal exposure is used (WHO, 2000; Ott et al., 2007). Internal 

exposure is often obtained from biomarkers (Section 1.2.1) as a way of validating 

cumulative human exposure. 

In this context, individual exposure to air pollution is considered in this study as the 

real concentration of air pollutant breathed in by the individual at a particular time and 

place, and it does not only arise from the pollutant concentration in the environment 

through the individual is exposed but is also determined by the amount of time spent in that 

environment.  

 

1.1.3.  What are the needs and the key elements of personal exposure 
assessment? 

Given the well established evidence of causal relationship between human health 

effects and exposure to air pollution in urban areas (Pope and Dockery, 2006; Samet and 

Krewski, 2007; Anderson, 2009; Russell and Brunekreef, 2009; USEPA, 2009a; Brook et 

al., 2010) it is necessary to determine the amounts of air pollutants to which general 

individuals are actually exposed to assess the impact of air pollution on human health. 

Thus, human exposure assessment emerged in context of scientific research as an 

important analysis tool to prevent public health from the harmful effects of air pollution. 

Human exposure assessment is an important tool to describe and determine, 

qualitatively and quantitatively, the pollutants´ contact with the human body (WHO, 2006), 

and is a critical parameter of epidemiology and health impact assessment (HIA). 

Epidemiology relies on the inference of associations between exposure and response 

variables. Typically, the quantitative estimates of exposure-response in epidemiological 

studies reflect the late-stage end points of morbidity, mortality and tissue pathology 
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(Kauppinen, 1996; Bocchetta and Carbone, 2004; Maier et al., 2004). Exposure 

assessment is one of the four major components in the HIA process (Figure 1.4), and also 

often one of the most demanding. HIA provides the probability, magnitude and uncertainty 

of health effects associated with exposure.  

 

Hazard identification
What health problems are caused by

the pollutant?

Exposure assessment
How much of the pollutant do people
inhale during a specific time period?

Concentration-Response 
Assessment

What are the health problems at
diferent exposures?

Health Impact
Characterization

What is the impact on human health
in the exposed population?

  

Figure 1.4. Elements of health impact assessment process (USEPA, 2012). 

 

In this prespective, characterizing and estimating the magnitude of potential 

exposures is an essential component for evaluating the potential health effects posed by a 

particular pollutant (Moschandreas and Saksena, 2002). The potential effects on human 

health can be quantified based on the number of cases attributable to air pollution that may 

be prevented by reducing current levels of air pollution (Künzli et al., 2000), as presented in 

Figure 1.5. An estimate of attributable deaths (AD) is obtained from the average number of 

deaths, the exposure-response function and the regression coefficient β provided by 

epidemiological studies that characterise the ratio for a unit increase in pollutant 

concentration, and the difference between the daily average concentration (x) and a 

reference value under given scenario (x0). 
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Figure 1.5. Methodology to derive number of cases attributable to air pollution (Künzli et al., 2000). 

 

The science of human exposure assessment has become substantially more 

complex over the past decades as the demand for relevant and accurate human exposure 

information has increased in all the scientific fields related to public health protection. Over 

the past 20 years, numerous methods for assessing human exposure levels to air pollution 

have been used by several studies focusing on the links between air pollution and health, 

with the ultimate goal of estimating exposure at individual level within an entire study 

population (Lebret et al., 2000; Kousa et al., 2002; Arteta et al., 2006). However, the main 

criticism of these studies relates to the quality of the air pollution exposure, leading to 

inaccuracies and underestimation of the health impacts (Weis et al., 2005; Szpiro et al., 

2008; Nuckols et al., 2010; Peng and Bell, 2010).  

In this context, taking into account the source-to-outcome framework developed by 

the National Research Council (NRC, 1998), the processes that are important for exposure 

science start with a pollutant entering the environment and end with health effect 

characterization. This framework includes two steps focused on the place (pollutant source 

emission and pollutant dispersion and transformation), while the third step focuses primarily 

on human being (human exposure and adverse health effects). Despite exposure 

assessment has made the most significant improvement in quality over the past 20-year 

history of the HIA, admittedly, there are several key elements that should be considered for 

personal exposure assessment to capture the spatial and temporal variability of personal 

exposure to air pollutants in urban areas (Briggs, 2008; Nuckols et al., 2010; de Nazelle et 

al., 2011), as described below. 

� Spatial and temporal variability of road transport- related air pollution 

Transport emissions are non-homogeneously distributed in space and in time and, 

therefore contribute to the intra-urban variation in the concentrations of air pollutants. 

Several specific features of the traffic can be identified as influencing the amount of 



CHAPTER 1: GENERAL INTRODUCTION 

13 

emissions attributable to road transport and affecting consequently urban air quality 

(Gwilliam, 2003; WHO, 2005a; EEA, 2012b). They include significant number of vehicles 

circulating in urban areas, the age of the vehicle fleet and the technology used, the physical 

characteristics and chemical compositions of fuels and driving conditions. Thus, transport 

activity represents one of the main input data to estimate road transport emissions. This 

detailed information can be provided by automatic measurements systems or from 

transport modelling (André et al., 1999; Boulter et al., 2007). Usually, since it is not possible 

to obtain enough measurements for the entire study area with the resolution required, 

transportation models represent a consistent approach to characterize transport activity 

within urban areas, providing detailed information on traffic flow for each road segment. 

Also, it is possible to distinguish between different vehicles categories, such as private 

passenger cars, public transport, goods transport etc., while automatic measurement 

systems usually provide only the total number of vehicles. Another important characteristic 

for the transport sector directly related with atmospheric pollution is the average age of 

vehicles. Older vehicles are associated with higher emissions of air pollutants than newer 

vehicles, because performance deteriorates as a function of age and older vehicles are 

more unlikely to use emission reduction technology. In addition, the congested urban traffic 

conditions and large number of short trips can result in higher emissions per kilometre.  

Currently, several methodologies to quantify the pollutant amount emitted by the 

vehicles to the atmosphere are available. They range from calculations at microscopic 

scale (i.e. for a single vehicle, or for a street) to macroscopic calculation (i.e. regional, 

national and global levels) (Joumard, 1999; Agostini et al., 2005; Gkatzoflias et al., 2007; 

Smit et al., 2007). However, the modelling tools not always cover HAPs or provide 

emissions with low temporal and spatial resolution that is not sufficient for urban scale 

studies. To be applied for the urban areas, the currently existing methodologies of the 

emission quantification have to be adapted taking into account availability of the input data 

and final use of the emission estimation results. Thus, due to importance of such 

requirements in this research, a new version of the available Transport emission Model for 

Line Sources (TREM) has been developed for HAPs providing detailed information 

concerning traffic emissions for each road segment in urban areas (Tchepel et al., 2012). 

After the releasing of air pollutants into urban environment by emission sources, 

they can be transported and transformed through a number of physical and chemical 

processes at a range of spatial and temporal scales (Figure 1.6). At scales ranging from a 

simple building and street canyons to the entire city, microscale mechanical and thermally 

driven turbulence dominates local dispersion processes. However, these processes 

operate within a hierarchy of larger scales which provide the background state of the 

atmosphere that modulates air quality within urban areas (Wilson and Zawar-Reza, 2006; 
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Solomon et al., 2008; Turner and Allen, 2008). In focusing on air quality in the urban 

atmosphere, the emission source activity and weather or topological conditions will 

significantly affect the spatial and temporal variation of the ambient concentrations in the 

urban environment, influencing thus the personal exposure to air pollution depending on 

when and where people spend their time.  

 

Figure 1.6. Temporal and spatial scales affecting atmospheric dispersion in the urban environment 

(Salmond and Mckendry, 2009). 

 

In urban areas, the transport and dilution of air pollutants are affected by 

meteorological conditions and physical structures of the city. The presence of high 

buildings on either side of the road creates a “street canyon”, which reduces the dispersion 

of the emitted pollutants from traffic sources and can lead to significantly higher 

concentrations locally. There is also evidence to suggest that air pollution concentrations 

fall virtually to background levels behind a row of uninterrupted buildings (Bloemen et al., 

1993). Various monitoring studies have suggested that in cities, strong variability of traffic-

related air pollution may occur over small distances (<100 m) (Monn et al., 1997; Roorda-

Knape et al., 1998; Nikolova et al., 2011), so that the pollution data from a single fixed-

monitoring site can only be considered representative of a rather small surrounding area. 

In this concern, to analyse the high spatial and temporal variability of road 

transport-related air pollution within the urban environment where inhabitants are living 
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close to the pollution sources, it is required to characterize the transport activity in order to 

quantify the corresponding emissions and air pollutants levels. For this purpose, a system 

based on the transportation modelling linked with the emissions and dispersion modelling is 

considered as one of the most suitable approaches to provide detailed information 

concerning traffic flow for each road segment and related pollution (Borrego et al., 2006). 

� Contribution of indoor concentrations  

Urban air is an umbrella concept, combining outdoor and indoor air. Additionally to 

significant temporal and spatial variability of outdoor concentrations, scientific evidence has 

shown that indoor environment plays a significant role in personal exposure to air pollution, 

where urban populations spend large fractions of their time throughout life (Koistinen et al., 

2001; Baklanov et al., 2007; Georgopoulos et al., 2009; Zou et al., 2009a). Thus, indoor 

spaces represent important microenvironments when addressing health effects from air 

pollution. 

Indeed, human exposure should not be associated exclusively with outdoor air. 

Several studies on exposure noted that using only the outdoor component of exposure is 

not sufficient as several potentially confounding variables are omitted from the exposure 

assessment process (Lioy, 1990; Monn et al., 1997; Boudet et al., 2000). In this sense, the 

contribution of indoor air to personal exposure has been increasingly recognized as being 

of importance (Wallace, 1996; Jantunen and Jaakkola, 1997; Samet and Spengler, 2003; 

Adgate et al., 2004a, 2004b; Phillips et al., 2005; Mitchel et al., 2007; Colbeck and Nasir, 

2010). Also, it is known that most people in European urban areas spend 80–90% of their 

time indoors during the average day, 1–7% in vehicle, and only 2–7% outdoors (Colls, 

2002; Brunekreef et al., 2005; Koutrakis et al., 2005). Despite the research community 

recognize its importance, policy makers have focused their attention on outdoor air quality 

and non-occupational air pollution regulations have typically been applied focusing on 

outdoor rather than indoor air. For this purpose, observations from stationary outdoor 

monitoring sites are usually considered, which means that air pollutants from indoor 

sources have been ignored.  

Nevertheless, several findings indicate that indoor concentrations are typically 

higher than the respective ambient levels (Figure 1.7). Also, in case of benzene have been 

consistently demonstrated that its concentrations tend to be higher in the colder than the 

warmer seasons (Edwards and Jantunen, 2001; Schneider et al., 2001; Amagai et al., 

2002). For formaldehyde, indoor exposures are also the dominant contributor to personal 

exposures through inhalation, corresponding to about 98%, and indoor concentrations may 

be high enough to cause adverse health effects (EC, 2005). In addition, Wilson and Suh 
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(1997) conducted a meta-analysis of data from multiple sites and concluded that 

concentrations of fine particles originating from indoor sources are weakly related with 

ambient levels over time.  

 

Figure 1.7. Range of mean and maximum concentrations (µg.m-3) of a) benzene and b) formaldehyde, at 

various indoor and outdoor locations (HEI, 2007). 

 

Under this framework, individual exposure to air pollution depends greatly on indoor 

concentrations, which in turn vary widely between indoor spaces as a function of location 

and time. The extent of these variations depends on a set of factors including their indoor 

emissions, mixing with infiltrated outdoor air, ventilation conditions and occupant behaviour. 

Also, the diffusion of outdoor air into buildings contributes to a mixture of indoor and 

outdoor pollutants and resulting indoor exposure levels according to several factors (e.g. air 

conditioning and the indoor–outdoor temperature gradient) (Lai et al., 2004; Branis, 2010). 

Traffic-related air pollutants generated from outdoor sources, such as PM2.5 both 

effectively penetrate and persist in many indoor environments. Indoor environments also 

present a variety of emission sources which are independent of the outdoor environment, 

such as cooking, environmental tobacco smoke, burning of natural gas or wood, building 

materials (e.g. polyurethane foams), furnishings and certain consumer products (e.g. 

adhesives).  

Actually, when comparing with road transport emissions, the contributions of indoor 

sources are generally small but with sharp presence during the time-activity patterns of 

individuals, modifying individual’s exposure substantially (Rodes et al., 1991; Freeman and 

Saenz de Tejada, 2002; Ferro et al., 2004; WHO, 2005a; Franklin, 2007). Roorda-Knape et 

al. (1998) reported an average concentration of 91.6 µg.m-3 for PM10 in 11 schools located 

near highways. The authors pointed out, however, that indoor concentrations of PM10 were 

largely controlled by indoor activities of the occupants rather than by traffic. Thus, 

a) b) 
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measurements performed at 4 schools in Viseu within the framework of Portuguese 

national project SaudAr demonstrated that indoor levels of PM at schools were higher than 

outdoors during the working days and low indoor levels observed during weekends 

suggested that higher PM concentration are related to human activities (Valente, 2010). In 

case of formaldehyde, Pegas et al. (2011) reported that indoor concentrations in three 

schools in Lisbon were markedly higher than those observed outdoors. Higher levels in 

classrooms than outdoors suggest that indoor sources are more important contributors to 

the indoor levels than outdoor sources, such as infiltration of vehicle exhaust. Nevertheless, 

it is important to note that sampling indoor air is not enough to understand personal 

exposure and has been demonstrated that personal exposure does not correlate well with 

measurements of indoor concentrations (Monn, 2001). 

� Importance of time-activity patterns  

The understanding of human behaviour during daily life is a topic of interest within 

several social sciences. Human behaviour and use of time is referred to as the time-activity 

pattern of an individual, and are strongly linked to various personal characteristics including 

age, gender, education, income and employment status (Pas, 1984). During the course of 

their daily activities, air pollution levels, changing dramatically in space and time, influence 

an individual’s exposures. Thus, time-activity patterns play a significant role, if not the most 

significant role, in characterizing personal exposure (McKone et al., 2008).  

Urban areas, where currently lives around 75% of the European population, are a 

complex systems with individuals characterized by different behavioural patterns (Galea 

and Vlahov, 2005; Batty, 2009; Portugali et al., 2012). For decades, urban spatial structure 

measured by the degree of spatial distribution of population and employment, has been 

studied to describe the structure and organization of cities, and their function and role in 

people’s life (Horton and Reynolds, 1971; Anas et al., 1998; Florida et al., 2008). Cities 

supply individuals with resources as well as constraints. The urban environment 

accommodates services, employment opportunities and other facilities where individuals 

may conduct desired activities, affecting significantly their mobility.  

One of the earliest spatially integrated perspectives for the analysis of time-activity 

patterns and movement in space and time is time geography. Time geography rests on the 

notion that the locations and movements of individuals can be followed and visualized as 

continuous paths in spatial and temporal dimensions (Figure 1.8). A time geographical 

approach allows for the examination of place as the spatial, temporal and contextual 

terrains that influence individual health status (Thrift, 1977; Parkes and Thrift, 1980; Miller, 

2001; Miller, 2007).  
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Figure 1.8 . Time-activity patterns of an individual (Miller, 2007). 

 

In the context of human exposure, an understanding of human mobility patterns is 

crucial as they strongly influence the assessment accuracy of actual human exposure to air 

pollution (Harrison et al., 2002; Nuckols et al., 2004; WHO, 2005b; Nethery et al., 2008; 

Beckx et al., 2009; Dons et al., 2011). Analysing time-activity patterns for personal 

exposure assessment may indicate the distribution of time among activities and the factors 

that influence the degree of media contamination in the activities, and reflect the duration of 

contact during the activities (Zou et al., 2009b). Also, there is an inter and intra-variability of 

individual's activities, which has implications for the use of time-activity data in exposure 

assessment. A review of studies on time–activity patterns used in epidemiologic studies is 

given by Ackermann-Liebrich et al. (1995). The information needed in such studies include 

location of the activity, the period of time when the activity took place (e.g. time of day, 

phase in life), and the duration of the activity. 

International and national studies focusing on human exposure to air pollution, such 

as TEAM studies (Wallace, 1991), the National Human Exposure Assessment Survey 

(NHEXAS) (Freeman et al., 1999), the National Human Activity Pattern Survey (NHAPS) 

(Klepeis et al., 2001), the Population Exposure to Air Pollutants in Europe (PEOPLE) 

project (Ballesta et al., 2006), the Health and The Air We Breathe (SaudAr) project 

(Borrego et al., 2008; Valente et al., 2008) or the Air Quality Exposure and Human Health in 

Industrialized Urban Areas (INSPIRAR) project (PTDC/AAC-AMB/103895/2008, ongoing 

project) were relying on diary-based instruments (e.g. time-activity diary (TAD), 

questionnaires, etc.) to categorize the environments where exposure occurred and sources 

of air pollutants, and to derive information on the temporal sequencing of human activities 

during the study period. However, such time-activity information does not account for the 

movement of individual and mostly lacks the exact “activity-space” where a specific activity 

is executed by the individual (Harvey and Pentland, 1999; Rainham et al., 2010; Lawless et 
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al., 2012), and the sequence of exposure events is not considered. Thus, problems in 

quantifying personal exposure still remain. By using approximations for exposure, health 

effects can be wrongly assigned, or the strength of a relationship will not be sufficiently 

emphasized (Jerrett et al., 2005b; Piechocki-Minguy et al., 2006; Dons et al., 2011; Physick 

et al., 2011; Setton et al., 2011). 

Also, home addresses are generally used as the surrogate for the personal 

exposure, when in fact a high percentage of an individual’s exposure can accrue from 

relatively short periods of time spent in high-polluted indoor environments (Harrison et al., 

2002; Nethery et al., 2008; HEI, 2010; Dons et al., 2011). This suggests that spatial 

variations and fluctuations over time imply that even two individuals living in the same 

residence are subject to their own individual exposure due to their time-activity patterns 

(Elliott et al., 2000; Monn, 2001; Sexton et al., 2007; Hinwood et al., 2007). In addition, 

several findings indicate that the time spent at workplace greatly contribute to within-area 

exposure variability (Setton et al., 2008) and may also substantially increase exposure, 

compared with the data at fixed monitoring sites (Baklanov et al., 2007). Thus, to overcome 

some of the difficulties inherent to the collection of time-activity information, new 

technologies, such as global positioning system (GPS), and related activity-measuring 

devices, such as accelerometers, offer possibilities for reducing such errors in the exposure 

assignment of individuals in health studies (Section 1.2.2). 

 

 

ummary 1.1.: Currently, many citizens in urban areas are exposed to air 

pollution levels that exceed the air quality limits set by the legislation for 

the protection of human health, with road transport being the most 

significant pollution source. Among the extended pollutants emitted by road transport, 

hazardous air pollutants require special attention due to their link with cancer and other 

serious adverse effects on human health. Thus, personal exposure estimation is crucial to 

determine the relationship between the air pollution and health effects, and is the most 

accurate indicator of what individual actually breathe, arising not only from the pollutant 

concentration in the environment but also depends on the amount of time spent by the 

individual in that environment. The poor correlations often observed between individual 

exposures and fixed-site ambient air concentrations suggest that a set of factors other than 

ambient air may contribute to personal exposures. The spatial and temporal variability of air 

pollutants in combination with indoor exposures and time-activity patterns are key elements 

to a proper assessment of personal exposure to air pollution in urban areas and 

subsequent health effects. The large variability imposed by all these key factors causes 

S 
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individual exposure to be a highly dynamic process rather than a static phenomenon, and 

consequently, an individual’s personal air pollution scenario can be very unique, thus 

emphasising the importance and need for personal exposure assessment. Thus, it is clear 

that analysing individual exposure in urban areas offers several challenges where both 

individuals and air pollution levels demonstrate a large degree of variability over space and 

time. Despite time–activity studies have illuminated relatively consistent patterns of activity 

between different populations, these studies have not enough investigated the crucial 

question of ‘‘where’’ individuals are the rest of the time. 

 

1.2. Personal exposure assessment: methods and adva nced 
technologies 

 

During the last decades, several exposure assessment approaches have emerged 

on the exposure research field. However, given the emergence of new technologies to 

understand the relationship between the environment and individuals, the need to move 

beyond a static perspective in exposure assessment to include a dynamic approach is 

evident. Thus, quantifying the contribution of human exposure with observed health 

symptoms presents further challenges in urban areas. 

 

1.2.1. How personal exposure to air pollution can b e quantified? 

On a traditional approach, the evaluation of human exposure to air pollution can be 

carried out under a (i) direct approach or (ii) indirect approach. On a direct approach, 

exposure levels are measured at the individual, based on personal monitoring or using 

biological markers (Grandjean, 1995; Lioy, 1995) while under an indirect approach, 

exposure levels are usually estimated or modelled based on ambient measurements, 

exposure modelling and surveys (Monn, 2001). In addition, a review of the literature also 

reveals other frameworks classification such as (i) point-of-contact measurement or 

personal monitoring in which exposure can be measured at the point of contact (the 

external boundary of the body) while it is taking place, (ii) reconstruction of internal 

exposure, which exposure in turn can be reconstructed through internal indicators 

(biomarkers, body burden, excretion levels, etc.) after the exposure has taken place and 

also (iii) exposure scenario evaluation in which the exposure is estimated considering 

hypothetical but plausible scenarios to analyse the concentration and contact time, 

including the application of models (USEPA, 1992; Callahan and Bryan, 1994; Lioy, 1995). 
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Nevertheless, under a traditional framework, major air pollution exposure 

assessment are based on a static perspective assuming a static place/ location for the 

individual and emphasize population exposure assessment rather than individual exposure 

assessment. However, individual exposure to air pollution in urban areas results from 

dynamic process and multifaceted iterations between the human being and urban air. 

Analysing and refining the understanding of the relationships between people, place, and 

human activities have been identified as important priorities in several research fields, 

particularly for research on health and environment (Miller, 2007; Matthews, 2011). For 

example, on the perspective of human-environment geography two different groups of 

research methods exist: place-based approaches and people-based approaches (Miller, 

2007). Place-based approaches reflect human-environment interaction at certain locations 

without considering human beings’ activities thoroughly. By contrast, people-based 

approaches focuses on human beings’ activities at a given time and place considering 

individual’s daily activities and their interaction with environment in detail (Miller, 2007).  

Currently, new conceptualization of exposure assessment and context that takes 

the spatial and temporal configuration of exposure has emerged strongly supported by the 

recent development of geo-spatial technologies (Kwan, 2009; Fang and Lu, 2012; Steinle 

et al., 2013) and moving thus from a static assessment to dynamic personal exposure 

assessment. Consequently, beyond the direct approach or indirect approach, personal 

exposure assessment can also be characterized by two new main groups of methods: 

dynamic personal exposure approach and static personal exposure approach. Dynamic 

personal exposure approach includes the direct methods described above and also spatio-

temporally explicit exposure modelling. The static personal exposure approach is related 

with indirect methods. Both approaches present different exposure estimates, diverging 

also in relation to precision, costs, viability, and others factor, as following discussed. 

� Static personal exposure approach  

Under a static personal exposure approach, the human activities are considered as 

a static phenomenon. This approach examines personal exposure to air pollution by 

subdividing a study area into homogeneous objects (Benenson and Torrens, 2004), based 

usually on census units or other predefined city boundaries and ambient air quality values 

obtained by measurement or modelling are considered as surrogate to exposure 

concentration for each sub-region at a specific time (Zou et al., 2009a). This approach 

includes fixed-site measurements, surveys, and modelling methods where time-activity 

patterns of individuals are not directly addressed.  
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Exposure to air pollution has been traditionally assessed based on ambient air 

quality measurements provided by fixed-site air quality monitoring networks and based on 

aggregated demographic data (Rodes et al., 1991; Charpin et al., 1999; Nerriere et al., 

2005; Kaur et al., 2007; Sarnat et al., 2009). Thus, in these studies, the same pollution 

concentration is assigned to people living in defined areas (e.g. city, urban agglomeration). 

Ambient monitoring networks have been established all over Europe by national 

institutions. They are equipped with monitors providing continuous data with sufficient time 

resolution. Monitoring ambient air quality is essential to understanding how the quality of air 

is changing over time and, in some cases over space, and is an essential tool in managing 

the environmental impact from air pollution to health and ecosystems (as presented in 

Section 1.1.1).  

Nevertheless, since ambient air monitoring data from a single or few points are 

unlikely to adequately capture the greater spatial heterogeneity of air pollutants directly 

emitted from traffic (Kinney et al., 2000; Zhu et al., 2002; Wilson et al., 2005; Zhou and 

Levy, 2007; Baxter et al., 2013), the issue of considering fixed-monitoring air quality data to 

human exposure has been analysed (Brauer et al., 2003; Gulliver and Briggs, 2011; 

Merbitz et al., 2012). Several studies have already examined the correlation between 

personal exposure and concentrations measured at fixed monitoring stations (Boudet et al., 

2001; Gulliver and Briggs, 2005; Baxter et al., 2013). Epidemiological studies within a city 

consistently find positive associations between outdoor concentrations and health effects 

due to the high correlation between mean population exposures and outdoor 

concentrations over time (Janssen et al., 1999; Yip et al., 2004). However, correlations 

between individuals’ personal exposures and their residential outdoor concentration are 

often weaker, and this may explain the weak associations found in some epidemiological 

studies (Koutrakis et al., 2005; Sarnat et al., 2006; Van Roosbroeck et al., 2008). Also, 

results showed that the sampling at the fixed monitoring site may under- or over-estimate 

air pollutant levels in a ‘‘hot spot’’ area, suggesting detailed characterization of spatial 

distribution of air pollutants for conducting accurate assessment for peak personal 

exposure (Wu et al., 2005; Ferreira, 2007; Zhu et al., 2008; HEI, 2010). Further, health 

effects seem to be underestimated when using citywide concentration levels in situations 

with a high variability in pollution concentrations (Jerrett et al., 2005a; Miller et al., 2007). In 

this context, fixed-site measurements should be used carefully for personal exposure 

quantification since they cannot provide good estimates of individual exposure (Brauer et 

al., 2003; Singh and Sioutas, 2004; Özkaynak et al., 2008; Dons et al., 2011; Merbitz et al., 

2012; Baxter et al., 2013). 

Another example of static approach for estimating exposure is based spatial 

surrogates. Spatial surrogates are considered to allocate geographically distributed data to 
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higher resolution geographic areas based on some form of activity or socio-economic/ 

demographic data (Boulton et al., 2002). This approach is often combined to modelling 

methods as discussed in Section 1.3. For instance, to assess the exposure to traffic-related 

air pollution the proximity to traffic or some additional indicator such as composition or 

volume of traffic is used (Venn et al., 2005; Ryan et al., 2007a). In addition, questionnaires 

can be used to assess the perception of traffic near the home, representing a surrogate for 

the traffic intensity and therefore pollution levels in air (Monn, 2001). Questionnaires can 

also be used to provide information on the existence of exposure sources and to categorize 

exposure, for example in personal exposure to environmental tobacco smoke (Franklin et 

al., 1999). The advantage of surrogate data are that they require no actual data on 

pollution, emissions or meteorology and can therefore be very cheap to collect. However, 

also these factors constitute the main disadvantage of this method that can be inaccurate, 

unless well validated. 

Overall, the main problem of studies that assess personal exposure on static 

perspective is that is now widely acknowledge the significant variation of air pollution within 

urban areas, with the intra-urban variation often greater than inter-urban variation (Jerrett et 

al., 2005a; Wilson et al., 2006). Thus, the hypothesis on homogeneous air pollution 

concentration region considered by place-based methods is problematic. Also, the spatial 

and temporal resolutions are coarse, considering daily, monthly, and even quarterly 

intervals as time spans (Samet et al., 2000). Air quality modelling, in turn, is a useful tool to 

overcome this issue, since it provides air quality information and its spatial and temporal 

variability on a given study area as discussed in Section 1.3.1. Finally, it can be very 

inaccurate to assume that different individuals in the same region have the identical air 

pollution exposure level.  

� Dynamic personal exposure approach  

A dynamic personal exposure approach assesses human exposure to air pollution 

at the individual level and takes into account individual activities in space and time. Thus, it 

considers both individual time-activity patterns and air pollution concentration variability. 

This approach could estimate personal exposure based on direct methods, such as 

personal monitoring and biological monitoring, and also spatio-temporally explicit exposure 

modelling (discussed in detail in Section 1.3.2). 

Several exposure analysts believe that personal monitoring is the most reliable and 

accurate way of estimating the air an individual is actually exposed to (Flachsbart, 2007). 

Personal monitoring approach assesses an individuals' exposure based on measuring the 

concentration of a pollutant ideally within a person's breathing zone for a defined time. A 
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variety of active (i.e. pumped instruments) and passive devices (e.g. diffusion tubes) have 

been used to monitor personal exposure to air pollution as closely as possible to the 

breathing zone providing the most accurate information about the actual exposure 

variability (Elliott et al., 2000). Personal exposure monitors collect real-time and time 

integrated measurements of acute and chronic exposure, respectively. These devices can 

be either integrating or fast response instruments. Integrating (also called pre-

concentration) monitoring techniques collect gaseous pollutants or particles on an 

appropriate adsorbent bed or filter, respectively, which can be analysed or weighted later in 

a laboratory. Fast response monitoring may rely on optical or electrochemical techniques to 

record pollutant concentrations at very high temporal resolution (e.g. one second). 

Integrating monitoring has been commonly used in personal exposure studies, while fast 

response instruments are now becoming more popular (Monn, 2001; Branis, 2010; Dons et 

al., 2013). 

Personal monitors should be portable, flexible, robust and user friendly, as well as 

lightweight and battery operated (or passive) (Nieuwenhuijsen, 2000; Monn, 2001; Branis, 

2010). Suitable personal monitors must also fulfil several requirements, such as detection 

limits, interferences, time resolution, easy operation and cost (ACGIH, 1995; WHO, 2000). 

Passive air samplers are probably the most convenient tool for conducting large-scale 

personal exposure assessments (Zabiegała et al., 2010; Król et al., 2012). This is due to 

the fact that passive samplers do not require a power supply, which in turn means that 

electrical devices (e.g. pumps), are small, inexpensive and easy to use. However, there is 

strong dependence of passive sampler performance on meteorological conditions (WHO, 

2000; Król et al., 2012), the ability to only record time-integrated concentrations and 

absorbing capacity is limited (Branis, 2010). For an accurate personal exposure 

assessment by active samplers, the sampling rate, breakthrough volume and detection limit 

are important parameters which need to be considered (WHO, 2000). 

The personal monitoring is gaining popularity, mainly given the recent technological 

advances that have reduced the size/weight of personal air samplers while improving 

accuracy and efficiency. The strength of personal sampling is its provision of real exposure 

values for the individuals followed. The drawback of this approach, however, is the high 

cost of implementation. Also, the temporal resolution is limited since this approach provides 

only exposure data for the individual at the time of sampling, thus limiting the usefulness of 

its value in estimating long-term exposure. In addition, poor compliance with personal 

sampler wearing protocols can create positive or negative biases in the reported exposure 

concentrations, depending on proximity of the participant or the personal sampler to the 

pollutant source when the monitor was not worn as instructed. This may lead to significant 

exposure uncertainty related to health inputs in risk assessments (Lawless et al., 2012). 
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Personal monitoring data serves also as input to and for the validation of exposure models 

(Hertel et al., 2001; Gulliver and Briggs, 2005; Gerharz et al., 2009; HEI, 2010; Dons et al., 

2011). 

Also focusing at the individual level, biological monitoring is an emerging tool in the 

field of personal exposure assessment. It is important to highlight that biological monitoring 

has been used by epidemiological studies applied to a select group of individuals, i.e. 

cohorts, who have one or several common characteristics (e.g. gender, age, non-smokers, 

etc.) to assess internal exposure and health outcomes of individuals during follow-up study, 

or during their lifetime. Biomonitoring is a direct method for estimating human exposure to 

air pollutants which accumulate in certain parts of the body, or generate a range of 

biochemical and physiological responses. Biological monitoring has been increasingly 

viewed as a desirable alternative to characterize personal exposures not only because it 

accounts for all possible exposure routes but also because it covers unexpected or 

accidental exposures and reflects inter-individual differences in uptake or genetic 

susceptibility (Lin et al., 2002). Biological monitoring refers to measurements of 

concentrations of biological markers (biomarkers) in human fluids and/or tissues (such as 

blood, urine, breast milk or hair) to detect exposure. Biological monitoring is a valid tool to 

provide a direct estimate of internal exposure to a chemical in the individual, which in turn 

reflects an interaction between an environmental agent and a biological system (Clewell et 

al., 2008). Collection of biomarkers can be either invasive (e.g. blood sampling) or non-

invasive (e.g. urine sampling). 

Several studies utilizing biomarkers to assess personal exposure to traffic-related 

air pollution have been conducted until now (Buckley et al., 1995; DeCaprio, 1997; Scherer 

et al., 1999; Scherer et al., 2000; Sørensen et al., 2003; Fanou et al., 2006; Hu et al., 2006; 

Adetona et al., 2013; Baxter et al., 2013). However, the use of biomarkers is most 

extensive in occupational studies because the exposure–response relationship between 

pollutants concentrations (e.g. benzene) in such exposures and biomarkers are of 

importance (Jacob et al., 2007). Biomarkers have been presenting a potential value as 

proxy measures of disease outcome, and as means of distinguishing individuals who may 

be unusually susceptible to the effects of a pollutant (Ryan et al., 2007b). Also, several 

studies have used biomarker analysis to calibrate and to validate the reliability of other 

exposure estimates (Hertel et al., 2001; Paustenbach and Galbraith, 2006).  

Biological monitoring can be used as direct measurements of important individual 

internal exposure events and to estimate biological effect if a relationship has been 

established between the biological measurement and the individual health outcome. Thus, 

biomonitoring presents several strengths for personal exposure assessment to air pollution 

and can improve the accuracy of exposure assessment. The main advantage of 
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biomonitoring is that only the contaminants that enter the human body are measured. 

Furthermore, it helps to estimate aggregate exposure, as all exposure pathways are 

included (inhalation, dermal contact and ingestion), which reflects the comprehensive effect 

of multiple chemical mixtures, absorbed by all exposure routes, not just air (Monn, 2001). 

This is, on the other hand, also a limitation as it is not easy to differentiate the component 

ratios between exposure sources, pathways (e.g. dietary) and chemicals (Ryan et al., 

2007b; Clewell et al., 2008). Another constraint is that biomonitoring data may depend on 

the moment in time when the sample is collected. Depending on the kinetics of the 

measured compound in the sampled tissue, the measurement may reflect recent exposure, 

average exposure over a prolonged period of time, or neither (Clewell et al., 2008).  

Exposure modelling had arising as an alternative method of dynamic personal 

exposure assessment able to address the magnitude of air pollutant concentration really 

breathed in by the individual, allowing to analyse the contribution of different air pollutants, 

exposure sources and pathways in exposure assessment process (Jerrett et al., 2005a; 

McKone et al., 2008; Setton et al., 2011; Steinle et al., 2013). Exposure models can be 

used to investigate large populations, future exposures, as well as reconstruct historical 

exposure by utilizing existing data from different types and sources, as discussed in detail 

in Section 1.3. Moreover, exposure models are particularly useful when combined with 

other exposure assessment method, such as biomonitoring, thus making possible to link 

exposure concentrations with internal exposure.  

 

1.2.2. Which supplementary tools are available for personal exposure 
assessment? 

Research on human behaviour or activities is a crucial component of modern and 

future exposure science (Lioy, 2010). The crucial questions are “Where individuals really 

are during their daily activities?”; “Are concentration peaks of air pollution co-located in time 

and space with the time period that individuals spend outdoors?”; “How much time an 

individual are exposed in hot-spots?”. These and other related questions could be 

answered by the recent development and availability of enhanced resources such as 

geographic information system (GIS) and global positioning system (GPS), opening thus 

new insights in the field of personal exposure assessment to air pollution in urban areas. 

� Geographical Information Systems (GIS)  

Geographical Information Systems (GIS) is a useful tool to study the interactions 

between humans and the environment by providing the required spatial information and 
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analysis. A GIS is an integrated collection of computer software and data used to view and 

manage information connected with specific locations, analyse spatial relationships, and 

model spatial processes (Wade and Somer, 2006). All spatial data can be geocoded, i.e. 

described by x and y coordinates in a geographical coordinate system. In a GIS, different 

data in databases with geocoded observations can be analysed and visualized. Maps are 

essential parts in a GIS and can be used as both input and output data. 

Air pollution exposure assessment relies heavily on spatial context with the purpose 

of untangling the associations between air pollution and the individual across space–time. 

Geographic Information Systems, and associated statistical techniques, along with the 

availability of spatially referenced health and environmental data, have created unique 

opportunities to investigate spatial associations between air pollution exposures and health 

outcomes at multiple spatial scales and resolutions (Collins, 1998; Melnick, 2002). Under 

the context of exposure research field, GIS allows environmental and epidemiologic data to 

be stored, analysed, and displayed spatially and temporally, improving data integration and 

consistency by providing means of capturing and linking spatial data within a single 

geographical structure. The majority of epidemiological and environmental data has a 

spatial (location) component, to which GIS adds a powerful graphical and analytic 

dimension by bringing together the fundamental epidemiological triad of person, time, and 

the often-neglected place (PHAC, 2008). Also, GIS can be used in combination with 

dispersion models to simulate the ways in which pollutants propagate in environment, and 

the exposure as result (Briggs, 2000; Meliker and Sloan, 2011). 

Equally, GIS permits spatial linking of different types of data, providing a framework 

for combining pollution and population data, as required for exposure assessment (Nuckols 

et al., 2004; Weis et al., 2005; Briggs, 2008; Maantay, 2011; Meliker and Sloan, 2011). GIS 

allows to create distinct environmental, population and health data layers that can be linked 

spatially and temporally. Thus, GIS provides the potential to make exposure models more 

explicitly spatial, and several systems have been developed for modelling exposures in 

stationary indoor environments (Clench-Aas et al., 1999; Zhan et al., 2006). However, 

despite its greater applicability, until now, GIS has been used for personal exposure 

assessment under a place-based perspective, estimating exposure based on geographic 

proximity between the static location of the individual to pollutant and sources. In such 

studies, GIS is often used to locate the study population by geocoding addresses 

(assigning mapping coordinates) (e.g. residence, workplace) and to establish the exposure 

surrogate on the basis proximity analysis of contaminant source (Jarup, 2004; Weis et al., 

2005; Zhan et al., 2006; Hochadel et al., 2006). Several limitations have been identified, 

including the high aggregation of spatial data, the scale dependence of exposure 

estimates, the lack of consideration of spatial and temporal variation and the lack of 
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accounting for individual time-activity patterns (Nuckols et al., 2004; Maantay, 2011; 

Nuvolone et al., 2011). 

Recently, GIS have created unique opportunities to derive personal exposure 

estimates at individual level by offering powerful tools to present spatial information to the 

level of the individual, conducting predictive modelling, and by integrating information about 

individuals’ time-activity patterns with environmental data. GIS provides access to 

additional information from a wide variety of sources, such as global positioning systems 

(GPS) to obtain almost the exact individual´s location at a given time, as discussed below. 

Some researchers have used GIS with GPS to define time-activity patterns that could 

feasibly be linked with environmental data for personal exposure assessment (Phillips et 

al., 2001; Elgethun et al., 2003; Nuckols et al., 2004). Using GIS to spatially integrate 

individual´s time-activity patterns with environmental data can be helpful in assessing inter 

and intra-individual variability of exposure to air pollutant in urban areas, reducing 

uncertainties in exposure estimates, and thus improving the results of epidemiological 

studies and of risk assessment analyses.  

� Global Positioning Technology (GPS)  

One of the problems of the exposure assessment approaches is the uncertainty 

related to the human mobility during the exposure assessment period. To overcome this 

issue, the use of Global Positioning System (GPS) for human tracking presents an 

enormous opportunity for improving our understanding of how time-activity patterns can 

influence individual exposure and subsequent health effects. GPS is a freely accessible 

and promising technology by monitoring individual´s real-time geographic positions. This 

technology uses differences in timing data of radio signals that are transmitted from a 

constellation of satellites to determine an individual’s location. As technology progresses, a 

GPS receiver/data logger can integrated into watch, wear or mobile phone (USEPA, 2003). 

Predictability in human dynamics by studying the mobility patterns of individuals 

using GPS equipped mobile phones became an emerging field (Gonzalez et al., 2008; 

Song et al., 2010). GPS-equipped mobile phones can record the latitude-longitude position 

of individuals at each moment, offering many advantages over traditional time-location 

analysis, such as high temporal resolution, and minimum reporting burden for participants 

(Rainham et al., 2010; Chaix et al., 2013). This information can be logged passively or sent 

in real-time using cell phone networks to a remote server for further analysis, and allows 

researchers to map an individual’s space-time path through multiple contexts.  

Collection of time-location information using GPS technology provides continuous 

tracking of the individuals with high data resolution in time and in space. The GPS 
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technology guarantees that there will be an increasing availability of large amounts of data 

affecting to individual trajectories, at increasing localization precision. However, it has be 

emphasized that a GPS is not a standalone toot to determine time-activity locations, such a 

commuting, indoor or outdoor locations, since it can only give information on the path that a 

moving individual follows through space as a function of time, i.e. GPS trajectory (Wu et al., 

2010; Rainham et al., 2010; Zheng and Zhou, 2011). Significant uncertainties associated 

with the processing and classifying of GPS trajectories is one of challenging issue for the 

exposure studies (Wu et al., 2010). 

Recently, GPS technology has been used successfully in personal exposure 

assessment to collect individuals’ time-location information (Amorim et al., 2012; Valente et 

al., 2012). Several personal exposure studies have used a well-designed integration of 

GPS devices with portable pollutant monitors to determine potential exposure at the 

individual level (Greaves et al., 2008; Boogaard et al., 2009; Lioy, 2010; Dons et al., 2011; 

Zwack et al., 2011; Broich et al., 2012; Cole-Hunter et al., 2012; Miranda et al., 2012). The 

development of portable personal exposure monitoring devices is a fast evolving field and 

incorporates everyday devices, such as smartphones. An example is the portable, real-time 

exposure monitoring system which was developed and described by Negi et al. (2011). 

This device communicates wirelessly with a smart phone which serves as user interface as 

well as for processing monitoring data, adding GPS information and to display 

concentration profiles (Negi et al., 2011).  

Overall, combined with GIS, GPS technology are expanding their applications as 

supplementary tools for personal exposure assessment emerging as model input for 

personal exposure studies based on individual movement patterns or routes, as detailed 

discussed in Section 1.3.2. Despite some limitations of GPS technology, findings show that 

personal exposure profiles towards changing environmental influences, which differ from 

other individuals as well as the population average, can be derived by using a GPS 

approach, and suggest that GPS can be seen as the way forward (Dons et al., 2011; 

Richardson et al., 2013). 

 

 

ummary 1.2.: Personal exposure estimation is a crucial component to 

quantify exposure-related health effects. A new context of exposure 

assessment recognizing importance of the actual spatial and temporal 

scales on quantifying personal exposure to air pollution is emerging. Currently, personal 

exposure assessment methods can be aggregated in two main groups: dynamic personal 

S 
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exposure approach and static personal exposure approach. On a static approach, time-

activity patterns of individuals are not directly addressed, while dynamic approach takes 

into account individual activities in space and time and, therefore explicitly addresses 

spatio-temporal variations in esposure. The availability of supplementary tools for personal 

exposure assessment such as geographic information system (GIS) and global positioning 

system (GPS) enhances the characterization of variable air pollution levels and individual’s 

time-activity patterns, as required by personal exposure assessment. Combining GPS with 

GIS offers the opportunity to take a step forward in the quantification of personal exposure 

to air pollution in urban areas.  

 

1.3. Modelling: a priority area for personal exposu re research 
 

Modelling is a very important tool in exposure and health impact assessment 

research since it is a flexible and cost-efficient indirect method for assessing human 

exposure. An exposure model is “a logical or empirical construct which allows estimation of 

individual or population exposure parameters from available input data” (WHO, 2000). 

Technological advancements in computing processing power, availability of human 

activity/environmental data have allowed the development and application of 

comprehensive exposure modelling system to provide both spatially and temporally 

resolved exposures. Human exposure modelling is presented thus as promising tool to 

address the high temporal and spatial variability in the personal exposure imposed by the 

urban environment and has become a fundamental and required approach of exposure 

analysis as it provides an efficient and economical means for assessing exposure of 

individuals over a variety of spatial and temporal scales for past, current, future, or 

hypothetical conditions. 

Personal exposure modelling allows quantifying how much atmospheric air is 

contaminated in different locations of the study area, and simulating how different 

individuals interact with those air pollution levels to derive personal estimates of its 

exposure during the study (USEPA, 2004b). Exposure modelling is typically used to 

supplement personal or biological monitoring data or when such measurements are not 

available/appropriate for the exposure assessment situation. Thus, exposure models are 

essential for comprehensive exposure assessment because we will never be able to 

monitor or measure every exposure everywhere. Additionally, they also play an essential 

role in establishing guidelines for acceptable levels of indoor and outdoor air pollution, 
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which rely on the estimation of health risk associated with air pollutants for different 

possible scenarios. 

The crucial purpose of personal exposure modelling is to reflect “real-world” human 

exposure to air pollutants over time and consequently assess the health outcomes of air 

pollution exposure (Nethery et al., 2008). Thus, the need for personal exposure models 

increases proportionally with the growing knowledge of the importance of the spatial and 

temporal scales imposed for a variety of indoor and outdoor environments and time-activity 

patterns for personal exposure assessment. Generally, to address these challenges, 

exposure models incorporate one or more of the three fundamental variables that govern 

human exposure: (i) pollutant source identification and emission rate, (ii) outdoor and/or 

indoor pollutant concentrations, and currently (iii) human activity, as presented in Figure 

1.9. 

Air pollutant 
emissions time-series
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Figure 1.9. Link between the principal components of an exposure model. 

 

1.3.1. Air Quality Modelling: How it may contribute  to personal exposure 
assessment? 

Air quality modelling allows establishing the relationships between current 

emissions and current air quality at particular locations. Air quality models serve multiple 

purposes in exploring the relationships between air pollutants and exposure-related health 
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effects. One important application is extending observations spatially to reduce exposure 

errors and uncertainties that arise from the limited spatial coverage of current routine 

monitoring networks. Further, air quality models play a key role in identifying the most 

efficient and cost-effective strategies for reducing source emissions and protecting human 

health and welfare, thus serving as an important management tool (USEPA, 2009a). 

Air quality models describing the dispersion and transport of air pollutants in the 

atmosphere can be distinguished on many grounds: on the spatial scale (local, urban, 

mesoscale, regional, global); on the temporal scale (episodic models, (statistical) long-term 

models); on the treatment of various processes (chemistry, wet and dry deposition); and on 

the complexity of the approach used for the physical process description. Depending on the 

modelling objectives, it is important to select an appropriate model from among the 

considerable diversity of the available tools taking into account the simplifications and 

assumptions considered by the model (Borrego et al., 2001).  

In general term, air quality models can be divided into (i) process oriented models 

and (ii) statistical models (EEA, 1996; Daly and Zannetti, 2007; Solomon et al., 2012). 

Process oriented models are based on the description of physical/chemical processes: 

starting with emissions, atmospheric advection and dispersion, chemical transformation 

and deposition are calculated. This type of models is able to give a description of cause-

effect relations. Statistical models are valuable tools in diagnose of air quality by means of 

interpolation and extrapolation of measuring data (e.g. the concentrations measured 

show a statistically significant dependence on the volume of traffic). Each of these 

modelling approaches has been used to characterize air quality concentrations for personal 

exposure modelling to air pollution. 

A statistical model may be applied to time-series obtained from measurements for 

the purpose of establishing a relationship among dependent and independent variables. It 

is both a strength and a weakness of statistical models that they do not require nor imply 

any causal relationships between the model variables. Statistical models require both input 

and output variables to be known in the model development system. However, this type of 

models should be used with caution. They may be considered valid only within the range of 

the data from which they were derived. That is, the interpolation between data values is 

acceptable, but extrapolation to a set of conditions outside the range of data may yield 

invalid results. Interpolation models and land use regression models are examples of a 

statistical modelling. 

Interpolation models utilize measurements at multiple locations throughout the 

study area and estimate pollutant concentrations for unmeasured locations (Briggs, 2000). 

Estimations are derived from spatial trends within the measured data. There are many 
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spatial interpolation methods including the local neighbourhood approaches (e.g. inverse 

distance weighting), the geostatistical approaches (e.g. kriging), and the variational 

approaches (e.g. thin plate spline) (Coulibaly and Becker, 2007). Several studies have 

predicted estimates of personal exposure using spatial interpolation of air quality data 

(Finkelstein et al., 2003; Künzli et al., 2005; Jerrett et al. 2005b; Cohen et al.,2009; Son et 

al., 2010), but there is not yet consensus on which methods are most appropriate. 

Moreover, the quality of estimated concentrations is related to the degree of monitor 

coverage and spatial heterogeneity of the pollutant within the study area (Wong et al., 

2004; Son et al., 2010).  

Land-use regression (LUR) is an empirical modelling approach being used to 

address the limited spatial coverage found in routine air quality monitoring networks. This 

approach uses auxiliary data on a city’s physical characteristics to estimate pollutant levels 

in relation to local activities (Crouse et al., 2009). These models spatially link ambient 

pollutant concentration measurements throughout the study area with other associated 

variables such as distance to pollutant source, topography, building types, population 

density, socio-economic status, land use, traffic volume within GIS (Brauer et al., 2007; 

Ryan and LeMasters, 2007; Hoek et al., 2008a). Recent applications have incorporated 

physically based factors such as meteorology and topography in an attempt to improve 

estimates (Arain et al., 2007; Ryan et al. 2008). LUR models treat the pollutant of interest 

as the dependent variable and proximate land-use, traffic, and physical environmental 

variables as independent predictors. As a result, they predict pollution concentrations at a 

given site based on surrounding land use and traffic characteristics (Jerrett et al., 2005a; 

HEI, 2010). Applications have demonstrated a good agreement between measured and 

modelled benzene and organic compounds, although NO2 is more challenging (Crouse et 

al., 2009). However, there are several limitations to this type of models. Namely, even 

though LUR models offer improved spatial resolution, they still may not capture a small 

enough spatial scale for individual exposure assessment (Brauer et al., 2007; Hoek et al., 

2008b). 

Process oriented models include the traditional air dispersion models, and use the 

best available emission estimates and local meteorological data to predict pollutant 

concentrations at various locations. Over statistical models, air dispersion models have the 

main advantage to incorporate both spatial and temporal variation of pollutant 

concentrations and can be used to assess time periods from hourly averages to annual 

periods. Air dispersion models are one of the most common types of models used for air 

quality management and have been established as the primary method for assessing 

human exposure in urban areas (Kousa et al., 2002; Jerrett et al., 2005a; Zou et al., 

2009a). Air dispersion models estimate pollutant concentration profiles over space and time 
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by applying mathematical equations based on physical processes to site specific input 

data.  

Air dispersion models can generally be categorised by their type (e.g. Gaussian, 

Lagrangian, Eulerian) and scales of application (Denby et al., 2011). Gaussian model is 

one of the mostly used air quality model based on the process oriented approach. They 

assume that the concentrations from a continuously emitting source are proportional to the 

emission rate, inversely proportional to the wind speed, and that the time averaged 

pollutant concentrations horizontally and vertically are well described by Gaussian 

distributions (Boubel et al.,1994; Nieuwenhuijsen, 2003). In its simplest form, the Gaussian 

plume model assumes that there are no chemical or removal processes taking place and 

that pollutant material reaching the ground or the top of the mixing layer as the plume 

grows is reflected back towards the plume centreline. Gaussian models are more suitable 

for calculating annual mean concentrations in an urban region than for calculating of hourly 

mean concentrations. The ADMS-URBAN (European model) (McHugh et al. 1997) and 

AERMOD model (recommended by the USEPA) are examples of Gaussian models. 

The Eulerian and Lagrangian approaches are more physically realistic, but 

numerically complicated and computationally expensive (Figure 1.10) (Seinfeld and Pandis, 

2006). Eulerian and Lagrangian models can provide realistic simulations of the atmospheric 

transport and mixing of air pollutants at several scales (Borrego et al., 2006). In an Eulerian 

model, chemical species are transported in a fixed frame of reference, usually the surface 

of earth (Figure 1.10). This enables easy representation of the pollutant production and 

transformation processes. The space domain (geographical area or air volume) is divided 

into "small" squares (two-dimensional) or volumes (three-dimensional), i.e. grid cells. Most 

Eulerian models use a grid system to describe atmospheric dynamics (advection and 

diffusion), emission sources and chemical production, and generate four-dimensional 

(space and time) trace species concentrations fields for each of the species modelled 

(Seinfeld and Pandis, 2006). These models use numerical terms to solve the atmospheric 

diffusion equation (i.e. the equation for conservation of mass of the pollutant) (Seinfeld and 

Pandis, 2006). The numerical solution of the transport term in the Eulerian framework 

becomes more difficult and often requires substantial computational resources to be 

accurate enough compared to the Lagrangian approach. The main advantage of the 

Eulerian models is the well-defined three dimensional formulations which are needed for 

the more complex regional scale air pollution problems. Long range transport simulations 

are mostly done using Eulerian models. Example of Eulerian models are the TAPM (Hurley, 

2008), CAMx (Ferreira et al., 2012) and CHIMERE model (Monteiro et al., 2007). 

In Lagrangian models, also called Lagrangian Particles or Random Walk model, the 

motion of air masses or particles following the flow is studied (Figure 1.10). In these 
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models, the concentration is computed by counting “fictions particles” (computer-particles) 

in a user defined volume (e.g. the cell of a regular grid). Each “particle” represents a 

particular mass of one or several pollutants emitted from a given source. Hence, transport 

caused by both the average wind and the turbulent terms due to wind fluctuations is taken 

into account. Time-dependent trajectories of particles are computed by stochastic 

differential equations (Langevin equations), which aim at describing turbulence properties 

(Degrazia, 2005).  

The computation time in Lagrangian models is directly linked to the number of 

particles within the model domain, which in turn is determined by the number of particles 

released, the size of the model domain and the wind speed. This type of models should 

provide a better description of the dispersion and transport of pollutants than the simpler 

Gaussian models, particularly in complex terrain (Degrazia, 2005; Daly and Zannetti, 2007). 

Also, to determine pollutant concentrations in street canyons or urban blocks, high 

resolution flow models that can resolve buildings need to be applied (e.g. computational 

fluid dynamics (CFD) models) (Borrego et al., 2003; 2004; Martins et al., 2009). This type of 

models is particularly useful for simulating short-term releases from sources with highly 

variable emission rates in complex dispersion scenarios (Degrazia, 2005). Moreover, these 

models begin to be used for regulatory purposes in some European countries such as the 

Official reference model of the German Regulation on Air Quality Control, the AUSTAL2000 

model (Janicke and Janicke, 2002; Janicke, 2004). Also in this study, AUSTAL2000 was 

selected to simulate the air pollution dispersion. Despite the high computational 

requirements for this model, its applicability to simulate the air pollution dispersion in areas 

with complex topography, its high flexibility in modelling the physical processes involved, as 

well the fast processing of the input data (e.g. buildings and emission sources 

characterization), were decisive for the choice of this model in pursuit of the objectives set 

in this research. 

Overall, air dispersion models offer improved spatial and temporal resolution to 

estimate air pollutant concentrations in locations without dense monitoring networks 

(Clench-Aas et al., 1999; HEI, 2010). From a comparative evaluation of the performances 

of four methods for exposure assessment of air pollution, Zou (2010) shows that air 

dispersion models provide the most reliable exposure impact simulation results, and its 

accurate performance was attributed to data input requirement. Therefore, air dispersion 

modelling presents a promising tool to personal exposure assessment by characterizing the 

air pollution levels required to quantify exposure at the individual level and by helping to 

identify high exposure scenarios (i.e. high exposure sites, meteorological conditions that 

lead to high pollutant concentrations), as well as to provide high-resolution analysis of 
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patterns in health outcomes and environmental factors (Hruba et al., 2001; Lipfert et al., 

2006; 2008).  

 

Figure 1.10.  a) In the Lagrangian system the observer follows movement of air parcel, and b) in the 

Eulerian system, the observer studies atmospheric motion at a fixed reference point (Seinfeld and Pandis, 

2006). 

 

1.3.2. Personal Exposure Modelling: From a place to  individual-based 
approach 

Over the past 20 years, several exposure modelling methods have been developed 

with the aim of estimating exposure at the individual level. The major purpose of these 

models is to characterize air quality concentrations to be used as surrogate of personal 

exposure to air pollution and assumes that subjects within a demographic area (e.g. census 

units) are equally exposed to air pollution. Thus, over the past decade, air quality models 

have been integrated with GIS in attempt to reflect individual exposure by combining air 

pollutants concentration data with residence location (e.g. Bartonova et al., 1999; 

Gauderman et al., 2007; Hoek et al., 2008a). Nevertheless, the knowledge of where 

individuals spend time is essential for the assessment of human exposure to air pollution 

and research on human behaviour or activities is a crucial component of modern and future 

exposure science (Lioy, 2010). Thus, individual-based personal exposure modelling, 

although data and computer intensive, is considered the closest to a “best” estimate of 

personal exposure to air pollution (Jerrett et al., 2005b; Özkaynak et al., 2008; HEI, 2010). 

To mitigate the problem of a place-based exposure approach, the concept of 

microenvironment was developed (Georgopoulos and Lioy, 1994; Valente, 2010). An 

individual’s daily activities are related to a series of microenvironments, such as home, 

workplace, in vehicle during travelling route, and recreation place. Microenvironments are 
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defined as a location where the concentration of an air pollutant is considered to be 

spatially homogenous during the time that individuals are exposed (Kaur et al., 2007; 

Edwards et al., 2001; 2005). Despite the fact that time-activity location analyses are very 

complicated, microenvironment approach use microenvironments, typically indoor 

residences, indoor workplaces, other indoor locations, outdoor near residences, other 

outdoor locations, and in vehicles, as a proxy of time-activity patterns (Srivastava, 2005; 

Zou et al., 2009b). Under the microenvironment assumption, individual´s air pollution 

exposure is calculated using a similar approach as represented by Equation 1.1 but 

considering the discrete product of “representative” concentrations for the individual or 

activity being examined in that microenvironment times the duration of the time spent there 

(Hertel et al., 2001; Weisel, 2002):  

∑
=

=
m

j
ijiji tcE

1
        (1.3)  

where Ei (units: ppmh or µg.m-3.h) is the personal exposure for person i over the specified 

period of time, cij is the air pollution concentration (units: ppm or µg.m-3) in each 

microenvironment j, tij is the time spent (units: h) by person i in each microenvironment j, 

and m is the number of different microenvironments. 

Several individual-based personal exposure models based on a microenvironment 

approach, including AirPex (Freijer et al., 1998), SHEDS-PM (Burke et al. 2001), HAPEM 

(Özkaynak et al., 2008), APEX (USEPA, 2009b), are available. These models are designed 

to simulate the distribution of personal exposure in several microenvironments (e.g. 

outdoors, traffic environments, indoor-residential, public buildings, workplaces, and 

schools) (Burke et al., 2001), by combining the time spent at visited microenvironments and 

the estimated pollutant concentrations (e.g. PM10, VOCs, etc.) at every microenvironment. 

Usually, microenvironmental concentrations are estimated as a combination of infiltrated 

outdoor air and indoor source emissions based on mass balance or empirical 

indoor/outdoor relationships. Additionally, the time spent at visited microenvironments and 

activities of individuals used by these approaches is obtained based on time–activity 

databases (e.g. Consolidated Human Activity Database (CHAD); National Human Activity 

Pattern Survey (NHAPS)) (Burke et al., 2001; Kruize et al., 2003; Klepeis, 2006; Özkaynak 

et al., 2008). However, by using this time-activity location data, individual air pollution 

exposure context can be assumed as a series of independent microenvironment exposures 

(Ballesta et al., 2008).  

Also, Zidek et al. (2005) presents a stochastic approach for estimating personal 

exposure, the pCNEM model, based on time–activity databases (i.e. NHAPS). In this 
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model, microenvironmental concentrations are estimated using a mass-balance indoor 

model and the closest measurement station as proxy for the outdoor concentration. The 

individual´s location is addressed by distinguishing between home and workplace and 

identifying the districts that are associated to the nearest pollution monitor. This model 

enables the estimation of personal exposure for randomly picked individuals by running the 

stochastic model several times on similar diaries of the same population subgroup. 

However, individuals who belong to same population subgroup may have different time- 

activity patterns and, consequently different air pollution exposure levels (Kwan, 2009). 

Also, the aim of their model is to give probabilistic estimates for certain population 

subgroups instead of modelling time and space variant exposure dynamics of a specific 

individual person. 

The advent of GIS provides the potential to make these models more explicitly 

spatial. As a first attempt to model individual exposure on a very detailed spatio-temporal 

resolution, the spatio-temporal exposure model system (STEMS) (Gulliver and Briggs, 

2005; 2011), was developed. The STEMS model is a GIS-based system that simulates the 

exposure of an individual or subpopulation to traffic-related pollution as people travel 

through a dynamic pollutant field. STEMS incorporates an air dispersion model 

(ADMSUrban), an empirical background pollutant model (BACKGAMON), traffic model 

(SATURN) (a model for vehicle flows), and a time-activity model (TOTEM). Time–activity 

patterns are simulated for individuals over an appropriate period (e.g. week, day, or part 

day), based on results from time–activity surveys. Exposures are then estimated for each 

location by cross-reference to the pollution map for that time period. Although the modelling 

approach had great promise, the current version of this model only focuses on journey-time 

exposure to PM10 (i.e. during on foot or in a vehicle), and 24-h exposure profiles are not 

provided. Also, indoor sources are not considered for personal exposure assessment, 

estimating indoor concentrations (i.e. in vehicles) by using outdoor concentrations and 

weighting factors. 

Recently, there has been an increasing focus on using GPS technology to collect 

the individual trajectory information to be used in combination with air pollution levels to 

estimate personal air pollution exposure levels in urban areas. A traffic air pollution 

exposure modelling system named AirGIS was developed by National Environmental 

Research Institute in Denmark (Jensen, 2006). AirGIS system included two modules. One 

to simulate urban air pollution levels using Danish Operational Street Pollution Model 

(OSPM), road network, traffic information, and a Geographic Information System (GIS). 

The second module estimates personal exposure at address level (including about 200,000 

addresses in Denmark) and with one hour of time resolution. Also, apart from modelling 

exposure at address level, the system includes a model system for the estimation of 
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exposure under transport along a route provided by individual carried cell phones with built-

in GPS receivers, which send location information by short message service (SMSs) to 

AirGIS tracking centre at twenty seconds intervals. Despite of AirGIS project is promising to 

collect individual-based real-time positioning, this system can only be applicable in 

Denmark and for smaller field studies (Hertel et al., 2008). The personal exposure in 

stationary microenvironments is estimated under a place-based approach, considering the 

location address and only for home and workplace. Also, SMSs with individual trajectory 

data are only sent when the subject is moving out of a defined area and has associated 

costs as positions. Also, only vehicles with GPS technology can be considered for 

exposure analysis. 

Gerharz et al. (2009; 2013) developed an initial framework for spatio-temporal 

individual exposure modelling, taking GPS data and information from TADs and 

questionnaires, indoor, and outdoor concentration into account. For the outdoor distribution, 

a dispersion model was used and extended by actual ambient fixed site measurements. 

Indoor concentrations were modelled using a simple mass balance model with the 

estimated outdoor concentration fraction infiltrated and indoor activities estimated from 

questionnaires. Information on time-activity patterns was provided from a combination of 

GPS data and self-administered TADs. The entries of the diaries are classified into visited 

activities relevant for the exposure model, distinguish home, working environment, other 

indoor, transportation, and outdoor. This information is posterior used to identified indoor 

environments in GPS processed data.  

Daily average exposure values estimated by Gerharz et al. (2009) evidence a 

strong influence of individual behaviour. However, there are limitations to the general 

applicability of this methodology due to simplifications and assumptions adopted such as 

the qualification of indoor activities for which the TAD was used and where the GPS sensor 

cannot receive a signal. This model is strongly dependent on TADs and questionaries’ 

information to derive individual activity profile, providing exposure estimates only if the 

individual resides in a microenvironment which is specified in the model (Gerharz et al., 

2013). Also, although GPS trajectories are analysed and processed (Wu et al., 2010), the 

microenvironments are identified based on information provided by TADs, which has 

several weaknesses (Section 1.1.3.) and only indoor and in-vehicle microenvironments are 

identified, ignoring exposure during walking periods. 
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ummary 1.3.: To assess and manage health effects associated with 

current and emerging complex air quality issues, personal exposure 

modelling has become a priority and required approach of exposure 

analysis, as it provides an efficient means for assessing personal exposure at the spatial 

and temporal scale imposed for a variety of “microenvironments” during individual´s time-

activity patterns. In this context, air dispersion modelling play a key contribution to personal 

exposure assessment in order to characterize the air pollution levels required to quantify 

exposure at the individual level. Several personal exposure models have been developed, 

presenting crucial strengths over other personal exposure methods. Clearly, personal 

exposure modelling has progressed significantly over the past decades, from crude 

qualitative estimates to today´s refined integrated methods yielding more accurate 

quantitative exposure estimates at the individual level. Instead of a place-based personal 

exposure approach, individual-based exposure models consider time-activity patterns of 

the individual to obtain more realistic spatio-temporal individual exposure estimates. Recent 

information technologies, namely GPS, facilitate the collection of individual´s spatio-

temporal trajectory, and when combined with air pollution levels can effectively derive 

individual-level personal exposures. However, until now several efforts on characterizing 

the spatial and temporal distributions of air pollution have been expended, but much work 

remains in understanding the role of individual mobility in conditioning exposures in urban 

areas. Also, very little has been done toward validating of such models at the level of the 

individual. The validation of models with independent data sets is useful to check whether 

the proposed models serve as surrogates for individual exposure and to know the extent of 

the exposure estimation error, which should be accounted for in health impact assessment. 

Under this framework, accurately quantifying human exposure to air pollution in urban 

areas still remains a challenging task. Consequently, the development of personal 

exposure models that provide a better understanding of exposure by establishing source-

receptor relationship and by explicitly preserving the sequence of exposure events at the 

individual exposure level in the urban environment is a priority area for future exposure 

research. 

 

1.4. Research Objectives and Thesis structure 
 

The prime objective of this research work is the development of a consistent approach 

for the quantification of individual exposure to traffic-related hazardous air pollutants in 

urban areas within distinct microenvironments by using a novel methodology for trajectory 

S 
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analysis of the individuals in order to support health impact assessment and decision-

making in public health management. 

 

To achieve the defined objective, the following tasks were accomplished: 

� An overview of the currently available methodologies for the quantification of 

personal exposure to air pollution. At this stage, the research was focused on 

different personal exposure methods and supplementary tools available. The 

dynamic exposure approach was evaluated in comparison with static exposure 

methods; 

� Identification of the relevant parameters of exposure quantification at urban scale, 

such as spatial and temporal resolution of the data. The final use of the results, 

including health impact assessment requirements, was considered for this purpose; 

� A comprehensive analysis and identification of the current and future potential 

impacts on human health associated with exposure to air pollution. This analysis 

was based on an atmospheric and health impact assessment modelling 

contributing to a better understanding of the number of deaths that are attributable 

to the exposure to current air pollution levels and under future climate in Portugal; 

� Development and implementation of a new module into the Transport Emission 

Model for Line Sources (TREM) to quantify emissions of traffic-related hazardous 

air pollutants (HAPs), providing detailed information on HAPs emissions with higher 

resolution within urban areas; 

� Development of a new personal exposure modelling tool based on trajectory 

analysis of individuals and air pollution modelling with high spatial-temporal 

resolution to provide the magnitude, frequency and the intra and inter-variability of 

individuals’ exposure levels that is essential for health impact assessment. The 

development and implementation of trajectory data mining and geo-spatial analysis 

algorithm within Geographic information system was performed at this stage of the 

research, in order to process the trajectories obtained with Global Positioning 

System and collected by mobile-phones; 

� Characterization of the variability of the microenvironmental parameters based on a 

probabilistic approach providing an additional knowledge on the variation 

associated with microenvironmental concentrations and its contribution to the 

individual exposure estimates; 
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� Application of the exposure model to the study area. Based on the data provided by 

the transportation – emission – air dispersion modelling and the daily trajectories of 

the individuals, statistics on individual’s air pollution exposure were estimated for 

each individual; 

� Validation of the developed exposure modelling tool by using personal and 

biological exposure measurements collected during the daily activities of individuals 

in a measurements campaign. The exposure modelling tool presents as a useful 

tool to be used in combination with personal monitoring and biomonitoring, enabling 

to analyse and understand the exposure measurements obtained. 

 

This study is presented in seven distinct chapters, based on published and 

submitted manuscripts. 

A comprehensive analysis of the current impacts on human health associated with 

exposure to urban air pollution is performed in Chapter 2. Thus, a health impact 

assessment is conducted in Chapter 2 in order to quantify the potential health benefits by 

meeting the air quality limit values (2008/50/CE) for short-term PM10 exposure in an urban 

area. Additionally, in order to identify the relevant parameters of exposure quantification at 

urban scale, the role of the population mobility and inhomogeneity of spatial pollution 

pattern is analysed and considered in health impact assessment. The air pollution spatial 

variation and high population mobility observed within urban areas are identified as 

important factors for the short-term health risk analysis. Therefore, an improved 

methodology to process the population data taking into account daily average population 

mobility and to process air quality time series to obtain representative background pollution 

values are presented in Chapter 2. The main outcomes of this chapter highlight the 

importance to study the human mobility and inhomogeneity of spatial pollution pattern to 

improve estimations of human exposure to air pollution in urban areas, thus providing 

relevant information for the research performed in the next chapters. 

The identification of the future potential health risk under climate-induced changes 

in air pollution levels within urban areas are analysed and discussed in Chapter 3. This 

analysis was based on an atmospheric and health impact assessment modelling conducted 

to understand the potential impacts of climate-induced changes in PM10 concentrations 

and how future changes in PM10 concentrations contribute to mortality attributable to urban 

air pollution in future scenarios. Worldwide, several studies have already discussed the 

relationship between the climate change and health effects. However, studies focusing on 

the health impacts of air quality in Portugal are very few. Thus, this chapter intends to 
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contribute to a better understanding on the number of deaths that are attributable to the 

exposure of air pollution levels under future climate in Portugal, emphasizing the 

importance of indirect effects of climate change on human health. 

A fundamental question addressed in Chapter 4 is to what extent urban air pollution 

is affected by road traffic sources. In this concern, the characterization of the transport 

activity and the quantification of corresponding emissions in urban areas where inhabitants 

are leaving close to the pollution sources combined with air quality modelling allows 

establishing the relationships between current emissions and current air quality at particular 

locations, which is crucial for human exposure analysis to traffic-related air pollution in 

urban areas. In this scope, and given the known toxic and carcinogenic effects of HAPs 

on human health, Chapter 4 is focused on the development of a modelling approach to 

quantify emissions of traffic-related hazardous air pollutants in urban areas considering 

complex road network and detailed data on transport activity. A new version of the 

Transport Emission Model for line sources has been developed for hazardous pollutants 

(TREM-HAP). Also, this new version of the model was extended to integrate a probabilistic 

approach for the uncertainty quantification using Monte-Carlo technique. Thus, a probable 

distribution of the emissions of benzene, 1,3-butadiene, formaldehyde, acetaldehyde, 

acrolein, naphthalene and also particulate matter (PM2.5) for different types of roads 

considering vehicle technology mix, driving conditions and traffic volume fluctuations is 

presented in Chapter 4. In addition, the important contribution of cold start emissions to the 

total daily values of HAPs is investigated.  

Once recognized the spatial and temporal scales required by the exposure events, 

a new exposure modelling tool, the GPS based Exposure Model to Traffic-related Air 

Pollution model (ExPOSITION) are developed and discussed in Chapter 5 in order to 

quantify the short and long-term exposure to traffic-related air pollutants at the temporal 

and spatial scale imposed by the individual. Hence, the Chapter 5 presents the 

development and application of a new modelling tool for quantification of human exposure 

to traffic-related air pollutants within distinct microenvironments by using a novel approach 

based on trajectory analysis of individuals and air pollution modelling with high spatial-

temporal resolution. For this purpose, information on pollutant concentrations at different 

microenvironments and detailed time-location data collected for each individual by mobile 

phones with Global Positioning System technology are processed using trajectory data 

mining and geo-spatial analysis within Geographical Information System to obtain time-

activity patterns. The detailed emission data provided by the TREM-HAP emission model 

are considered as important inputs to AUSTAL2000 dispersion model to provide 

information on variability of outdoor air pollutant concentrations. Additionally to outdoor, 

pollutant concentrations in distinct indoor microenvironments are characterised using a 
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probabilistic approach to estimate the variability of the microenvironmental parameters in 

the predicted individual exposure.  

To evaluate the feasibility of the developed exposure model, Chapter 6 includes the 

application and validation of the new exposure modelling approach for benzene, which is 

defined as one of the most important health-based European Union priority substances, 

against personal exposure measurements and biological monitoring data collected during 

the daily activities of individuals in a measurements campaign. In addition to road transport 

emissions, vehicle refuelling emissions were also considered in the current research in 

order to guarantee completeness of the benzene emission estimations. The modelling 

cascade, including transportation-emission-dispersion-exposure models are applied to a 

selected urban area in Portugal.  

Finally, in Chapter 7 a brief summary of the main results is presented. Additionally, 

the general conclusions are explored and possible future developments discussed. 
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Abstract 
This study is focused on the assessment of potential health benefits by meeting the air quality 
limit values (2008/50/CE) for short-term PM10 exposure. For this purpose, the methodology of 
the WHO for Health Impact Assessment and APHEIS guidelines for data collection were applied 
to Porto Metropolitan Area, Portugal. Additionally, an improved methodology using population 
mobility data is proposed in this work to analyse number of persons exposed. In order to obtain 
representative background concentrations, an innovative approach to process air quality time 
series was implemented. The results provide the number of attributable cases prevented 
annually by reducing PM10 concentration. An intercomparison of two approaches to process 
input data for the health risk analysis provides information on sensitivity of the applied 
methodology. The findings highlight the importance of taking into account spatial variability of 
the air pollution levels and population mobility in the health impact assessment. 
 
Keywords:  air pollution; health impact assessment; mortality; particulate matter; population 
mobility, background concentrations. 
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2.1. Introduction 
 

Over the last few decades, human exposure to particulate air pollution has been 

identified as a risk factor for human mortality and morbidity, as well as broad range of 

negative health outcomes at levels usually experienced by urban populations due to short 

and long-term exposure to particulate matter was established (Kϋnzli et al., 2000; Anderson 

et al. 2004; 2005; Pope and Dockery, 2006; Samoli et al., 2008). The recently adopted 

European directive (2008/50/CE) revised the limit values for PM10 previously defined by 

Framework Directive (1999/30/EC) and set up new quantitative standards for PM2.5. 

Nevertheless, PM thresholds levels to which exposure does not lead to adverse effects on 

human health have not yet been identified and given that there is a substantial inter-

individual variability in exposure and in the response, it is unlikely that any standard or 

guideline value will lead to a complete protection for every individual against all possible 

adverse health effects of particulate matter (WHO, 2006).  

A few recent studies have reported a strong epidemiologic evidence of a causal link 

between particulate air pollution and mortality (Boldo et al., 2006; Jusot et al., 2006; 

Dockery, 2009), thus providing quantitative estimates of the health effects related to air 

pollution. The Air Pollution and Health: A European Information System (APHEIS) project 

showed that 1150 premature deaths could be prevented annually considering a cumulative 

short-term exposure if daily average PM10 concentrations in the 23 European cities will be 

reduced to 50 µg.m-3. The long-term impact would be even higher, totalling 21 828 of 

premature deaths prevented per year if annual mean PM10 concentration will be reduced 

to 20 µg.m-3 (APHEIS, 2005). However, no Portuguese cities were included in the 

European study and only little information concerning the impact of environmental factors 

on human health has been published for Portugal (Alves and Ferraz, 2005; Nogueira et al., 

2005; Casimiro et al., 2006; Trigo et al., 2009; Alves et al., 2010). 

To estimate the health impact of atmospheric pollution on population, the prior 

knowledge of different variables, such as exposure concentrations time series, number of 

people exposed, current mortality rates for each health indicator and quantitative estimates 

for the association between the exposure and health effects are required. Additionally, it is 

important to determine the relationship between the exposure concentration, which vary 

substantially with geographical location, and the exposure duration which is related with 

human activities. Therefore, population mobility is one of the factors that may affect 

significantly the exposure and should be considered in risk assessment (Boudet et al., 

2001; Jerrett et al., 2005a; 2005b; 2005c; Krewski et al., 2005). 
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The present study provides a quantitative assessment of potential health benefits 

related with the reduction of short-term exposure to inhalable particles (PM10) in Porto 

Metropolitan Area (Portuguese: Área Metropolitana do Porto, or AMP). For this purpose, 

WHO methodology for quantitative assessment of the health impact related with air 

pollution was applied to the study area. The input information was processed in accordance 

with Apheis guidelines for data collection (Medina et al., 2001). Additionally, an alternative 

approach to process the population data taking into account daily average population 

mobility and an innovative approach to process air quality time series to obtain 

representative background pollution values have been proposed in this work in order to 

improve estimations of population exposure. 

 

2.2. Methodology 
 

The Porto Metropolitan Area was selected in this study for the heath impact 

assessment. It is the second largest population agglomeration in Portugal and is 

characterised by frequent occasions of daily PM10 levels exceeding the limits as defined by 

Directive 2008/50/CE. Because of the data availability, the study period is focused on 2004. 

At this period, AMP was constituted by the nine municipalities with a total area of 814.5 km2 

(Figure 2.1). The resident population of AMP in 2004 was about 1,272,176 thus comprising 

about 10% of the national population. 

 

2.2.1. Quantification of attributable cases prevent ed 

A methodology to quantify health effects is conducted in terms of number of cases 

attributable to air pollution that may be prevented by reducing current levels of PM10 

(Künzli et al., 2000; APHEIS, 2005). An estimate of attributable deaths (AD) is obtained 

from the average number of deaths (ӯ), the regression coefficient β provided by 

epidemiological studies that characterise the ratio for a unit increase in pollutant 

concentration, and the difference between the daily average concentration ( x ) and a 

reference value under given scenario (x*): 

( )*  AD xxy −×= β      (2.1) 

The EIS-PA model, developed by French Surveillance System on Air Pollution and 

Health as a support tool for automated and standardized health risk assessment (INVS, 
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2000), is used in this study to calculate the number of premature deaths prevented annually 

due to the reduction of PM to the selected “target” concentration. The results of EIS-PA 

model application provide estimates of the health outcomes related with short-term (1-2 

days) and cumulative short-term (40 days) exposure. The input data on air quality, 

population and mortality rates used for the modelling are described in the following 

sections. 

 

Figure 2.1. Study area and geographic location of the particulate matter monitoring stations in AMP, in 

2004. 

 

2.2.2. Air quality data 

Exposure concentration is one of the key information required for the health impact 

assessment. In accordance with WHO guidelines on the Assessment and Use of 

Epidemiological Evidence for Environmental Health Risk Assessment (WHO, 2000; 2001), 

background pollution levels obtained from air quality time series should be considered to 

characterise the exposure concentrations. However, only three air quality monitoring points 

located in the study area are classified as background stations (Figure 2.1). The 

information obtained from these stations is not sufficient to characterise spatial variation of 

the background PM10 levels within the domain due to inhomogeneous pollution distribution 

pattern. Additionally, monitoring points classified as ‘‘traffic stations’’ could be considered 

for this purpose but these data should be used with caution. Traffic stations are directly 
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influenced by the vehicle emissions in vicinity to monitoring points and provide important 

information on peak concentrations but their representativeness to characterise 

background pollution levels could be limited. 

An innovative approach to obtain background pollution levels using filtering of air 

quality time series have been implemented in this work. It is assumed that influence of local 

emission sources and local dispersion conditions is presented in the time series as short-

term fluctuations because temporal and spatial scales of air pollution are interrelated 

(Tchepel and Borrego, 2010; Tchepel et al., 2010). Therefore, decomposition of the air 

quality measurements on baseline and short-term components allows to remove local scale 

noise from the data and to improve spatial representativeness of the measurements. For 

this purpose, the Kolmogorov-Zurbenko (KZ) iterative filter has been used (Rao et al., 

1997). The KZ(m,k) filter of the original time series x is computed as a moving average of m 

points applied k times (number of iterations) and is expressed as:  

∑
−

−−=
+=

2/)1(

2/)1(
)(

1 m

ms
stt x

m
y      (2.2) 

The application of the KZ filter allows to decompose the original time series C(t) on 

baseline (CB) (deterministic) and short-term (CS) components in time t (Rao et al., 1997): 

)()()( tCtCtC SB +=     (2.3) 

The output of the filtering process corresponds to the baseline component and the 

short-term component, which is defined as a difference between the original and the filtered 

data. The baseline component can be considered as the background concentration and the 

short-term represent the contribution of local emissions and dispersion conditions. 

In the previous studies of air pollution time series performed in the frequency 

domain (Tchepel and Borrego, 2010; Tchepel et al., 2010), strong cross-correlation 

between urban traffic and background stations was established for PM10 fluctuations with 

the periodicities of about 12 h. These fluctuations are influenced by both, traffic flows and 

meteorological conditions. All variations of the concentrations with the period less than 12 h 

are influenced by local conditions and should be removed to obtain representative 

background concentrations. Therefore, the KZ filter was optimised to remove all the 

fluctuations with the periods less than 12 h from the original air quality measurements 

assuming the filter parameters m=3 and k=3 (KZ3,3). The filtering approach has been 

applied to hourly data measured at different type of stations including urban traffic, urban 

background and suburban background influence. An example of the data obtained after the 

filtering is presented in Figure 2.2. The filter residuals defined as a difference between the 
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original measurements and the data baseline is presented in Figure 2.3 and represent local 

short-term noise. 

 

Figure 2.2. An example of PM10 concentrations before (narrow line) and after the filtering (gross line) for 

randomly selected hours measured in 2004 (1 year = 8784 hours) at Boavista urban traffic station. 

 

Figure 2.3. Difference between the original measurements and the filtered data (filter residual) for PM10 

concentrations at Boavista urban traffic station. 

 

The values filtered from the measurements are normally distributed with mean 

value of zero. The basic statistical parameters for the time series before and after the 

filtering are presented in Table 2.1. After the removing of local noise from the air quality 

time series, daily average concentrations were calculated. These data were considered in 

the health risk analysis together with the population mobility data to describe spatial 

variability of air pollution and exposed population. Alternatively, the original measurements 

from the background stations only (no traffic stations, without filtering) and population data 

on number of residents (no daily mobility) have been used. The differences between the 

two approaches in terms of final health benefits were investigated. 

0

50

100

150

200

250

1750 1774 1798 1822 1846 1870 1894

C
on

ce
nt

ra
tio

n 
(µ

g.
m

-3
) 

Hours  

C
on

ce
nt

ra
tio

n 
(µ

g.
m

-3
) 

Hours  

-100

-75

-50

-25

0

25

50

75

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000



CHAPTER 2:  QUANTIFICATION OF HEALTH BENFITS RELATED WITH REDUCTION OF  

ATMOSPHERIC PM10 LEVELS: IMPLEMENTATION OF A POPULATION  

                         MOBILITY APPROACH 

 

78 

 

Table 2.1. Statistical parameters for annual time series considering original and filtered hourly PM10 

concentrations. 

 

Air Quality 
Monitoring Station Mean Standard  

deviation Maximum 

Antas     
Original 37.5 29.1 226.0 

After filter 37.5 26.2 192.4 
Boavista     

Original 47.5 46.0 641.0 
After filter 47.5 38.6 378.2 

Ermesinde     
Original 34.1 31.4 217.0 

After filter 34.1 28.4 181.4 
Espinho     

Original 45.1 43.8 373.0 
After filter 45.1 38.4 308.7 

Leça do Balio     
Original 34.2 32.7 221.4 

After filter 34.2 28.7 194.7 
Matosinhos     

Original 41.3 32.3 249.0 
After filter 41.3 27.8 216.7 

Srª da Hora     
Original 36.8 31.0 246.0 

After filter 36.8 26.9 215.1 
Vila do Conde     

Original 47.3 44.2 502.0 
After filter 47.3 36.5 322.6 

Vila Nova da Telha     
Original 35.0 28.1 240.0 

After filter 35.0 24.5 193.7 

 

2.2.3. Population mobility 

Population mobility is particularly important in the studies of environmental factors 

that affect population health, as the level of exposure may vary substantially with 

geographic location (WHO, 2004). The population mobility data may provide important 

information on spatial and temporal distributions of inhabitants required for the exposure 

quantification. In this study, the data obtained from National Statistics Institute (INE, 2003) 

concerning daily average Origin-Destinations trips for AMP were used. One of the relevant 

characteristics of the study area is centralisation of working places in Porto city and an 

expansion of suburban zones around Porto. In all the residents of the AMP, about 28% are 

travelling outside the residence place, showing Porto as the main destination. Only 5% of 

the population are working or studying outside of AMP. 

For each municipality, the mobility data together with the number of residents were 

used to characterise temporal and spatial variations of the exposed population (Table 2.2). 
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The income and outcome flows consider daily trips of the inhabitants to working or study 

place thus providing population distribution pattern during the daytime working hours. No 

distinction between working days and weekend was considered due to absence of the 

information. The statistical data on resident population are allocated for night-time hours. 

Therefore, the time of exposure and the population flows are considered to estimate daily 

average population exposed to inhalable particles. These population data, obtained for 

each municipality, are used in quantification of the number of attributable cases together 

with the air pollution data from a closer monitoring point. 

 

Table 2.2. Population data considered in the health impact assessment, expressed as number of 

inhabitants. 

Municipality  
Resident 

population  
(R) 

Income 
(I) 

Outcome 
(O) 

Daytime 
population 
(D=R+I-O) 

Average 
population 
(1/2[R+D])  

Espinho 31,703 2,459 3,168 30,994 31,349 

Gondomar 169,239 6,015 41,073 134,180 151,710 

Maia 130,254 23,964 28,403 125,816 128,035 

Matosinhos 168,451 24,275 32,682 160,045 164,248 

Porto 238,954 114,577 17,721 335,811 287,382 

Póvoa de Varzim 65,452 3,818 6,064 63,206 64,329 

Valongo 91,274 5,691 20,032 76,933 84,104 

Vila do Conde 75,981 6,862 9,515 73,328 74,654 
Vila Nova de Gaia 300,868 13,619 42,624 271,864 286,366 

 

2.2.4. Health indicators, concentration-response fu nctions (CR) and air 
pollution reduction scenario  

Health effects of air pollution exposure are mainly related with cardiovascular and 

respiratory diseases (Pope et al., 1999; Dockery, 2001; Analitis et al., 2006). Therefore, the 

health indicators considered in this study include cardiovascular and respiratory mortality 

expressed as daily mortality rates in number of deaths.100 000 inhabitants-1 (Table 2.3).  

Table 2.3. Mortality rate (number of deaths.100 000 inhabitants-1) and annual mortality (number of deaths) 

in AMP. 

Health indicator Mortality rate 
(number of deaths.100 000 inhabitants -1) 

Annual mortality 
(number of deaths) 

Cardiovascular mortality 268.35 3166.08 

Respiratory mortality 77.85 938.50 

 

The risk of developing a disease due to exposure to agents with different levels of 

intensity and duration can be assessed using a statistical model for an exposure-effect 



CHAPTER 2:  QUANTIFICATION OF HEALTH BENFITS RELATED WITH REDUCTION OF  

ATMOSPHERIC PM10 LEVELS: IMPLEMENTATION OF A POPULATION  

                         MOBILITY APPROACH 

 

80 

relationship (Corvalan et al., 1999). Due to the absence of the information on exposure-

effect relationship derived specifically for the study area, the values from epidemiological 

studies recommended by European study (APHEIS, 2005) were adapted as presented in 

Table 2.4. However, an overestimate of the Relative Risk (RR) could be expected as 

identified by Samoli et al. (2008). To provide a better understanding of the short-term 

effects of atmospheric particles on human health, two types of concentration-response 

functions are distinguished: (i) Effects associated with exposure to very short term (1–2 

days), and (ii) the health effects due to cumulative exposure of up to 40 days (Zanobetti et 

al., 2002; 2003). 

The health impact assessment is implemented in this study for the air pollution 

reduction scenario considering the legislation limit values of daily average 50 µg.m-3 

recently revised by the Directive 2008/50/CE and proposed in the latest review of ‘‘Air 

Quality Guidelines’’ from WHO (2006) as the reduction ‘‘target’’ level. 

 

Table 2.4. Relative Risk (RR) for cardiovascular mortality and respiratory mortality associated with short-

term exposure to PM10 (APHEIS, 2005). Values presented in parenthesis correspond to the 95% 

confidence interval (CI). Mortality rate (number of deaths.100 000 inhabitants-1) and annual mortality 

(number of deaths) in AMP. 

Health indicator 

Relative risk  
For 10 µg.m -3 increase 

Very short-term 
 (1 – 2 days) 

Cumulative short-term 
(40 days) 

All ages, cardiovascular mortality 
1.009 

 (1.005 – 1.013) 
1.01969 

 (1.0139 – 1.0255) 

All ages, respiratory mortality 
1.013  

(1.005 – 1.021) 
1.04206  

(1.0109 – 1.0742) 

 

2.3. Results and Discussion 
 

The results obtained for short-term exposure, expressed as a number of 

attributable cases, are presented and discussed in this topic. Table 2.5 presents the 

number of annually avoided deaths due to the reduction of short-term PM10 exposure. The 

short-term assessment is developed for 1–2 and 40 days exposure considering 

cardiovascular mortality and respiratory mortality. 

The results from two alternative approaches (without and with spatial variation) are 

compared. In the first case, average pollution concentration was calculated from the 

background stations and the exposed population is quantified as a total for the study area. 



CHAPTER 2:  QUANTIFICATION OF HEALTH BENFITS RELATED WITH REDUCTION OF 

ATMOSPHERIC PM10 LEVELS: IMPLEMENTATION OF A POPULATION 

MOBILITY APPROACH 

 

81 

In the second approach, spatial variation of air pollution levels was characterised using 

filtered air quality time series from the 10 stations distributed within the domain and these 

data are used in combination with the population Origin-Destination mobility considering 

closest monitoring point for each municipality as described previously. 

 

Table 2.5. Potential benefits in terms of number of ‘‘preventable’’ early deaths associated with reduction of 

daily mean values of PM10 to the limit value of 50 µg.m-3, in AMP. Values presented in parenthesis 

correspond to the 95% confidence interval. 

Air Pollutant 
Indicator Health indicator 

Potential reduction in mortality 
(no spatial variations in the input 

data) 

Potential reduction in mortality 
considering population mobility 
and spatial variations of PM10 

concentrations 
Mortality rate  

(deaths.100 000 
inhabitants -1) 

Annual 
mortality 
(deaths) 

Mortality rate  
(deaths.100 000 

inhabitants -1) 

Annual 
mortality 
(deaths) 

Risk Assessment 
to Short-Term 
Exposure: 

     

PM10 

very short-term 
(1–2 days) 
 

Cardiovascular 
mortality 

 

0.94 
(0.51 – 1.36) 

11.9 
(6.59 – 17.3) 

1.46 
(0.78 – 2.03) 

18.63 
(9.94 – 25.83) 

Respiratory 
mortality 

 

0.41 
(0.16 – 0.66) 

5.16 
(1.97– 8.42) 

0.62 
(0.23 – 1.0) 

7.95 
(2.98 – 12.83) 

PM10 

cumulative  
short-term 
(40 days) 
 

Cardiovascular 
mortality 

 

2.11 
(1.48 – 2.75) 

26.79 
(18.8 – 34.9) 

3.20 
(2.24 – 4.18) 

40.70 
(28.49 – 53.17) 

Respiratory 
mortality 

 

1.41 
(0.35 – 2.60) 

17.97 
(4.48 – 33.0) 

2.12 
(0.53 – 3.95) 

27.03 
(6.69 – 50.13) 

 

As could be seen from Table 2.5, the results obtained from the two approaches are 

considerably different. The potential benefit estimated by the approach with the population 

mobility data is 50 – 56% higher than estimations provided by the traditional approach, 

revealing larger differences for very short-term exposure. This fact is related with 

population daily trips to the Porto city area characterised by higher pollution levels then 

suburbs and, therefore, resulting in higher exposure level estimated by the methodology. 

As it was mentioned before, the effects of air pollution on human health depend not 

only on the pollutant concentration, but also on the duration of exposure of the individuals. 

In this context, spatial variation of the PM10 concentration and mobility of the individuals 

are of extreme importance. Moreover, the distinct results obtained with and without 

population mobility are important to analyse a sensitivity of the risk assessment 

methodology to the input data. 

Since the methodology applied in this study for the risk assessment is based on the 

Apheis guidelines, a comparison of the obtained results with average European values 

provided by APHEIS study (2005) have been performed (Figure 2.4). 
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Figure 2.4. Comparison of AMP results with average European values from APHEIS study in terms of 

potential reductions in the number of ‘‘premature’’ deaths (number of deaths.100 000 inhabitants-1). 

 

The health benefits obtained in the current study for AMP are higher than the 

average European values for both indicators. The largest difference is found for potential 

reduction of respiratory mortality attributed to the very short-term (1–2 days) exposure 

achieving three times higher benefits in AMP than the average value reported for Apheis 

cities. 

 

2.4. Conclusions 
 

In this study, a quantitative assessment of potential benefits to human health 

related with the reduction of short-term PM10 exposure in the Porto Metropolitan Area 

(AMP) has been performed. High population mobility observed within the study area and 

the inhomogeneity of spatial pollution pattern are identified as important factors for the 

short-term health risk analysis. Therefore, an improved methodology to process population 

statistics taking into account daily average population mobility and filtering of air quality 

time series to improve representativeness of measurements are implemented. The 

methodology improves the characterisation of spatial and temporal variability in the 

population distribution and air pollution pattern and, consequently, the population exposure 

assessment. The health benefits obtained for AMP considering population mobility in the 

input data are 50 – 56% higher than those provided by the traditional approach and 
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correspond to the potential annual reduction of 3.2 (95% CI 2.24 – 4.18) deaths.100 000 

inhabitants-1 due to cardiovascular diseases and 2.12 (95% CI 0.53 – 3.95) deaths.100 000 

inhabitants-1 due to respiratory diseases, considering cumulative short-term (40 days) 

exposure to PM10. 

The number of annually avoided premature deaths estimated for the study area is 

three times higher for some health indicators than the average values reported for the 

European cities. However, the results are strongly influenced by the input data on 

population mobility and air pollution spatial variation considered in the analysis thus 

showing the sensitivity of the short-term risk assessment methodology to these parameters. 
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Abstract 
In this work the potential impacts of climate-induced changes in air pollution levels and its 
impacts on population health was investigated. The IPCC scenario (SRES A2) was used to 
analyse the effects of climate on future PM10 concentrations over Portugal and their impact on 
short-term population exposure and mortality. The air quality modelling system has been 
applied with high spatial resolution looking on climate changes at regional scale. To quantify 
health impacts related with air pollution changes the WHO methodology for health impact 
assessment was implemented. The results point to 8% increase of premature mortality 
attributed to future PM10 levels in Portugal. The pollution episodes with daily average PM10 
concentration above the current legislated value (50 µg.m-3) would be responsible for 81% of 
attributable cases. The absolute number of deaths attributable to PM10 under future climate 
emphasizes the importance of indirect effects of climate change on human health. 
 
Keywords:  air quality modelling, particulate matter, climate change, health impact assessment, 
mortality, Portugal. 
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3.1. Introduction 
 

Climate change affects human health by a combination of direct and indirect 

processes. Thus, the abrupt change of temperatures leading to heat waves or cold spells 

has become widespread, causing fatal illnesses, such as heat stress or hypothermia, as 

well as increasing death rates from heart and respiratory diseases. According to the World 

Health Organization (WHO), the statistics on mortality and hospital admissions show that 

death rates increase during extremely hot days, particularly among very old and very young 

people living in cities. In Portugal, during the European heat wave of 2003, a total of 2,399 

excessive deaths were estimated which implied an increase of 58% over the expected 

deaths (Trigo et al., 2009). 

The indirect effects of climate change on human health are related, among others, 

to the changes in air pollution levels under future climate. Thus, changes in the 

temperature, humidity, wind, and precipitation that may accompany future climate can 

deeply impact air quality because of induced changes in the transport, dispersion, and 

transformation of air pollutants at multiple scales (Bernard et al., 2001; NRC, 2001). 

According to Sheffield et al. (2011), climate change could cause an increase in regional 

summer ozone-related asthma emergency department visits for children aged 0–17 years 

of 7.3% across the New York metropolitan region by the 2020s. When population growth is 

included, the projections of morbidity related to ozone were even larger. The authors also 

highlighted that the use of regional climate and atmospheric chemistry models makes 

possible the projection of local climate change health effects for specific age groups and 

specific disease outcomes. 

The potential impact of climate change on particulate matter (PM) is of major 

concern because their concentrations are most likely to increase under a changing climate 

(Ayres et al., 2008; Kinney, 2008; Jacob and Winner, 2009) and because future changes in 

particulate matter concentrations are likely the most important component of changes in 

mortalities attributable to air pollution in future scenarios (West et al., 2007). Over the last 

few decades, human exposure to particulate air pollution has been associated with human 

mortality and morbidity, as well as a broad range of negative health outcomes at levels 

usually experienced by populations due to short- and long-term exposure to particulate 

matter (Künzli et al., 2000; Anderson et al., 2004; 2005; Pope and Dockery, 2006; Samoli 

et al., 2008; Katsouyanni et al., 2009). The European directive (2008/50/CE) revised the 

limit values for PM10 (particulate matter with an aerodynamic diameter less than or 

equivalent to 10 µm) previously defined by the Framework Directive (1999/30/EC) and set 

up new quantitative standards for PM2.5 (particulate matter with an aerodynamic diameter 
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less than or equivalent to 2.5 µm). Nevertheless, PM threshold levels to which exposure 

does not lead to adverse effects on human health have not yet been identified and given 

that there is a substantial inter-individual variability in exposure and in the response, it is 

unlikely that any standard or guideline value will lead to a complete protection for every 

individual against all possible adverse health effects of particulate matter (WHO, 2006). 

For Portugal, studies show frequent exceedances of EU directive targets for air 

quality (EEA, 2009). WHO has recently identified that Portugal is one of the 80 countries 

that exceed the reference values for particulate matter (WHO, 2011). In addition, particulate 

emissions decreased in most European countries between 1990 and 2008 except for 

Portugal, Bulgaria, Romania, Malta, Finland, Denmark, Latvia, and Spain, where increases 

were recorded (EEA, 2010). However, studies focusing on the health impacts of air quality 

in Portugal are very few. Several studies concerning the impact of meteorological factors 

on human health and the first attempt to relate air pollution levels and morbidity for Portugal 

have been published (Alves and Ferraz, 2005; Nogueira et al., 2005; Casimiro et al., 2006; 

Trigo et al., 2009; Alves et al., 2010). The authors (Casimiro et al., 2006) highlight that 

under future climate the meteorological conditions will be more favourable for high ozone 

levels (low wind speed and high temperature) that could lead to impacts on human health. 

Recently, a number of studies on quantitative impact assessment of air pollution on 

mortality in Portuguese cities have emerged (Tchepel and Dias, 2011; Garrett and 

Casimiro, 2011) providing information on the association of current pollution levels with 

adverse health effects. 

The main aim of the current study is to quantify the potential impact of short-term 

exposure to PM10 on population health under future climate. For this purpose, climate 

change scenario simulated with high temporal and spatial resolution is combined with 

health impact assessment (HIA). Air pollution modelling for the future scenario is performed 

assuming no changes in the PM10 precursor emissions in comparison with the reference 

situation thus allowing quantification of the climate change effect independently from the 

other factors that affect the pollution levels. The present study provides quantitative 

information on forecast of the health impact attributable to air pollution under a changing 

climate relevant for climate change mitigation and health policies. 

 

3.2. Methodology 
 

The potential impact on climate-induced human health effects caused by changes 

in PM10 concentrations over the continental Portugal is investigated using combined 
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atmospheric and impact assessment modelling. The study is implemented in two main 

steps: (i) numerical simulation of PM10 concentrations over Portugal under the IPCC SRES 

A2 scenario and (ii) estimation of the number of deaths attributable to the changes in PM10 

levels in the atmosphere under climate change. 

To quantify the health impact related with air pollution changes, the WHO 

methodology (WHO, 2001) was adapted and applied to the study area using the input 

information schematically presented in Figure 3.1. 

Population data
Number of inhabitants

Population
baseline frequency for 

health indicator
Mortality rates

Air quality data
PM10 concentration data 
for reference and future 

climate

Exposure-response
relationship

Quantitative relationship 
between the exposure 
and the health effects

HIA

 

Figure 3.1. Schematic representation of the input information required by the health impact assessment 

performed in this study. 

 

3.2.1. Air Quality Modelling under Climate Change 

The air quality modelling was performed for a reference and a future climate 

scenarios first at the European scale and then over Portugal (Carvalho et al., 2010). For 

this purpose, global climate simulations provided by the HadAM3P model were used to 

drive the air quality modelling system as represented in Figure 3.2. The climate conditions 

for 1961–1990 are considered to characterize the reference situation, and predictions for 

2071–2100 are used for the future climate in accordance with the IPCC SRES A2 scenario 

(Nakicenovicey et al., 2000). This scenario is considered to be the highest emission 

scenario and the carbon dioxide (CO2) concentrations reaching 850 ppm by 2100. In this 

sense, we are assessing the worst scenario with regard to air quality changes. 
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Figure 3.2. Schematic representation of the air quality numerical simulation. 

 

The air quality modelling system is based on the chemistry transport model 

CHIMERE (Schmidt et al., 2001; Bessagnet et al., 2004) forced by the mesoscale 

meteorological model MM5 (Grell et al., 1994). The MM5/ CHIMERE modelling system has 

been widely applied and validated in several air quality studies over Portugal (Monteiro et 

al., 2005; 2007; Borrego et al., 2008) showing performance skills within the range found in 

several model evaluation studies using different air quality models (Vautard et al., 2007; 

Stern et al., 2008). TheMM5/CHIMERE modelling system has already been used in several 

studies that investigated the impacts of climate change on air pollutants levels over Europe 

(Szopa et al., 2006) and specifically over Portugal (Carvalho et al., 2010). TheMM5 

mesoscale model is a nonhydrostatic, vertical sigma coordinate model designed to simulate 

mesoscale atmospheric circulations. The selected MM5 physical options were based on the 

already performed validation and sensitivity studies over Portugal (Carvalho et al., 2006) 

and over the Iberian Peninsula (Fernández et al., 2007). A detailed description of the 

selected simulation characteristics is presented in Carvalho et al. (2010). The MM5 model 

generates the several meteorological fields required by the CHIMERE model, such as wind, 

temperature, water vapour mixing ratio, cloud liquid water content, 2m temperature, surface 

heat and moisture fluxes, and precipitation. 

CHIMERE is a tri-dimensional chemistry-transport model, based on the integration 

of the continuity equation for the concentrations of several chemical species in each cell of 

a given grid. It was developed for simulating gas-phase chemistry (Schmidt et al., 2001), 

aerosol formation, transport, and deposition (Bessagnet et al., 2004; Vautard et al., 2005) 

at regional and urban scales. CHIMERE simulates the concentration of 44 gaseous species 

and 6 aerosol chemical compounds. In addition to the meteorological input, the CHIMERE 

model needs boundary and initial conditions, anthropogenic emission data, and the land 

use and topography characterization. The modelling system was firstly applied at the 
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European scale (with 50 × 50 km2 resolution) and then over Portugal using the same 

physics and a simple one-way nesting technique, with 10 × 10 km2 horizontal resolution. 

The European domain covers an area from 14W to 25 E and 35N to 58N. Over Portugal, 

the simulation domain goes from 9.5W to 6W and 37N to 42.5N (Carvalho et al., 2006). 

The vertical resolution of CHIMERE model consists of eight vertical layers of various 

thicknesses extending from ground to 500 hPa. Lateral and top boundaries for the large-

scale run were obtained from the LMDz-INCA (gas species) (Hauglustaine et al., 2005) and 

GOCART (aerosols) (Chin et al., 2003) global chemistry-transport models, both monthly 

mean values. The same boundaries conditions were used for both scenarios, since the 

objective is to only change the meteorological driver forcing. For the Portugal domain, 

boundary conditions are provided by the large-scale European simulation. 

The CHIMERE model requires hourly spatially resolved emissions for the main 

anthropogenic gas and aerosol species. For the simulation over Europe, the anthropogenic 

emissions for nitrogen oxides (NOx), carbon monoxide (CO), sulphur dioxide (SO2), 

nonmethane volatile organic components (NMVOC) and ammonia (NH3) gas-phase 

species, and for PM2.5 and PM10 are provided by EMEP (Co-operative Programme for 

Monitoring and Evaluation of the Longrange Transmission of Air Pollutants in Europe) 

(Vestreng, 2003) with a spatial resolution of 50 km. The national inventory INERPA was 

used over the Portugal domain (Monteiro et al., 2007). 

Reference and the IPCC SRES-A2 climate scenario over Europe and over Portugal 

were simulated by dynamical downscaling using the outputs of HadAM3P (Jones et al., 

2005), as initial and boundary conditions to the MM5 model. The MM5 model requires initial 

and time-evolving boundary conditions for wind components, temperature, geopotential 

height, relative humidity, surface pressure, and also the specification of SSTs. Carvalho et 

al. (2010) discuss the global model HadAM3P and the MM5 ability to simulate the present 

climate. TheHadAM3P was selected to drive the MM5model because a previous work 

(Anagnostopoulou et al., 2008) has already concluded that the HadAM3P accurately 

reproduces the large-scale patterns, namely, the 500 hPa fields. The 500 hPa height 

reflects a broad range of meteorological influences on air quality. The authors concluded 

that the HadAM3P is able to capture the mean patterns of the circulation weather types. 

The obtained results give confidence to use the HadAM3P outputs as initial and boundary 

conditions for regional simulations. 

To evaluate the influence of climate change on air quality, the anthropogenic 

emissions were kept constant (to the year 2003) in the simulations for the future climate 

and were not scaled in accordance with the IPCC SRES A2 scenario. This idealized 

regional model simulation provides insight into the contribution of possible future climate 
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changes on the 3D distribution of particulate matter concentrations. The MM5/CHIMERE 

simulations were conducted from May 1st to October 30th for the reference year (1990) 

and for the future scenario year (2100). Both simulations had the same chemical boundary 

conditions. Following this methodology, it is possible to analyse the changes caused by 

climate change only. In Carvalho et al. (2010), a detailed analysis of the MM5/CHIMERE 

modelling system application under climate change has been presented and validated. 

 

3.2.2. Population Analysis 

Population size, composition, and health status were analysed for the study area as 

important elements required for the health impact assessment. According to National 

Institute of Statistics, the resident population in Portugal in 2001 was 9,869,343 inhabitants 

(INE, 2002). Lisbon and Porto are emphasized as the most densely populated 

agglomerations representing about 38% of total national population (Figure 3.3). 
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Figure 3.3. Distribution of demographic data by district in 2001. 

 

The distribution of population by age groups is presented in Figure 3.4 stressing 

different proportion between active and older population for each district. 

The health indicator considered in this study includes all causes mortality (except 

external causes) (ICD-10 codes A00-R99) expressed as daily mortality rates in the number 

of deaths per 100 000 inhabitants. Figure 3.5 presents the distribution of annual mortality 

rate by district based on DGS (DGS, 2003). 
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Figure 3.4 . Distribution of population by age group for each Portuguese district in 2001. 
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Figure 3.5. Annual mortality rate by all internal causes for each Portuguese district (deaths.100 000 

inhabitants -1) (DGS, 2003). 
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As could be seen, there is not a homogeneous distribution of mortality rate by the 

districts in Portugal. In general, the highest mortality rate by all internal causes is observed 

for the regions with higher proportion of older population as presented previously in Figure 

3.4. Although, the Lisbon district indicates greater mortality rate than Porto with main 

difference in the mortality rate for age group 25 – 64 years (Figure 3.6). 
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Figure 3.6. Annual mortality rate by all internal causes in Lisbon and Porto districts by age groups. 

 

3.2.3. Health Impact Assessment 

A methodology to quantify health effects is conducted in terms of number of cases 

attributable to air pollution that may be prevented by reducing current levels of PM10 

(WHO, 2001; APHEIS, 2005). An estimate of attributable deaths (AD) is obtained from the 

average number of deaths (ӯ), the regression coefficient β provided by epidemiology-based 

exposure-response functions, and the difference between the daily average concentration 

( x ) and a reference value under a given scenario (x*): 

                                                          ( )*  AD xxy −×= β     (3.1) 

The EIS-PA model, developed by French Surveillance System on Air Pollution and 

Health as a support tool for automated and standardized health risk assessment (INVS, 

2000), is used in this study to calculate the number of premature deaths prevented annually 

due to the reduction of PM to the selected “target” concentration. The results of EIS-PA 

model application provide estimates of the health outcomes related to short-term (1–2 

days) exposure. 
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The exposure-response function, expressed as Relative Risk (RR) per 10.µg·m−3, 

from epidemiological studies recommended by the European study (APHEIS, 2005) was 

adopted, considering the Relative Risk (RR) of 1.006 (95% CI (1.004 – 1.008)) for all-cause 

mortality (except external causes) to assess the effects on human health associated with 

the very short-term PM10 exposure (1–2 days) (WHO, 2004). 

The time series of PM10 concentrations for future climate scenario together with 

demographic data and specific health indicators were considered in accordance with the 

Apheis guidelines (APHEIS, 2005) and used as input in the EIS-PA model (INVS, 2000). 

The health impact assessment is implemented for two air pollution scenarios: (i) a 

simulation for current climate (year 1990) and projected 2100 PM10 levels under the IPCC 

SRES A2 scenario; (ii) for the air pollution reduction scenario considering the legislation 

limit values of daily average 50.µg·m−3 recently revised by the Directive 2008/50/CE and 

proposed in the latest review of “Air Quality Guidelines” from WHO (WHO, 2006) as the 

reduction “target” level. 

 

3.3. Results and Discussion 
 

In this section, the estimated PM10 levels and health impact for both climate 

scenarios are analysed. The results obtained for short-term exposure (1–2 days), 

expressed as a number of attributable cases by all internal causes mortality, are presented 

and discussed. The increased number of attributable cases between the future and current 

pollution levels and the potential number of attributable cases prevented annually by 

reducing future PM10 concentrations to the legislation limit value (50 µg·m−3) are also 

investigated. 

 

3.3.1. Particulate Matter Levels under the IPCC SRE S A2 Scenario  

The simulated temperature increases under future climate almost reach 8.5ºC over 

mid and southern Europe during the warm period of May - October (Carvalho et al., 2010). 

These projections are in accordance to Rowell (2005) who predicted that in winter the 

largest warming occurs over eastern Europe, up to 7ºC, and in summer temperatures rise 

by 6 – 9ºC south of about 50ºN. 

In Figure 3.7, an example of the projected climatic changes over Portugal is 

presented for July showing the largest temperature increases over the north western part of 
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Portugal reaching almost 10ºC. Relative humidity (RH) will decrease significantly all over 

Portugal. The changes in the meteorological fields (temperature, RH, wind, boundary layer) 

will influence the pollutants dispersion and transformation in the atmosphere. 

a) 
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Figure 3.7. a) Temperature (ºC) and  b) Relative humidity (%) differences between future and reference 

climates simulated with the MM5 model across Portugal for July. 

 

Wind speed, mixing height, and relative humidity are the meteorological variables 

believed to mostly influence PM concentrations. Stagnant conditions are thought to 

correlate with high PM concentrations, as they allow particulates to accumulate near the 

earth’s surface. Although high wind speeds can increase ventilation, they are normally 

correlated with high PM concentrations because they allow the resuspension of particles 

from the ground, as well as long-range transport of particulates between regions. High PM 

concentrations are normally associated with dry conditions due to increased potential to 

resuspension of dust, soil, and other particles. Figure 3.8 presents the average PM10 

levels over Portugal over the simulation period for both climates based on hourly data 

provided by the air quality model. 

For the overall simulation period, the maximum averaged PM10 levels increase 

from 60 µg.m−3 to 72 µg.m−3. In addition, over Porto and Lisbon regions, the area affected 

by higher concentrations also increases in future climate (Figure 3.8). 
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Figure 3.8. Average concentration of PM10 (µg.m-3) for the simulated period (from May to October) for: a) 

current; b) future climate scenario. 

 

Additionally to the changes in the average pollution levels, the frequency 

distribution of the PM10 concentrations is also very important for the human health studies. 

In Figure 3.9, an example for the most affected regions of Porto and Lisbon is presented 

providing information on the frequency of pollution episodes under the two climate 

scenarios. 

The frequency distribution of the PM10 concentrations for both climatic scenarios 

emphasizes that Lisbon and Porto districts present an elevated number of days with high 

PM10 levels in comparison with the legislation limit value for the daily average PM10 

concentration of 50 µg.m−3 that cannot be exceeded more than 35 times per year. 

Moreover, the climate-driven effect on PM10 levels will be more noticeable in Porto district 

leading to significant increase in the number of days with high daily average concentration. 
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Figure 3.9. Frequency distribution of the PM10 concentrations for both climatic scenarios over the regions 

of: a) Porto; b) Lisbon. 

 

3.3.2. Prognosis of Health Impact: Future versus Cu rrent Pollution Levels  

The health impact assessment based on the estimated changes in PM10 between 

the future and reference climate shows some locations with no significant increment in the 

number of attributable cases to short-term PM10 exposure while other locations show 

important increase in PM10-induced premature mortality (Figure 3.10). Since the number of 

estimated attributable cases depends on both air quality and the number of the inhabitants 

exposed, air quality changes in the densely populated areas of the country have a greater 

effect than air quality changes in less densely populated areas, in general. Modelling 

results suggest that worsened PM10 levels will coincide spatially with many of the most 

densely populated areas of the country (Figure 3.8). 
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Figure 3.10. Spatial distribution of the increased number of attributable cases estimated by grid cell 

(10x10 km2) related to short-term PM10 exposure for future climate. 

 

As could be seen from Figure 3.10, the highest increase of the number of 

attributable cases under a future climate scenario would be expected in the Northern 

coastal region and Lisbon metropolitan area achieving a maximum augment of 11 cases by 

grid cell. The results presented in Table 3.1 highlight that the changes on the PM10 

concentrations lead to a significant increase in the number of deaths in the future for most 

districts, especially those with the larger urban areas. Additionally, the Lisbon district is 

characterised by larger population size and the current mortality rate is higher, and the 

Porto district is the most affected (about 31% of total national deaths), reaching two times 

higher values than expected for the Lisbon district due to different prognosis of future 

pollution levels for these areas. 

On the other hand, South of Portugal presents the lowest changes in the average 

mortality rate (Faro district: 0.9 (95% CI 0.6 – 1.2)) since the PM10 concentrations 

projected for 2100 will not increase significantly in comparison with the current pollution 

levels. At national level, about 203 (95% CI 137 – 271) more premature deaths per year are 
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projected for 2100 in comparison to the current scenario due to indirect effect of climate 

change. 

 

Table 3.1. Increase of mortality attributable to PM10 pollution levels under the climate scenario in 

comparison with the reference situation. Values presented in parenthesis correspond to the 95% 

confidence interval (CI). 

District 
Mortality rate  

average and 95% CI 
(deaths.100 000 inhabitants -1) 

Annual mortality  
average and 95% CI 

(deaths)  

Aveiro 2.6 (1.7 – 3.5) 13 (9 – 18) 

Beja 1.7 (1.1 – 2.2) 3 (2 – 3) 

Braga 1.9 (1.3 – 2.6) 19 (12 – 25) 

Bragança 2.0 (1.3 – 2.6) 3 (2 – 4) 

Castelo Branco 1.7 (1.1 – 2.2) 3 (2 – 4) 

Coimbra 2.5 (1.7 – 3.4) 11 (7 – 15) 

Évora 1.4 (0.9 – 1.9) 3 (2 – 3) 

Faro 0.9 (0.6 – 1.2) 3 (2 – 4) 

Guarda 1.8 (1.2 – 2.5) 4 (3 – 5) 

Leiria 1.6 (1.1 – 2.2) 8 (6 – 11) 

Lisbon 1.3 (0.8 – 1.7) 26 (17 – 35) 

Portalegre 1.8 (1.2 – 2.4) 2 (2 – 3) 

Porto 3.7 (2.5 – 5.0) 62 (41 – 83) 

Santarém 1.8 (1.2 – 2.3) 8 (5 – 11) 

Setúbal 1.9 (1.2 – 2.5) 13 (9 – 18) 

Viana do Castelo 2.4 (1.6 – 3.2) 8 (5 – 11) 

Vila Real 1.9 (1.3 – 2.6) 6 (4 – 7) 

Viseu 2.0 (1.3 – 2.6) 8 (5 – 11) 

National 2.1 (1.4 – 2.8) 203 (135 – 271) 

 

3.3.3. Prognosis of Health Impact: Future Pollution  versus Legislation 

Additionally to the impact assessment based on prognosis of future pollution, the 

benefit for human health related with potential reduction of PM10 to the legislation limit 

value (daily average concentration of 50 µg.m−3) was analysed. The number of prevented 

cases for all internal causes mortality attributed to the short-term (1–2 days) exposure is 

quantified considering that no exceedances to the limit value will occur. The results for 

each district are presented in Figure 3.11. 

Porto district will be the greatest benefited in case of the legislated value fulfilment 

that is possible to achieve with implementation of additional policy measures such as 

emission reductions. Therefore, if no air quality exceedances will occur, about 50 

premature deaths related to PM10 exposure may be avoided annually, which corresponds 

to four times higher values than prevented cases estimated for the Lisbon district. As 
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expected, this fact is related with highest increase in air pollution levels predicted for Porto 

in future climate. 
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Figure 3.11. Prevented cases considering the fulfilment of the legislated value  

(deaths.100000 inhabitants-1). 

 

A more detailed analysis of the results obtained for the Porto area in terms of the 

number of attributable cases associated with different levels of exposure to PM10 is 

presented in Figure 3.12. Although in Porto district average PM10 concentrations above 

120 µg.m−3 will occur in 13% of days, they are responsible for 50% of deaths attributable to 

air pollution (Figure 3.12). Thus emphasizing the greatest impact associated with “high 

pollution” days, despite their low frequency. 



CHAPTER 3: PARTICULATE MATTER AND HEALTH RISK UNDER CHANGING CLIMATE:  

ASSESSMENT FOR PORTUGAL 

 

106 

0%

2%

4%

6%

8%

10%

12%

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

18
0-

19
0

19
0-

20
0

20
0-

21
0

21
0-

22
0

22
0-

23
0

23
0-

24
0

24
0-

25
0

25
0-

26
0

Daily concentration of PM10 [µg.m -3]

N
um

be
r 

of
 a

ttr
ib

ut
ab

le
 c

as
es

 
(%

)

 

Figure 3.12. Distribution of the number of attributable cases (%) by PM10 concentration classes in Porto. 

 

3.4. Conclusions 
 

In this study, a quantitative assessment of the impact of climate change on human 

health related with short-term exposure to PM10 has been performed using combined 

atmospheric and impact assessment modelling. The modelling results obtained for the 

continental region of Portugal revealed that climate change alone will deeply impact the 

PM10 levels in the atmosphere. All the Portuguese districts will be negatively affected but 

negative effects on human health are more pronounced in major urban areas. The short-

term variations in the PM10 concentration under future climate will potentially lead to an 

increase of 203 premature deaths per year in Portugal. The Porto district is the most 

affected in terms of occurrence of number of days with higher concentrations, consequently 

leading to the most significant increase in premature deaths that correspond to 

approximately 8% increase of its current mortality rate by all internal causes. 

The pollution episodes with daily average PM10 concentration above the current 

legislated value (50 µg.m−3) would be responsible for 81% of attributable cases. Although 

“high pollution” days have low frequency, they show the greatest impact and highlight the 

significant contribution of pollution peaks to acute exposure. Thus, the reduction of “high 

pollution” days with daily average concentration above 120 µg.m−3 projected to the Porto 

district will avoid about 50% of premature deaths attributable to air pollution. 
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Although the hypothetical situation of what would happen if the predicted future 

climate conditions will occur in 2100 and assuming that PM10 precursor emissions and 

population maintain constant, the information provided in this study suggests that climate-

driven changes on air pollutants and human health could be substantial. Therefore, 

additional efforts should be made to improve on this type of modelling approach in order to 

support local and wider-scale climate change mitigation and adaptation policies. 
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Abstract 
This study is focused on the development of a modelling approach to quantify emissions of 
traffic-related hazardous air pollutants in urban areas considering complex road network and 
detailed data on transport activity. 
In this work a new version of the Transport Emission Model for line sources has been 
developed for hazardous pollutants (TREM-HAP). Emission factors for benzene, 1,3-butadiene, 
formaldehyde, acetaldehyde, acrolein, naphthalene and also particulate matter (PM2.5) were 
implemented and the model was extended to integrate a probabilistic approach for the 
uncertainty quantification using Monte-Carlo technique. The methodology has been applied to 
estimate road traffic emissions in Porto Urban Area, Portugal. Hourly traffic counts provided by 
an automatic counting system were used to characterise the spatial and temporal variability of 
the number of vehicles, vehicle categories and average speed at different road segments. The 
data for two summer and two winter months were processed to obtain probability density 
functions of the input parameters required for the uncertainty analysis. For quantification of cold 
start excess emissions, Origin-Destination matrix for daily trips was used as additional input 
information. Daily emissions of hazardous air pollutants from road traffic were analysed for the 
study area. The uncertainty of the emission estimates related to the transport activity factors 
range from as small as -2 to +1.7% for acrolein and acetaldehyde on highways, to as large as  
-33 to +70% for 1,3-butadiene considering urban street driving. An important contribution of cold 
start emissions to the total daily values was estimated thus achieving 45% in case of benzene. 
The uncertainty in transport activity data on resulting urban emission inventory highlights the 
most important parameter and reveals different sensitivity of the emission quantification to the 
input data. The methodology presented in this work allows the development of emission 
inventories for hazardous air pollutants with high spatial and temporal resolution in complex 
urban areas required for air quality modelling and exposure studies and could be used as a 
decision support tool. 
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4.1. Introduction 
 

During the last decades, road traffic has become one of the most important sources 

of air pollution. 

Among the extended number of chemicals emitted by the vehicles, hazardous air 

pollutants (HAPs) require special attention due to their link with cancer and other serious 

adverse effects on human health. A list of 188 HAPs, referred also as air toxics, was 

defined in Clean Air Act by the US Environmental Protection Agency (USEPA, 2004) that 

contains pollutants associated with anthropogenic sources. Also, air toxics emitted by 

mobile sources, known as MSAT (mobile source air toxics) are identified, including: 

benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, naphthalene and diesel 

particulate matter (PM) (USEPA, 2007). Emissions of MSAT are mainly related with 

incomplete combustion (e.g. benzene) and by-products formed during incomplete 

combustion (e.g. formaldehyde, acetaldehyde, and 1,3-butadiene), but evaporative 

processes of fuel components are also important. Besides, numerous measures to reduce 

air toxic emissions, including limits on gasoline volatility, limits on diesel sulphur, 

improvements in vehicle technology and performance, road transport is still one of the 

major sources of HAPs especially in urban areas. Some studies indicate that mobile 

sources can contribute about 68% of total HAPs emissions (Tam and Neumann, 2004). 

Therefore, further studies to improve quantification of air toxic emissions induced by 

transport in urban areas where inhabitants are living close to the pollution sources are 

required to better cause-effect chain analysis. 

Several methodologies to quantify road traffic emissions are currently available 

(e.g. Zallinger et al., 2005; Smit et al., 2007; Gkatzoflias et al., 2007). However, the 

modelling tools not always cover HAPs or provide emissions with low temporal and spatial 

resolution that is not sufficient for urban scale studies. An intercomparison of the currently 

available models could be found at Barlow and Boulter (2009).  

Urban emission inventories with higher temporal and spatial resolution are needed 

for a number of applications, such as urban air pollution modelling, population exposure 

modelling, definition of sustainable urban development policy, etc. The most commonly 

used technique to quantify the emissions is based upon the principle that the average 

emission factor for a certain pollutant and a given type of vehicles vary according to the 

average speed during a trip (Boulter et al., 2007a). For urban applications, hourly 

emissions for each road link are usually required. For this purpose, hourly traffic flows 
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attributed to detailed road network that should be specified. Uncertainty of these data, as 

well as uncertainty associated with resulting emissions, is an important issue. 

Quantitative methods for dealing with uncertainty in emission estimates involve the 

characterization of uncertainty in emission factors and/or activity data, and propagation of 

uncertainty to a total emission inventory. Although numerous probabilistic techniques have 

been applied for this purpose, the well-known Monte Carlo approach has multiple 

advantages and is the most often used for this purpose (e.g. Frey and Zheng, 2002a, 

2002b; Abdel-Aziz and Frey, 2003). The IPCC and EPA have developed guidelines 

recommending the use of Monte Carlo methods as a part of a tiered approach for 

emissions uncertainty estimates addressing the quantification of uncertainty in emission 

and activity factors (USEPA, 1997; IPCC, 2000). Monte Carlo simulation methods are used 

to estimate uncertainty in inventories, such as for criteria pollutants, HAPs, and greenhouse 

gases (e.g. Winiwarter and Rypdal, 2001). 

The present work intends to develop a modelling approach for quantification of 

traffic-related hazardous air pollutant emissions with high spatial and temporal resolution 

for the studies in urban areas. For this purpose, emission factors of HAPs have been 

implemented into the Transport Emission Model for Line Sources (TREM). Also, this new 

version of the model was extended to integrate a probabilistic approach for the uncertainty 

quantification using Monte-Carlo technique. An application example of the developed 

methodology to the Porto Urban Area (Portugal) for the year 2008 is presented. 

 

4.2. Methodology 
 

4.2.1. TREM Emissions Model 

The Transport Emission Model for Line Sources was firstly developed on the basis 

of COST319/MEET approach and focused on carbon monoxide, nitrogen oxides, volatile 

organic compounds  including methane, carbon dioxide, sulphur dioxide and particulate 

matter with aerodynamic diameter less than or equal to 10 µm (PM10) (Tchepel, 2003; 

Borrego et al., 2000; 2003; 2004). The prime objective of TREM is the estimation of road 

traffic emissions with high temporal and spatial resolution to be used in air quality 

modelling. Although the average-speed approach for the emission factors implemented in 

the model follows the European guidelines (EMEP/EEA, 2010) the way how transport 

activity data are considered for the emission inventorying is conceptually different. Roads 

are considered as line sources and emissions induced by vehicles are estimated 
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individually for each road segment considering detailed information on traffic flow provided 

by automatic counting system or from a transportation model. To process these data, 

TREM is directly linked to Geographical Information Systems (ArcGIS) and to the 

transportation model VISUM (Borrego et al., 2004). 

A new version of TREM developed in this work use updated emission factors from 

ARTEMIS methodology (André and Joumard, 2005; Boulter et al., 2007b). Following the 

definition of air toxics relevant for mobile sources, this new version TREM–HAP (Transport 

Emission Model for Hazardous Air Pollutants) is prepared to calculate the emissions of 

benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, naphthalene and also 

particulate matter with aerodynamic diameter less than or equal to 2.5 µm (PM2.5). The 

calculation algorithm is schematically represented in Figure 4.1. 
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Figure 4.1. Calculation algorithm for hazardous air pollutants implemented in TREM–HAP model. 

 

Firstly, exhaust hot emissions of total VOC, Methane (CH4) and PM2.5 are 

estimated as a function of average speed for each class of vehicles. Both total emissions 

under thermally stabilised engine and additional cold-start emissions are considered due to 

the importance of cold-engine driving within urban areas. At next, methane hot emissions 

are subtracted from VOC and nonmethane VOC (NMVOC) emissions are separated into 

different compounds, including hazardous pollutants, using %-fractions as proposed by 

EMEP/ EEA (2010) guidelines. MSAT cold start emissions are estimated as a function of 

average speed and ambient temperature. In this case, passenger cars only are considered 

due to the methodology limitations. An example of hot exhaust emission factors calculated 

for benzene and formaldehyde for different type of vehicles as a function of average speed 

is presented in Figure 4.2 for Euro 2 technology. 
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Figure 4.2. An example of emission factors for a) benzene and b) formaldehyde considered by the 

emission model for Euro 2 vehicles (PC_gasoline – passenger gasoline cars; PC_diesel – passenger 

diesel cars with engine capacity < 2 ltr; HDV_diesel – heavy duty diesel vehicles < = 7.5 t). 

 

4.2.2. Hot Emissions 

The hot emission of the pollutant p (Ep (g)) for each road segment is estimated by 

the model as following: 

( )( ) LNveE
i

iipp ⋅⋅= ∑     (4.1) 

where eip(v) is the emission factor (g.km–1) for pollutant p and vehicle class i defined as a 

function of average speed v (km.h–1); Ni is the number of vehicles of class i and L is the 

road segment length (km).  

The emission factors depend on average speed, fuel type, engine capacity and 

emission reduction technology. However, these data are not available for each counting 

point and statistical information is usually used to characterise vehicle fleet composition. In 

this context, uncertainty estimation of the resulting emissions became an important issue. 

 

4.2.3. Cold-Start Emissions 

Cold-start emissions are emitted by vehicles under cold engine and are estimated 

as an excess to the stabilised hot emission levels. The cold-start excess emission is 

defined as a difference between the total amount of the pollutant emitted between the start 

time (t = 0) and time tcold, and the amount of pollutant which would be emitted by the vehicle 

at its normal running temperature during the same time period. Travel distance, average 

speed and ambient temperature are considered to quantify cold-start emissions for different 

vehicle technologies. At urban scale, travel distance is often less than the distance 
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necessary to warm up the engine. Therefore, cold emissions are playing a very important 

role and their contribution to the total emissions could not be neglected. 

In this work, the methodology developed by ARTEMIS (André and Joumard, 2005) 

was adapted in order to be compatible with the model conception. For this purpose, original 

emission factors represented as absolute emissions (g) per cold cycle were transformed to 

average cold emission factors (g.km–1) within cold distance. 

Cold emission factors are calculated as following: 

( ) ( ) ( )tghVTfwe hkmCcold ⋅⋅⋅= δ,/20,º20    (4.2) 

where ecold is the excess emission with a cold engine for a trip (g); V is the average speed 

during cold engine regime (km.h–1); T is the ambient temperature (ºC); h(δ) is the distance 

correction factor = distance travelled (d) / cold distance (dcold ) (dimensionless); w20ºC, 20km/h  is 

the excess emissions at reference conditions for T = 20ºC and V = 20 km.h–1 (g); f(T,V) is 

the correction factor for speed (V) and temperature (T) effects; g(t) is the correction factor 

for the parking time t.  

The ARTEMIS methodology to calculate cold distance was used in order to 

determine the distance necessary to warm up the engine and to stabilise emissions. A 

schematic representation of the effect of trip length on the emissions for different classes of 

passenger cars is presented in Figure 4.3. As could be seen in the Figure 4.3, the 

emissions will stabilize within the first 5–10 km after the start that is considered as a “cold 

distance”.  

The ARTEMIS methodology used to calculate cold-start emissions is available for 

passenger cars only, because of insufficient data for other categories, and for typical urban 

driving, which imply that only urban roads were considered (see Section 4.3.2). The input 

parameters considered in the determination of cold-start emission factor are presented in 

Table 4.1 considering different passenger car emission classes and fuel type. Calculation 

of the cold-start emission factor is dependent to the ambient temperature and average 

speed. The calculation algorithm for acetaldehyde, acrolein and formaldehyde is not 

sensitive to the ambient temperature. In addition, it should be noted that 1,3-butadiene 

emissions are totally attributed to gasoline vehicles, while PM2.5 is mainly related with 

diesel engines. 
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Figure 4.3. Schematic representation of the effect of trip length on the cold start excess emissions from 

passenger cars in winter season. 

 

In case of naphthalene, the methodology applied is different and is not presented in 

Table 4.1 since the hot and cold emissions are calculated simultaneously and cannot be 

distinguished. 

 

Table 4.1. Parameters considered for cold-start and hot emission factor quantification. 

 

Notes : T: Ambient temperature (ºC); V: Average speed (km.h-1); const.: constant value;  – : methodology not available 

 

4.2.4. Monte Carlo Approach 

The Monte Carlo (MC) approach is used to analyse uncertainty propagation, where 

the goal is to determine how variations in input data affect the emission estimations. For 
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PM2.5 – T – T – T – T – T 

Acetaldehyde V const. V const. V V V V V V 

Acrolein – const. – const. const. const. const. const. const. const. 

Benzene V,T const. const. const. V,T V,T V,T V T V 

1,3-Butadiene V – const. – V – V,T – T – 

Formaldehyde V const. V const. V V V V V V 
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this purpose, a probability distribution is specified for each model input based upon 

statistical analysis of data. At next, random values are generated for each input parameter 

taking into account their probability distribution and assuming that the generated values 

represent real world events. Multiple runs of the emission model based on stochastic inputs 

provide multiple outputs that can be treated statistically as if they were an experimentally or 

empirically observed set of data, instead of obtaining a single number for model outputs as 

in a deterministic simulation (Frey and Bammi, 2002).  

In the present work, the emissions model has been adapted to use multiple set of 

randomly generated values for each of the input parameters that characterise the transport 

activity. Thus, random samples of the number of vehicles, average speed and fleet 

composition are generated from the respective Probabilistic Density Functions (PDF) and 

one random value for each input is entered into the model to arrive at one estimate of the 

model output. This process is repeated over more than 600 iterations to arrive at multiple 

estimates of the model. These estimates are sample values of the PDF of the model output 

that reflects the uncertainty in the model inputs. 

 

4.3. Application 
 

4.3.1. Study area 

The Porto Urban Area was selected in this study to quantify road traffic emissions 

of hazardous air pollutants. It is the second largest city in Portugal with a total area of 

approximately 41 km2. The resident population of this urban area in 2008 is about 216 000 

inhabitants (2% of the national population). One of the relevant characteristics of the study 

area is the centralisation of working places in Porto city centre and an expansion of the 

agglomeration around the city showing the importance of the population home/work daily 

trips and consequent air pollution problems in the Region (Tchepel and Borrego, 2010). 

To study atmospheric emissions induced by transport, the road network was 

subdivided into 3 types: urban streets, interurban roads and highways with the total length 

of 78.3 km, 29.8 km and 22.3 km respectively (Figure 4.4a). As a total, 84 points distributed 

within the domain were considered to characterize traffic volume fluctuations. For this 

purpose, traffic data collected by automatic measurements during winter (January and 

February) and summer (July and August) periods of 2008 were attributed to the road links 

using road classification and the proximity criteria. 
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Figure 4.4. a) Administrative limits of the Porto Urban Area and road network considered in the study (type 

1 – urban streets, type 2 – interurban roads, type 3 – highways); b) sectors limits considered in the O/D 

matrix. 

 

Additionally, population mobility data concerning Origin/Destination trips for traffic 

peak hours (Oliveira et al., 2007) was considered for the study area and subdivided in 9 

sectors (Figure 4.4b, Table 4.2). These statistical data provide important information for 

quantification of cold start emissions as described in Section 4.3.2. 

 

Table 4.2. Origin/Destiny Matrix for each sector (number of displacements in individual transport) for the 

morning traffic peak period (7h30 – 9h30) (Oliveira et al., 2007). 

OD Matrix A B C D E F G H I Ext. 
South 

Ext. 
North Total 

A 269 461 430 1,070 565 445 500 523 265 447 1,819 6,794 

B 315 84 357 398 200 108 98 275 168 163 504 2,670 

C 569 436 304 587 344 299 379 622 265 248 587 4,640 

D 879 335 676 869 609 653 758 902 198 419 1,498 7,796 

E 603 136 391 526 329 532 730 291 103 106 512 4,259 

F 500 159 198 431 302 215 779 281 47 170 499 3,581 

G 1,344 300 353 774 859 1,255 406 1,298 135 663 2,527 9,914 

H 855 445 795 1,053 639 672 652 582 325 456 1,603 8,077 

I 371 396 383 416 208 204 138 265 100 81 319 2,881 

Ext. South 1,686 998 810 1,542 1,093 1,427 906 735 382 8 14,400 23,987 

Ext. North 7,168 2,198 3,280 3,737 2,166 4,127 4,493 4,549 1,208 11,455 11,021 55,402 

Total 14,559 5,948 7,977 11,403 7,314 9,937 9,839 10,323 3,196 14,216 35,289 130,001 

 

4.3.2. Input Data 

In order to characterize the uncertainty in input parameters, a set of random inputs 

characterizing the fleet composition, traffic flow and vehicles speed are generated for each 
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road. The PDF for vehicle classes is determined using the statistical information on vehicle 

registers and average number of kilometres travelled. For the traffic volume, data from the 

counting points attributed to each link were used, describing both temporal and spatial 

variations (Figure 4.5). Due to absence of vehicles speed measurements, this variable is 

estimated for each road segment considering the type of the road and taking into account 

the speed traffic behaviour adapted from Joumard et al. (2007): urban (30±9.4 km.h–1), 

interurban (70±17.6 km.h-1) and highways (110±8.8 km.h–1). A combination of random 

values generated by the Monte Carlo approach is used to create 625 independent inputs 

for each road segment to be used by TREM–HAP for the emission estimations. 

To estimate excess cold start emissions, a number of vehicles with cold engine 

have to be considered for each urban road segment. However, it is not possible to obtain 

this information directly from the automatic traffic counts that is why additional information 

is required. For this purpose, the ARTEMIS methodology (André and Joumard, 2005) to 

calculate cold distance was used in order to determine the distance necessary to warm up 

the engine and to achieve a constant emission level (Figure 4.3). The statistical information 

on Origin–Destination (O–D) mobility (Oliveira et al., 2007) was considered to determine 

the daily number of cold starts and the distance between the origin and destination points. 

Stop duration of 7 hours between the morning and evening peak hours was assumed to 

calculate the correction factor for cold start emissions. Based on this information, the 

number of vehicle × km performed with a cold engine and a proportion of cold/hot driving 

was calculated for each urban zone and attributed to the road network. 
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Figure 4.5. An example of temporal variation of the passenger car flows obtained from the automatic 

counting data at a fixed point. 
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4.4. Results and Discussion 
 

The probabilistic emission inventory for the mobile source hazardous air pollutants 

was developed based on probabilistic activity factors. It should be stressed that uncertainty 

of the emission factors was not considered in the current simulations due to absence of the 

information. Therefore, the overall uncertainty of the emissions is related to the uncertainty 

in activity data only. The analysis of results examines the influence of the seasonal 

variations (summer and winter periods), the contribution of hot/cold start to the total daily 

emissions, the differences of road types and the spatial distribution of the total emissions 

over the study domain. 

The absolute values for total daily emissions estimated for the Porto Urban Area 

are presented in Figure 4.6. Several statistical parameters, including average emissions, 5th 

and 95th percentile and extreme values were analysed for the selected hazardous 

pollutants. Also, seasonal difference between summer and winter are examined. It is 

apparent that PM2.5 and benzene have the largest absolute uncertainty in the daily 

emissions. For all the pollutants, except benzene, the absolute values for total daily 

emissions are larger in summer. Benzene has a different seasonal behaviour because of 

the important contribution of cold start emissions as observed in Figure 4.7. 
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Figure 4.6. Statistical parameters for total daily emissions in the Porto Urban Area considering winter and 

summer periods. 
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The 90% probability range of the emission estimates are given in Table 4.3 

considering different types of roads. For all the pollutants, urban streets are characterised 

by higher uncertainty in the emissions achieving the largest range for 1,3-butadiene (-33% 

to +70%), while estimations for highways are more robust. Benzene emissions from urban 

roads are less uncertain than other hydrocarbons, except naphthalene, due to the 

important proportion of cold start emissions with lower sensitivity to the input data. The very 

low uncertainties obtained for naphthalene are explained by the different methodology 

applied for this pollutant. The hot and cold emissions are calculated simultaneously and 

cannot be distinguished. Also, the methodology to calculate naphthalene emissions is not 

sensitive to ambient temperature and speed. 

 

Table 4.3. Results of the uncertainties in the emission rates (hot+cold) for the different types of roads. 

 

* (-) =(5th percentile-Mean)/Mean) x 100;   (+) =(95th percentile-mean)/Mean) x 100 

 

The contribution of cold emissions to the total emissions estimated in the study 

area at typical summer and winter days is presented in Figure 4.7. 

Pollutant 

90% probability range of the emission estimates (%) * 

Urban streets Interurban roads Highways 

(-) (+) (-) (+) (-) (+) 

PM -28.1 44.7 -11.6 30.9 -15.7 8.8 

Acetaldehyde -24.7 50.7 -16.3 28.1 -2.0 1.7 

Acrolein -26.6 53.2 -14.9 25.3 -2.0 1.7 

Benzene -22.6 43.4 -23.7 40.2 -5.3 6.1 

1,3-Butadiene -33.2 70.4 -21.3 36.5 -3.0 3.5 

Formaldehyde -36.8 65.7 -16.7 28.6 -2.1 2.0 

Naphtalene -0.7 0.6 -0.7 0.6 -0.8 0.7 
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Figure 4.7. Contribution of the cold start emission (average values, percentage) to the total emissions 

within the modelling domain. 

 

The results show that the contribution of cold start emissions to the total values 

calculated for the urban area can achieve 45% in case of benzene, while for other 

hazardous pollutants this contribution is below of 10% with the only exception of 1,3-

butadiene. In general, excess cold start emissions from diesel vehicles are less significant 

compared with those from gasoline vehicles. As expected, the cold emissions are higher in 

winter than in summer season due to the direct influence of ambient temperature. However, 

in the case of acetaldehyde, acrolein and formaldehyde this difference is related to traffic 

fluctuations only because the calculation algorithm for these pollutants is not sensitive to 

the ambient temperature. It should be noted that 1,3-butadiene emissions are totally 

attributed to gasoline vehicles, while PM2.5 is mainly related to diesel engines. 

Additionally, the spatial distribution of the daily emissions (hot + cold) was analysed 

for the study area. Examples for benzene and PM2.5 are presented in Figure 4.8. A 

different spatial pattern is observed for these two pollutants. Within the Porto Urban Area 

the highest emission rates of PM2.5 are estimated for highways due to intense traffic during 

the day. 
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Figure 4.8. Spatial distribution of benzene and PM2.5 daily emissions (average) in the modelling domain. 

 

Oppositely, benzene emissions are more pronounced at urban streets where the 

contribution of cold start emissions is very important. For both pollutants, high emissions 

are obtained in two urban roads which are important thoroughfares connecting the urban 

centre with peripheral interurban and highway roads. 

 

4.5. Conclusions 
 

The TREM-HAP model has been developed to estimate the emissions of 

hazardous air pollutants related to the traffic activity in urban areas. The current work 
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provides a description of the methodology and an application example to characterise a 

probable distribution of the emissions for different types of roads considering vehicle 

technology mix, driving conditions and traffic volume fluctuations. 

The total daily emissions of air toxics are presented for the entire study area 

considering their seasonal variations. Different trend is identified for benzene showing 17% 

higher emissions at winter time due to important contribution of cold starts while other toxic 

pollutants are mainly affected by changes in the traffic volume that results in higher 

emissions during the summer period.  

Highly uncertain emission data are obtained for the urban roads with the largest 

range for 1,3-butadiene (–33% to +70%). Oppositely, emissions calculated for highways 

are generally characterised by a very small uncertainty (less than ±5%) except for PM2.5 

 (–16% to +9%). 

The study shows that cold-start emissions can contribute up to 45% to the total 

daily emissions, highlighting the importance of accounting for cold start emissions in a 

traffic-related emissions inventory development. 

Globally, the results demonstrated that the range of the uncertainty produced in the 

model application depends on uncertainties in the model inputs but sensitivity of the 

modelling approach is different for the considered air toxics. 

The modelling tool developed and applied in the present work provides spatial 

distribution of the air toxic emissions for urban areas with complex road network. This 

information is essential to be used as an input to air pollution models and further population 

exposure studies. Finally, quantification of the uncertainty range for the emissions opens a 

possibility to implement air pollution modelling for the study area using probabilistic 

approach. 
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Abstract 
The main objective of this work was the development of a new modelling tool for quantification 
of human exposure to traffic-related air pollution within distinct microenvironments by using a 
novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with 
Global Positioning System technology have been used to collect daily trajectories of the 
individuals with higher temporal resolution and an algorithm based on trajectory data mining 
analysis was implemented within a Geographical Information System to obtain time-activity 
patterns. These data were combined with pollutants concentration fields provided by air 
pollution dispersion model. Additionally to outdoor, pollutant concentrations in distinct indoor 
microenvironments are characterised using a probabilistic approach. An example of the 
application for PM2.5 is presented and discussed. The results obtained for daily average 
individual exposure correspond to mean value of 10.6 µg.m-3 and 6.0 – 16.4 µg.m-3 in terms of  
5th – 95th percentiles. Analysis of the results shows that using of the point air quality 
measurements for exposure assessment will not explain the individual variability. The 
methodology developed and implemented in this work provides time-sequence of the exposure 
events thus making possible association of the exposure with the individual activities and 
delivers main statistics on individual’s air pollution exposure. 
 
Keywords:  exposure assessment, air pollution, traffic-related, GPS, GIS, trajectory data 
mining. 
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5.1. Introduction 
 

Exposure to air pollution is estimated to cause 1.3 million deaths worldwide per 

year in urban areas and emissions from road traffic account for a significant share of this 

burden (WHO, 2011). In the last years, there has been an increase of scientific studies 

confirming that short and long-term exposure to traffic-related air pollutants leads to 

adverse health effects, including asthma, non-asthma respiratory symptoms, impaired lung 

function, cardiovascular mortality and morbidity (Brunekreef and Holgate, 2002; HEI, 2010). 

Therefore, an accurate assessment of human exposure is crucial for a correct 

determination of the association between the traffic-related air pollutants and the negative 

health outcomes (Hertel et al., 2008).  

The assessment of exposure emerged as an important area of scientific research. 

Exposure estimates to atmospheric pollutants can address individuals (personal exposure) 

or large population groups (population exposure), and can be based on direct (exposure 

monitoring) or indirect methods (exposure modelling) (Zou et al., 2009). In practice, 

monitoring of personal exposure is limited to studies with a small number of individuals due 

to the high costs associated with the measurements. In the same sense, air quality time 

series provided by a monitoring network are frequently used as a good individual exposure 

indicator. Nevertheless, this estimate has been found to correlate poorly with personal 

exposures (Pellizzari et al., 1999; Oglesby et al., 2000; Koistinen et al., 2001; Kousa et al., 

2002).  

Several studies reveal that personal exposures tend to be greater in magnitude and 

more variable in location and time than the corresponding outdoor concentrations 

(Hatzopoulou and Miller, 2010). Individual exposure is then particularly sensitive to high 

spatial and temporal variations in outdoor concentrations and the "microenvironmental" 

variations imposed by a variety of indoor and outdoor locations (occupational, residential, 

etc.) (Georgopoulos et al., 2009). In this sense, outdoor concentration should not be used 

as an exposure indicator since it does not capture spatial heterogeneity in exposure to air 

pollution, time spent indoors and population mobility (Koistinen et al., 2001) thus  leading to 

inaccuracies and underestimation of the effects of air pollution (Thomas et al.,1993; Szpiro 

et al., 2008;Peng and Bell, 2010). In addition, the presence of individuals in direct vicinity to 

the emission sources may results in higher exposure concentrations then pollution levels 

registered at monitoring stations (Baklanov et al., 2007). Therefore, combining air quality 

concentrations with time-activity patterns is crucial in assessing actual personal exposure 

to air pollution (Son et al., 2010). 

In this perspective, exposure modelling technique arises as an alternative approach 

able to address the spatial and temporal variability of individual exposure concentrations 

and is recommended for exposure assessment (Schwela et al., 2002). Exposure modelling 
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allows to determine exposures for individuals, defined population subgroups or entire 

populations, taking into account either real or hypothetical scenarios (Klepeis, 2006) and 

are typically used to supplement the monitoring data where direct measurement are not 

available. As results, exposure modelling can predict future exposures, as well as 

reconstruct historical exposure and the contribution of different chemicals can be clearly 

distinguished in exposure assessment (WHO, 2005b; Zou et al., 2009). 

Exposure models constitute important tools providing quantitative evaluation of 

human exposure to environmental pollution, and its development has been identified as a 

priority area for future research (Brunekreef and Holgate, 2002; Brauer et al., 2002). 

Nowadays, a number of exposure models are available to support quantitative exposure 

analyses and assessments to air pollutants and, according to their characteristics and 

modelling procedures, they could be categorized as proximity models, interpolation models, 

land use regression models, dispersion models, integrated emission-meteorological 

models, and hybrid models (Jerret et al., 2005). 

Air pollution exposure models can be developed to calculate short-term exposures 

(i.e. 1 hour or shorter in duration) or long-term exposures. Most of currently available 

exposure models have been designed to estimate human exposure to several regulated air 

pollutants (Johnson et al., 1999; Burke et al., 2001; Kruize et al., 2003), however a couple 

of models is also able to account for human exposure to hazardous air pollutants 

(MacIntosh et al., 1995; Özkaynak et al., 2008). They have been designed to quantify 

individual exposures as well as population exposures at the census level.  

For exposure estimates outdoor pollution levels may be considered in combination 

with microenvironmental concentrations obtained from mass balance or empirical 

indoor/outdoor relationships (Georgopoulos et al., 2009). Additionally, population should be 

characterized by demographics and their time-activity patterns based on participant's diary 

or time–activity measurement databases (Burke et al., 2001; Kruize et al., 2003; 

Georgopoulos, 2005; Klepeis, 2006; USEPA, 2006a; USEPA, 2006b; Özkaynak et al., 

2008; HEI, 2010). Extensive datasets on activity patterns and microenvironmental 

parameters are available for microenvironmental modelling (Freijer et al., 1998, McCurdy et 

al., 2000, Klepeis et al., 2001) providing additional information for probabilistic modelling 

and allowing an additional knowledge on the variability and uncertainty associated with 

exposure estimates (Zou et al., 2009). It is important to highlight that variability represents 

true heterogeneity, diversity, inter-individual differences, temporal changes, etc. in an input 

parameter while uncertainty reflects a lack of knowledge of the true value (Frey, 1992; 

Hertwich et al., 2000; WHO, 2000). Parameter variability and uncertainty represent the 

sources of uncertainty that have received most attention in human exposure modelling 

(Fryer et al., 2006). In addition, recent advances have also occurred in the development of 

GIS-based exposure models, which attempt to reproduce the spatial and temporal 
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dynamics of air pollution and population mobility (Gulliver and Briggs, 2005; Zhan et al., 

2006; Wheeler et al., 2008). 

However, information on the actual “activity space” of individuals required for high 

resolution exposure modelling is rarely available, and home addresses are generally used 

as the surrogate for the personal exposure, when in fact a high percentage of an 

individual’s exposure can accrue from relatively short periods of time spent in high-polluted 

microenvironments (HEI, 2010). In this perspective, the time-sequence of exposure events 

is not preserved in exposure assessment, and the information to evaluate possible 

correlations in exposures to different pollutants due to activities that are related in time is 

not conserved. The source-receptor relationship, especially for “hot-spots” peak exposure 

is still insufficiently addressed and the contribution of traffic- related air pollution to the total 

exposure is not clear (Wang et al., 2009; HEI, 2010). In addition, the development of 

innovative models that reduce uncertainties in exposure characterization is required (Lioy, 

2010). Furthermore, the relationship between the exposure concentration, which vary 

substantially with geographical location, and the exposure duration, which is related with 

human activities, is still insufficiently addressed. Recent findings highlights that the 

population mobility is one of the factors that may affect significantly the exposure (Nethery 

et al., 2008; Beckx et al., 2009; Dons et al., 2011; Tchepel and Dias, 2011). 

In this sense, the knowledge of where individuals spend time is essential for 

assessment of human exposure to air pollution and research on human behaviour or 

activities is a crucial component of modern and future exposure science (Lioy, 2010). To 

address this issue, the availability of enhanced resources such as geographic information 

system (GIS), global positioning system (GPS) and data mining techniques, could be used 

to analyse the human behaviours and activities required for exposure assessment, opening 

new perspectives to quantify human exposure to traffic-related air pollution. 

One of the problems of the exposure assessment approaches is the uncertainty 

related with human mobility during the exposure assessment period. Predictability in 

human dynamics by studying the mobility patterns of individuals using mobile phones 

became an emerging field (Song et al., 2010) and GPS technology presents as a promising 

tool by monitoring real-time geographic positions. GPS-equipped mobile phones can record 

the latitude-longitude position of individuals at each moment, offering many advantages 

over traditional time-location analysis, such as high temporal resolution, and minimum 

reporting burden for participants (Rainham et al., 2010).  

The GPS technology guarantees that there will be an increasing availability of large 

amounts of data affecting to individual trajectories, at increasing localization precision. 

However, there is a challenge to extract, the spatio-temporal patterns from these 

trajectories that convey useful knowledge (Zheng and Zhou, 2011). Thus, the data mining 

appears as a validated technique to automatically identify time-activity location in major 
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microenvironments, such as commuting, indoor, and outdoor locations (Wu et al., 2010). 

Data mining is used to search through large amount of raw data in order to find useful data. 

The goal of this technique is to identify relevant and important patterns that were previously 

unknown (Larose, 2006; Witten and Frank, 2005). 

The present work intends to develop a new modelling tool for quantification of 

human exposure to traffic-related air pollutants by using a novel approach based on 

trajectory analysis of individuals and air pollution modelling with high spatial-temporal 

resolution. For this purpose, information on pollutant concentrations at different 

microenvironments and detailed time-location data collected for each individual by mobile 

phones with GPS are processed using trajectory data mining and geo-spatial analysis 

within GIS. Also, the model integrates a probabilistic approach to estimate the variability of 

the microenvironmental parameters in the predicted individual exposure. The development 

of a GPS based EXPOSure model to traffIc-relaTed aIr pOllutioN (ExPOSITION) is 

presented and described.  

 

5.2. Methodology - Human exposure modelling 
 

The ExPOSITION model is developed to assess average short (e.g. daily) and 

long-term (e.g. annual) inhalation exposures of the individuals to traffic-related air pollutants 

over urban spatial scale with high spatial-temporal resolution. For this purpose, air pollution 

concentrations are estimated for different microenvironments (described in Section 5.2.1) 

and combined with detailed time-activity patterns obtained from data collected by mobile 

phones with GPS technology (described in Section 5.2.2 and Section 5.2.3). The 

ExPOSITION modelling system developed and applied in this study is schematically 

presented in Figure 5.1 and described in the following sections. 
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Figure 5.1. Conceptual framework of the ExPOSITION modelling system. 

 

The time-activity patterns are determined by the model based on a novel approach 

developed for collection and analysis of data registered by mobile phones with GPS 

technology and thus providing the daily trajectories of individuals required for the exposure 

assessment. A GPS mobile phone combined with a GPS tracking software is used to 

determine the precise location of a person and to record the position at regular time 

intervals. Time-location information is obtained from geographic coordinates, speed and 

time recorded and stored by the GPS tracking system that characterise the movements of 

individuals in time and space during their daily activities. To process the GPS data an 

algorithm based on trajectory data mining has been developed and an algorithm for 

classification of microenvironments has been implemented within GIS.  

Personal exposure is characterised by ExPOSITION model in terms of time-

weighted average exposure concentration calculated from air pollutant concentration fields 

and time spent by individuals in different microenvironments (Equation 5.1). It is important 

to highlight the distinction between air pollution “concentration” provided by dispersion 

models, and “exposure concentration” defined as amount of chemicals that comes into 

contact with the human body and take into account not only pollutant concentration fields 

but also the location of an individual and duration of the exposure. Thus, individual 

exposure is calculated by ExPOSITION as following: 
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where iE (µg.m-3) is the average exposure concentration for person i, C(x,y,z,t)i (µg.m-3) is 

the air pollutant concentration occurring at a particular point where the person i is located 

during the time t and spatial coordinate (x,y,z) and t1 and t2 (h) are the starting and ending 

times of the exposure event. 

Exposure estimates are provided in µg.m-3 and can be determined for each 

individual as hourly, daily or annual average and resulting data can be exported for further 

analysis (e.g. epidemiological analysis and health impact assessment). 

 

5.2.1. Microenvironmental concentrations 

Specific microenvironments are distinguished in the exposure model including 

residence, other indoors, outdoors, and in-vehicle (Table 5.1). Two different approaches 

are considered to characterise pollution levels in these microenvironments. Thus, outdoor 

concentrations are estimated using atmospheric dispersion modelling and different 

modelling tools may be used to provide this external information for ExPOSITION as will be 

discussed in section 5.3. For indoors and in-vehicle microenvironments a probabilistic 

approach was implemented as an integrated part of ExPOSITION algorithm. In this case it 

is assumed that within a microenvironment the pollutants are homogeneously distributed 

and microenvironmental concentration C(x,y,z,t) (µg.m-3) considered in Equation 5.1 is 

calculated using a linear regression equation based on the outdoor/indoor infiltration factor 

αj (dimensionless) and additional contribution of indoor pollution sources expressed as βj 

(µg.m-3): 

ambientjj tzyxCtzyxC ),,,(),,,( ×+= αβ    (5.2) 

where C(x,y,z,t)ambient (µg.m-3) is the outdoor concentration that occurring in the immediate 

vicinity to the microenvironment j at time t and spatial coordinate (x,y,z). 

Microenvironmental concentrations are estimated based on a probabilistic 

approach considered by the model that attempts to capture the variability in 

microenvironment parameters. In this sense, to calculate microenvironmental 

concentrations for each individual the ExPOSITION model randomly assigns the 

parameters β and α to each indoor location from empirical distributions taking into account 
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the average and standard deviation obtained from literature review for each type of 

microenvironments (Table 5.1). 

 

Table 5.1. Parameters used to determine PM2.5 concentrations in different microenvironments. 

Microenvironment 

β α 

Data source 

average standard 
deviation average standard 

deviation 

Residence 5.75 3.91 0.41 0.06 
Hoek et al., 

2008 

Vehicle (no smoking) 33.00 7.20 0.26 0.14  

Office (no smoking) 3.60 1.30 0.18 0.06  

School 6.80 1.40 0.60 0.09 
Burke et al., 

2001 

Public access 9.00 3.60 0.74 0.18  

Restaurant/Bar 9.80 0.50 1.00 0.05  

 

A single value is selected from the probabilistic distribution of each 

microenvironmental parameter α and β. These values are then used in the model to 

produce a single estimate of microenvironmental concentration. This process is repeated 

many times, with new values for each stochastic input parameter and probability 

distribution of exposure in the microenvironments is obtained. 

 

5.2.2. Trajectory data mining 

Trajectories of the individuals are required as one of the main inputs to the 

exposure modelling. Collection of time-location information using GPS technology provides 

continuous tracking of the individuals with high data resolution in time and in space. 

However, significant uncertainties associated with the processing and classifying of raw 

GPS data is one of challenging issue for the exposure studies (USEPA, 1992; Wu et al., 

2010). To overcome some of the limitations, automatic processing of GPS raw data using 

the trajectory data mining is implemented in ExPOSITION model.  

In order to identify important patterns, several levels of GPS data processing are 

required (Figure 5.2). First, it is necessary to “clean” the GPS raw data to eliminate invalid 

entries. At next, the places where the individual was stopped for a certain time period are 

distinguished from moving activities, like driving a vehicle. And finally, it is necessary to 

discover which of these points belong to the same activity/place. For this purpose the data 

clustering process is implemented to distinguish significant places based on the analysis of 

spatial and temporal information of GPS points (Figure 5.2). 
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Figure 5.2. Schematic representation of the trajectory data mining analysis. 
 

Thus, “significant places” are considered as those locations that play significant role 

in the activities of a person, carrying a particular semantic meaning such as the living and 

working places, the restaurant and shopping mall, etc., ignoring the transition between 

these places. Additionally, a “movement activity” is a composition of movements with a 

frequent regularity of location change over time which can be aggregated by the purpose of 

the trip of an individual. 

A preliminary processing of GPS data is implemented as a first step to “clean” the 

data and converts it into a standard format in preparation for the clustering approach. For 

this purpose an error-checking algorithm was developed to remove invalid points. This 

algorithm considers a measurement as valid, if the GPS receiver is able to see at least four 

satellites and if the horizontal dilution of precision (HDOP) value is below 6 (Figure 5.3). 

Otherwise the measurement is considered invalid. Also, the algorithm evaluates incorrect 

entries of the travel speed.  

GPS datasets provide information on the locations in coordinate form (e.g. latitude 

and longitude) but contains no semantic meaning (Zhou et al., 2007a) like the address or 

characteristics of location, i.e. type of microenvironments. Therefore, it is necessary to 

extract and distinguish in the GPS data the locations where the individual stopped for a 

certain time period and these locations are designated as “stay points”. A stay point 

represents a geographic location in which the individual stays for a certain time period and 

in addition to a raw GPS point carries a particular semantic meaning. 

The algorithm to extract stay points from GPS data is iterative and it is based on 

searching for locations where the user has spent a longer time period (Li et al., 2008). As 

presented in Figure 5.3, the extraction of a stay point S from a user’s GPS trajectory  

P = {p1, p2, … , pK}, depends on two scale parameters: a distance threshold (Dthreh) and a 

time threshold (Tthreh). Thus, a single stay point S can be characterized by a group of 

consecutive GPS points pi containing latitude (pi.Lat), longitude (pi.Long) and time (pi.T): 

S = {pi}, where m ≤ i ≤ n, 

Distance(pm,pi) ≤ Dthreh and  

|pn.T – pm.T| ≥ Tthreh 
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Figure 5.3. GPS raw data, GPS “clean” trajectory and stay points detection. 

 

A pre-processing of the GPS data and detection of the stay points is important to 

extract some important locations. However, the repetition of the same locations is not 

considered and each time that a location is discovered it is assumed as a new location. To 

overcome this problem a second level analysis to group up different stay points with the 

same semantic meaning is implemented using cluster analysis.  

Clustering is a data mining technique focused on detecting hidden groups, or 

clusters, among a set of objects (Bock, 1996). In this study, in order to group the points 

belonging to the same premises, and thus define the personally significant places, a 

density-based clustering algorithm DJ-Cluster (Zhou et al., 2004; 2007a; 2007b) was 

implemented. The DJ-Cluster algorithm is selected and applied in this study, since it is less 

vulnerable to noise and does not require the number of places as a parameter. However, 

the algorithm depends excessively on the density of the points and does not give 

importance to the time spent in each site, i.e. duration, which will be relevant for the 

exposure quantification.  

In the clustering algorithm, the neighbourhoods within distance Eps are analysed for 

each point. If at least a minimum number (MinPts) of such neighbourhoods is found, the 

points are either grouped as a new cluster or joined with an existing cluster, and a 

significant place is created. Otherwise, the point is labelled as a moving activity (e.g. being 

in vehicle microenvironment) (Figure 5.4). The following conditions define the density-

based neighbourhood of a point and density-joinable relationships (Zhou et al., 2007a): 

a) Density-based neighbourhood of a point:  

The density-based neighbourhood N of a point p, denoted by N(p), is defined as: 

{ }EpsqpdistQqpN ≤∈= ),()(     (5.3) 
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where Q is the set of all points, q is any point in the sample, Eps is the radius of a circle 

around p to defines the density. The following condition is also needs to be satisfied for 

N(p):  

MinPtspN >=)(#         (5. 4) 

where MinPts is the minimum number of points required in that circle. 

b) Density-Joinable:  

N(p) is density-joinable to N(q) denoted as J(N(p),N(q)), with respect to Eps and 

MinPts, if there is a point such that both N(p) and N(q) contain it.  
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Figure 5.4. Flowchart of the clustering process. 

 

For the objectives of this study the sites are identified as personally significant 

places talking into account two variables: density and duration. In this perspective, DJ-

Cluster algorithm was changed in order to implement additional condition based on 

duration of stay, as presented in Figure 5.4. Thus, N(p) defined in Equation 5.3 needs to 

satisfy simultaneously two conditions: 
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MinDrtdurationpNMinPtspN >=∧>= ).()(#   (5.5) 

where MinDrt is a parameter that represents the minimum duration at a location. Thus, p 

can be considered as a cluster or merged with an existent cluster in case that has a 

minimum number of points required MinPts and a minimum duration MinDrt. 

These data are further analysed within GIS environment for classification of 

microenvironments and to obtain information on time-activity patterns. 

 

5.2.3. Time-activity patterns 

Location of the individuals in space and in time is required to estimate individual 

exposure in a combination with pollutants concentration fields provided by air pollution 

dispersion model.  

In order to obtain information on time-activity patterns the significant places and 

movement activities extracted from the trajectory are further analysed within GIS 

environment in order to cross this information with other geo-spatial information. For this 

purpose, geoprocessing of GPS data is performed using ModelBuilder module provided by 

ArcGis 10. ModelBuilder can be thought of as a visual programming language for building 

workflows in which it is possible to create, edit, and manage geospatial analysis (Allen, 

2011).  

The geoprocessing of GPS data is accomplished by considering analytical 

functions and several predefined criteria based on speed, time and spatial location register 

for the trajectory points to classify the significant places and movement activities to three 

activity categories: indoor, outdoor and in vehicle travel. The detailed GIS-maps are used to 

identify and to classify the microenvironments.  

An indoor activity is distinguished from outdoor based on the time register. If the 

spending time in that point is equal or higher than 10 minutes, based on several tests 

carried out in this study and as presented by Ashbrook and Starner (2003), the significant 

place is identified as an indoor activity, and it is geographically located to the nearest indoor 

microenvironment, acquiring the entire attribute data associated to this microenvironment, 

such as microenvironment type (residence, workplace, restaurant, etc.). Additionally, the 

speed value is analysed in order to distinguish outdoor activity from in vehicle travel. 

However, the higher speed values registered during driving a vehicle are not sufficient to 

identify a movement activity. Also, activities like being static outdoor and in the traffic jam 

are difficult to distinguish based on speed criteria only. Thus, if the speed value is less than 
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the speed of walking of 2 km.h-1 (TRB, 1994) the distance between the identified point and 

the nearest road will be analysed. If there is no intersection with the road network, the 

significant place is identified as an outdoor microenvironment, such as being in a park, 

sitting on a terrace, etc. Otherwise, vehicle microenvironment is identified. 

Finally, this detailed time-activity patterns for each individual will be linked with the 

pollutants concentration fields varying in space and in time provided by air pollution 

dispersion model described in the next section, allowing to produce exposure estimates 

within distinct microenvironments. 

 

5.3. Emission and Air quality modelling 
 

Air quality modelling allows establishing the relationships between current 

emissions and current air quality at particular locations. Information on variability of air 

pollutant concentrations is essential for the exposure quantification and these data may be 

provided for ExPOSITION by any modelling tools if it is compatible with their requirements 

in terms of spatial and temporal data resolution.  

In this work, hourly traffic emissions required by the air quality model were 

estimated using the Transport Emission Model for Line Sources (TREM). The emission 

factors considered by TREM depend on average speed, fuel type, engine capacity and 

emission reduction technology. A new version TREM-HAP (Transport Emission Model for 

Hazardous Air Pollutants) prepared to calculate HAPs emissions (Tchepel et al., 2012) has 

been used to provide inputs for AUSTAL2000 dispersion model.  

AUSTAL2000 is the official reference air dispersion model of the German 

Regulation on Air Quality Control for short-range applications (Janicke and Janicke, 2002; 

Janicke, 2004). The model is based on Lagrangian approach that simulates the dispersion 

of air pollutants by utilizing a random walk process. Three-dimensional diagnostic wind 

fields is calculated based on a given initial wind profile and a given terrain profile and/or set 

of building shapes. Additionally, the vector of the turbulent velocity is randomly varied for 

every particle by using a Markov process (Janicke, 2002; VDI, 2000).  The fundamental 

equation for the Lagrangian atmospheric dispersion of a single pollutant is given by 

Equation 5.6. 

( ) ( ) ''''

0

'' ,,|,),( dtdxtxStxtxPtxC
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where C(x,t) is the average pollutant concentration in x at time t, S(x´,t´) is the source term 

and P(x,t | x´,t´) is the probability density function (PDF), that the hypothetical parcel moves 

from the point x´at time t´ to the point x at time t. Therefore, if actual paths of the portions of 

air can be obtained, the simple calculation of the density of trajectories points provides an 

estimate of the concentration (Graff, 2002). 

The main objective of AUSTAL2000 application in the current study is the 

calculation of atmospheric dispersion of substances, including PM fractions (4 different 

classes of the aerodynamic diameter) allowing to establish relationship between emissions 

and air quality, and to provide hourly pollutants concentration fields. Additionally to input 

data on emissions, a continuous time series of meteorological parameters, including wind 

direction, wind speed and atmospheric stability are required by AUSTAL2000.  

Currently, several studies using the AUSTAL2000 are available, as well 

comparative analyses with other dispersion models (Yau et al., 2010; Langner et al., 2011; 

Merbitz et al., 2012; Gerharz and Pebesma, 2012).  

 

5.4. Model application 
 

The methodology was applied to Leiria urban area situated in the central part of 

Portugal and covering 8 sub-municipality units. The study domain covering an area of 4.5 x 

4.5 km2 with 20m grid resolution and a complex terrain, containing about 5000 buildings 

considered as obstacles for the air dispersion modelling. The Leiria urban area and road 

network considered in this study for the exposure quantification are presented in Figure 5.5. 

Hourly PM2.5 emissions from road traffic were estimated by TREM based on the 

traffic volume for each road. For this purpose, data reported by Pinto et al. (2008) were 

used to characterise the number of vehicles for each road link. To estimate PM2.5 

concentrations hourly simulations were conducted with AUSTAL2000 model taking into 

account hourly meteorological conditions and background concentrations given by the 

nearest background air quality monitoring station.  

In order to characterize the variability in input parameters used to calculate 

microenvironmental concentrations (Equation 5.2), a set of random inputs characterizing 

the infiltration factor α and the contribution of indoor pollution β are generated for each 

microenvironment. The PDF for both parameters is determined using the information 

presented in Table 5.1. A combination of random values is used to create 625 independent 
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inputs for each microenvironment to be considered by ExPOSITION for the exposure 

estimations.  

TTGPSLogger tracking system (TTGPSLogger, 2012) was used to collect GPS 

data providing trajectories of 5 individuals during a working day of November 2010. 

TTGPSLogger is a GPS logger software for Symbian S60 allowing to store detailed time-

location information on geographic coordinates, speed and time during its use over the 

daily activities of individuals. In addition, information on the positioning accuracy of GPS 

receiver is provided (number of satellites, position dilution of precision (PDOP), etc.). The 

GPS tracking log can be written in NMEA, GPX, or KML format. For proper implementation 

of the trajectory data mining analysis, the GPS data was collected in one-second intervals. 

 

5.5. Results and Discussion 
 

In this section, the results obtained with newly developed modelling tool for short-

term PM2.5 exposure quantification are presented and discussed.  

TTGPSLogger tracking system installed on mobile phone is used to collect real-

time latitude-longitude position of individuals, speed and time during their daily activities 

(Figure 5.5a). This information was stored in a GPX file format that is compatible with GIS 

systems presenting very useful to analyse the spatial distribution of large amount of GPS 

raw data collected. Thus, during a typical working day of one of the individuals analysed in 

this study, 30179 GPS raw points with a temporal resolution of 1 second are collected by 

TTGPSLogger tracking system. However, some of the collected GPS data points with 

invalid information, such as incorrect entries of speed values achieving maximum of 650 

km.h-1, are identified. 

Most of the invalid measurements observed in this study are from areas where the 

individual has stayed indoors due to the obstruction of the GPS signal inside of buildings. 

Furthermore, there are some situations where the GPS receiver located inside buildings 

does not lose the signal but the data collected are affected by significant errors achieving 

about 60 meters of distance from the actual position. Another limitation observed is a gap 

of GPS information during some periods (from 15 seconds to 10 minutes) depending on the 

GPS status. 
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a) 

 

b) 

 
Figure 5.5. a) Data recording screen from mobile phone; b) Spatial visualization of the GPS raw data 

recorded. 

 

Taking into account the limitations detected during the analysis of GPS raw data, 

cleaning of the data and their processing are required in order to predict the time-activity 

patterns (Figure 5.6).  
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Figure 5.6. Example illustrating the data processing applied to GPS raw data. 
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In Figure 5.6 a sequence of images with a zoom to the workplace of the individual 4 

is presented to illustrate the formation of 3 clusters detected from the data. The first image 

corresponds to the raw GPS points recorded. At next, the data cleaning allows to remove 

invalid points from collected GPS raw points. However, this approach is only a pre-

processing to detect errors and inconsistencies in data. The stay point detection algorithm 

reduces significantly the number of GPS points that are consequently used for the 

clustering. In the example presented in Figure 5.6, one significant place and two movement 

activity clusters are identified from the set of stay points. 

The locations resulting from the clustering algorithm are further analysed within GIS 

environment in order to cross this information with other geo-spatial information and to 

obtain detailed time-activity patterns classified by different types of microenvironments. 

Thus, in case of the individual 4, 30179 collected GPS raw points resulted in 15978 stay 

points, originating 295 locations that are linked with the pollutants concentration in distinct 

microenvironments to assess its individual exposure. 

In order to estimate human exposure to PM2.5, hourly traffic emissions and air 

pollutants concentrations were estimated. Figure 5.7a illustrates the spatial variations in 

hourly traffic-related emissions across the study area obtained by linking TREM-HAP 

outputs to GIS maps. As could be seen in the figure, higher emission values are observed 

for main city entrances.  

a) 

 

b) 

 

b) 

Figure 5.7.  Spatial distribution of a) hourly PM2.5 emissions (g.km-1) and b) daily average PM2.5 

concentration (µg.m-3) and time spent by the individual in each microenvironment. 
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The spatial distribution of the air pollutants concentration obtained by the 

AUSTAL2000 is presented in Figure 5.7b showing that distribution of pollution levels within 

the study domain is not homogeneous. Also, time-activity patterns obtained for one of the 

individuals are presented in the figure as an example. The analysis of results examines the 

PM2.5 concentration variation in space and in time provided by air pollution dispersion 

model and the influence of time spent in each microenvironment type. Thus these findings 

enhance the importance of taking into account the high spatial and temporal variations in 

outdoor concentrations, the "microenvironmental" variations imposed by a variety of indoor 

and outdoor locations and the time spent indoors to obtain accurate personal exposure 

estimates to air pollution. 

For better understanding of the contribution of different microenvironments to the 

daily average PM2.5 exposure in the study area at a typical working day, several statistical 

parameters, including average individual exposure, 5th and 95th percentile and extreme 

values were analysed (Table 5.2). 

 

Table 5.2. Exposure concentration for PM2.5 (µg.m-3) in different microenvironments. 

Microenvironment Average Percentile 5 Percentile 95  Minimum Maximum 

Residence 10.2 7.7 17.8 7.0 18.1 

Workplace 8.7 4.5 11.7 4.5 16.1 

Public Access 14.5 13.5 16.3 13.5 26.1 

Bar/Restaurant 16.7 15.2 17.9 15.0 18.0 

Vehicle 35.2 34.6 37.4 20.2 44.6 

Outdoor 7.5 5.2 12.7 4.8 41.6 

 

As could be seen in Table 5.2, the largest variability in the exposure concentration 

is identified for outdoor and residence microenvironment. Exposure concentration 

calculated for in vehicle are characterised by smaller variability range but higher absolute 

values in comparison with the other types of microenvironments. In addition, it is possible to 

verify that the variability in the PM2.5 exposure concentration in each microenvironment 

type is significant showing the importance to consider this variability in individual exposure 

modelling. 

As expected, the indoor microenvironments represent a great relevance for the 

exposure of individuals (Figure 5.8). On the other hand, it is possible to verify that being 

outdoors represents a very low contribution to the exposure because corresponds only 

about 2% of the time spent by individuals during their daily activities, which suggests that 

outdoor concentrations measurements should be used carefully for human exposure 
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quantification. However, outdoor concentrations represent an important part of the pollution 

levels estimated for indoor microenvironments due to outdoor/indoor infiltration. 
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Figure 5.8. Distribution of time spent by individuals and average contribution of different 

microenvironments to daily individual exposure. 

 

In order to better understand the individual exposure obtained during the simulation 

period, a temporal variation of the exposure concentration was analysed as presented in 

Figure 5.9. Several statistical parameters, including hourly average exposure 

concentration, 5th and 95th percentile are analysed for each individual. 

The results show that the 5 individuals are exposed to different PM2.5 

concentrations during their daily activities, and a significant variability in PM2.5 exposures 

across the individuals is evident in Figure 5.9. Analysing the individual exposure 

concentrations during night time (until 7:00 (7a.m.) approximately), when the people stay in 

residence, the hourly exposure concentrations presents a similar trend with the outdoor 

concentrations but different magnitude. However, throughout the day and depending on the 

daily activity of the individuals the hourly average exposure concentrations tend to be more 

variable. The highest exposure levels are related with both the magnitude of pollutant 

concentrations and the time spent in specific microenvironments as, for example, could be 

seen in Figure 5.9 for the individual 1 at 16:00 (4 p.m.). 

Overall, the daily average exposure to PM2.5 predicted by the ExPOSITION model 

correspond to 10.6 µg.m-3 in terms of the mean value for all individuals and 6.0 – 16.4 
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µg.m-3  in terms of 5th – 95th percentiles. Comparing the mean value obtained by the model 

and estimated from air quality measurements at a fixed point (11 µg.m-3), an agreement 

between the approaches was evidenced. However, the ExPOSITION model reveals 

additional inter and intra-variability of individuals’ exposure levels, suggesting limited 

representativeness of air quality concentrations obtained from point measurements to 

characterize individual exposure to urban air pollution.  
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Figure 5.9. Temporal variation of individual exposure concentrations (average, 5th percentile and 95th 

percentile) and outdoor concentrations of PM2.5. 

 

The results obtained from the ExPOSITION model are in good agreement with the 

daily average exposure reported for other European cities such as Helsinki (9.9 µg.m-3) 

(Koistinen et al., 2001) and Amsterdam (14.5 µg.m-3) (Janssen et al., 2005). The current 

study shows that high PM2.5 exposure is mainly attributed to indoor microenvironments 

rather than outdoor, as also presented by Georgopoulos (2005). In this context individual 

time-activities patterns and time spent at different microenvironments during the day should 
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be of prime concern additionally to the variability in the pollution levels, as presented by 

Burke et al. (2001). 

 

5.6. Conclusions 
 

A GIS-based human exposure model able to estimate the individual exposure to 

traffic-related air pollutants with high spatial-temporal resolution has been developed and 

implemented using advanced GIS tools and GPS tracking system. The current work 

provides a description of the methodology and an application example to characterise the 

individual exposure at the spatial and temporal scales defined by the microenvironments 

and exposure activity events by using a novel approach for trajectory analysis of the 

individuals based on a mobile phone GPS tracking system. 

Under this work, a time-activity pattern discovery sequence, based on trajectory 

data mining and geo-spatial analysis within GIS, was developed to extract useful time-

location information from GPS raw data collected by a mobile phone with a GPS tracking 

system carried by the user during their daily activities. Taking into account the limitations 

detected during the analysis of GPS raw data, the results obtained during the several levels 

of GPS data analyses indicate that this approach could be used to analyse the human 

behaviours and activities required for exposure assessment. 

Time series of individual exposure concentrations to PM2.5 are presented for the 

entire study area characterizing a person’s contact with a given pollution levels at different 

microenvironments. The results show a significant contribution of indoor microenvironments 

to the total exposure values thus stressing that individual exposure depends not only on the 

exposure pollution levels but also on the time spent in the microenvironment during the 

day.  

The methodology developed and applied in this study preserves time-sequence of 

the exposure events thus making possible association between the exposure and individual 

activities, providing thus information on individual exposure taking into account where 

individuals spend their time and the high spatial and temporal variations of the 

“microenvironmental" concentrations imposed by a variety of indoor and outdoor locations. 
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Abstract 
Urban areas characterized by high spatial and temporal variability in air pollution levels require 
implementation of comprehensive approaches to address exposure of individuals. The main 
objective of this work is to implement a quantitative assessment of the individual exposure to 
benzene in urban environment. For this purpose, the ExPOSITION model based on GPS-
tracking approach is applied to estimate individual exposure in different microenvironments. The 
current work provides an application example and validation of the modelling approach against 
personal and biological exposure measurements collected during the measurements campaign. 
The results obtained for daily average individual exposure to benzene correspond to mean 
value of 1.6 µg.m-3 and 0.8 to 2.7 µg.m-3 in terms of 5th to 95th percentiles. Validation of the 
model results against several personal exposure samples collected for the selected individuals 
reveal a Pearson's correlation coefficient of 0.66 (P<0.0001, 95% CI 0.42 to 0.82). The 
modelling approach presented in this work explicitly addresses the temporal and spatial 
variability in the exposure and establishes source-receptor relationship, thus providing more 
consistent results in comparison with the personal exposure estimates based on home address 
outdoor concentrations. 
 
Keywords:  Exposure assessment, benzene, personal exposure monitoring, biomonitoring, 
exposure model validation. 
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6.1. Introduction 
 

Among the extended number of chemicals emitted by road traffic sources, 

hazardous air pollutants (HAPs) require special attention due to growing international 

recognition of their link with a variety of adverse effects on human health and the need for 

action to minimize these risks (HEI, 2010). One of the HAPs of prime concern to human 

health is benzene, defined as one of the most important health-based European Union 

priority substances (Bruinen de Bruin et al., 2008). 

The main source of benzene emissions in urban areas is road transport (Johnson 

et al., 2007; Weisel, 2010), contributing about 85% for outdoor benzene levels (EEA, 2007). 

In this concern, characterization of the transport activity and the quantification of 

corresponding emissions in urban areas where inhabitants are living close to the pollution 

sources are required for better human exposure analysis. For this purpose, transportation 

modelling linked with the emissions and dispersion models is considered as one of more 

suitable approaches to provide detailed information concerning traffic flux for each road 

segment and related pollution (Borrego et al., 2006). Additionally to on-road vehicle 

exhaust emissions, the exposures to outdoor benzene are likely to occur during the 

refuelling at fuel stations and near gasoline fuel stations (Weisel, 2010; VANR, 2011) which 

will vary according to content of fuel, the presence or absence of vapour control devices 

and the amount of time spent at such locations (Duarte-Davidson et al., 2001). 

The growing concern about adverse health effects of exposure to benzene related 

even with typical ambient concentrations led to the need for monitoring of its outdoor 

concentrations as well as non-occupational personal exposure of several population groups 

(Cocheo et al., 2000; Tchepel et al., 2007; Weisel, 2010). Several studies have reported 

that daily mean ambient air concentrations of benzene in rural areas are in the range of 

approximately 0.7 – 1 µg.m-3, but in urban areas the concentrations are reported in the 

range of 1.6 – 20 µg.m-3 (WHO, 2000; HEI, 2010). Higher values have been measured in 

some cities with high traffic density and unfavourable meteorological or geographical 

conditions (WHO, 2000; Deole et al., 2004; Farmer et al., 2005). Currently, in order to 

avoid, prevent or reduce harmful effects on human health and the environment as a whole, 

European Directive 2000/69/EC establishes 5 µg.m-3 (calendar year or annual mean) as 

the limit value for benzene concentration in ambient air. 

The contribution of indoor microenvironments, where people spend 80 to 93% of 

their time, to the individual benzene exposure has been increasingly recognized as being of 

importance (Klepeis et al., 2001; Adgate et al., 2004; Phillips et al., 2005). Additionally to 

infiltration of outdoor air pollution, a variety of substantial indoor sources of benzene, such 
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as tobacco smoke, usage of petroleum-related fuels for cooking/heating and benzene 

emitting cleaning/consumer products may contribute to the individual exposure. Also, 

several findings indicate that indoor concentrations of benzene are typically higher than the 

respective ambient levels (George et al., 2011). However, despite the research community 

recognizing the importance of indoor environments in personal exposure, non-occupational 

air pollution regulations have typically been applied focusing on outdoor rather than indoor 

air. For this reason, the amounts of air pollutants to which general populations are actually 

exposed are rarely quantified (HEI, 2010). 

Under this context, individual exposure modelling technique are arising as an 

alternative and effective approach able to address the spatial and temporal variability of 

individual exposure (Setton et al., 2011; Steinle et al., 2013). Although previous studies 

have analysed the distribution of concentrations and much work has been conducted 

toward modelling population exposures to air pollutants using information collected in 

time/activity diaries and microenvironment concentrations, very little has been done toward 

validating of such models at the level of the individual. Assessing the validity of the 

exposure estimates from models is often not straight forward, but it is essential for the 

credibility of the models. Therefore, the validation of models with independent data sets 

(e.g. from biomonitoring and personal exposure monitoring) is useful to check whether the 

proposed models serve as surrogates for individual exposure and to know the extent of the 

exposure estimation error, which should be accounted for in epidemiologic studies and risk 

assessments (Fryer et al., 2006; Liu et al., 2007). Personal monitoring may be performed 

with active monitors or passive samplers, and is considered the most accurate estimate of 

a person’s ‘true’ exposure and the mobility of people across various microenvironments, 

according to their daily activities (Carrer et al., 2000). However, some studies reveal that its 

wide-scale application to evaluate exposures at the population level is limited due to their 

cost and sometimes even impractical for certain subpopulations (Liu et al., 2007; Zou, 

2009).  

Biological monitoring is a valid tool for assessing the internal exposure of a toxicant 

in the general population, and is particularly useful when applied in combination with other 

exposure assessment methods (Hertel et al., 2001). Thus, biological monitoring is 

conducted by collecting samples of human fluids and/or tissues (such as blood, urine, 

breast milk or hair) in order to detect exposure. There are different possible biological 

indicators for benzene exposure. Trans, trans muconic acid (t,t-MA), a urinary open-ringed 

metabolite constitutes a sensitive biomarker for benzene exposure, and can be used to 

differentiate populations exposed to external benzene levels of 0.5 ppm and smokers from 

non-smokers (Pezzagno et al., 1999). 
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The present work provides a quantitative assessment and validation of the 

individual exposure to benzene by using a new exposure modelling tool, the GPS based 

Exposure Model to Traffic-related Air Pollution (ExPOSITION). Also, a probabilistic 

approach based on the Johnson transformation system to characterize the variability of 

indoor concentrations in the predicted individual exposure is presented. The validation of 

the modelling approach is performed based on personal exposure measurements and 

biological monitoring data. For this purpose, exposure estimates obtained from personal 

monitoring and from biomarkers in urine samples collected during the daily activities of 

individuals were compared with exposure estimations in order to evaluate a feasibility of the 

proposed modelling approach. 

6.2. Methodology 
 

The Leiria urban area was selected in this study for the individual exposure 

modelling and monitoring. It is situated in the central part of Portugal and covering 8 sub-

municipality units. The study domain (Figure 6.1) covering an area of 15 x 15 km2 with 20m 

grid resolution for dispersion modelling and a complex terrain, containing about 34000 

buildings considered as obstacles for the air dispersion modelling. The study period is 

focused from 21 to 25 of May 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Study domain including road network, buildings, administrative units, and location of fuel 

stations, traffic counting points, air quality monitoring station and home adress of individuals. 

Leiria  

Leiria  
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The measurements campaign design and the human exposure modelling system 

applied in this study are described in the following sections.  

 

6.2.1. Measurements campaign  

The campaign has taken place in Leiria urban area, during 4 working days and 1 

holiday. During this period the data from air quality monitoring station, individual exposure 

and biomonitoring, GPS trajectories and traffic counts were collected. 

� Participating individuals  

In this study, 10 healthy non-smoking adult volunteers were recruited to estimate 

individual exposure to benzene, providing their GPS trajectories by using mobile phones 

with GPS during their daily activities for the study period. Overall, the individuals selected in 

the framework of this study are office workers with only one exception that include a fuel 

station attendant. The selection of volunteers was performed without regard to age, sex, or 

ethnic background. Potential subjects were excluded if they were smokers, under 18 years 

old, unhealthy (e.g. had chronic respiratory or coronary disease or cancer), or their 

commute from home to work was not within the study area. Subjects resided in four 

different sub-municipality units of Leiria urban area: Parceiros, Barreira, Leiria and 

Milagres. 

In order to validate the exposure model, personal and biological exposure to 

benzene was monitored during the usual daily activities of individuals and no restrictions on 

personal behaviour during the sampling time were imposed. However, due to the limited 

number of actively pumped personal samplers available, only 5 individuals were monitored 

during the same sampling time in order to validate the new exposure modelling approach. 

� GPS Trajectories of individuals 

The trajectories of the individuals were collected by TTGPSLogger tracking system 

(TTGPSLogger, 2012) installed on mobile phone providing second-by-second GPS data on 

the location of the volunteers. TTGPSLogger is a GPS logger software for Symbian S60 

allowing to store detailed time-location information on geographic coordinates, speed and 

time during its use over the daily activities of individuals. This information was stored in a 

GPX file format that is compatible with Geographical Information System (GIS) presenting 

very useful to analyse the spatial distribution of large amount of GPS raw data collected. 
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� Traffic counts 

For the traffic volume characterization, 25 counting stations spatially dispersed 

within the study area (Figure 6.1) were used providing information on traffic flow and 

distinguish between three vehicles categories (light vehicles, duty vehicles and 

motorcycles). Thus, a sample of data from the counting points were collected with intervals 

of 10 minutes during 1 hour and 30 minutes at morning peak hour, respectively, were 

considered in order to calibrate the transportation model. 

� Air quality and meteorological parameters  

For characterizing the ambient conditions, concentrations of several air pollutants 

including different fractions of particulate matter, ozone, sulphur dioxide, oxides of nitrogen, 

carbon monoxide, hydrocarbons, and meteorological parameters such as temperature, 

wind direction and wind speed were measured at one monitoring station located in sub-

urban area of the city (Figure 6.1). Taking into account the objectives of the current study, 

only benzene concentrations obtained with Environment VOC71M (PID) analyser with a 

temporal resolution of 15 minutes are presented and analysed.  

� Personal exposure monitoring  

Simultaneously with individual’s trajectories collection, the participants were 

carrying at their breathing zone actively pumped personal samplers to collect benzene 

concentrations during 24 hours, replacing the personal sampler through the day. Typically, 

for each day of the measurements campaign the personal samplers were substituted at  

8 a.m., 2 p.m. and 8 p.m., obtaining a total of 37 personal samplers collected. 

Benzene, toluene and xylene in air were analysed with an internal method based 

on ECA (1997). Briefly, air was collected on TENAX GR tubes using a personal air 

sampling pump (SKC Pocket pump) at a flow rate of 0.05 l.min-1 for a period of 

approximately 8h (480 minutes). Analysis of compounds was performed by automatic 

thermal desorption coupled with gas chromatography fitted with flame ionization detector 

and one apolar column. Total Volatile Organic Compounds (TVOC) were quantified using 

the toluene response factor as already reported in Madureira et al. (2011). During the 

analysis of TVOC, concentrations of benzene, toluene and xylene were also determined. 

However, only benzene concentrations are analysed in the framework of this study. 
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� Biological exposure monitoring  

Biological monitoring was carried out in parallel to the personal exposure 

monitoring with the purpose of analysing t,t-MA as biological indicator for benzene 

exposure. Thus, at the same personal samplers were replaced, spot urine samples were 

collected from each volunteer for t,t-MA analysis. Urine samples were collected in 30 mL 

polypropylene cups and transferred to laboratory in portable coolers containing ice packs 

and stored in the freezer at -20ºC. A total of 37 urine samples were collected (3 per subject 

per day). 

t,t-MA was determined by a method described by Roma-Torres et al. (2006). The 

limit of quantitation for t,t muconic acid in urine was 50 µg.mL-1. Concentrations obtained 

were corrected with the corresponding creatinine value. Creatinine was determined using 

CREAJ Gen2 kit (PN 04810716190, Roche Diagnostics) on COBAS INTEGRA 800 

according to manufacturer instructions. 

 

6.2.2. Human exposure modelling 

The ExPOSITION model is developed to assess short (e.g. hourly, daily) and long-

term (e.g. annual) inhalation exposures of the individuals to traffic-related air pollutants over 

urban spatial scale with high spatial-temporal resolution. For this purpose, air pollution 

concentrations (Ct) are estimated for different microenvironments j and combined with time 

t spent by individual i in each microenvironment using trajectories collected by mobile 

phones with GPS technology. 

Personal exposure is characterised by ExPOSITION model in terms of time-

weighted average exposure concentration calculated as following: 

∫−
=
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E    (6.1) 

where iE (µg.m-3) is the average exposure concentration for person i, C(x,y,z,t)i 

(µg.m-3) is the air pollutant concentration occurring at a particular point where the person i 

is located during the time t and spatial coordinate (x,y,z) and t1 and t2 (h) are the starting 

and ending times of the exposure event. 
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� Microenvironmental concentrations 

Outdoor and several relevant indoor microenvironments are distinguished in the 

exposure model as presented in Table S.1 (see supplementary material, Section 6.5). 

Outdoor concentrations are estimated externally using atmospheric dispersion modelling as 

described in Section 6.2.3. For indoors and in-vehicle microenvironments it is assumed 

that: 1) within a microenvironment the pollutants are homogeneously distributed; 2) 

pollution levels in each microenvironment are related with outdoor pollution levels that 

occurring in the immediate vicinity to the microenvironment; 3) infiltration of outdoor 

pollution and contribution of indoor pollution sources is different for each type of 

microenvironments. In a general form the concentration C(x,y,z,t) (µg.m-3) for 

microenvironment j with a spatial coordinate (x,y,z) at time t is calculated taking into account 

the outdoor concentration C(x,y,z,t)ambient (µg.m-3) at a neighbourhood cell, the 

outdoor/indoor ratio αj (dimensionless) and the factor βj (µg.m-3) to characterize the 

additional contribution of indoor pollution sources: 

ambientjj tzyxCtzyxC ),,,(),,,( ×+= αβ    (6.2) 

However, due to the absence of European studies providing information on direct 

contribution of the indoor sources to the benzene concentrations in different 

microenvironments, βj is described using a probabilistic approach. Thus, the variability of 

benzene indoor concentrations is characterised using random numbers generated from 

cumulative distribution function identified for each type of microenvironments. For this 

purpose the data reported by the PEOPLE project (Ballesta et al., 2006) are used in 

combination with Johnson transformation (Johnson et al., 1994) to fit the experimental data.  

The Johnson system is widely used in the case of modelling data with an unknown 

distribution (Biller and Nelson, 2003) and has the flexibility to match any feasible set of 

values for the mean, variance, skewness, and kurtosis. This method is used in a wide 

range of applications, including human exposure studies (Flynn, 2006; 2007; 2010). 

In this study, the Johnson system algorithm is implemented in MATLAB to generate 

a matrix of random numbers drawn from the distribution in the Johnson system that 

satisfies the four quantiles of the desired distribution. For this purpose, 1000 random 

numbers drawn from the appropriate distribution in the Johnson system were estimated to 

define βj  in the Equation (6.2) considering the percentiles of the experimental data reported 

for Lisbon (Ballesta et al., 2006), finding thus the values of the transformation coefficients 

that defines the corresponding distribution for each type of microenvironments (Table S.1, 

see supplementary material). The α parameter presented in the Table S.1 is estimated as a 
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ratio between the median indoor concentrations to the median outdoor concentration 

reported for the measurements. 

� Time-activity patterns 

Location of the individuals in space and in time is required to estimate individual 

exposure in a combination with pollutants concentration fields provided by air pollution 

dispersion model. In this study, time-activity patterns were obtained from GPS trajectories.  

The GPS dataset provide information on the locations in terms of coordinates (e.g. 

latitude and longitude) but contains no semantic meaning (Zhou et al., 2007) like the 

address or characteristics of location, i.e. type of microenvironments. Therefore, in order to 

obtain information on time-activity patterns the significant places and movement activities 

are extracted from the GPS raw data by ExPOSITION model using the trajectory data 

mining and analysed within GIS environment in order to overlay this information with other 

geo-spatial information. 

For this purpose, several levels of GPS data processing are required in order to 

identify important patterns. Under this context, a preliminary processing of GPS data is 

implemented as a first step to “clean” the data by using an error-checking algorithm to 

remove invalid points, considering a measurement as valid if the GPS receiver is able to 

see at least four satellites and if the horizontal dilution of precision (HDOP) value is below 

6. Also, incorrect entries of the travel speed are evaluated. 

At next, the places where the individual was stopped for a certain time period are 

distinguished from moving activities, like driving a vehicle. This algorithm is iterative and it 

is based on searching for locations where the user has spent a longer time period 

depending thus on two scale parameters: a distance threshold and a time threshold (Li et 

al., 2008). Finally, it is necessary to discover which of these points belong to the same 

activity/place (significant places). For this purpose, a second level analysis based on a 

density-based clustering algorithm was implemented to group the points belonging to the 

same premises and to identify personally significant places. 

In this study, “significant places” are considered as those locations that play 

significant role in the activities of a person, carrying a particular semantic meaning such as 

the living and working places, the restaurant and shopping mall, etc. Additionally, a 

“movement activity” is distinguished taking into account location change over time which 

can be aggregated by the purpose of the trip of an individual. 
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These data are further analysed within a GIS for classification of 

microenvironments and to obtain information on time-activity patterns. For this purpose, a 

geoprocessing of GPS data is performed using ModelBuilder module provided by ArcGis10 

(Allen, 2011). The geoprocessing of GPS data is accomplished by considering analytical 

functions and several predefined criteria based on speed, time and spatial location register 

for the trajectory points to classify the significant places and movement activities to three 

activity categories: indoor, outdoor and in vehicle travel. The detailed GIS-maps are used to 

identify and to classify the microenvironments. 

This detailed time-activity patterns for each individual will be linked with the 

pollutants concentration fields varying in space and in time provided by air pollution 

dispersion model described in the next section, producing exposure estimates within 

distinct microenvironments. 

 

6.2.3. Transport, Emission and Air quality modellin g 

Air quality modelling allows establishing the relationships between current 

emissions and current air quality at particular locations. Information on variability of air 

pollutant concentrations is essential for the exposure quantification and these data may be 

provided by any modelling tools if it is compatible with ExPOSITION requirements in terms 

of spatial and temporal data resolution.  

In the present study, road traffic and vehicle refuelling at fuel stations were 

considered as the main outdoor local emission sources of benzene. In this perspective, the 

characterization of hourly emissions from road traffic sources and vehicle refuelling 

required by the air quality model was performed.  

In order to quantify transport activity data required by the road traffic emissions 

model, the classic, four-step model was used (Ortúzar and Willumsen, 2006). This model 

consists of four sequential submodels: trip generation; trip distribution; modal split; and 

traffic assignment. It determines the total trips generated (produced and attracted) in each 

one of the 104 zones into which the study domain was divided, distributes them to the other 

zones (104 x104 origin destination-pairs), allocates them to the different transport modes 

available, and finally assigns the vehicles to the road network. Trip generation and 

distribution was made based on the results of a previous study (Pinto et al., 2008), updated 

with recent socio-economic data and the traffic data obtained for the 25 counting stations 

(in Section 6.2.1.). Car traffic assignment was carried out according with the Wardrop 

principle – at equilibrium drivers cannot improve their travel times by changing routes 
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(Sheffi, 1992). Calculations were made with the TransPlan software (Santos and Antunes, 

2005). 

Hourly traffic emissions were estimated by Transport Emission Model for Line 

Sources (TREM). The emission factors considered by TREM depend on average speed, 

fuel type, engine capacity and emission reduction technology. A new version TREM-HAP 

(Transport Emission Model for Hazardous Air Pollutants) prepared to calculate HAPs 

emissions (Tchepel et al., 2012) has been used to provide inputs for AUSTAL2000 

dispersion model.  

The vehicle refuelling emissions considered in this study were quantified based on 

the CONCAWE methodology (CONCAWE, 2009). Vehicle refuelling emissions come from 

vapours displaced from the automobile tank by dispensed gasoline and from spillage. Thus, 

the emission of the pollutant p (Ep (kg)) for each fuel station i is estimated as following:  

TVPVeE ipip ××=       (6.4) 

where eip is the emission factor (kg. m-3.kPa-1) for pollutant p and fuel station i; Vi is the 

volume of gasoline dispensed (m3) for each fuel station i and TVP is the True Vapour 

Pressure of gasoline at storage temperature (kPa) (CONCAWE, 2009). 

In order to calculate the atmospheric dispersion of benzene, the AUSTAL2000 

dispersion model was applied in the current study allowing to establish relationship 

between emissions and air quality, and to provide hourly pollutants concentration fields. 

AUSTAL2000 is the official reference air dispersion model of the German Regulation on Air 

Quality Control for short-range applications and it is based on Lagrangian approach that 

simulates the dispersion of air pollutants by utilizing a random walk process (Janicke and 

Janicke, 2002; Janicke, 2004). The model system includes a diagnostic wind field model to 

account for terrain profile and/or buildings structures. Additionally to the detailed input data 

on emissions, a continuous time series of meteorological parameters, including wind 

direction, wind speed and atmospheric stability are required by AUSTAL2000. 

To characterize air pollution related with non-traffic sources and/or transported from 

outside of the modelling domain, the background pollution levels were characterised. For 

this purpose, observations from the fixed monitoring station were used and processed to 

remove the local noise from the air quality time series in accordance with Tchepel and 

Borrego (2010) and Tchepel et al. (2010). 
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6.3. Results and Discussion 
 

In this section, the results obtained from the measurements campaign and from 

modelling are presented and discussed. 

 

6.3.1. Transportation and Emissions data 

In order to estimate human exposure to benzene, hourly emissions from refuelling 

in fuel stations and from road traffic sources were estimated and inputted into the 

AUSTAL2000.  

The spatial variations in traffic flows obtained from the transportation model and 

considered in hourly traffic emissions estimation is presented in Figure 6.2a evidencing 

higher traffic flow values for main urban area entrances roads.  

Figure 6.2b illustrates the spatial variations in hourly traffic-related emissions and 

hourly automobile refuelling emissions across the study area obtained by linking emissions 

outputs to GIS maps. As could be seen in the figure, the largest contribution of benzene to 

the ambient air levels locally is the road traffic source contribution, evidencing as expected 

a spatial distribution of emissions similar to traffic flow observed for the study domain 

(Figure 6.2a). 

 

 

 

 

 

 

 

 

Figure 6.2. Spatial distribution of a) traffic flow at the morning peak hour and; b) hourly benzene emissions 

from fuel stations and road traffic sources. 

 

 

a) 
 

b) 
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6.3.2. Air quality, meteorological data and time-ac tivity patterns 

As mentioned in Section 6.2.1 the outdoor benzene concentrations and 

meteorological data were monitored in a sub-urban location at one fixed monitoring station 

(Figure S.1, see supplementary material).  

The spatial distribution of the air pollutants concentration obtained by dispersion 

modelling AUSTAL2000 is presented in Figure 6.3a showing non-homogeneous distribution 

of benzene levels within the study domain. 

 

a) b) 
 

 

Figure 6.3. a) Spatial distribution of daily benzene concentrations related with emissions from modeled 

sources in the study domain; b) An example of time spent by the individual in each microenvironment 

during a typical working day. 

 

The analysis of the results indicates that although emissions from road traffic will 

determine the overall pattern of benzene concentrations related with distribution of main 

network, important hot-spots of high concentration are also located in close proximity to 

gasoline fuel stations. Also, time-activity patterns obtained for one of the individuals are 

presented in the Figure 6.3b as an example, evidencing the variation of benzene 

concentrations in space and in time provided by air pollution dispersion model and the 

influence of time spent in each microenvironment type. 
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6.3.3. Individual exposure modelling 

The individual exposure assessment performed by the ExPOSITION model is 

presented in this section. In order to better understand the contribution of different 

microenvironments to the individual exposure to benzene obtained during the study period, 

several statistical parameters calculated based on data for 10 individuals, including 

average individual exposure, 5th and 95th percentile and extreme values obtained from the 

ExPOSITION model were analysed (Figure 6.4a).  
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Figure 6.4. a) Exposure concentrations for benzene (µg.m-3) in different microenvironments; b) Time-

distribution of time-activity patterns of all individuals. 

 

A considerable variability in the benzene exposure concentration in each 

microenvironment type is evidenced in Figure 6.4a, namely for “in vehicle” and “workplace” 

microenvironments, showing thus the importance to consider the distinct 

microenvironmental concentrations in individual exposure modelling. The higher exposure 

concentrations estimated for workplaces (about 44% to the total daily values) evidence the 

important contribution of their indoor sources to personal exposure. This fact is also related 

with the proximity of the working places (offices) of the considered individuals to urban 

roads with intensive traffic, as well as contribution of benzene pollution levels obtained for 

the fuel station attendant. On the other hand, exposure concentration calculated for 

residence are characterised by smaller variability range. However, exposure levels at 

residences represent a great relevance due to the time spent (about 43%) by the 

individuals during their daily activities (Figure 6.4b). 
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In order to better analyse the individual exposure obtained during the study period 

(5 days), the temporal variation of the exposure concentration modelled for the 10 

individuals, whose GPS trajectories were collected, was analysed as presented in Figure 

S.2 provided in supplementary material. Also, the temporal variation of the outdoor 

background concentrations obtained from the fixed monitoring station during the study 

period is presented (Figure S.2). 

 

6.3.4. Validation of the individual exposure model  

In order to evaluate a feasibility of the proposed modelling approach, the 

ExPOSITION model predictions and exposure measurements obtained from personal 

monitoring and from urinary biomarker in urine samples collected during the daily activities 

of the 5 individuals are presented and analysed in this section.  

For evaluation of the modelling approach by means of comparison with direct 

measurement obtained from personal monitoring, different statistical indicators were 

estimated (Figure 6.5a). The analysis is presented considering the values obtained from 

several personal samples (37 values) collected during the daily activities of individuals and 

model outputs averaged over the same sampling period. As could be seen from Figure 

6.5a, a good agreement between the personal exposures predicted by the model and the 

data from actively pumped personal samplers is obtained. The ability of the model into 

follow the temporal variability of personal exposure measurements collected during daily 

activities of the different individuals is evidenced in Figure 6.5a, reflecting thus the temporal 

variability impact of meteorological conditions and emissions data in the predicted 

individual exposure. The Pearson's correlation coefficient of 0.66 with a P-value < 0.0001 

and 95% confidence interval of 0.42 to 0.82 between two dataset confirms the model 

capability to describe the exposure variations in time, in space and between the individuals. 

In addition, the positive fractional BIAS value of the 0.32 shows that the exposures are 

over-estimated by the proposed model, being within the range of the acceptable values ((-

2) to 2) and very close to the ideal value of 0. The good performance of the exposure 

model is also evidenced by the low value of the normalized mean squared error (0.8), as 

well as 71% concentrations are predicted within a factor of two. 
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Figure 6.5. Scatter plot of benzene individual exposure obtained by: a) the modeling approach and by 

personal monitoring (µg.m-3); b) the modeling approach based on the home address and by personal 

monitoring (µg.m-3). 

 

In several studies, personal exposure based on home address is considered as a 

good exposure indicator. Therefore, the feasibility of this exposure metric is presented and 

analysed in this study based on personal exposure measurements collected during daily 

activities (Figure 6.5b). Thus, as evidenced in the figure and confirmed by the Pearson's 

correlation coefficient of 0.23 (P=0.1670, 95% CI -0.10 to 0.53) between two dataset, there 

is a poorer agreement between the personal exposures estimate at residence place and 

the data obtained from personal sampler, which suggests that the proposed modelling tool 

based on the trajectory analysis presents as a more consistent approach to address the 

temporal and spatial variability of the personal exposure in urban areas. 

For evaluation of the modelling approach, several statistical parameters, including 

daily average exposure concentration, 5th and 95th percentile are also analysed for each 

individual and compared with direct measurements obtained from actively pumped 

personal samplers as presented in Figure 6.6.  

Overall, as could be seen in Figure 6.6, the range of personal exposure levels 

obtained from the ExPOSITION model is in agreement with the exposure measurements 

showing only exception for the fuel attendant (individual 4) that evidencing an 

overestimation of the exposure levels by the model for this individual. Model overestimation 

of evaporative benzene emissions attributed to refuelling is one of the plausible causes for 

the exposure overestimation for the individual 4 during the working hours. 

 

r = 0.66 

r = 0.23 
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Figure 6.6. Relation between daily average exposures to benzene provided by the model and 

measurements of individual exposures obtained by personal monitoring. 

 

Individual exposure estimated by the model and measured from personal 

monitoring are also compared with biomonitoring data using trans,trans-muconic acid (tt-

MA) in urine as benzene biomarker (Figure 6.7). In this analysis, daily average values were 

used in order to cover the temporal representativeness of biomonitoring samples. 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0 0.2 0.4 0.6 0.8 1.0

B
en

ze
ne

(µ
g.

m
-3

)

Biomonitoring
(mg.g creatinine -1)

Modelled

Measured

 

Figure 6.7. Scatter plot of benzene individual exposures measured and provided by the model (µg.m-3) 

and concentrations of tt-MA in urinary samples (mg.g creatinine-1). 
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As could be seen from the Figure 6.7, a cluster of points with notably different 

behaviour was identified in the biomonitoring data presenting no direct correlation with both 

the exposure model and personal monitoring. This fact could be related with external 

factors provided by other exposure routes (e.g. dietary), not just air, that are only reflected 

by the biomonitoring data. Thus, excluding the 4 points with no direct correlation with 

personal measurements, a Pearson's correlation coefficient of 0.74 (P=0.0238, 95% CI 

0.14 to 0.94) between the daily average estimated values and measured from 

biomonitoring is obtained, indicating thus a good agreement between two dataset. 

As mentioned previously, biomarkers estimates consider all exposure routes and 

sources over time. Although this is a main advantage in many situations it can also make 

difficult data interpretation. Noteworthy, out of the amount of absorbed benzene by 

humans, it has been estimated that only approximately 2% is eliminated as t,t-MA 

(Senzolo, 2001). Moreover, in addition to benzene exposure, smoking, genetic 

susceptibility, coexposure to toluene and pregnancy, intake of the preserving agent sorbic 

acid, which is a widely used preservative in food products, can influence the levels of 

urinary t,t-MA (Scherer, 1998). In this study, we can exclude the first factors but because 

no information was collected on food and drink intake in the study subjects, the contribution 

of sorbic acid and its salts in the excretion of t,t-MA could not be properly evaluated. 

Furthermore, the higher levels of t,t-MA were obtained in samples collected after mealtime. 

Previous studies have shown (Pezzagno et al., 1999) that after oral administration of sorbic 

acid contained in food may account for urinary t,t-MA levels similar to those found due to 

occupational exposure to benzene. 

 

6.4. Conclusions 
 

In this study, a comprehensive approach to quantify individual exposure to benzene 

in urban areas with high temporal and spatial resolution is implemented based on a new 

exposure modelling tool ExPOSITION. An application example and validation of the 

modelling approach against personal exposure measurements and biological monitoring 

data is presented and discussed. Overall, the daily average exposure to benzene predicted 

by the ExPOSITION model correspond to 1.6 µg.m-3 in terms of the mean value for all 

individuals and 0.8 to 2.7 µg.m-3 in terms of 5th to 95th percentiles. Individual exposure is 

particularly sensitive to high spatial and temporal variations of the pollution levels, 

emphasizing the importance of the indoor microenvironments and hot spots contribution 
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that suggest limited representativeness of background concentrations obtained from point 

measurements.  

The evaluation of proposed modelling approach by means of comparison with 

direct measurements collected for the selected individuals performed in this study indicates 

that there is a good agreement of the model results with personal monitoring and t,t-MA 

considered as biological indicator of benzene exposure showing a Pearson's correlation 

coefficient of 0.66 (P<0.0001, 95% CI 0.42 to 0.82) and 0.74 (P=0.0238, 95% CI 0.14 to 

0.94), respectively.  

The modelling approach presented in this work provides more consistent results in 

comparison with the personal exposure estimates based on home address outdoor 

concentrations, as demonstrated by the lower Pearson's correlation coefficient of 0.23 

between personal exposure based on home address and the data from actively pumped 

personal samplers. Thus, the proposed modelling tool based on the trajectory analysis 

presents as a more consistent approach to a better understanding of exposure by 

establishing source-receptor relationship and by explicitly addressing the temporal and 

spatial variability in the exposure. 

 

6.5. Appendix. Supplementary data 
 

Table S.1.  

 

Table S.1. I/O ratio and coefficients used to define the Johnson distribution for different 

microenvironments. 

Microenvironment α Type of 
distribution* 

Coefficients 

γ δ ξ λ 

Residence 0.92 SU -0.6649 1.1791 -0.1808 0.4686 

Vehicle 2.42 SB 1.1976 0.4857 -0.0845 1.7120 

Office 1.55 SU -2.2909 2.3231 -0.6518 0.6161 

School 1.11 SB 0.5003 0.1903 -0.9400 2.6853 

Public access 0.42 SU -0.5429 0.5088 -0.0559 0.1075 

Restaurant/Bar 1.16 SB 0.4686 0.6534 -0.6524 2.8782 

*SB - Logistic transformation (bounded); SU - Hyperbolic sine transformation (unbounded); γ and δ - shape parameters; 
ξ - location parameter; λ - scale parameter 
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The Johnson transformation system can be written as:  

( )







 −Γ⋅+=
λ

ξδγ Z
X

 

where X is the random variable X whose distribution is unknown; Z a standard normal 

random variable with mean 0 and variance 1 so that Z ∼ N(0, 1); y and δ are shape 

parameters, λ is a scale parameter, ξ is a location parameter, and Γ is the transformation 

whose form defines the four possible distribution families in the Johnson translation system 

known as identity (SN), exponential (SL), logistic (SB), and hyperbolic sine transformations 

(SU). 

 

Figure S.1.  

a) 

 

b) 

 

Figure S.1. a) Hourly wind speed obtained from measurements as a function of wind direction; b) temporal 

variation of hourly average background benzene concentrations. 

 

The outdoor benzene concentrations and meteorological data monitored in a sub-

urban location at one fixed monitoring station during the sampling period are presented in 

Figure S.1. As could be seen from the Figure S.1a, the higher wind intensities are achieved 

with winds blowing from the North, which is also the predominant wind direction, although 

there is a significant contribution of the East direction. As regards the variation throughout 

the day, generally the wind speed gradually increases, reaching maximum values between 

2 p.m. and 5 p.m. and minimum values during the night. 

The time series of hourly background concentrations of benzene measured from 

fixed monitoring station is presented in the Figure S.1b, evidencing a pronounced diurnal 

variation for benzene concentrations during the study period. The lower concentrations of 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
en

ze
ne

(µ
g.

m
-3

)

Days
21 22 23              24               25



CHAPTER 6: MODELLING OF HUMAN EXPOSURE TO BENZENE IN  

URBAN ENVIRONMENTS 

186 

benzene are observed during the holiday, day 22, mainly for the time period between 12 

p.m. to 6 p.m.. Additionally to the lower emissions, high values of wind speed were 

observed during the same time period that influences the dispersion conditions and 

consequently benzene concentrations. On the other hand, the highest values are reached 

during the 3rd day of the campaign period, achieving hourly maximum value of 3.10 µg.m-3 

and 1.34 µg.m-3 of daily average concentrations. 

 

Figure S.2.  
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Figure S.2. Temporal variation of individual exposure estimates and measurements of outdoor 

background concentrations for benzene (µg.m-3). 

 

The temporal variation of the exposure concentration modelled for the 10 

individuals and the outdoor background concentrations obtained from the fixed monitoring 

station during the study period is presented in Figure S.2. The results suggest that the 10 

individuals are exposed to different benzene concentrations during their daily activities, and 

a significant variability in benzene exposures across the individuals is evident. Moreover, it 

is clear in Figure S.2 that the benzene background concentrations measured at monitoring 

station are significantly lower than the exposure concentrations estimated for the 

individuals. Therefore, point fixed background observations may not be representative to 

describe the range of exposure to benzene. The individual exposure concentrations during 

night time (until 7 a.m. approximately) when the people stay in a residence presents a 

similar trend with the outdoor background concentrations. However, throughout the day and 

depending on the daily activity of the individual the hourly average exposure concentrations 

tend to be greater in magnitude and more variable than background pollution levels.  
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As expected, the individual 4 (fuel station attendant) is affected by the highest 

exposure concentration values with a peak value at 10 a.m., 3 p.m. and 6 p.m. of about 6.2 

µg.m-3, 4.9 µg.m-3 and 5.1 µg.m-3, respectively. This is related with the highest 

concentrations and the time spent in the workplace during this time period. 
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7. GENERAL CONCLUSIONS  

 

The main purpose of the research presented in this dissertation was to develop a 

consistent approach and a new exposure modelling tool to estimate individual exposure to 

traffic-related hazardous air pollutants with high spatial and temporal resolution based on 

an innovative approach for trajectory analysis of the individuals. This research performed 

through a series of spatial analysis and modelling approaches intends to contribute to an 

improved knowledge regarding personal exposure to air pollution in the urban environment. 

The main achievements are presented and organized in seven chapters starting with the 

overall introduction to the particular topics, human exposure, urban air pollution, exposure-

related health effects, human mobility patterns and technological resources, and their 

relationships. 

 

7.1. Summary of Research and Findings 
 

The evidences of health effects related to exposure to air pollution at levels usually 

experienced by individuals in urban areas were analysed and established. The modelling 

results suggest a significant potential health benefits by meeting the air quality limit values 

(2008/50/CE) for short-term PM10 exposure in one of the most affected areas by higher 

concentrations in future climate, Porto Metropolitan Area. The study pointed to the potential 

annual reduction of 3.2 (95% CI 2.24 – 4.18) deaths.100 000 inhabitants-1 due to 

cardiovascular diseases and 2.12 (95% CI 0.53 – 3.95) deaths.100 000 inhabitants-1 due to 

respiratory diseases, by meeting the air quality limit values (2008/50/CE) for cumulative 

short-term (40 days) exposure to PM10. Moreover, an improved methodology to process 

population statistics taking into account daily average population mobility and filtering of air 

quality time series to improve representativeness of measurements was implemented. The 

results suggest that the potential health benefits related with the reduction of air pollution 
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levels for the study population estimated by this novel approach are 50 – 56% higher than 

those provided by the traditional approach (exposure estimate without human mobility). 

These findings suggest that human mobility and inhomogeneity of air pollution levels 

determine human exposure to urban air pollutants, and should be considered to 

characterize human exposure for an improved health impact assessment. Moreover, the 

distinct results obtained with and without population mobility are strongly influenced by the 

input data on population mobility and air pollution spatial variation considered in the 

analysis thus showing the sensitivity of the short-term risk assessment methodology to 

these parameters.  

Also, health risk within urban areas was evidenced under climate-induced changes 

in air pollution levels. The results obtained in this study revealed that climate change alone 

will deeply impact the PM10 levels in the atmosphere, affecting consequently all the 

Portuguese districts with pronounced negative effects on human health, mainly in major 

urban areas, such as Porto and Lisbon. The short-term variations in the PM10 

concentration under future climate will potentially lead to an increase of 203 premature 

deaths per year in Portugal, achieving the most significant increase in premature deaths in 

Porto area, corresponding to approximately 8%. Also, the study pointed to 81% of cases 

attributed to future pollution episodes with daily average PM10 concentration above the 

current legislated value (50 µg.m−3). In addition to importance of indirect effects of climate 

change on human health, this study also highlights the significant contribution of pollution 

peaks in urban areas to acute exposure, despite their low frequency. Given the little 

information concerning the impact of environmental factors on human health that has been 

published for Portugal, these outcomes provide important information to support local and 

national policy related with air pollution and human health issues. 

For a comprehensive understanding of exposure to traffic-related air pollution in 

urban areas and consequent health effects, the quantification and characterization of 

traffic-related emissions with high spatial and temporal resolution was performed by 

developing a modelling approach for quantification of hazardous air pollutants emissions 

related to the traffic activity in urban areas. The results obtained by application of the 

Transport Emission Model for hazardous air pollutants (TREM-HAP) pointed different trend 

taking into account the seasonal variations (summer and winter periods) on total daily 

emissions of traffic-related hazardous air pollutants for the analysed urban area. Benzene 

emissions are 17% higher at winter time due to important contribution of cold starts while 

other traffic-related air pollutants are mainly affected by seasonal changes in the traffic 

volume observed for the study area, resulting in higher emissions during the summer 

period. Also, a probabilistic emission inventory for traffic-related air pollutants considering 

different road types was obtained for an urban area. Several statistical parameters were 
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analysed for the selected pollutants, evidencing that PM2.5 and benzene have the largest 

uncertainty in the absolute daily emissions. In addition, highly uncertain emission data were 

obtained for the urban roads. Oppositely, emissions calculated for highways were generally 

characterised by a very small uncertainty (less than ±5%) except for PM2.5 (–16% to +9%). 

This information on spatial distribution of the traffic-related air pollutants emissions for each 

road segment are essential for air quality modelling and further exposure assessment 

studies. Also, this tool opens a possibly to analyse human exposure to traffic-related air 

pollution in urban areas using probabilistic approach, integrating transportation policy 

definition with the air quality assessment and human exposure assessment. 

Through this work, the spatial and temporal heterogeneity of air pollution levels that 

characterizes the urban environment was evidenced and identified as a major issue for 

study of exposure to urban air pollution. Thus, based on enhanced technological resources, 

namely GIS and GPS, a new modelling tool for quantification of short and long-term 

exposure to urban air pollution at the temporal and spatial scale required to estimate 

exposure at the individual level was developed for better understanding of exposure-related 

health effects to urban air pollution. The development of the GPS based Exposure Model to 

Traffic-related Air Pollution model (ExPOSITION) constitutes one of the major results of this 

work. The ExPOSITION model was developed based on a novel approach for trajectory 

analysis of the individuals collected via mobile phones with GPS technology and air 

pollution modelling with high spatial-temporal resolution within distinct microenvironments. 

Thus, one of the innovative aspects of this work was the development and implementation 

of an algorithm based on trajectory data mining analysis and geo-spatial analysis within 

GIS to process the GPS trajectories and extract the time-activity patterns of individuals, 

enabling to locate and classify microenvironments frequented by the individuals during their 

daily activities, as required for the exposure assessment. In addition, two different 

approaches were considered to characterize the pollution levels in these several 

microenvironments distinguished in the ExPOSITION model (i.e. residence, other indoors, 

outdoors, and in-vehicle). Thus, outdoor concentrations are estimated using atmospheric 

dispersion modelling and different modelling tools may be used to provide this external 

information for ExPOSITION. For indoors and in-vehicle microenvironments a probabilistic 

approach based on Johnson system of distributions was implemented as an integrated part 

of ExPOSITION algorithm to characterize the variability of indoor concentrations in the 

predicted individual exposure. 

In order to characterize an individual’s contact with a given urban pollution levels at 

different microenvironments, the ExPOSITION model was applied to Leiria urban area to 

quantify the short-term individual exposure (1 day) to PM2.5. To achieve this purpose, 

hourly PM2.5 emissions from road traffic were estimated by TREM-HAP and PM2.5 
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concentrations hourly simulations were conducted with AUSTAL2000 model taking into 

account hourly meteorological conditions and background concentrations given by the 

nearest background air quality monitoring station. The results obtained by the time-activity 

pattern discovery sequence, based on trajectory data mining and geo-spatial analysis 

within GIS, highlights the added value of this innovative approach for exposure 

assessment. For instance, analysing the results achieved during the several levels of GPS 

data analyses in case of one of the individuals, 30179 collected GPS raw points resulted in 

295 important locations that are linked with the pollutants concentration in distinct 

microenvironments to assess his individual exposure. Such results also indicate that this 

approach could overcome some limitations related with the analysis of GPS raw data and 

its implications for human exposure assessment, thus allowing to identify and classify time-

activity patterns based on raw GPS tracking data at the spatial and temporal scale required 

for exposure assessment.  

Additionally, the individual exposure estimates provided by the ExPOSITION model 

give relevant information regarding the importance of indoor microenvironments’ 

contribution to the daily individual exposure to PM2.5 in urban areas, particularly the 

residence (51%), thus stressing that individual exposure depends not only on the pollution 

levels but also on the time spent in the microenvironment during the individual´s daily 

activities. In addition, it was possible to verify that the variability in the PM2.5 exposure 

concentration in each microenvironment type is significant showing the importance to 

consider this variability in individual exposure modelling. Overall, the daily average 

exposure to PM2.5 predicted by the ExPOSITION model correspond to 10.6 µg.m-3 in 

terms of the mean value for all individuals and 6.0 – 16.4 µg.m-3 in terms of 5th – 95th 

percentiles. Comparing the mean value obtained by the model and estimated from air 

quality measurements at a fixed point (11 µg.m-3), an agreement between the approaches 

was evidenced. However, the ExPOSITION model reveals additional inter and intra-

variability of individuals’ exposure levels that is essential for health impact assessment and 

epidemiological studies, suggesting limited representativeness of air quality concentrations 

obtained from point measurements to characterize individual exposure to urban air 

pollution. In this context individual time-activities patterns and time spent at different 

microenvironments during the day should be of prime concern additionally to the variability 

in the urban pollution levels.  

The validation of the proposed modelling approach was performed for individual 

exposure to benzene in the urban environment against personal and biological exposure 

measurements collected during a measurements campaign. In this study, a modelling 

cascade including transportation-emission-dispersion modelling was implemented to 

characterise the outdoor pollution within Leiria urban area. Overall, as identified for PM2.5 
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exposure, the exposure modelling results in the different microenvironments pointed that 

the personal exposures to benzene tend to be greater in magnitude and more variable than 

the corresponding ambient concentrations within urban areas. The average exposure 

estimated by the ExPOSITION model was 1.5 times higher than average ambient 

background concentration observed at point monitoring station during the campaign, 

emphasizing the importance of the indoor microenvironments and hot spots contribution to 

benzene exposure. The evaluation of proposed modelling approach by means of 

comparison with direct measurements indicates that there is a good agreement of the 

model results with personal monitoring and biological monitoring using t,t-MA as biological 

indicator of benzene exposure showing a Pearson's correlation coefficient of 0.66 

(P<0.0001, 95% CI 0.42 to 0.82) and 0.74 (P=0.0238, 95% CI 0.14 to 0.94), respectively. 

Also, the results indicate that the ExPOSITION model validated in this study presents as a 

more consistent approach to a better understanding of exposure, providing more consistent 

results in comparison with the personal exposure estimates based on home address 

outdoor concentrations, as demonstrated by the lower Pearson's correlation coefficient of 

0.23 between personal exposure based on home address and the data from actively 

pumped personal samplers.  

The novel methodology proposed in this work and based on the system of 

integrated modelling tools (transportation, emission, air quality and exposure models) and 

advanced technological resources (GPS and GIS) allows to characterize the complexity in 

the spatial variation of exposures among the different individuals and delivers main 

statistics on individual’s air pollution exposure. Moreover, this methodology contributes to 

exposure research by emphasizing individual time-activity patterns in the individual air 

pollution exposure context, providing thus new insights into individual exposure to urban air 

pollution and its effects on human health. 

 

7.2. Future research 

An improvement of the methodology for individual exposure quantification is a 

continuous task. Further developments of ExPOSITION model could include new health-

relevant metrics of the particle mass. Smaller particles bear a larger toxic potential while 

contributing relatively little to the PM2.5 or PM10 mass. Therefore, future research could be 

focused on the individual exposure to PM1 and other nano-sized particles. Also, further 

efforts should be made to characterise the components of particulate matter (PM), such as 

trace elements for individual exposure assessment. 
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Evaluation of time-activity patterns discovery sequence from raw GPS data is a 

complex task. More developments are required mainly to infer about the travel mode used 

by the individuals from their GPS trajectory collected. Future developments should be focus 

on more refined classification based on a combination of GPS records of these travel 

modes and related supplemental GIS information (e.g. bus and train routes) to be used for 

individual exposure assessment. 

For future research, the presented approach could be extended to a near real-time 

information system for individuals by a web-based implementation of the model. Based on 

their uploaded time-activity patterns, a user without expert knowledge in exposure 

modelling could assess their own individual exposure, also identifying mitigation measures 

to regulate ambient concentrations specifically defined for this individual based on their 

personal behaviour and spatial distribution of the air pollution. This might also help to 

identify the “low-exposure” route, transportation mode and time for their journeys through a 

city.  


