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Growth rate degeneracies in kinematic dynamos
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Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
(Dated: September 25, 2013)

We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the
adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly
the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite
magnetic permeability, also called pseudo-vacuum) or tangent (perfect electrical conductor) to the
boundaries of the domain. These boundary conditions correspond to well-defined physical limits
often used in numerical models and relevant to laboratory experiments. The only constraint is for
the velocity field w to be reversible, meaning there exists a transformation changing u into —u.
We illustrate this surprising property using S27> type of flows in spherical geometry inspired by
[1]. Using both types of boundary conditions, it is shown that the growth rates of the dynamos are
identical, although the corresponding magnetic eigenmodes are drastically different.

The growth of magnetic fields due to dynamo action,
both in astrophysical bodies and in laboratory experi-
ments, is expected to depend not only on the details of
the flow field, but also on the conditions on the magnetic
field applied at the boundaries. In the laboratory there
are two physically important limits: perfectly conduct-
ing, implying no normal field; and normal field, other-
wise infinite permeability, where the tangential field at
the boundary is zero. These conditions are so different
that one might expect that the dynamo properties would
be quite different in the two cases. In general this is true,
but there is an important class of flows for which this is
not the case. We call these reversible flows, defined as
follows: consider the group D of transformations which
leave the boundaries invariant; then a velocity field u(x)
is reversible if u(z) = —u(d - x), for some d € D. In
other words, one can reverse the direction of the flow by
an appropriate transformation. Then the main result of
this paper can then be stated as follows:

Consider a steady flow of an electrically-conducting
fluid of constant magnetic diffusivity 7, contained in a
volume V and delimited by boundaries S. Providing
that the velocity field is reversible in the above sense,
the growth rate of the kinematic dynamo will be exactly
the same whether the boundaries are made of a perfect
electrical conductor or have an infinite magnetic perme-
ability. In fact the whole spectrum of growth rates will
be identical. This remarkable result is due to the ad-
jointness property of the induction operator as discussed
by [2H5]. It should be noted that there is no statement
about the relation between the respective eigenfunctions
and indeed as seen below these might differ considerably
in the two cases.

This result is formally proved as follows: We begin
with an eigenfunction for the growing magnetic field B
satisfying the perfectly-conducting boundary condition
B -n =0, where n is the unit vector normal to the sur-
face S. The electric field must be normal to the bound-
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aries and the tangential electric current vanishes there,
(VxB)xmn=0onS. The equation for the magnetic
potential can be written using the Weyl gauge as

sA=uxB-nV xB, (1)

where s is the complex growth rate and A is the magnetic
vector potential defined by V x A = B. Since we have
u-n=B-n=(V x B)xn =0 on the boundary S, the
cross product of equation with n implies that Axn =
0 on S. Then if we multiply the complex conjugate of
equation by a solenoidal vector field Q@ = V x P,
and integrate over the entire domain V', we obtain after
integrating by parts

/B*-(s*P—i—uxQ—i—anQ) dv =
%

—s*/(PxA*)~ndS—n/(B*xQ)-ndS, 2)
S S

where s* is the complex conjugate of s. The first surface
integral on the right-hand side of equation vanishes
since A x n = 0 at the boundaries. The second surface
integral vanishes providing that we specify Q x n =0 at
the boundaries. This last condition trivially implies that
the normal electric current associated with @Q vanishes on
S, i.e. (VxQ)-n =0. The expression in parentheses
on the left-hand side of equation is then the operator
on P adjoint to the original operator . Assuming that
the eigenvectors B form a complete set, and taking the
curl of this expression we obtain the following equation

sQ=-Vx(uxQ)—nVxVxQ, (3)

which is the induction equation for the solenoidal vec-
tor Q with u replaced by —u; now however @ satisfies
the infinite magnetic permeability condition @ X n =
(VxQ) -n = 0 at the boundaries. This shows that
interchanging the boundary conditions and reversing the
direction of the velocity field gives the same spectrum. In
consequence the growth rates as a function of the mag-
netic Reynolds number R, will be the same for both sets
of boundary conditions. Note that the change in the di-
rection of the velocity field for the adjoint problem has
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FIG. 1: (Color online) Ilustration of the S27% velocity fields
considered in this paper. These flows are characterised by an
azimuthal wavenumber m = 0 (top) or m = 2 (bottom) and
a Legendre polynomial order of [ = 2. The aspect ratio is
a = 0.4. The isosurfaces show the velocity magnitude at 75%
of its maximum value. The streamlines are randomly initiated
inside one of the hemisphere. The dark and thick streamlines
correspond to large velocity magnitude whereas bright and
thin strealines correspond to low velocity magnitude. The
axisymmetric flow on the top is not reversible whereas the
flow on the bottom is.

been known for a long time [2]. The problem was to find
the appropriate choice of boundary conditions for both
the original and the adjoint problem [5]. Since most of
the studies were motivated by the geodynamo problem,
the external boundary condition for the original prob-
lem corresponded to a vacuum. In that case, the general
boundary condition for the adjoint problem is unknown
apart from some particular cases [3]. The present demon-
stration shows that the adjoint boundary conditions as-
sociated with a perfect electrical conductor is an infinite
magnetic permeability, both of them corresponding to
clear physical limits.

We now illustrate our result in spherical coordinates
(r,0,¢). The choice of the coordinate system is not im-
portant and one could equally choose Cartesian or cylin-

drical coordinates. We focus here on the spherical case as
the differences in the magnetic eigenmodes when varying
the boundary conditions are the most striking. We con-
sider an incompressible flow in a spherical shell defined
by a < r < 1. Kinematic dynamos driven by simple flows
are a classical problem in dynamo theory and a lot of ex-
amples have been considered in the past (see for example
[1] and references therein for the case of a full sphere).
The objective is here to compare kinematic dynamo ac-
tion in two different flows with the two different types of
boundary conditions mentioned previously. The velocity
field is first written using a poloidal-toroidal decomposi-
tion, thus ensuring incompressibility,

u=VxVx(Se)+Vx(Te,), (4)

where T is the toroidal component whereas S is the
poloidal component, and e, is the unit vector in the ra-
dial direction. Each of these scalars is then projected
onto spherical harmonics, for example for the poloidal
component,

§=_ Sy (0.9) (5)
where the sum is carried over integers such that [ <m <
0, and Y;™ (6, ¢) is the classical spherical harmonic of az-
imuthal wave number m and Legendre function order .
The flows we consider in this letter are defined as follows:
all coefficients SJ™(r) and T;™(r) are zero except the ones
for which [ = 2. This type of flow is often referred as to a
SoT5 flow. In the azimuthal direction, all coefficients are
zero except for one particular azimuthal wave number M
for which we impose

r—ao

—r ©

r—a

—r 7)
The factor 8 in equation @ is arbitrarily introduced to
minimise the critical magnetic Reynolds number for dy-
namo action to occur. This choice of radial structure
is compatible with an impenetrable (S = 0) and no-slip
(T = 95/0r = 0) boundary condition for the velocity
field. We consider two possibilities for the azimuthal de-
pendence: M = 0 and M = 2. These two flows are
naturally labelled S9TY and S3T% respectively.

The first flow has been studied in details in various
geometries since it is a simple model of the mean-flow
in the VKS experiment [0} [7]. The flow corresponds to
two axisymmetric helical cells in each hemisphere with
net helicity throughout the domain, i.e. H = fv u-V x
udV # 0. Note however that our conclusion does not
depend on the presence or not of net kinetic helicity in
the system. This flow is not reversible as defined earlier.
An illustration of this steady flow can be found in figure[l}
Due to the axisymmetry of the flow, Cowling’s theorem
[8] forbids growing axisymmetric magnetic fields and the

SM (1) = sin® <7r

TM(r) = 8sin? <7r
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FIG. 2: (Color online) Growth rate of the magnetic energy
versus magnetic Reynolds number in the case of homogeneous
boundary conditions. The square symbols correspond to the
perfectly-conducting case where B - r = 0 at both bound-
aries whereas the cross symbols correspond to the perfectly-
insulating case where B x r = 0. The results are shown for
the aspect ratio o = 0.4. For the SSTY flow, only the growth
rates associated with the m = 1 mode are shown.

different azimuthal wave numbers of the magnetic field
are decoupled.

The second flow is similar to the flow first studied by
[9) in the geodynamo context, albeit there is no inner
core in their case. It corresponds to a four cells flow
with net kinetic helicity. Due to its symmetries, this flow
is reversible (a rotation of 7/2 around the vertical axis
changes u in —u) and a visualisation for the particular
aspect ratio @ = 0.4 is shown in figure This simple
type of flows is known to be a very efficient kinematic
dynamo without an inner core [IJ.

In order to check our finding concerning the growth
rate of kinematic dynamo action and its dependence on
magnetic boundary conditions, we need to solve the in-
duction equation with a prescribed velocity field. While
this problem is linear and could be reduced to an eigen-
value problem, the relatively large three-dimensional res-
olution required here to solve the induction equation
makes the equivalent initial value problem much easier
to handle. As a consequence, the induction equation is
solved using the numerical code PARODY. This code was
originally written by E. Dormy [I0] and later improved by
J. Aubert [II]. PARODY has been benchmarked against
other numerical codes in the context of a convectively-
driven dynamo problem [I2]. Although the code is able to
solve the full set of magnetohydrodynamics equations in
the Boussinesq approximation, we only use the induction
equation solver throughout this paper. The solenoidal
magnetic field is written using a poloidal and toroidal
decomposition and both poloidal and toroidal scalars are
then projected onto spherical harmonics, as in equation
(B). The radial functions By (r) for the toroidal field and
B," (r) for the poloidal field are represented by their dis-

cretized values on a non-uniform radial grid. The grid is
denser close to the inner and outer boundaries in order
to accurately resolve boundary effects. The radial deriva-
tives are computed using second order finite-differences.
In the case of a perfectly-conducting boundary condition,
the poloidal and toroidal components of the magnetic
field must verify the following constraint for all I, m

9*°B,  20B,

Oor? ror 0, (8)
oB, 1,
S+ B=0. 9)

Note that due to the solenoidality of the magnetic field,
these conditions directly imply that B,, = 0 at the bound-
aries. In the case of an infinite magnetic permeability, the
corresponding boundary conditions are

0B, 1
9% 1 — 1
or +T »=0, (10)

B, =0. (11)

The time-stepping is achieved using a semi-implicit
Crank-Nicholson scheme for the diffusive term and a
second order Adams-Bashforth scheme for the advective
term. The typical resolution is 480 points in the radial
direction, and a spherical harmonic decomposition trun-
cated at [,m < 64. In the case of the SITY flow, since all
azimuthal magnetic modes are decoupled, only the most
unstable m = 1 mode is considered.

We first compute the growth rate of the magnetic en-
ergy varying the magnetic Reynolds number defined here
as

Ry = 20— (12)

where Upax is the maximum velocity in the spherical
shell. We here consider a particular aspect ratio of
a = 0.4 but our results do not qualitatively depend on
this particular choice. For the flows defined by equa-
tions @ and , we have Upax = 32.98 for M = 2 and
Umax = 29.07 for M = 0. The induction equation is then
solved from an initial magnetic seed. After a rapid tran-
sient phase during which the initial condition is forgotten,
the magnetic energy is exponentially growing or decay-
ing. We compare in figure [2] the results obtained vary-
ing the boundary conditions from perfectly-conducting to
perfectly-insulating on both boundaries and for the two
different flows. As expected from the previous demon-
stration, the kinematic growth rates do not depend on
the boundary conditions for the S375 flow. The critical
magnetic Reynolds number is approximately Ry; =~ 40
in this case. The fact that the growth rates are exactly
equal for both types of boundary conditions is even more
surprising looking at the corresponding magnetic eigen-
modes. We show in figure [3] an illustration of the mag-
netic eigenmodes close to the onset of dynamo action. As
expected due to the effect of the boundary conditions, the
magnetic topology is significantly different in both cases.
The growth rate associated with these two eigenmodes is
however exactly the same.



FIG. 3: (Color online) Magnetic eigenmodes close to the onset for kinematic dynamo action driven by the S3T% reversible
flow. Left: the boundary conditions are perfectly-conducting (no normal field). Right: the boundary conditions correspond to
a pseudo-vacuum (no tangent field). In both cases, the magnetic field is dominated by a strong m = 1 mode. The magnetic
field lines are initiated randomly in the spherical shell. The dark and thick magnetic field lines correspond to large magnetic
field amplitude whereas bright and thin lines correspond to low magnetic field magnitude. The growth rate associated with

these two eigenmodes is exactly the same.

The growth rates for the two types of boundary con-
ditions are however clearly distinct for the non-reversible
STY flow (see figure [2). Since the azimuthal magnetic
modes are decoupled, we only show the growth rates asso-
ciated with the most unstable mode m = 1. In that case,
a dynamo is observed in the case of perfectly-conducting
boundary conditions whereas no dynamo at all is found
with an infinite magnetic permeability. As already men-
tioned, this flow shares some similarity with the mean
velocity field of the VKS experiment. The effect of the
magnetic boundary conditions on the dynamo threshold
of von Kérmén swirling flows has been studied by [13].
The lack of dynamo in the infinite magnetic permeabil-
ity case is due to the presence of the large inner core in
our case. As the size of the core is reduced, we recover
the dynamo observed by several studies, with a strong
equatorial dipole.

We also considered different flows corresponding to dif-
ferent spherical harmonics, radial structures and spheri-
cal shell aspect ratios, and the conclusion remains qual-
itatively the same. The previous result is also valid in
the case of different boundary conditions at each bound-
ary. If the inner core is perfectly-conducting whereas
the outer core is perfectly-insulating, the growth rate of
the kinematic dynamo will be the same if we reverse the
boundary conditions configuration and the direction of
the reversible flow.

Finally, we considered different types of flows in dif-
ferent geometries. For example, one can consider the
flow resulting from rotating convection in the Boussinesq
approximation just above onset. In that case, the result-
ing steady flow in a plane layer model can correspond
to square or hexagonal patterns [14], which are all re-
versible. We solved the induction equation for both pat-
terns and also found that the eigenvalue spectrum is the

same when varying the boundary conditions from a per-
fect conductor to an infinite magnetic permeability. More
details about kinematic dynamo action in such flows and
the effect of boundary conditions can be found in [I5].
Note also that we have only discussed steady velocity
fields up to now. However, it seems that this result also
holds for time periodic flows as long as the reversibil-
ity condition is valid at all times. So far, we have only
checked this result numerically by allowing the amplitude
of the flow to be time dependent (not shown here) but a
more general demonstration should be accessible.

To conclude, we show in this letter that providing that
a flow is reversible (as defined at the beginning of this
letter), kinematic dynamo action will be the same with
two different types of boundary conditions: the boundary
can be either perfectly conducting, so that magnetic field
lines are tangent to the surface, or can be of infinite mag-
netic permeability, so that magnetic field lines reconnect
perpendicularly to the surface. We verified this obser-
vation in spherical and Cartesian geometries for various
types of flows. While there is only a simple constraint on
the velocity field for this result to be true, the required
symmetry is however unlikely to be verified in a more
realistic turbulent context. It would therefore be inter-
esting to consider the departure from this exact result in
the experimentally relevant situation where small-scale
velocity fluctuations are not reversible whereas the mean
flow is.
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