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Abstract

This thesis deals with the implementation of navigation strategies for a domestic floor-cleaning robot
operating on omnidirectional images as primary sensory information. Such navigation strategies
enable the robot to efficiently cover its entire workspace while avoiding both uncleaned areas and
repeated coverage. This is accomplished (i) by systematically guiding the robot along meandering
lanes, i.e. along straight lanes placed next to each other at a predefined and constant distance and
(ii) by building a map of the robot’s environment to distinguish cleaned and uncleaned areas. Since
domestic cleaning robots are considered consumer goods, they can only be equipped with a limited
number of cheap sensors and restricted computational power. This fact poses additional challenges
onto the design of navigation strategies for domestic floor-cleaning robots.

The navigation strategies described in this thesis use omnidirectional images, in our case panoramic
images with a full 360° horizontal field of view. We consider omnidirectional cameras an appropriate
choice because they (i) are relatively cheap sensors, (ii) provide dense sensory information about the
robot’s environment, and (iii) are multi-purpose sensors applicable to further aspects of cleaning-
robot navigation beyond the scope of this thesis (e.g. obstacle detection, visual odometry, or user
interaction). We characterize a position in space by the entire omnidirectional image acquired at
this place (hence the methods belong to the class of appearance-based navigation methods) without
detecting visible features in the image. Several places are integrated into a dense topo-metric map
of the robot’s environment. Such maps (i) offer a metrical position estimate required for guiding
the robot along meandering lanes, (ii) have a spatial resolution which is fine enough for accurate
navigation, (iii) can be easily built from the available sensor data, and (iv) allow for efficiently
operating on the maps. Spatial relations between places stored in the map are estimated by applying
a local visual homing method. Such methods are parsimonious yet robust and accurate methods
for partial ego-motion estimation from visual information. They recover the direction (but not the
distance) of the translation and the rotation of the robot’s motion between two images acquired
in direct vicinity of each other without physically moving between places. As far as we know, our
navigation methods are the first application of omnidirectional vision, dense topo-metric maps, and
local visual homing for the control of cleaning robots. Hence, this thesis is also a feasibility study to
prove the applicability of these concepts for navigation of cleaning robots. Since a complete control
scheme for a cleaning robot is beyond the scope of this thesis, we propose two essential substrategies
of such a control scheme: (i) vision-based trajectory control and mapping and (ii) visual detection
of already cleaned areas.

Regarding trajectory control and mapping, we propose a mostly vision-based controller for covering
a rectangular area of the entire workspace by meandering lanes. While moving along a lane (and
cleaning), the robot adds snapshots at regular distances to its dense topo-metric map, which are used
on the subsequent lane to estimate the robot’s current distance to the previous lane. For this purpose,
the bearing from the current position towards at least two snapshots stored along the previous lane
is taken by applying local visual homing. The bearing information and an odometry-based estimate
of the distance between the two considered snapshots are fused in order to estimate the robot’s
current distance to the previous lane. The robot is kept on a lane parallel to the previous one by
keeping the distance to the previous lane at a predefined value. Instead of estimating the robot’s full
pose as performed by common navigation strategies, we only estimate the distance to the previous
lane and the robot’s current orientation to avoid unnecessary computations. The results obtained
from real-robot experiments reveal that the algorithm is capable of guiding the robot along parallel
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and meandering cleaning lanes with only a small portion of gaps or overlap between lanes.
Detecting already cleaned areas is essential in order to avoid repeated coverage or uncleaned areas

between neighboring cleaning segments. This detection is a special instance of the loop-closure
detection problem usually occurring during map-building whenever the robot approaches an already
mapped area. We solve the loop-closure problem by two different approaches both incorporating
pairwise image comparisons between the robot’s currently perceived image and several images
stored in the map. The first approach, referred to as holistic approach, relies on pixel-by-pixel
comparisons of the considered images. The second, referred to as signature-based approach, computes
low-dimensional signatures extracted from the entire image and compares these instead of the
images themselves.
Pixel-based approaches require the application of a compass to align images prior to image

comparison. The standard compass method rotates one of the images step-by-step while keeping
the other fixed and repeatedly compares the images to search for the best match. We propose
an accelerated variant of this method operating in the Fourier domain. This method is capable
of computing the best match without repeatedly shifting and comparing images. In order to
achieve robustness against illumination changes, we preprocess images prior to comparison and
apply illumination-tolerant comparison functions. Loop-closure detection and compass accuracy
were assessed by image-database experiments systematically evaluating a wide range of different
preprocessing and comparison techniques. Regarding loop-closure detection, holistic methods
achieve very good detection results even for strong illumination changes. The proposed Fourier-
based compass is more efficient than the standard method, but does not achieve its accuracy. Due
to their computational complexity, the tested holistic approaches to loop-closure detection are —at
least with the current implementation— not suitable for a real-robot application.
Signature-based approaches allow for efficient image comparisons because they rely on low-

dimensional and rotation-invariant image descriptors. Due to their rotational invariance, signatures
can be compared without prior compass alignment as required by holistic methods. To measure the
accuracy of loop-closure detection, we performed image-database experiments which systematically
tested different combinations of signatures and comparison functions operating on the images’
intensity information without prior preprocessing. The tested methods allow for accurate loop-
closure detection under constant illumination. However, detection is likely to fail under moderate
or strong illumination changes. For the most promising combination of signature and comparison
function, real-robot experiments were conducted leading to similar results. These results are
surprising because we tested several combinations of signatures and comparison functions which
should theoretically tolerate illumination changes better than the combination performing best
in our experiments. Despite their low tolerance against illumination changes, which need to be
increased in future work, we favor the application of signature-based approaches because of their
low computational complexity.

The overall results of this thesis clearly reveal that omnidirectional vision, dense topo-metric maps,
and local visual homing are appropriate building blocks for visual control of cleaning robots because
they allow for efficient, accurate, and robust navigation. We conclude that dense topo-metric maps
are suitable representations of space —both for trajectory control and for detecting already cleaned
areas. Thus, the navigation strategies proposed in this thesis can be used as a basis for a more
complex control architecture enabling the robot to completely cover complex-shaped areas. This
includes mechanisms to detect and approach uncleaned areas based on map information and to
combine several segments of meandering lanes as obtained from our trajectory controller. Using
omnidirectional vision not only for navigation but also for obstacle detection, odometry, or user
interaction could be a promising means to reduce hardware costs of a potential product by avoiding
dedicated sensors.
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Zusammenfassung

Diese Dissertation beschreibt die Implementation von Navigationsstrategien für einen mobilen
Bodenreinigungsroboter für den Haushaltsgebrauch, der omnidirektionale Bilder als primäre Sen-
sorinformation verwendet. Die Navigationsstrategien ermöglichen die vollständige und effiziente
Reinigung der gesamten dem Roboter zugänglichen Fläche unter gleichzeitiger Vermeidung von
nicht oder mehrfach befahrenen Flächen. Die Anforderungen lassen sich durch die Wahl einer
geeigneten Fahrstrategie und den Aufbau einer Karte der Umgebung erfüllen. Als Fahrstrategie zur
systematischen Überdeckung des Raumes werden dazu häufig mäandrierende Bahnen gewählt, also
gerade Bahnen, die in einem vorgegebenen, konstanten Abstand zueinander verlaufen. Die Karte
ermöglicht eine Unterscheidung zwischen bereits befahrenen und noch nicht befahrenen Gebieten.
Reinigungsroboter für den Haushaltsgebrauch sind Konsumgüterartikel. Sie können folglich nur mit
einer begrenzen Anzahl an kostengünstigen Sensoren und mit kostengünstiger und daher leistungs-
schwacher Hardware ausgestattet werden. Dadurch entstehen zusätzliche Herausforderungen für die
Umsetzung von Reinigungsstrategien.
Die in dieser Arbeit vorgestellten Navigationsstrategien für Bodenreinigungsroboter verwenden

als primäre Sensorinformation omnidirektionale Bilder. In unserem Fall handelt es sich dabei um
Panoramabilder mit einem horizontalen Sichtbereich von 360°. Wir betrachten omnidirektionale
Kameras als geeignete Wahl, weil es sich dabei um relativ günstige Sensoren handelt und weil sie
dichte Sensorinformation über die Umwelt des Roboters liefern. Über die im Rahmen dieser Arbeit
betrachteten Aspekte hinaus können solche Kameras beispielsweise auch zur Hinderniserkennung, für
visuelle Odometrieberechnungen oder zur Benutzerinteraktion angewendet werden. In dieser Arbeit
werden Orte durch Panoramabilder charakterisiert wie sie am jeweiligen Ort aufgenommen wurden.
Bildinformationen von mehreren Orten werden in eine dichte topo-metrische Karte integriert, welche
die Umgebung des Roboters repräsentiert. Für unseren Anwendungsfall bieten diese Karten die
folgenden vier Vorteile: (i) sie speichern metrische Positionsinformation, die benötigt wird, um
parallele Bahnen abzufahren, (ii) sie haben eine ausreichend feine räumliche Auflösung, die eine
präzise Navigation des Roboters ermöglicht, (iii) sie können einfach aus der zur Verfügung stehenden
visuellen Information aufgebaut werden, und (iv) die Nutzung solcher Karten ist ohne großen Rechen-
aufwand möglich. Räumliche Beziehungen zwischen gespeicherten Orten werden durch Verfahren
zur „visuellen Zielanfahrt“1 geschätzt. Solche Verfahren sind effiziente und trotzdem genaue und zu-
verlässige Algorithmen zur partiellen Eigenbewegungsschätzung aus visueller Information. Aus zwei
Bildern, die an zwei nahe beieinander liegenden Orten aufgenommen wurden, werden die Richtung
der Translationskomponente (nicht jedoch deren absolute Länge) und die Rotationskomponente
der dazwischenliegenden Roboterbewegung geschätzt (für die Schätzung muss keine Zielanfahrt
erfolgen). Nach unserem Kenntnisstand sind die von uns entwickelten Navigationsstrategien die
erste Anwendung dieser Konzepte zur Navigation von mobilen autonomen Reinigungsrobotern
für den Haushaltsgebrauch. Die vorliegende Arbeit stellt daher auch eine Machbarkeitsstudie dar,
welche die Anwendbarkeit dieser Konzepte zur Navigation von Reinigungsrobotern zeigen soll.
Die Arbeit beschränkt sich auf zwei wesentliche Bestandteile einer Kontrollarchitektur für einen
Reinigungsroboter: (i) visuelle Bahnsteuerung mit gleichzeitigem Kartenaufbau und (ii) visuelle
Erkennung bereits befahrener Gebiete.

1Üblicherweise wird zur Bezeichnung dieser Verfahren auch im Deutschen der englische Begriff „local visual homing“
verwendet.
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Zur visuellen Bahnsteuerung mit gleichzeitigem Kartenaufbau schlagen wir einen Regelungsal-
gorithmus vor, der es ermöglicht ein einzelnes Reinigungssegment mit mäandrierenden Bahnen zu
überdecken. Als Reinigungssegment wird einen rechteckiger Bereich der Umgebung bezeichnet; eine
vollständige Überdeckung der Umgebung kann durch aneinandersetzen mehrerer Reinigungssegmen-
te erfolgen. Während sich der Roboter auf einer Reinigungsbahn bewegt, werden in regelmäßigen
Abständen Kamerabilder aufgenommen und zur Karte hinzugefügt. Diese Bilder werden auf der
nachfolgenden Bahn verwendet, um den Abstand des Roboters zur Vorgängerbahn zu schätzen.
Dazu werden von der aktuellen Roboterposition aus mindestens zwei Kamerabilder, die entlang der
Vorgängerbahn gespeichert wurden, angepeilt. Die so berechnete Richtungsinformation und eine
odometriebasierte Abstandsschätzung zwischen den Kamerabildern werden fusioniert, um so den
aktuellen Abstand des Roboters zur Vorgängerbahn zu schätzen. Durch Regelung dieses Abstandes
auf einen vorgegebenen und konstanten Wert kann der Roboter entlang einer Bahn gesteuert
werden, die parallel zu ihrer Vorgängerbahn ist. Die Mehrzahl der in der Literatur vorgeschlagenen
Navigationsalgorithmen schätzt die vollständige Pose (also Position und Orientierung im Raum)
des Roboters. Im Gegensatz zu diesen Ansätzen, werden durch unser Verfahren nur der Abstand
zur Vorgängerbahn und die Orientierung des Roboters geschätzt. Dies vermeidet die Berechnung
nicht erforderlicher Information. Das Verfahren wurde in Roboterexperimenten getestet, deren
Ergebnisse zeigen, dass das Verfahren geeignet ist, um eine Fläche mit mäandrierenden Bahnen so
zu überdecken. Dabei entsteht nur ein geringer Anteil an Lücken oder mehrfach befahrener Fläche.
Die visuelle Erkennung bereits befahrener Gebiete2 ist von Bedeutung, weil dadurch Mehrfach-

befahrung und nicht befahrene Gebiete zwischen benachbarten Reinigungssegmenten vermieden
werden können. Zur visuellen Erkennung bereits befahrener Gebiete werden zwei unterschiedliche
Verfahren betrachtet, die beide auf einem Vergleich des aktuellen Kamerabildes mit mehreren in der
Karte gespeicherten Bildern beruhen. Der erste Ansatz wird als holistischer Ansatz bezeichnet und
vergleicht Bilder Pixel für Pixel. Der zweite Ansatz wird als signaturbasierter Ansatz bezeichnet
und vergleicht anstelle der Bilder niedrigdimensionale Bildsignaturen, die global aus dem gesamten
Bild berechnet werden.
Pixelbasierte Ansätze benötigen ein Kompassverfahren, das die Bilder an einer gemeinsamen

Referenzrichtung ausrichtet, bevor diese verglichen werden können. Das Standardverfahren hierzu
rotiert eines der Bilder schrittweise, während das zweite Bild konstant gehalten wird. Durch Ver-
gleiche der rotierten Bilder mit dem zweiten Bild wird die beste Übereinstimmung berechnet. Wir
schlagen ein Kompassverfahren vor, das im Fourierraum arbeitet und das die beste Übereinstimmung
ohne schrittweise Rotation und mit nur einem Bildvergleich berechnen kann. Um Robustheit gegen
Beleuchtungsänderungen zu erlangen, wenden wir Bildvorverarbeitungsmethoden und beleuchtungs-
tolerante Bilddistanzfunktionen an. Die Genauigkeit der vorgeschlagenen Verfahren wurde durch
Experimente mit Bilddatenbanken ermittelt, in denen systematisch eine Vielzahl an verschiedenen
Vorverarbeitungsmethoden und Bilddistanzfunktionen verglichen wurde. Zur Erkennung bereits
befahrener Bereiche erzielen die vorgeschlagenen Verfahren sogar unter extremen Beleuchtungs-
änderungen sehr gute Erkennungsraten. Das vorgeschlagene Kompassverfahren kann effizienter
berechnet werden als das Standardverfahren; es erzielt aber nicht dessen Genauigkeit. Aufgrund
des Rechenaufwandes sind die vorgeschlagenen Verfahren —zumindest in der derzeit verwendeten
Implementierung— nicht für einen Echtzeiteinsatz auf einem Roboter geeignet.
Signaturbasierte Ansätze ermöglichen effiziente Bildvergleiche, weil sie auf niedrigdimensionalen

und rotationsinvarianten Bilddeskriptoren beruhen. Auf Grund ihrer Rotationsinvarianz benötigen
signaturbasierte Ansätze im Gegensatz zu holistischen Ansätzen keinen Kompass. Um die Erken-
nungsgenauigkeit von signaturbasierten Ansätzen zu bestimmen wurden Bilddatenbankexperimente
durchgeführt, die systematisch verschiedene Kombinationen aus Signaturen und Distanzfunktionen
vergleichen. Die Signaturen werden dabei auf den unvorverarbeiteten Intensitätsbildern berechnet.

2Im Deutschen wird auch oft der Begriff „Loopclosure-Erkennung“ verwendet.
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Zusammenfassung

Unter konstanten Beleuchtungsbedingungen erreichen die getesteten Verfahren sehr zuverlässige
Erkennungsraten; moderate oder starke Beleuchtungsänderungen führen allerdings zu einer großen
Anzahl an Fehlklassifikationen. Diese Ergebnisse sind überraschend, weil eine Reihe an Kombina-
tionen aus Signaturen und Distanzfunktionen getestet wurde, die in der Theorie deutlich robuster
sein sollten als die Kombination, die in unseren Experimenten am besten abgeschnitten hat. Trotz
ihrer geringen Toleranz gegen Beleuchtungsänderungen, die Nachbesserungen erfordert, bevorzugen
wir für weiterführende Arbeiten signaturbasierte Ansätze. Der Hauptgrund hierfür liegt in ihrer
effizienten Berechenbarkeit.
Die Gesamtergebnisse dieser Arbeit zeigen, dass omnidirektionale Bildinformation, dichte topo-

metrische Karten und visuelle Zielanfahrt geeignete Grundbausteine für die Entwicklung von visuell
gesteuerten Reinigungsrobotern sind. Diese Komponenten ermöglichen die Entwicklung effizien-
ter, genauer und zuverlässiger Navigationsstrategien. Darüber hinaus schließen wir, dass dichte
topo-metrische Karten eine geeignete Repräsentation für die visuelle Bahnregelung und die visuelle
Erkennung bereits befahrener Gebiete sind. Aus diesem Grund können die im Rahmen dieser
Arbeit entwickelten Navigationsalgorithmen als Grundlage für weiterführende Navigationstrategien
dienen, die es dem Roboter ermöglichen komplexe Umgebungen wie Wohnräume vollständig zu
befahren. Solch komplexere Strategien sind beispielsweise die Erkennung und das Anfahren noch
nicht gereinigter Gebiete und die Kombination verschiedener Segmente aus mäandrierenden Bahnen.
Die Verwendung omnidirektionaler Bildinformation nicht nur zur Navigation sondern auch zur
Hinderniserkennung, Odometrieberechnung oder zur Nutzerinteraktion erscheint uns ein vielver-
sprechender Ansatz, um die Hardwarekosten eines möglichen Produktes dadurch zu senken, dass
dedizierte Sensoren für diese Anwendungen eingespart werden können.
Die Arbeit ist folgendermaßen gegliedert. Kapitel 1 motiviert diese Arbeit, beschreibt die Ziel-

setzung und stellt die Gliederung der Arbeit sowie die wissenschaftlichen Beiträge jedes einzelnen
Kapitels vor. Daran schließt sich ein Einleitungsteil an, der relevante Aspekte aus den Gebieten der
Reinigungsrobotik (Kapitel 2) und der visuellen Navigation mit omnidirektionalen Bildern (Kapitel
3) vorstellt. In den Kapiteln 4 bis 6 werden die entwickelten Navigationsstrategien beschrieben:
visuelle Bahnsteuerung mit gleichzeitigem Kartenaufbau (Kapitel 4), holistische Erkennung bereits
befahrener Gebiete und Kompassverfahren (Kapitel 5) und signaturbasierte Erkennung bereits
befahrener Gebiete (Kapitel 6). Daran schließt sich in Kapitel 7 eine abschließende Diskussion sowie
ein Ausblick auf weiterführende Arbeiten an. In den Anhängen A bis D werden weiterführende
Daten und mathematische Herleitungen zusammengestellt.
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1. Introduction

In this chapter, we motivate our research on domestic floor-cleaning robots (section 1.1)
and introduce relevant building blocks for the proposed navigation strategies (section 1.2).
The objectives are presented in section 1.3, and the organization of the thesis is described
in section 1.4.

1.1. Motivation

Robots are supposed to facilitate humans’ lives by assisting them in tedious, monotonous, physically
demanding, or potentially dangerous tasks. While industrial robots are indispensable tools applied
in various domains [270, 491], mobile robots have not yet made it into our everyday life [157, 209,
212, 520]. Most of the available mobile robot platforms are research prototypes, and the only
robots produced in larger quantities are specialized and expensive machines for small markets like
agriculture [43, 152] or underwater robots [11]. The only two exceptions are robotic lawn mowers
and floor-cleaning robots for household usage [157, 518, 520]. Floor-cleaning robots became available
on the consumer market since the year 2000. Although currently being far from omnipresent, market
studies predict a large and even growing market potential for domestic floor-cleaning robots ([157,
209, 212, I71, 518, 520], detailed market studies: [300, 695]).
Against this background, we decided to apply our experience in vision-based robot navigation

to a new research domain: navigation strategies for a domestic floor-cleaning robot relying on
omnidirectional vision. The exploration of this new domain implies basic research while keeping a
potential product in mind. Thus, beyond a scientific proof of concept, our navigation methods have
to achieve a good cleaning performance under various real-world conditions occurring in typical
apartments.
The particular challenges of cleaning-robot navigation result from the following constraints,

which domestic floor-cleaning robots are subject to [157, 518, 520]: (i) they should systematically
cover their workspace while avoiding both repeated coverage and uncleaned areas, (ii) they should
autonomously accomplish their task without any user intervention, (iii) their application should
not require modifications of the environment, or —in case modifications are needed— only such
modifications, which would also be required for traditional vacuum cleaners, (iv) they should be
usable “out of the box” by a wide target group including technically unexperienced users, (v) they
should be feasible for everyday usage of a consumer, and (vi) their price should not exceed that of
a traditional vacuum cleaner. As a first step towards a full-fledged cleaning robot for household
usage, this thesis proposes essential navigation strategies.

1.2. Background of Proposed Work

The particular challenges of cleaning-robot navigation introduced in section 1.1 can only be solved
by choosing appropriate building blocks, upon which the proposed navigation strategies are built.
On the hardware level, these building blocks are our custom-built cleaning robot and omnidirectional
vision as primary sensory input; on the level of navigation strategies, the proposed algorithms rely
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on meandering lanes as motion strategy, dense topo-metric maps as spatial representation, and on
local visual homing for estimating spatial relations.

Custom-Built Cleaning Robot
Commercially available cleaning robots (section 2.2.1) are differential-drive robots (textbook:
[586]) and usually have a circular shape with a diameter of approximately 30 cm and a height of
approximately 10 cm. Domestic floor-cleaning robots are consumer goods, and their price should
not exceed that of a traditional vacuum cleaner. This limits the costs for the robot’s on-board
computer and sensory equipment [I71]. Cleaning robots can therefore only be equipped (i) with
a small number of cheap sensors, (ii) with limited computational power, (iii) and with restricted
memory capacity. These limitations have to be considered for developing navigation strategies
suitable for a domestic floor-cleaning robot.
For testing our navigation strategies, a mobile-robot platform with dimensions and properties

similar to other cleaning robots is best suited. Using a commercially available platform turned out to
be not appropriate for our needs. On the one side, existing commercial cleaning robots do not allow
low-level control of the robot as is required for our experiments. On the other side, for available
research platforms low-level control is possible, but they either differ in the robot’s geometry and
size or they do not allow to integrate an omnidirectional vision setup into the robot’s housing. We
therefore built1 a research prototype which fits our requirements. Some time after this decision, the
Yujin iClebo kobuki [I111] and the iRobot Create [I54], two research platforms with the shape and
size of floor-cleaning robots, became commercially available.
At the current point in time, we do not execute our navigation strategies on-board, but rather

use a client-server framework for off-board processing. The robot’s sensory data is transferred to an
external host computer which executes the navigation algorithms and sends back a motion command
to the robot. This approach is required because we decided to implement the proposed navigation
strategies with our existing rapid-prototyping framework, which cannot be executed on the robot’s
computer because it requires more computational power than is available on-board. We favor our
rapid-prototyping framework because it allows to rapidly implement and test a large number of
different approaches or parameter combinations. By this means, we avoid the implementation
effort required for an optimized implementation of our methods executable on the robot’s on-board
computer. Once the most promising approaches are identified, we can then optimize our methods
for the target hardware of a potential product.

Omnidirectional Vision as Primary Sensory Input
As main sensor, we decided to rely on an omnidirectional vision setup which acquires panoramic
images with a horizontal field of view of full 360°. We consider omnidirectional vision setups to
be an appropriate sensor for a domestic floor-cleaning robot because they (i) are relatively cheap
sensors, (ii) provide dense sensory information with a large field of view, and (iii) are multi-purpose
sensors which can —beyond navigation— also be used for various other purposes outside the scope
of this thesis.
Our custom-built cleaning robot is currently equipped with an omnidirectional vision setup

beyond the budget of a potential product. By relying on a better sensor than the one we would use
for a product, we reduce the sensor’s influence onto the performance of the proposed navigation
methods. In case the proposed navigation strategies do not yield good results, it is likely that these
results are due to a weakness of the proposed method rather than to the available sensor data. Once

1The mechanical construction was mainly pursued by Klaus Kulitza, and Martin Krzykawski was responsible for the
software integration. Lorenz Hillen contributed conceptually to questions regarding the omnidirectional vision
setup and —to some minor aspect— regarding other sensors.
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the navigation methods operate accurately and reliably, we will work towards using a sensor which
can also be used in a potential product (section 7.3).

Meandering Lanes as Motion Strategy
While early cleaning robots relied on random walk or preprogrammed motion patterns, nearly
all recent robots cover their workspace systematically by multiple segments of meandering lanes2

(table 2.2). Meandering lanes are straight lanes placed besides each other at a predefined and
constant distance. They allow for efficiently covering the area accessible to the robot while avoiding
both repeated coverage and uncleaned areas. For this reason, our navigation strategies also rely on
meandering lanes and a decomposition of the robot’s workspace into segments of meandering lanes.

Dense Topo-Metric Maps
A further aspect of efficient coverage includes to distinguish already cleaned areas from uncleaned
areas. This is usually accomplished by mapping the robot’s environment (e.g. [518]). The map of
the robot’s environment is built during the cleaning process and forms the core of any systematic
navigation strategy. Besides for distinguishing cleaned from uncleaned areas, it is used for guiding
the robot along parallel cleaning lanes, for path planning, and for path following. We consider
systems relying on a predefined map, which needs to be installed on the robot, to be not suitable
for a consumer robot.
The crucial questions related to mapping are (i) how to relate the perceived visual information

with a position in space and (ii) how to integrate this information into a map representing several
places. A parsimonious way of characterizing a place is to store the raw sensory information, i.e. the
panoramic image itself without detecting visible features perceived when visiting the place (reviews:
[189, 403, 642]). By this means, images acquired at former robot positions are used as landmarks3

and to represent already cleaned places. A straightforward approach to mapping is then to represent
several places by graph nodes and to link adjacent places if they are directly reachable from each
other. Our particular task requires (i) some sort of distance information to keep the robot at a
constant distance from its previous lane, and (ii) a fine spatial resolution for precise navigation.
Aspect (i) can be resolved by attaching position information to the place nodes; aspect (ii) can be
solved by a grid-like distribution of place nodes, which represent nearby positions in space. By this
means, dense topo-metric maps are obtained which can be easily built from the available visual
information and allow for efficient map operations even with limited hardware. The application of
dense topo-metric maps is currently restricted to simple map-building and localization tasks [171,
271, 377, 426, 505, 506, 538]; our navigation strategies are the first attempt to apply such maps for
a more sophisticated task.

Local Visual Homing
Local visual homing methods are a main area of expertise of our research group. From two images
acquired at nearby positions in space, homing methods estimate the rotation and the direction, but
not the absolute length, of the robot’s motion between the positions of image acquisition. Hence they
can be considered as partial solutions to the general problem of ego-motion estimation (textbook:
[641], review: [130, 191, 563]). In its original sense, local visual homing is the capability of a robot
to return to a previously visited place under visual control. In the context of this thesis, local visual
homing is applied for estimating angular relations between two places stored in the map without
2The term “meandering lanes” is used in this context to describe the robot’s motion pattern along alternating lanes;
it should not suggest that the robot’s motion is aimless or undirected.

3The term “landmark” refers to a cue used for navigation. Such cues can in the context of this thesis be entire
omnidirectional images acquired at former robot positions, objects visible in the omnidirectional images, or features
detected by point of interest operators (and potentially associated with an estimate of their position in space).
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(1) Trajectory controller for
guiding the robot along meandering
lanes

(2) Dense topo-metric map
representing the cleaned area
(edges omitted)

(3) Loop-closure detection to
determine if the robot approaches
an already cleaned area

Figure 1.1.: Navigation strategies considered in this thesis. The subfigures (1) to (3) depict the core ideas of these
strategies.

physically approaching them. By combining estimates of the angular relations obtained from visual
homing and odometry-based distance estimates, metrical position estimates of the current or of
former robot positions can be obtained. We consider homing methods to be an appropriate building
block for cleaning-robot control because they are parsimonious yet accurate algorithms for partial
ego-motion estimation (section 3.5). In the context of this dissertation, we solely apply homing
methods without proposing new or improving existing methods.

1.3. Objectives of This Thesis
As a complete control scheme required for a full-fledged cleaning robot is beyond the scope of this
thesis, we restrict ourselves to two essential substrategies of such a control scheme: (i) vision-based
trajectory control and mapping (section 1.3.1) and (ii) visual detection of already cleaned areas
(section 1.3.2). These substrategies (figure 1.1) rely on the building blocks introduced in section 1.2
and are —to the best of our knowledge— the first application of these building blocks for the control
of floor-cleaning robots. Thus, this thesis is also a feasibility study for the applicability of the
building blocks for our particular application.

1.3.1. Vision-Based Trajectory Controller and Mapping
We propose a mostly vision-based trajectory controller guiding the robot along parallel and mean-
dering lanes while concurrently building a dense topo-metric map of its environment (figures 1.1.1
and 1.1.2). To extend its dense topo-metric map, the robot successively adds snapshots taken at
regular distances. On the subsequent lane, these snapshots are used to estimate the robot’s current
distance to the previous lane. This involves taking the bearing from the robot’s current position
to at least two snapshots (figure 1.1.1; filled circles) stored along the previous lane by applying
local visual homing. By fusing bearing and compass estimates with an odometry-based estimate of
the distance between the two considered snapshots, the robot’s current distance to the previous
lane can be computed by triangulation. In contrast to traditional mapping methods, we do not
compute the robot’s full pose w.r.t. an external frame of reference. We rather rely on partial pose
estimation and only compute the necessary and sufficient information required to solve the task.
For our particular method, this includes estimates of (i) the robot’s distance to the previous lane
and (ii) the robot’s orientation w.r.t. world coordinates. These estimates are used to keep the robot
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at a constant and predefined distance to its previous lane. The rectangular areas covered by the
proposed method can be combined by more advanced cleaning strategies (not considered in this
dissertation) to completely cover complex-shaped workspaces.

1.3.2. Visual Detection of Already Cleaned Areas
Reliably detecting already cleaned areas is an important prerequisite for an autonomous cleaning
robot in order to avoid both uncleaned areas and repeated coverage (figure 1.1.3). This problem is
also referred to as loop-closure problem and usually occurs in the context of map-building when
the robot approaches an already mapped area (textbooks: [110, 586, 630], reviews: [25, 74, 150,
175, 432, 631]). Loop-closure detection requires to visually compare the robot’s current camera
image to images stored in the dense topo-metric map. The detection of loop closures has to be
purely vision-based, because the robot’s position estimate could drift from the robot’s true position.
Due to their fine spatial resolution, loop-closure detection in dense topo-metric maps is particularly
challenging: (i) the large number of images stored in the map requires efficient image comparison
techniques and (ii) only retrieving exactly the image from the map which is spatially closest to
the robot’s current position can avoid repeated coverage or gaps between lanes. We propose two
approaches for loop-closure detection, which we refer to as holistic and signature-based approach.

1.3.2.1. Holistic Loop-Closure Detection

Such methods detect loop closures by a pixel-by-pixel comparison of the entire image followed by
a binary classification whether the images were acquired at the same or at different positions in
space. Holistic loop-closure detection methods require the images to be aligned w.r.t. a common
reference direction. For this purpose, the visual compass method suggested by Zeil, Hoffmann,
and Chahl [718] can be integrated into the loop-closure detection process. It step-by-step rotates
one of the compared images while keeping the orientation of the other constant, repeatedly compares
the shifted image with the other image, and searches for the best match. The residual of the best
match is used for deciding whether or not the compared images were acquired at identical positions
in space. We propose an accelerated variant of this widely used compass method operating in
the Fourier domain. Our method computes the compass estimate without repeatedly shifting and
comparing images. As common image comparison functions are not invariant against changes of the
illumination, we investigate image preprocessing techniques as a means to increase the robustness
against such image disturbances. The goal of this chapter is twofold. First, we seek for combinations
of image preprocessing and comparison functions which can efficiently and accurately solve the
loop-closure problem for various indoor environments and under different illumination conditions.
Second, we systematically assess the compass accuracy of the standard and our accelerated compass
method.

1.3.2.2. Signature-Based Loop-Closure Detection

Signature-based approaches to loop-closure detection derive a low-dimensional signature from the
entire camera image and compare the resulting signature to the signatures stored in the dense
topo-metric map. Hence, they compare signatures instead of comparing images pixel-by-pixel
as is the case for holistic methods. The dissimilarity value is used to decide whether or not the
compared places are identical. The efficiency of signature-based approaches results from the low
dimensionality of the signatures and from their rotational invariance. Thus, signature-based methods
do not require the application of a visual compass prior to image comparison as is the case for the
holistic methods. Tolerance against changes of the illumination can for signature-based approaches
be achieved by certain combinations of signature and comparison functions. For signature-based
methods, we do not consider image preprocessing techniques because we expect the tested methods
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to be sufficiently tolerant against such changes. The objective of the chapter is to find a combination
of a signature and a comparison function which can be computed efficiently and which accurately
detects loop-closures for different environments and under different illumination conditions.

1.4. Outline of This Thesis

This thesis is divided into two parts. The first part (chapters 2 and 3) introduces relevant concepts and
reviews related work. The second part (chapters 4 to 6) describes the proposed navigation strategies
for trajectory control and mapping (chapter 4), for holistic loop-closure detection (chapter 5), and
for signature-based loop-closure detection (chapter 6).

Chapter 2: Cleaning Robots
In this chapter, we put autonomous floor-cleaning robots for domestic usage into the context of
other cleaning robots and —more general— of mobile service robots. We give an overview over
commercially available floor-cleaning robots and over related academic research. We then discuss
the relevance of the reviewed aspects for our work.

Chapter 3: Visual Navigation Based on Omnidirectional Images
We briefly introduce omnidirectional vision and present a detailed literature review on navigation
methods for wheeled mobile robots relying on omnidirectional images as primary sensory information.
We analyzed the available literature and propose a categorization of navigation methods operating
on omnidirectional images which is used to relate our contributions to existing work in this field.

Chapter 4: Trajectory Controller Based on Partial Pose Estimation and Dense Topo-Metric
Maps
We propose a navigation strategy for covering a rectangular area with meandering cleaning lanes
while concurrently building a dense topo-metric map of the robot’s environment. We describe how
dense topo-metric maps are applied by this method and give a mathematical derivation of the
proposed control algorithm relying on omnidirectional images and partial pose estimation. To assess
the performance of our controller, we furthermore propose performance measures which are applied
to data obtained from real-robot experiments.

Chapter 5: Holistic Loop-Closure Detection and Visual Compass
In this chapter, we suggest holistic methods for loop-closure detection, which include image
preprocessing to increase robustness against illumination changes, a visual compass to align images,
and image dissimilarity functions to measure the similarity of the considered images. We describe
the tested preprocessing methods and image dissimilarity functions, and we derive the Fourier-based
compass variant. Database experiments are conducted (i) to identify the most suitable combination
of preprocessing method and image dissimilarity function for loop-closure detection and (ii) to assess
the accuracy of the visual compass.

Chapter 6: Signature-Based Loop-Closure Detection
The objective of this chapter is to evaluate signature-based approaches to loop-closure detection in
different environments and under changing illumination conditions. To systematically test a large
number of signatures and signature-comparison functions, we conducted database experiments. For
the combination of signature and signature-comparison function yielding the best results in the
database experiments, real-robot experiments were conducted.
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Chapter 7: Overall Summary, Discussion, and Outlook
We summarize and discuss the results of chapters 4 to 6 and put them in a broader context. Beyond
that, future working directions resulting from this thesis are proposed.

Appendix
Additional data and mathematical derivations are given in the appendices (appendices A to D) of
this thesis.
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2. Cleaning Robots
We introduce cleaning robots as a subdomain of mobile sevice robots. Furthermore, we
give a market survey of commercially available cleaning robots and a literature survey on
related research.
The remainder of this section is structured as follows: section 2.1 introduces the field
of cleaning robots as a subdomain of mobile service robots. The particular properties
of domestic floor-cleaning robots are then discussed in section 2.2 including reviews
on commercially available robots (section 2.2.1) and on academic research in this field
(section 2.2.2). The section ends with a short discussion of the relevance for our work
(section 2.3)
This chapter extends the introductions of our recent journal publications (sections 3 of
Gerstmayr-Hillen et al. [222] and section 1.1 of Möller et al. [457]).

2.1. Cleaning Robots as Subdomain of Mobile Service Robots
Cleaning robots are considered a sub-domain of mobile service robots (figure 2.1) assisting humans
in monotonous and tedious tasks [209, 562, 580] and are both subject of academic research and
commercially available. Thus, the surveys on related work presented in this section always contain
examples from both fields. The large interest in cleaning robots is probably due (i) to the large
market potential of consumer and professional products and (ii) to the variety of possible application

Automated
guided vehicles

Lawn-mowing
robots

Floor-cleaning
robots

Domestic usage

Professional
usage

Other
environments

Pools

Windows

Facades

Solar modules

Ventilation ducts

Sewer lines

. . .

. . .

Cleaning robots

Mobile service robots

Figure 2.1.: Placement of domestic cleaning robots in the domain of mobile service robots. Closely related application
domains are linked by dashed lines. Extended after [157, 209, 562, 580].
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Table 2.1.: Examples of mobile service robots related to domestic floor-cleaning robots. The subtables list examples
of cleaning robots for other environments than floors (subtable (1)), professional floor-cleaning robots (subtable (2)),
and mobile service robots closely related to floor-cleaning robots (subtable (3)). The lists in the subtables are not
exhaustive.

(1) Cleaning robots for other environments (i.e. except for floors)

Application domain Academic Commercial

Pools [589] iRobot: Verro series [I55]
Zodiac: Polaris 9300 and 9300xi [I114, I115]

Windows & facades [88, 207, 445, 525, 556, 579] ALM Robotics: Windoro [I10]
Fraunhofer: SIRIUSc [155] Ecovacs: Winbot W353 and W553 [I20]
Various1: Sky Cleaner series
[721]

Serbot Innovations: Gekko Plus [I86]

Solar modules — Serbot Innovations: Gekko series [I84, I85, I87]
Solarbrush: L and H [I88, I89]

Ventilation ducts [174, 281, 335, 696, 708] Cyclone Ventilation: CYBOT [I17]
Danduct: Icetech and Multi Purpose Robot [I18, I19]

Sewer lines [283, 539, 591] IBG Hydro-Tech: Hydrocut series [I47]
Fraunhofer: Spy system [154,
156]

Ka-Te: grinding robot series [I94]

1 Cooperation project of the University of Hamburg (Germany), BeiHang University (Beijing, China), and the City University of Hong Kong.

(2) Professional floor-cleaning robots

Academic Commercial

[111, 203, 208, 290] Floorbotics: IVAC [I25]
East Japan Railway Company: Various robots [707] Fuji Heavy Industries: Subaru RFS1 [I29]

Intellibot: HydroBot, AeroBot, and DuoBot [I51–I53]
Robosoft: AutoVac 6 [I80]

(3) Other mobile service robots related to floor-cleaning robots

Application domain Academic Commercial

Autonomous/Auto-
matic Guided
Vehicles (AGVs)

[112, 330, 414, 636, 646, 689,
722]

FROG AGV Systems: Various robots [I28]

Review: [672] Hi-Tech Group: Intellicart series [I95]
JBT Corporation: Various robots [I58]
Jervis B. Webb Company: Various robots [I59]
egemin Automation: Various robots [I21]

Lawn mowing [284, 526, 643, 684] Gardena: R40Li [I30]
Friendly Robotics: Robomow series [I26]
Husqvarna: Automower series [I46]
Zucchetti: Ambrogio series [I116]
Bosch: Indego 10 [I1, I16]

areas. These range from apartments to large buildings or factory spaces to hazardous environments
or environments difficult to access [157, 176, 209, 518, 519, 562, 580].

Academic research on cleaning robots frequently uses experimental robot platforms and focuses on
navigation strategies (including localization, mapping, and planning of cleaning paths), kinematics,
control, and sensor data integration. Beyond that, companies have to incorporate aspects of usability,
safety issues, production engineering, marketing, and economic feasibility for designing their cleaning
robots. The navigation strategies presented in chapters 4 to 6 arose from searching a real-world
application as testbed for local-visual homing methods. With our research on cleaning-robot
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2. Cleaning Robots

navigation, we try to bridge the gap between basic research and application-oriented research.
Therefore, aspects such as customer demands, characteristics of a consumer product, and aspects of
industrial product development strongly influence our research.

The navigation strategies of all cleaning robots have in common that they aim at complete coverage
of the accessible workspace without leaving areas uncleaned and, ideally, without visiting areas
multiple times. Especially if the robot is powered by batteries, it is essential to keep the proportion of
repeated coverage as small as possible. Depending on the surface to be cleaned, floor-cleaning robots
and robots for cleaning other surfaces can be distinguished [157, 518]. Cleaning robots for other
surfaces have to navigate e.g. on strongly inclined surfaces or under water. Therefore, they require
drives and safety precautions specialized for the specific task. These robots are usually remotely
operated, with power and cleaning medium being provided over cables and hoses, respectively
(Elkmann, Hortig, and Fritzsche [157]). Example workspaces of such robots include pools,
windows, facades, solar modules, ventilation ducts, and sewer lines (table 2.1.1).

Floor-cleaning robots are usually wheeled robots. In order to operate autonomously, the robots
are equipped with batteries, computers, dirt reservoirs, brushes, suction units, or tanks for detergent.
Such robots can be further categorized into robots for domestic and professional usage (Elkmann,
Hortig, and Fritzsche [157]). Professional systems (table 2.1.2) are used for cleaning of large
buildings such as stations, airports, shopping centers, or factory spaces [157, 176]. Robots for
professional usage are large and heavy-weight machines which can carry a considerable payload
(e.g. tanks for water, detergent, or waste water). They are usually equipped with strong batteries,
large computational power, and sophisticated sensor systems. For navigation, such systems can rely
on artificial beacons or on strategies which require the footprint of the environment to be known
beforehand. With these properties, professional floor-cleaning robots rather resemble autonomous
guided vehicles (AGV, e.g. [41], table 2.1.3) than domestic cleaning robots. Since the focus of this
thesis is on domestic floor-cleaning robots, these robots will be described in more detail in the
following section.

2.2. Domestic Floor-Cleaning Robots
In order to clean a complex-shaped workspace such as a room or an entire apartment, domestic
cleaning robots need to be small and agile [176, 518, 519]. As their price should be comparable
to the price of a standard vacuum cleaner, domestic cleaning robots can only be equipped with
little battery power, low computational power, and a small number of cheap sensors [I71]. The
robots should be applicable “out of the box” without knowing the footprint of the workspace before
cleaning, with as little modifications to the environment as possible, and in the ideal case without
user intervention. The third aspect is essential if the robot is supposed to clean if the user is away
from home. It includes that the robot should not get stuck underneath obstacles like furniture.
Furthermore, the robot should autonomously return to its docking station for recharging or after
cleaning. Domestic floor-cleaning robots have to be considered consumer goods. For this reason, they
are closer related to lawn-mowing robots (table 2.1.3) than they are to professional floor-cleaning
robots or to cleaning robots for other environments. Such robots are both available on the market
and the subject of academic research; these two fields will be reviewed in the remainder of this
section. Since details about commercial cleaning robots are rarely published in scientific literature,
links to the manufacturers’ web pages are given instead; patents were not been considered in this
thesis.

2.2.1. Commercial Products
Commercial floor-cleaning robots for household usage have been available on the market since
approximately the year 2000. Table 2.2 lists some of these robots, and three currently available
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2.2. Domestic Floor-Cleaning Robots

Table 2.2.: Examples of commercially available floor-cleaning robots. The given list is not exhaustive; extended after
[I11, 578].
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Agait E-Clean series 3 3 3 3 3 3 [I2–I5]
Agama AiBot 300 series 3 3 3 [I6, I7]
Agama AiBot 500 series 3 3 3 3 3 3 [I8, I9]
Evovacs Deebot series 3 3 3 3 3 3 [I99–I103]
Electrolux Trilobite 2.0 3 3 3 [518]
iRobot Roomba series 3 3 3 3 3 [I56, 639]
iRobot Scooba series 3 3 3 3 [I57]
Kärcher RC series 3 3 3 3 [I60, I61]
Mamirobot Sevian series 3 3 3 3 3 3 [I65]
Yujin iClebo home 3 3 3 3 3 [I110]
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Evolution Robotics Mint series 3 3 3 3 3 3 [I23, I24, I71]
Hanool Ottoro series 3 3 3 3 3 3 3 [I104, I105]
LG Hom-Bot series 3 3 3 3 3 3 3 3 3 [I63, I64]
Neato Robotics XV series 3 3 3 3 3 [I72–I75]
Moneual Rydis R750 3 3 3 3 3 3 3 [I70]
Philips HomeRun FC9910 3 3 3 3 3 3 3 3 [I77]
Samsung Navibot Series 3 3 3 3 3 3 3 3 [I81, I82]
Vorwerk Kobold VR100 3 3 3 3 3 [I106]
Yujin iClebo smart/arte 3 3 3 3 3 3 3 ? [I109, I112]

(1) Samsung NaviBot Silencio
SR-8895

(2) LG Hom-Bot 2.0 (3) Neato XV-11

Figure 2.2.: Examples of commercially available floor-cleaning robots for household usage. Photos by Lorenz Hillen.
Figure best viewed in color.

cleaning robots are shown in figure 2.2. All the robots we are currently aware of are differential-drive
robots (textbook: [586]). Most of the robots have a circular shape with a height of approximately
10 cm and a diameter of approximately 30 cm. Exceptions regarding the robot’s shape include (i)
the Neato XV series ([I72–I75] and figure 2.2.3) and the Vorwerk Kobold VR100 [I106] which are
D-shaped and (ii) the LG Hom-Bot Square [I64] which is squared with rounded corners. Depending
on their navigation strategy, they can be categorized into first-generation and second-generation
products.

2.2.1.1. First-Generation robots

First-generation robots rely on preprogrammed movement patterns such as spirals (figure 2.3.1) or
on random-walk strategies (figure 2.3.2). Thus, achieving complete coverage requires a relatively
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2. Cleaning Robots

(1) Spiraling movement pattern. The trajectory shown
in this image was obtained by the LG Hombot 2.0
operating for 77 s in its spot cleaning mode. To trace
the robot’s trajectory, a green light-emitting diode
(LED) was mounted on the robot resulting in the thin
green uninterrupted trace. The red trace was caused by
the robot’s blinking control elements.

(2) Random walk obtained by the iRobot Roomba 770.
The robot was released from its docking station (top
right) and returned to it after 689 s. The thick green
trace results from the robot’s control elements.

Figure 2.3.: Navigation strategies of first-generation cleaning robots. Subfigures (1) and (2) show spiraling movement
patterns and random walk strategies, respectively. The shown pictures are long-time exposures taken while the robot
was operating in the dark; the environment was made visible by flashing with second-curtain synchronization. Thus,
the photos depict the situation at the end of the cleaning run. Perspective and lens distortions were not corrected.
Photos by Lorenz Hillen. Figure requires color printing.

(1) Samsung NaviBot SR-8895 Silencio. Exposure time:
658 s. The robot was released from the charging station
(top center with small red light), but it did not return.

(2) Neato XV-11. The robot was released from its
charging station (top right) and successfully returned to
it after 448 s.

Figure 2.4.: Navigation strategies of second-generation cleaning robots. The subfigures visualize similar movement
strategies by different commercially available cleaning robots. The shown pictures are long-time exposures taken while
the robot was operating in the dark; the environment was made visible by flashing with second-curtain synchronization.
Thus, the photos depict the situation at the end of the cleaning run. To trace the robot’s trajectory, a green
light-emitting diode (LED) was mounted on the robot resulting in the thin green uninterrupted trace. Perspective
and lens distortions were not corrected. Photos by Lorenz Hillen. Figure requires color printing.

large amount of time and results in a large proportion of repeated coverage [501, 535]. With their
limited sensor equipment and with limited computational power, these robots are not capable of
building a representation of their workspace. Thus, they cannot distinguish covered areas from
areas which still need to be cleaned (Prassler and Kosuge [518]). Several robots of this class
were or are still available on the market (table 2.2, upper part). Among all these robots, the family
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2.2. Domestic Floor-Cleaning Robots

of iRobot’s Roomba robots is the most well known and probably the most frequently sold domestic
cleaning robot.

2.2.1.2. Second-Generation robots

Second-generation robots (table 2.2, lower part) rely on systematic exploration strategies and can
recognize and directly approach uncleaned areas. By this means, they can cover the workspace
more efficiently and with a smaller proportion of repeated coverage. Second-generation robots move
along meandering and parallel lanes (figure 2.4), and complete coverage is achieved by combining
several segments of meandering lanes. To accomplish their task, the robots are —in addition to
the basic sensors also used by first-generation robots— equipped with more elaborated sensors
such as cameras, gyroscopes, accelerometers or laser-range finders. Although little is known about
the navigation strategies of these robots, it is likely that they build a map of their workspace
for achieving the cleaning task. Second-generation robots have been available since 2008 and are
equipped with a 360° laser range finder (e.g. Neato XV series [I72–I75], Vorwerk Kobold VR100
[I106]), with a combination of a gyroscope and a monocular camera directed towards the ceiling (e.g.
LG Hom-Bot series [I63, I64], Yujin iClebo smart and arte [I109, I112], Samsung Navibot SR-8855
and SR-8895 Silencio [I81, I82], Philips HomeRun FC9910 [I77]), or with a gyroscopes as primary
sensor (e.g. Moneual Rydis R750 [I70]). The navigation strategies described in chapters 4 to 6
are essential building blocks for systematically covering complex-shaped workspaces by combining
several cleaning segments of parallel lanes. To this end, our navigation strategies are closely related
to second generation robots.

2.2.2. Academic Research

Academic research on autonomous cleaning robot dates back to the 1990’s (seminal workshop
proceedings: [49], reviews: [176, 519]). In 2002, the first “International Contest for Cleaning Robots”
was held jointly with the “IEEE International Conference on Intelligent Robots and Systems” (IROS,
[I92, I107]). The test arena was a furnished single-room apartment with a base area of 25m2. The
goal of the competition was to completely clean the accessible area within 10min while avoiding
both obstacle collisions and interventions of the operator. In the contest, 12 teams from different
universities competed. Most of the robots were custom-built with different sensory equipment and
relied on random or systematic cleaning strategies (Prassler, Hägele, and Siegwart [521]).
The results of the competition revealed that the cleaning performance was only moderate. Many
robots required human intervention because they got stuck in corners or underneath obstacles. The
competition remained a unique event. Thus, the chance was missed to establish a possibility for
benchmarking and a platform for knowledge exchange like the RoboCup [I96] is in the fields of
robot soccer and rescue robotics.
Since the cleaning-robot contest, autonomous cleaning robots have only received little attention

in academic research. This is in contrast to (i) the fast advances of the commercial sector and (ii)
to the tremendous achievements in the field of autonomous navigation (chapter 3). Nevertheless,
we are currently not aware of an academic paper describing an entire robot system capable of
autonomously cleaning a complex-shaped workspace. Several aspects were investigated in academic
research including planning of cleaning paths and simultaneous localization and mapping (SLAM).
As these aspects are related to the work presented in this thesis, they will be briefly discussed in
the following; further aspects which are not relevant for this thesis include human robot interaction
(e.g. [185]) or hardware design of cleaning robots (e.g. [499]).
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2.2.2.1. Cleaning Path Planning

In the domain of cleaning path planning, complete coverage planning algorithms can be applied for
the navigation of an autonomous cleaning robot. These methods plan paths in order to completely
cover the robot’s workspace while minimizing the portion of repeated coverage (Choset [109]).
Complete coverage algorithms can be categorized into methods assuming the map of the environment
to be known a-priori (e.g. [107]) and into methods including map building (e.g. [362, 382, 391]).
For details on these methods, the reader is referred to the reviews [109, 362, 501]. In contrast to
complete coverage planning, frontier-based planning methods release the restriction of physically
visiting every accessible place. These methods solely aim at complete sensor coverage for mapping
the robot’s workspace by planning paths in order to approach free space at the border of explored
areas (e.g. [193, 710, 711]).

2.2.2.2. Simultaneous Localization and Mapping for Cleaning Robots

SLAM algorithms concurrently localize the robot within a map while building a map of the robot’s
environment. By integrating sensor data over time, the map is iteratively updated —usually by
applying a Bayesian filter framework. For details on such methods see the textbooks [110, 586, 630]
and section 3.6 of this thesis. In the context of cleaning robots, SLAM methods relying on vision or
other sensor modalities as primary source of information are applied.

Visual SLAM
The following visual SLAM methods all rely on a monocular camera directed towards the ceiling
and cover the robot’s workspace with meandering lanes. With respect to the taxonomy of mapping
methods proposed in section 3.6, these methods build sparse model-based maps (section 3.6.3.1). The
methods proposed by Jeong and Lee [309, 310] use an extended Kalman filter (EKF) for estimating
the robot’s pose and the position of the landmarks. As landmarks, they rely on SIFT features (Lowe
[389]) and on SIFT features combined with line features (see section 3.3.1.3 for a brief description
of feature detectors and descriptors). The latter method was extended to multi-robot SLAM using
a particle filter for state estimation (Lee and Lee [360, 361]). The focus of these papers is on map
building and on obtaining an estimate of the robot’s pose; further aspects of cleaning strategies for
covering workspaces with a complex layout are not described. Nevertheless, the similarity between
figures in the publications [360, 361] and a video [I108] available in the internet suggest that the
Samsung robots ([I81, I82] and table 2.2) use SLAM algorithms developed by this research group.
The SLAM method proposed by [106] relies on a monocular camera directed towards the robot’s
movement direction. It estimates the robot’s current state and the 3D-positions of the known
feature points (detected by the Harris corner detector; Harris and Stephens [277]) by an extended
Kalman-filter framework. New features are added without delayed measurement by assuming a
large initial uncertainty along the feature’s viewing direction. Later on, the initial uncertainty is
refined. The method by Kwon, Song, and Kang [350] is an algorithm for Monte-Carlo localization
(section 3.3.2.1) tested in the context of cleaning robot navigation. It relies on a known database of
low-dimensional feature descriptors for corner features with known positions sensed on the ceiling
of the robot’s workspace. In principle, the method could be extended to a feature-based SLAM
method like the methods described above.

Other Sensor Modalities
The method by Gutmann et al. [263, 264] is referred to as vector-field SLAM: it learns the
spatial variation of a continuous signal and uses the signal variations for position correction by an
extended Kalman filter, by an exactly sparse extended information filter (ESEIF), or by graph-based
optimization techniques (see section 3.3.2.1 for a brief description of position estimation techniques).
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As external reference signal, the robot derives bearing information from static IR spots projected
onto the ceiling by the Northstar system (Yamamoto et al. [709]). A similar approach referred
to as magnetic field-based SLAM is used by Vallivaara et al. [656, 657] where the robot learns
a map of anomalies of the ambient magnetic field arising in indoor environments. The map is
approximated by Gaussian process regression (textbooks: [46, 532]), and a particle filter is used to
estimate the robot’s state. The authors conclude that the obtained maps are stable over time and
that the resulting localization accuracy is sufficient for the control of an autonomous floor-cleaning
robot.

2.3. Relevance for Our Work
The market survey in section 2.2.1 clearly reveals that none of the currently available cleaning
robots is equipped with an omnidirection camera system. Related second-generation robots rely on
laser-range finders, gyroscopes and accelerometers, or a monocular camera directed towards the
ceiling. Nevertheless, we consider omnidirectional vision to be an appropriate sensor modality for
such robots (please refer to section 3.2.4.2 for a detailed discussion on this issue). Because of being
the first application of omnidirectional vision for cleaning-robot control, this dissertation has the
character of a feasibility study.
Regarding the related work of the academic domain, the approaches reviewed in section 2.2.2

are of limited relevance for our work. Due to being tailored to their particular sensor modalities,
vector-field SLAM (Gutmann et al. [263, 264]) and magnetic-field SLAM (Vallivaara et al. [656,
657]) cannot be applied with our particular robot equipped with an omnidirectional vision setup
(section 4.4.3). Complete coverage and frontier-based planning algorithms both require methods for
detecting and approaching free space at the border of explored areas (section 2.2.2.1). Regarding
these aspects, they are closely related to high-level navigation strategies of cleaning robots required
to completely cover complex-shaped workspaces such as entire rooms or apartments. Such high-level
aspects are not considered for this thesis, but they will become relevant for implementing further
strategies required to completely cover complex-shaped workspaces (section 7.3.2). Regarding low-
level aspects such as mapping and trajectory-control, the methods for complete coverage planning
or frontier-based exploration algorithms we are aware of all rely on range information. Range
information could in principle be derived by visual stereo computations, but we prefer to solely
use visual intensity information and avoid the effort for stereo computations. Besides the different
sensory information, coverage planning and frontier-based exploration algorithms do not deal with
position estimation but assume the position to be known. In contrast, the trajectory controller
proposed in chapter 4 does not rely on such an assumption but computes the necessary information
from the available sensor information.
Visual SLAM methods relying on a standard pinhole camera facing upwards as described in

section 2.2.2.2 can in principle be extended for usage with omnidirectional vision. Nevertheless, we
expect them to be computationally more demanding than the methods proposed in this thesis. This
is due to (i) using spatial positions of visible image features as landmarks and (ii) to the posterior
map corrections inherent to SLAM methods. The former aspect incorporates the computationally
demanding steps of detecting features in the image, establishing correspondences, and computing
and maintaining estimates of the features’ positions in space. With our methods, we try to avoid
these steps by using entire images acquired at former robot positions as landmarks (section 3.5.1).
Posterior position updates are computationally demanding because their complexity usually grows
with the number of positions stored in the map (textbook: [630]). With our methods, we hope to
circumvent this step by combining several segments of locally consistent cleaning lanes without
enforcing global consistency. Regarding our application, we think that avoiding repeated coverage
and uncleaned areas can also be achieved without global consistency but with reliable loop-closure
detection (sections 7.2.1 and 7.3.3).
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3. Visual Navigation Based on Omnidirectional
Images

The chapter reviews and categorizes related work on navigation of wheeled mobile robots
relying on omnidirectional visual information. This categorization is used to relate the
navigation strategies proposed in this thesis to existing works in the research domain.
Section 3.1 briefly motivates this review, and section 3.2 introduces navigation and
omnidirectional vision. The proposed categorization of navigation strategies is described
in sections 3.3 to 3.6 and includes visual place representation and recognition, visual
compass methods, local visual homing, and mapping methods, respectively. The chapter
ends with a discussion (section 3.7).
Sections 3.2.4.2, 3.5.1 and 3.6 of this chapter extend sections 3.3.1, 4.1, and 2, respectively,
of our recent journal article Gerstmayr-Hillen et al. [222] published in “Robotics and
Autonomous Systems”. For sake of documentation, sections 3.2.3.2, 3.5.2.3 and 3.7.1.1
briefly mention results which are not considered in this thesis. These include Lorenz
Hillen’s technical reports [213, 217] and final projects [60, 243, 328, 470, 550, 667, 669] of
students supervised by Lorenz Hillen.
We plan to publish a modified version of the chapter as a review article after the final
publication of this dissertation.

3.1. Motivation

During the last 10 to 15 years, a substantial number of research papers dealing with navigation
strategies for wheeled mobile robots relying on omnidirectional vision was published. However,
in contrast to the large number of research papers, the field is not well covered by reviews or
textbooks: the reviews [52, 99, 130, 139, 175, 189, 191, 432, 563, 642] and the textbook [586] mention
omnidirectional vision only as a side issue, while the reviews [25, 74, 150, 194, 341, 631] and the
textbooks [41, 110, 630] do not cover omnidirectional vision at all —even though they deal with
concepts also relevant for navigation based on omnidirectional vision. We are therefore of the
opinion that the field lacks a sound categorization of existing navigation strategies. Thus, we
analyzed the available literature and propose such a categorization which is used to relate and
compare the navigation strategies proposed in this dissertation. For some groups of navigation
strategies, we could reuse or extend existing categorizations, whereas others required to propose a
new categorization. Due to the huge amount of original research papers published in the field, we
restrict ourselves (i) to papers published since 2000 and (ii) to papers dealing with omnidirectional
visual navigation of wheeled robots, i.e. of robots moving in the plane.

Section 3.2 of this chapter defines navigation, introduces prerequisies for navigation and omni-
directional vision, and describes the basic categorization of navigation strategies proposed in this
chapter; sections 3.3 to 3.6 then describe the different categories in more detail. To visualize the
reviewed strategies, we generated a 3D model of a living room (figure 3.1). Figures 3.10, 3.11, 3.14,
3.20, 3.24 to 3.29, 3.32 to 3.36 and 3.38 show typical properties and situations of the navigation
methods as they could be obtained by a robot navigating in the living room. Please note that the
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(1) Rendered 3D view

1m

c

s

(2) Footprint. Ground-level
obstacles are depicted by filled
areas. Obstacles above ground level
are marked by dashed lines; the
carpet is depicted by the light-gray
rectangle. The panoramic images
were rendered at positions c and s
with the robot facing the bookshelf
(indicated by the little bars).

(3) Rendered example image 1. The robot was placed at position c facing the bookshelf. For visualizing compass and
local visual homing methods (sections 3.4 and 3.5), this image is used as current view (i.e. the image acquired at the
robot’s current position).

(4) Rendered example image 2. The robot was placed at position s facing the bookshelf. For visualizing compass and
local visual homing methods (sections 3.4 and 3.5), this image is used as snapshot (i.e. the image acquired at an
earlier robot position or the robot’s goal position).

Figure 3.1.: Virtual example room for visualization of navigation strategies. The room is used to visualize approaches
to characterize places by visual information (figures 3.10, 3.11 and 3.14), visual compass methods (figure 3.20), different
groups of local visual homing methods (figures 3.24 to 3.29), and different types of maps (figures 3.32 to 3.36 and 3.38).
The 3D model was generated in SweetHome3D [I22] by reusing the furniture models [I32–I40] publicly available from
Google 3D Warehouse [I31]. Subfigure (1) gives an impression of the room (rendered using a standard camera), and
subfigure (2) shows the room’s footprint. The panoramic images depicted in subfigures (3) and (4) were acquired at
positions c and s (in subfigure (2) marked by filled circles with the bars indicating the robot’s orientation).
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Places
one position
(section 3.3)

Local navigation
two positions

(sections 3.4 and 3.5)

Map-based navigation
more than two positions

(section 3.6)

C
om

pl
ex
ity

Figure 3.2.: Hierarchy of navigation methods operat-
ing on omnidirectional images. The methods’ complex-
ity increases from bottom to top, and more complex
methods rely on less complex methods. The numbers
refer to the sections describing the corresponding level
in detail.

figures were manually drawn and not generated by reviewed algorithms operating on rendered image
data.

3.2. Introduction
This section introduces basic aspects of navigation and omnidirectional vision necessary to understand
the categorization of navigation methods proposed in sections 3.3 to 3.6.

3.2.1. Definition of Navigation
Although being easy to understand, the term navigation is difficult to define and various definitions
were proposed. Here, we focus on two definitions: the first is rather technical, whereas the second
one is very basic and general. In Levitt and Lawton [367] navigation is defined as the process of
answering the following three questions: (i) “Where am I?”, (ii) “Where are other places relative to
me?”, and (iii) “How do I get to other places from here?”. This definition is strongly influenced
by marine navigation, and it influenced classical attempts to robot navigation. The first question
requires the agent —i.e. the animal, human, or robot— to be localized. Thus, its position in the
environment has to be known. The second question requires the agent to have knowledge about
several places and their positions in space. Such information is typically stored in a map of the
environment. The third question is closely related to classical path and motion planning approaches.
In contrast, ethological research revealed that navigation is possible without answering these

questions. Therefore, navigation is by Franz and Mallot [189] defined as “the process of
determining and maintaining a course or a trajectory to a goal location”. According to Franz and
Mallot [189], the only requirements for navigating are (i) to move in space and (ii) to recognize
the goal. In contrast to the definition of Levitt and Lawton [367], navigation as defined by
Franz and Mallot [189] does neither require localization nor a map. Both definitions have in
common that navigation behavior needs to be goal-directed. Therefore, the definitions exclude
spatial behaviors like obstacle avoidance or course stabilization. Throughout this dissertation, we
will follow the more general definition by Franz and Mallot [189].

3.2.2. Basic Categorization of Navigation Methods
For categorizing navigation methods, we propose a three-level hierarchy depicted in figure 3.2. The
lowest level of our categorization is the level of places and subsumes methods to characterize (i.e.
to relate the perceived visual information with a place in space) and to rerecognize places based
on visual information. With only a single place, an agent cannot yet navigate, but the navigation
methods of the higher levels operate on this place representation to achieve certain navigation
capabilities. We will discuss the first level in section 3.3.
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The second level is the level of local navigation. Local navigation methods operate on visual
information obtained at two different but nearby positions in space. Typically, these two places
are the robot’s current position and a known goal position. Local navigation can be used to guide
the robot from its current position towards the goal or to estimate spatial relations between two
positions without physically approaching the goal. The navigation strategies of this level are limited
to the robot’s sensory horizon. In case of vision as primary sensory information, this is the area in
which the features perceived at the goal position are visible. Local navigation methods are covered
in sections 3.4 and 3.5.

The third and most complex level embraces map-based navigation strategies, which store several
places and their interrelations in a map. For building and operating on the map, map-based
navigation methods rely on local-navigation strategies. In contrast to local navigation methods,
map-based methods allow the agent to navigate beyond its current sensory horizon. In the review by
Franz and Mallot [189], map-based navigation is referred to as way-finding. However, we prefer
the term “map-based navigation” because it is more common in the robotics community. Map-based
navigation methods are described in section 3.6. This categorization extends the categorizations
proposed by Trullier et al. [642] and Franz and Mallot [189], which only include the second and
third level of our hierarchy. Before describing the levels, we first introduce essential prerequisites for
robust and accurate navigation (section 3.2.3) and introduce omnidirectional vision (section 3.2.4).
The proposed hierarchy focuses on the agent’s behavior which results from navigation strategies

of each level. Another possible categorization of navigation strategies results from grouping methods
depending on whether or not they use metrical position information. Strategies not relying on
position information are also referred to as qualitative methods, and strategies incorporating metrical
position information are referred to as quantitative methods. Depending on the used strategy, the
agent’s pose (i.e. position and orientation) in space or spatial positions of visible image features are
computed (section 3.3.2).

Besides the categorization into qualitative and quantitative navigation methods, appearance-based
methods embrace navigation strategies which operate solely on image intensity information without
estimating spatial positions of visible objects. Thus, appearance-based methods include (i) qualitative
strategies and (ii) quantitative strategies if they do not estimate spatial positions of visible features.
The term appearance-based is borrowed from work on visual object recognition describing approaches
making solely use of the object’s appearance rather than methods incorporating geometrical object
information (seminal paper: Murase and Nayar [471], reviews: [153, 544], textbook: [633]).

3.2.3. Prerequisites for Reliable and Robust Navigation

According to the reviews by [74, 99, 175, 194, 432], a set of four prerequisites can be identified which
are crucial for robust and accurate navigation. These prerequisites include (i) robustness against
perceptual aliasing (section 3.2.3.1), (ii) robustness against perceptual variability (section 3.2.3.2),
(iii) correct place recognition (section 3.2.3.3), and (iv) —in case of map-based navigation— correct
sensor-data integration (section 3.2.3.4). The first two aspects strongly influence the perceived visual
information. In their context, robustness means that the navigation method should be invariant
or at least to some extent tolerant against such perceptual effects. Prerequisites (iii) and (iv) are
closely related to the processing of the visual information, and a failure will result in imprecise,
inaccurate, or —from the user’s perspective— unexpected navigation behavior.

3.2.3.1. Robustness Against Perceptual Aliasing

Perceptual aliasing, sometimes also referred to as “spatial aliasing”, occurs if identical sensor data is
perceived at two different positions in space (reviews: [175, 432]). In the context of vision, different
places with identical visual appearance frequently occur in repetitive environments. Without
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Day:

Night:

(3) (3)(1) (2) (1) (2)

Figure 3.3.: Influences of changes of the illumination. The images were acquired at the same position in space but
at different points in time and under different illumination conditions: under natural illumination during day (top)
and under artificial illumination during night (bottom). The visual appearance of an image changes due to changes of
the shadow cast (1), of image intensities (2), and of the positions of highlights and reflexions (3).

metrical position information, places with identical appearance cannot be disambiguated. Thus,
qualitative methods (methods not incorporating position information; section 3.2.2) are more prone
to perceptual aliasing than quantitative methods (relying on position information; section 3.2.2).
Robustness against perceptual aliasing can also be achieved by considering the current sensor data
together with sensor measurements recorded some short time ago (e.g. [327, 440]). This “history”
helps to disambiguate places. For our particular application, robustness against perceptual aliasing
is in particular important for detecting if the robot approaches an already cleaned area (loop-closure
detection; section 3.2.3.3). A failed detection leads to repeated coverage or uncleaned areas.

3.2.3.2. Robustness Against Perceptual Variability

Perceptual variability occurs if the visual appearance of a place changes over time (reviews: [175,
432]). Robustness against perceptual variability is an essential aspect for every visual navigation
method because illumination changes or scene changes can dramatically alter the visual appearance
of an image. These two aspects will be further discussed in the following.

Illumination Changes
Changes of the illumination conditions influence the image intensities, the shadow casts and the
positions of reflexions and highlights (figure 3.3). They can be categorized into three groups: daytime
changes, medium-term changes, and abrupt changes. Daytime changes are illumination changes being
due to the position of the sun changing over the entire day. They only influence robot navigation if
the robot operates over a long period of time or if it resumes operating after some time, e.g. after
recharging batteries. A typical cleaning robot has a battery capacity of approximately 1 h. In case
it is capable of cleaning its workspace with one battery charge, we expect the influence of daytime
changes to be rather low. If the robot has to resume its cleaning process after recharging, daytime
changes are likely to influence the navigation behavior. Medium-term changes of the illumination
are usually due to certain weather situations such as alternating clouds and sunshine. As they occur
within several minutes, they can strongly influence a single cleaning run. Abrupt changes of the
illumination can occur within seconds. They are in most cases caused by artificial changes of the
illumination such as switching lights on or off. In rare cases, abrupt changes can be due to weather
conditions. Such changes can also occur during a single cleaning run.
Robustness against changes of the illumination can be achieved at different processing steps

of a navigation algorithm: (i) at image acquisition, (ii) at image preprocessing, and (iii) at the
algorithmic level. The first level was considered in the diploma project by Dr. Sven Kreft [342] and
the bachelor’s project by Gereon Götze [243] both supervised by Lorenz Hillen. In both cases, a
camera controller is applied to keep the average image brightness constant. The second level was

21



3.2. Introduction

addressed by Björn Böttcher in his bachelor’s thesis [60] also supervised by Lorenz Hillen. There,
different methods for preprocessing methods and image dissimilarity measures1 were tested for local
visual homing and visual localization. This approach is pursued for the holistic loop-closure detection
methods described in chapter 5. The third level includes, for example, to develop homing algorithms
or loop-closure detection methods being robust against changes of the illumination. For making our
algorithms illumination-tolerant we currently focus on the used image dissimilarity functions. In
the bachelor’s thesis by Björn Böttcher [60] and in chapters 5 and 6 of this dissertation we therefore
compare a wide range of image dissimilarity functions proposed in the literature (reviews: [19, 91,
92, 225, 635]). In addition, Prof. Dr. Ralf Möller recently developed new dissimilarity functions for
application with local visual homing algorithms (Möller [448–450]).

Scene Changes
Perceptual variability can also be caused by changes of the visual environment. Such changes can
be divided into dynamic and static scene changes. Dynamic scene changes are the most likely scene
changes and are due to persons or pets moving in the robot’s workspace. Static scene changes are
caused by modifications of the environment such as moving, removing or adding objects or furniture.
The influence of a scene change on navigation performance strongly depends on the extent of the
disturbance in the perceived image. Smaller disturbances are more likely to be tolerated, whereas
larger disturbances can cause the navigation method to fail. Due to the large field of view, most
disturbances only affect a small portion of the entire omnidirectional image and therefore do not
have a large influence on the used navigation strategy. Scene changes have to be considered at
the algorithmic level. One possible approach would be to first detect disturbed image regions or
erroneous correspondences and later on discard them in subsequent computations. Scene changes
were not further considered within this thesis and static environments were assumed for our robot
experiments (sections 4.4 and 6.4). Assuming a static environment for a cleaning robot is reasonable
if the user is not at home or at least does not move in the room currently cleaned by the robot. It
is clearly violated if people or animals are moving in the currently cleaned room, follow the robot,
or even block its path.

3.2.3.3. Correct Place Recognition

The notion of a place is crucial for any navigation method. As discussed in section 3.2.1, navigation
requires at least to recognize the robot’s goal, but —depending on the robot’s task— it can also
involve to memorize and recognize several places. On the level of local visual homing, where the
robot is supposed to return to a previously visited position, not correctly recognizing the goal
can cause the robot either to stop at an erroneous goal position or to not find the goal at all.
For map-based navigation, not correctly recognizing places already mapped leads to inconsistent
maps. In this case, the map will not correctly represent the robot’s environment e.g. because of
mapping identical places multiple times (figure 3.4). This problem is referred to as loop-closure
problem (reviews: [99, 432, 631]; textbook: [586, 630]). If loop closures are detected correctly,
spatial relations can be corrected, and the quality of the resulting map can be considerably improved
(section 3.6.1.2). We consider loop-closure detection to be one aspect of the more general problem
of recognizing places and therefore favor the term “place recognition” rather than “loop-closure
detection”. The principles of using visual information to represent and recognize places is introduced
in section 3.3. In the context of visual cleaning-robot control, reliable place recognition is essential to
combine several segments of parallel and meandering lanes for completely covering complex-shaped
workspaces. When approaching an already cleaned segment, the robot has to stop at the segment’s
1Also referred to as “image distances”. Throughout this dissertation we prefer the term “image dissimilarities” in
order to emphasize the difference to spatial distances.
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Figure 3.4.: Naive mapping method without sensor-data
integration and place recognition. While driving along its
trajectory (thick line), the robot continuously senses features
(black crosses) and maps each measurement (circles). At the
beginning, the position of the measurements (dark-gray filled
circles) are close to the true feature positions (crosses). When
the robot detects the previously sensed features again, the
estimated feature positions (open circles) deviate from their
true positions (crosses) resulting in inconsistencies. Consistent
mapping is only possible if loops are correctly detected and
the current sensor data is correctly integrated into the existing
map.

border in order to avoid repeated coverage or gaps between neighboring segments. Chapters 5 and 6
describe two different approaches to loop-closure detection in the context of cleaning robots.

3.2.3.4. Correct Sensor-Data Integration

Map-based navigation methods accumulate sensor data over a longer period in time and over various
positions in space (review: [74]). The process of fusing the robot’s current sensor data into an
already existing map is referred to as sensor-data integration. Correctly integrating sensor data is a
prerequisite for all mapping methods, and if it fails, maps will become inconsistent. Correct sensor
data integration is closely related to localization, i.e. the process of computing the robot’s position in
space (not necessarily in a metrical sense). Without knowing the robot’s position, the map cannot
be updated or extended correctly resulting in inaccurate and inconsistent maps. This principle
gave rise to the research field of simultaneous localization and mapping (SLAM; section 3.6.1.2).
Section 3.6 describes in more detail how spatial and temporal integration of sensor data is achieved
for various types of maps; sections 3.6.3.2 and 4.2 point out how aspects of sensor-data integration
are used for our work on dense topo-metric maps.

3.2.4. Omnidirectional Vision

The principles of navigation discussed so far in this chapter are mostly independent of the used
sensory information and hold for arbitrary sensors. In this section, we briefly introduce fundamental
properties of omnidirectional vision (section 3.2.4.1) and discuss aspects related to omnidirectional
vision for controlling cleaning robots (section 3.2.4.2).

3.2.4.1. Omnidirectional Vision in a Nutshell

Omnidirectional cameras (review: [566], textbooks: [40, 131, 586]) are vision setups providing a
considerably larger field of view than traditional cameras (figure 3.5). In the strict sense of the term
omni-directional, such cameras can sense in all directions resulting in a complete spherical view
([72, 566]; figure 3.5.1). Nevertheless, the common usage of the term omnidirectional camera also
includes cameras for obtaining a hemispherical view (figure 3.5.2) or a panoramic view (figure 3.5.3).
While hemispherical views cover at least half of the entire viewing sphere, panoramic views have a
field of view including at least one great circle of the entire sphere (i.e. the plane defined by the
circle contains the sphere’s center).
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(1) Spherical (2) Hemispherical (3) Panoramic (4) Directed

Figure 3.5.: Different camera types and their fields of view. The field of view decreases from left to right: subfigure
(1): spherical views cover (almost) the entire viewing sphere, subfigure (2): hemispherical views image at least a
hemisphere of it, subfigure (3): panoramic views image a subset containing a great circle of the entire sphere, and
subfigure (4): directed views only image a small portion of it. According to its normal usage, the term omnidirectional
camera subsumes cameras with spherical, hemispherical, and panoramic fields of view. Directed views are usually
obtained by standard pinhole cameras. The dashed line depicts the horizon of the viewing sphere. Extended after
Pajdla, Svoboda, and Hlaváč [498] and Bunschoten [72].
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Figure 3.6.: Omnidirectional vision setup with a single
projection center. Light (dashed lines) incident from scene
points a and b intersects the mirror surface in points a′ and
b′, respectively. In the depicted case, the incident rays both
intersect in the point m inside the mirror surface, which is
usually referred to as projection point or viewpoint. If this
is the case for rays incident from arbitrary scene points,
the setup is referred to as single viewpoint or central. For
non-single viewpoint setups, incident rays do not intersect
in a single point. Rather the area of intersection forms
a surface (e.g. [613, 614]). The points a′ and b′ on the
mirror surface are imaged to points a′′ and b′′ on the
image plane. The rays of light from a′ to a′′ and from b′

to b′′ intersect in the camera’s projection point c. This is
due to standard pinhole cameras also fulfilling the single-
viewpoint constraint (textbook: [586]). After [I83].

Due to the image distortions resulting from their large field of view, traditional camera models
for pinhole cameras (review: [603], textbooks: [186, 278, 641]) cannot be applied to omnidirectional
vision setups. Hence, omnidirectional vision setups require particular camera models. A detailed
mathematical description of such models is beyond the scope of this thesis; instead, the reader is
referred to the original publications [26, 224, 564, 565] and the textbooks focusing on robotics [586]
and on omnidirectional vision [40, 131]. Here, we rather focus on fundamental properties of such
sensors.
Omnidirectional vision setups can be categorized into systems with single viewpoint or with

non-single viewpoint (e.g. [40, 566, 586]). The former are also referred to as central systems. For
single viewpoint setups, the incident rays of light all intersect in a single point referred to as
projection point or viewpoint (point m in figure 3.6; [566]). Every pixel in the sensed image then
corresponds to exactly one ray of light passing through the viewpoint. Single-viewpoint setups
facilitate camera calibration, image unfolding, and the mathematical models required for describing
such setups [40, 224, 564–566]. In many cases, non-single viewpoint setups can be treated as having
an approximate single viewpoint. For further details on non-single viewpoint setups, the reader is
referred to Swaminathan, Grossberg, and Nayar [613].
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(1) Dioptric setup with fisheye lens.
H: 2.5 cm, ∅: 2 cm, FoV: -2.5°/90°.
Camera: IDS uEye UI-1246-M [D7],
lens: Sunex DSL215 [D14].

(2) Catadioptric setup with
panoramic annular lens. H: 8 cm, ∅:
3 cm, FoV: -17°/38°. Camera: IDS
uEye UI-2220-M [D8], PAL:
Tateyama PAL-S25G3817-27C
[D16].

(3) Catadioptric setup with
hyperbolic mirror. H: 20 cm, ∅:
7 cm, FoV: -90°/46°. Camera:
ImagingSource DFK4303 [D11], lens:
Pentax TS2V314A [D5], mirror:
Accowle Large Type Wide Angle
[D1].

Figure 3.7.: Examples of omnidirectional vision setups used at the Bielefeld Computer Engineering group. Please
note that the setups depicted in subfigures (1) to (3) are reproduced at different scales. The used abbreviations are:
H: height, ∅: diameter, FoV: field of view with the first and the second angle denoting elevation below and above the
horizon. Photos by Lorenz Hillen. Figure best viewed in color.

For acquiring omnidirectional images, different types of sensors can be used (see figure 3.7 for
examples). According to Scaramuzza [566], omnidirectional vision setups can be divided into
dioptric setups, catadioptric setups, and polydioptric setups. Dioptric setups are a combination
of a camera and a fisheye lense with a field of view larger than 180°. To this end, all dioptric
sensors generate hemispherical views (figure 3.5.2). Recent fisheye lenses are developed to have
a single viewpoint. Due to imaging an entire hemisphere, the vertical field of view above the
horizon equals 90°. However, it does not exceed much below the horizon. The angular resolution of
dioptric setups is not constant over their field of view but decreases from the center to the outer
border of the resulting camera image. As the horizon is imaged at the outer image border, it is
imaged with the setups lowest (i.e. worst) resolution. Furthermore, fisheye lenses are prone to
vignetting, i.e. the darkening towards the borders of the image. These two drawbacks can limit the
applicability of dioptric setups for generating panoramic views. Due to the advances in camera and
lens miniaturization, dioptric setups are the smallest omnidirectional vision setups we are currently
aware of. For this reason, our prototype cleaning robot (section 4.4.3) was equipped with such a
setup (figure 3.7.1) after the robot experiments presented in this thesis (sections 4.4 and 6.4) were
conducted.
Catadioptric setups are the most widely used setups for acquiring omnidirectional images. They

combine a standard camera with a mirror surface being rotationally symmetric around the camera’s
optical axis. Common mirror surfaces are hyperbolic, elliptical, or parabolic. It was proven by
Baker and Nayar [26] that hyperbolic and elliptical mirror shapes satisfy the single-viewpoint
constraint in combination with standard lenses; parabolic mirrors only fulfill the constraint in
combination with a telecentric lens (i.e. a lens capturing only incident rays parallel to its optical
axes; textbook: [600]). Conical or spherical surfaces are possible but do not fulfill this constraint [26,
40]. Most catadioptric setups can be used for generating hemispherical views and offer —due to the
camera facing the mirror (figure 3.7.3)— offer a 90° field of view below the horizon. (exceptions are
mirror without smooth tip). The field of view above the horizon is usually large, and it’s extent is
strongly influenced by the shape of the mirror surface. Catadioptric setups can be designed to have
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constant angular resolution [90, 605, 607]. Most robotic applications rely on catadioptric setups for
generating panoramic views. Traditional catadioptric setups are usually very large (both in the
diameter and the height of the setup; figure 3.7.3). It is only recently that small mirrors became
available for mobile phones [I41, I44, I62] and consumer digital cameras [I90]. At the current state,
these setups cost approximately 20e, and we are not aware of an application of such mirrors for
robot navigation. Between the two extremes, catadioptric sensors of compact size can be built
by integrating the mirror directly into the camera’s lens. Examples of such sensors include the
panoramic annular lens (PAL, [363, 517], patent: Greguss [251]; figure 3.7.2) used for the robot
experiments of this thesis (sections 4.4 and 6.4) and the mirror-lens combinations proposed by
Stürzl et al. [605], Stürzl and Srinivasan [606], and Stürzl, Suppa, and Burschka [607].
Polydioptric setups consist of several pinhole cameras with overlapping fields of view. Such

setups are also referred to as multi-camera rigs, and the PointGray Ladybug [I43] is the most
well-kown example of such setups. Depending on the number of cameras and their arrangement,
polydioptric setups can acquire spherical views, hemispherical views, and panoramic views. Using
several cameras to acquire an omnidirectional image is both the main advantage and the main
drawback of these setups. On the one hand, they allow for creating images with a large resolution
(e.g. Google StreetView relies on such setups; Anguelov et al. [10]). On the other hand, the
cameras cannot be arranged such that the entire setup fulfills the single-viewpoint constraint. This
will always induce motion parallax, especially if the robot is moving close to obstacles [85, 318].

All these sensors are monocular sensors. Like monocular pinhole cameras, they suffer from the
limitation that it is not possible to estimate the distance of an imaged feature to the camera (i.e.
its depth) from only one image. The depth can be computed by exploiting the two-view geometry
(pinhole cameras: [278], omnidirectional cameras: [291, 498]). This requires either two monocular
images taken at different positions in space or an omnidirectional stereo setup. Omnidirectional
stereo setups provide two different omnidirectional images from the same position in space. This can
be achieved by stacking two monocular catadioptric sensors above each other [234, 484] or by using
a single camera facing two different mirror surfaces [84, 307, 423, 425, 608, 610]. As the methods
described in this thesis all rely on monocular images, we do not further discuss omnidirectional
stereo. Although omnidirectional stereo vision would allow to compute depth information from two
images acquired at the same position in space (section 3.3.2), we see the following drawbacks: (i)
omnidirectional stereo setups are more complex and hence also more expensive than monocular
setups, (ii) if two camereas are stacked (as depicted in figure 3.18.1), two monocular setups are
needed, and (iii) the computational effort of the image processing methods is larger than for
processing monocular images.

Some navigation strategies relying on omnidirectional images operate on the camera images (e.g.
[7, 8, 206, 235, 237, 292, 364, 472, 476, 477, 561, 568, 619, 653]; figure 3.8 left), whereas most
operate on the unfolded images (e.g. [5, 6, 14, 54–56, 655]; figure 3.8 right). It strongly depends
on the application, whether camera images or unfolded images are better suited. Operating on
camera images is suitable for applications using the image regions around the poles of the viewing
sphere (e.g. for observing the floor or the sky) (i) because these regions cover a large portion of the
image area and (ii) because these these regions would appear strongly distorted in unfolded images.
In the camera images, vertical lines in the environment are imaged as radial lines intersecting at
the principal point, i.e. the intersection between the camera’s optical axis and the sensor plane.
Horizontal lines, i.e. lines with identical elevation (including the horizon with zero elevation), are
imaged as circles centered at the principal point. Furthermore, the resulting camera image depends
on the geometry and properties of the used omnidirectional vision setup.
We consider operating on unfolded images to be more appropriate if the developed algorithms

are supposed to be used with different omnidirectional vision setups. Unfolding usually includes
a mapping to spherical or cylindrical coordinates [40, 131]. By this means, identical panoramic
images can be generated independent of the particular omnidirectional vision setup. Thus, applying
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⇒

⇒

Figure 3.8.: Unfolding omnidirectional images. By an appropriate mapping, the camera images (left) are transformed
to panoramic images (right). Top: schematic drawing; bottom: real images obtained by one of our omnidirectional
vision setups (camera: IDS Imaging UEye UI-2220SE-M [D8]; panoramic annular lens: Tateyama PAL-S25G3817-27C
[D16]). Figure requires color printing.

algorithms developed for unfolded images with different omnidirectional camera setups only requires
the application of the appropriate unfolding method, but no further adjustments. Although unfolded
images contain the same image information than camera images, unfolded images resemble more
how we humans see the world: vertical and horizontal lines in the scene are imaged as vertical and
horizontal lines, respectively. This property facilitates visual inspection of onmidirectional images,
especially if the panoramas contain the region around the horizon, which appears in the camera
images curved and compressed to a small portion of the entire image. All navigation strategies
presented in this thesis rely on unfolded images.

3.2.4.2. Omnidirectional Vision for Control of Cleaning Robots2

The goal of the navigation strategies presented in this thesis is to make an autonomous floor-cleaning
robot capable of systematically and completely covering its workspace. This suggests using more
elaborated sensors like those used by other second-generation robots. Such sensors include directed
cameras or laser-range finders (section 2.2.1). Although omnidirectional vision is currently not used
by comparable commercial or academic floor-cleaning robots, we think it is an appropriate sensor
for this task. In our opinion, the five main advantages of using such an omnidirectional-camera
setup include (i) that the robot is capable of capturing a panoramic view of its environment with
only a single camera image, (ii) that it mainly perceives the region around the horizon, (iii) that the
visible image content is independent of the robot’s orientation, (iv) that it facilitates ego-motion
estimation, (v) that dense sensory information is obtained, and (vi) that —regarding a potential
product— this working direction is not blocked by patents. The aspects (i) to (v) will be discussed
in the following.
2This section is an extension of section 3.3.1 in our journal publication Gerstmayr-Hillen et al. [222]
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Taking a panoramic view with a single camera image requires the application of a dioptric or
a catadioptric sensor. As the local visual homing algorithms operate on low-resolution images
(section 3.5.2), we do not need the large image resolutions which can be achieved by polydioptric
sensors. Furthermore, such setups are more expensive as they require more than one image sensor
and additional lenses. Regarding our particular application, the main drawback of dioptric or
catadioptric setups is that they cannot be completely enclosed by the robot’s housing and therefore
protrude. Thus, a cleaning robot could damage its sensor while cleaning underneath furniture such
as beds or cupboards. This effect can be reduced by relying on compact catadioptric setups like
panoramic annular lenses as used for our experiments (figure 3.7.2) or small-sized dioptric setups
(figure 3.7.1). However, even such sensors cannot be completely enclosed by the robot’s housing as
is the case for monocular cameras directed upwards.
Compared to a standard camera directed upwards, an omnidirectional vision setup mainly

perceives the region of the horizon which often contains (i) more visible structure than the ceiling
and (ii) the obstacles which can block the robot’s way. Because of their 360○ field of view and their
viewing direction, visible objects do not vanish from panoramic images due to robot movements but
only due to environmental properties such as occlusions. Furthermore, when the robot is moving
back and forth along meandering lanes, the same objects are visible independent of the direction of
travel. We think that this is an important advantage over standard cameras. However, these are
exactly the properties making omnidirectional methods more prone against image disturbances or
perceptual variability (section 3.2.3.2). Due to their large field of view, the chance that perceptual
variability due to dynamic scene changes or changes of the illumination influence the image is larger,
but their influence on the navigation method depends on the portion of the affected image area.
This is in contrast to standard cameras facing the ceiling, especially if these cameras only have a
narrow field of view. In this case, even small changes affect the entire image and therefore have a
large impact on the navigation capabilities.

For the visible image content being independent of the robot’s orientation in the plane, the robot’s
axis of rotation needs to be identical to the optical axis of the vision system. If this is the case,
a change of the robot’s orientation can be simulated by horizontally shifting the columns of the
panoramic image. In the context of this thesis, this property is exploited for loop-closure detection
(section 3.3 and chapters 5 and 6), i.e. for detecting if the robot approaches an already visited
position.

Omnidirectional images facilitate ego-motion estimation because they allow for easily separating
rotational and translational movement components (Nelson and Aloimonos [486]). Camera
motions give rise to characteristic changes of the visible image content. For translational movements,
two image regions exist for which the visible image features are only expanded or contracted but
not shifted. These points are referred to as focus of expansion and focus of contraction in terms of
optical flow literature (textbooks: [305, 641], reviews: [30, 280]) and as epipoles in terms of stereo
literature (textbooks: [278, 641]). Rotations of the robot give rise to a constant shift of image
features independent of the feature’s distance to the camera. In case of small combined movements,
the two types of changes are superimposed, but the foci of expansion and contraction persist.3
For movements in the plane, the foci of expansion and contraction are always visible in panoramic
images with their 360° field of view, but they may not be visible in directed camera images with
their limited field of view. For this reason, omnidirectional images allow for better separation of
rotational and translational components.

Images are usually represented as a two-dimensional pixel grid of color or intensity values. Thus,
images provide dense three-dimensional information about the robot’s environment. This aspect
distinguishes vision from other sensor modalities. Most laser-range finders sense a dense one-
dimensional pixel grid with distance and reflectance information, and IR distance sensors only

3This property does not longer hold if sufficiently large rotational motion components.
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Holistic place representation
(section 3.3.1.1)

Signature-based place
representation
(section 3.3.1.2)

Feature-based
place representation

(section 3.3.1.3)

Using the whole image Subdividing the image

Characterizing places by omnidirectional visual information

Figure 3.9.: Characterizing places based on omnidirectional visual information. The grouping depends on how the
visual information is used to represent places.

return sparse direction and distance information. Furthermore, the sensory range of such sensors is
limited, and their uncertainty increases with increasing measurement distance. Due to their dense
sensory information, both omnidirectional and directed images cannot only be used for mapping
and estimating spatial relations but also for other tasks. Such tasks include obstacle detection and
mapping (e.g. by time-to-contact methods [321, 418, 419] or based on optical flow [302, 670]) or
user interaction based on gesture recognition [98, 405, 573].

3.3. Representing and Recognizing Places

Places form the lowest level of the hierarchy of navigation strategies proposed in section 3.2.2. Based
on the omnidirectional visual information, vision-based navigation methods characterize places,
navigate between places, determine spatial relations of places, or integrate several places into a
map. In the following, we first describe how omnidirectional visual information can be used to
characterize and recognize places (section 3.3.1). Recognizing an already visited place is essential
for nearly all navigation capabilities discussed in sections 3.4 to 3.6 and involves comparing the
representations of two or more places.
For comparing place representations, a dissimilarity value is computed with zero dissimilarity

typically expressing identical visual information and hence identical places in space. Throughout this
thesis, we prefer the term “image dissimilarity” over the commonly used terms “image distance” or
“image difference” in order to emphasize the difference between image dissimilarity and the spatial
distance between the positions of image acquisition. The computed dissimilarity measure can be
used (i) for a binary decision whether or not the compared visual information is identical or (ii) for
images acquired spatially close to each other as a measure of the spatial distance between positions
of image acquisition (Zeil, Hoffmann, and Chahl [718]). Beyond that, many visual navigation
methods relate the perceived visual information with a unique metrical position in space, i.e. with a
coordinate. By this means, a qualitative navigation strategy can be turned into a quantitative one.
Techniques for position estimation based on visual information are introduced in section 3.3.2.

3.3.1. Representations of Places Based on Omnidirectional Visual Information

Depending on how the image is used to characterize or represent a place, the following three
approaches can be distinguished (figure 3.9): (i) holistic place representation (section 3.3.1.1), (ii)
signature-based place representation (section 3.3.1.2), and (iii) feature-based place representation
(section 3.3.1.3). A similar classification is also proposed by Gonzalez-Barbosa and Lacroix
[242]: depending on how places are characterized, the authors label the categories global attributes,
space transformations, and local attributes, respectively.
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I

Figure 3.10.: Holistic place representation. The omnidirectional image I itself or a preprocessed variant P = p(I) is
used to characterize places.

3.3.1.1. Holistic Place Representation

Holistic representations of places use the entire omnidirectional image to characterize a place
(figure 3.10). This can either be the raw intensity information (as depicted in figure 3.10) or a
preprocessed image. Typical preprocessing techniques used for holistic place representations with
omnidirectional images include local contrast normalization ([441, 612, 698, 720] and chapter 5) or
edge detection (chapter 5). A holistic representation of places saves the computational effort (i) of
detecting local image features and computing feature descriptors as it is required by feature-based
approaches (section 3.3.1.3) and (ii) of transforming the image information into a global image
signature as is the case for signature-based approaches (section 3.3.1.2). However, it requires to
store the entire image or, in case of map-based navigation, of several images. The storage capacity
depends on the size of the images and the number of images which have to be stored to accomplish
the robot’s task.
For holistic representations of places, recognizing a known place involves comparing the known

and the current place representation by applying an image dissimilarity function (reviews: [19, 91,
92, 225, 635]). Image dissimilarity functions compute the dissimilarity of the considered images in
a two step process. First, they compare the images pixel-by-pixel by correlation techniques or by
computing intensity differences. In the second step, these pixel-wise dissimilarities are fused to an
overall estimate of the image dissimilarity. This is usually accomplished by summing or averaging
over the values computed for each pixel. Frequently used functions include the sum of squared
differences (SSD) or the normalized cross correlation (NCC). The compared images need to be
aligned w.r.t. a common reference direction. This can be achieved by applying a visual compass
method (section 3.4) and accordingly rotating one of the images to compensate for the compass
shift. The computational effort required for comparing or recognizing places strongly depends on
the resolution of the used images. Typical navigation strategies relying on holistic representations
of places use a relatively low resolution of approximately 1° per pixel [447, 451, 453, 456]. This low
resolution makes navigation methods operating on a holistic representation of places also suitable
for robots with limited computational power and storage capacities.
Without choosing appropriate building blocks, navigation strategies relying on a holistic repre-

sentation of places are prone to perceptual variability (section 3.2.3.2). The changes of the visual
appearance resulting from dynamic scene changes or illumination changes can strongly decrease the
navigation performance of holistic methods because they use the entire and often unprocessed image
to represent a place. Robustness against changes of the illumination can be achieved by choosing
(i) appropriate preprocessing methods or (ii) illumination-tolerant dissimilarity functions. In the
ideal case, the combination of both would achieve true invariance: independent of the conditions
under which the compared images were acquired, preprocessing methods would completely eliminate
the influence of image disturbances and image dissimilarities functions would compute an identical
dissimilarity value. More realistically, currently used techniques can only tolerate such image changes
up to a certain extent, and navigation is likely to fail for stronger changes influencing large portions
of the visible image information. Robustness against dynamic scene changes is more difficult to
achieve for navigation strategies operating on a holistic place representation. If the scene changes
result in small changes of the visual appearance, it is likely that they are tolerated by the navigation
strategy. Such changes are usually restricted to a small and local image area (e.g. resulting from
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s(I)

I

Figure 3.11.: Signature-based place representation. Places are characterized by low-dimensional global signatures
s = s(I) derived from the entire omnidirectional image I.

adding or removing an object in the robot’s environment). For changes influencing a large portion
of the omnidirectional image, navigation is likely to fail.
Holistic representations of places are used with holistic compass methods (section 3.4.2.1), topo-

metric maps (section 3.6.3.2), and purely topological maps (section 3.6.4.1); homing methods relying
on a holistic representation of places include warping methods, DID methods, local optical flow
methods and correspondence-based methods without feature preselection (sections 3.5.2.2 and 3.5.2.3).

3.3.1.2. Signature-Based Place Representation

Signature-based approaches derive a global image signature from the entire omnidirectional image
and use this signature to represent the place (figure 3.11). In some cases, the signature is also referred
to as fingerprint [621–623, 687, 688] or as global image descriptor [242]. As the signature computed
from the image information has a much lower dimensionality than the image itself, signature-based
approaches allow for very efficient image comparisons and require only a small amount of storage.
The additional overhead of deriving the signature by evaluating a signature function to compute the
signature is usually negligible. These properties make them interesting for developing navigation
strategies for robots with limited computational power. Signature-based representations of places
are strongly influenced from image retrieval (review: [132]). There, a single image needs to be
efficiently compared to a potentially large number of stored reference images. In the context of
appearance-based robot navigation, the currently perceived image is compared to a set of images
stored in the robot’s map.
Global image signatures as a low-dimensional representation of omnidirectional images can be

partitioned into rotation-invariant and rotation-dependent signatures (figure 3.12). Hence, signatures
computed from images acquired at identical position in space but different orientation of the robot
are identical (rotation-invariant signatures) or differ (rotation-dependent signatures). In some cases
(e.g. Fourier signatures or statistical signatures), the same mathematical principles can be used
to derive rotation-dependent and rotation invariant signatures. Whether or not a signature is
rotation-invariant then depends on the exact computation of the signature (figure 3.13). In the
following, we will briefly describe the most important groups of signatures.
Fourier signatures are obtained by a Fourier transformation (textbook: [65]) of the omnidirectional

image. As omnidirectional images are periodic in horizontal but not in vertical direction, images
are usually transformed row-by-row with a one-dimensional Fourier transformation. The signature
is then formed by the low-frequency Fourier components which cover the relevant image content.
The information contained the higher-frequency components (i.e. noise) is discarded. The resulting
signature is rotationally invariant if the phase information is removed (e.g. by computing absolute
Fourier coefficients), whereas it is rotation-dependent if the phase information is kept.
Statistical signatures use statistical measures such as the average image intensity or the average

color value to describe the image. Depending on the image region for which the statistical measures
are computed, the resulting signatures are rotationally invariant or not. Rotation invariant signatures
are obtained by deriving the signature from the entire image or from computing the statistical measure
row-by-row (figure 3.13.1), whereas rotation-dependent signatures are obtained by column-wise
computations (figure 3.13.2). Based on the same principle, rotation-invariant and rotation-dependent
histogram-based signatures can be computed, which describe the image by an intensity histogram
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Rotation-invariant signatures

Fourier signatures

[3, 94, 169, 171, 172, 223, 352, 421, 426,
427, 505, 506, 530, 538]

Statistical signatures

[223, 235–237, 476, 477]

Histogram-based signatures

[169, 223, 242, 647, 685–688]

Haar-integral signatures

[94, 351, 352]

Eigenspace representations

[3, 311, 313]

Rotation-dependent signatures

Fourier signatures

[136–138, 172, 295, 541, 609, 611]

Statistical signatures

[256, 257, 340]

Histogram-based signatures

[261, 338]

Segment-based signatures

[200, 380, 382, 621–623, 724]

Eigenspace representations

[210, 211, 312, 500, 601]

Gist signatures

[473, 475, 590]

Global image signatures

Figure 3.12.: Categorization of global image signatures.

⇒

(1) Rotation-invariant signatures. Row-wise
computations result in descriptors which are
independent of the robot’s orientation.

⇒

(2) Rotation-dependent signatures. Column-wise
computations yield global image signatures which
depend on the robot’s orientation.

Figure 3.13.: Computation of rotation-invariant (subfigure (1)) and rotation-dependent (subfigure (2)) global image
signatures. The terms row-wise and column-wise refer to the cylindrical image depicted at the right of each subfigure.

[169, 223], a color histogram [338, 647, 687, 688], or an edge histogram [261].
Haar integrals (Siggelkow and Burkhardt [587]) are widely used in image retrieval. The

Haar-integral signatures applied by [94, 351, 352] are specifically tailored to omnidirectional images
and offer invariance against rotations and against certain types of illumination changes.
Segment-based signatures subdivide the image into a set of segments, which are in most cases

represented by low-level features such as color blobs or vertical lines. Each segment is typically
represented by a number or a letter representing the segment (e.g. “R” for red color blobs or “V”
for vertical lines). All the representatives of an image are combined to a list which is used as
signature. In contrast to all other reviewed signatures, the dimensionality of these descriptors varies
depending of the number of segments detected in the image. Furthermore, the descriptors depend
on the robot’s orientation, but the ordering of list entries is independent of the robot’s orientation.
By comparing the ordering of the segment representatives (rather than their positions within the
lists), rotationally invariant comparison functions can be obtained. In the works by [200, 724], the
signature is built from a small number of outstanding colors. [380, 382] detect vertical lines and use
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image regions between neighboring lines as segments, which are represented by the average color
value. The signatures proposed by [621–623] do not only contain low-level color or edge information,
but also use doors and corners detected in a laser-range scan as segments.
Global image signatures based on eigenspace representations involve a principal component

analysis (PCA, textbooks: [46, 533]) of the omnidirectional images. The low-dimensionality of
eigenspace signatures results from using only the dimensions corresponding to the largest eigenvalues
because these dimensions represent the most important visual information. The drawback of
eigenspace signatures is that the transformation to the low-dimensional signature has to be be
computed from a set of training images prior to robot navigation. Typically, eigenspace signatures
depend on the robot’s orientation (e.g. [210, 211, 312, 500, 601]), and the eigenspace representation
is learned from a set of images acquired under constant robot orientation. Only the eigenspace
signature proposed by [311, 313] offers rotational invariance and is learned from a set of images
containing each image in several orientations. The training set of rotated images is obtained by
step-by-step shifting omnidirectional images in horizontal direction.
Gist signatures4 have to be considered a special case of rotation-dependent eigenspace representa-

tions. The signature was originally used to model human scene perception and recognition [492,
493] and is applied to represent and recognize places based on omnidirectional visual information by
[473, 475, 590]. Computing the signature is a two-step process: (i) a high-dimensional descriptor is
computed from processing the image with a bank of filters such as edge detectors or color detectors,
and (ii) the high-dimensional descriptor is compressed by PCA.
Place recognition based on global image signatures requires comparing the signature of the

currently perceived image with the stored signature representing the goal position or with several
signatures stored in a map. For comparing rotation-invariant signatures, standard dissimilarity
functions also applied for holistic representations of places (reviews: [19, 91, 92, 225, 635]) or
comparison functions tailored to a certain type of signatures such as histogram comparison functions
(reviews: [508, 549]) can be applied. Comparing rotation-dependent signatures requires either (i)
aligned signatures or (ii) rotation-tolerant comparison functions. In the former case, the signatures
have to be aligned w.r.t. a common reference direction before comparing them, e.g. by applying a
signature-based compass method (section 3.4.2.2). Aligned signatures can be compared by applying
standard dissimilarity functions. The latter case requires special comparison functions which
compute a rotation-invariant dissimilarity measure although being applied to rotation-dependent
signatures. In this casep, rotational invariance is in this case achieved by the combination of
signature and comparison function.
For signature-based place representations, tolerance against illumination changes and dynamic

scene changes can be obtained by computing or comparing signatures with functions which are
tolerant against such changes. Like for holistic representations of places, signature-based place
representations can only tolerate image disturbances up to a certain extent and will fail for stronger
disturbances.

Signature-based place representations are used for signature-based compasses (section 3.4.2.2), for
parameter-based homing methods (section 3.5.2.2), and for building topo-metric or purely topological
maps (sections 3.6.3.2 and 3.6.4.1).

3.3.1.3. Feature-Based Place Representation

Feature-based representations characterize places by a set of local image features detected in the
omnidirectional image (figure 3.14). Local image features are image patterns differing considerably
from surrounding image regions (reviews: [226, 372, 438, 439, 577, 644], textbook: [586]). Such
features include, among others, colored regions, textured regions, edges, or corners. They are in
4The term “gist” for this signature is not an acronym but was chosen because the signature covers the essential
properties of a visual scene, i.e. its gist [492, 493, 585].
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I

F = {f1,f2, . . .}

Figure 3.14.: Feature-based place representation. The place is characterized by a set F = {f1,f2, . . .} of visible
features (in the example vertical lines) each described by a feature descriptor f i. Features were manually selected; the
panoramic image on the right is shown solely to visualize the feature set F .

a first step extracted from the image information by a feature detector. Feature detectors are in
the literature also referred to as point of interest detectors or key-point detectors. In a second
step, regions around the selected points of interest are transformed to a local feature descriptor.
Feature-based approaches then operate on the feature descriptors rather than on the intensity
information. Depending on the used approach, detecting feature points and computing feature
descriptors can be computationally demanding. However, if appropriate detectors and descriptors
are chosen, features exhibit several properties making them interesting for robot vision (review:
[644], textbook: [586]): (i) feature detectors are designed to reliably and repeatedly detect the
same features even under different conditions of image acquisition such as a different illumination
conditions or a different viewing directions, (ii) feature descriptors can exhibit invariance against
various image changes including distortions, rotations, scale changes, or illumination changes, (iii)
the computed descriptors are unique, i.e. the same image-intensity pattern will be transformed
to the same descriptor, and (iv) the computed descriptors are distinctive, i.e. different intensity
patterns result in different descriptors. Because of aspects (i) and (ii), feature-based approaches
usually exhibit a good robustness against perceptual variability (section 3.2.3.2).
Feature-based representations of places are currently the standard approach in computer and

robot vision, and the vast majority of omnidirectional visual navigation methods reviewed in this
chapter rely on such a representation of places. Existing feature detectors and descriptors can be
categorized into corner detectors, line detectors, and blob detectors ([586, 644]; figure 3.15). Corner
detectors use intersection points of lines or edges as features. Line detectors rely on lines or edges as
characteristic image features. In the context of omnidirectional vision, features are often restricted
to lines resulting from vertical structures in the robot’s environment. Such structures can be easily
detected because they are imaged as radial lines in case the original camera image is used (figure 3.8
left) or as vertical lines in case the omnidirectional camera image is unfolded to a panoramic image
(figure 3.8 right). Blob detectors find image regions (in contrast to points or lines) which differ from
the surrounding image regions in intensity, color, or texture. Examples of local image features and
omnidirectional visual navigation strategies relying on these features are given in figure 3.15.
To characterize an image based on the detected features, it is straightforward to store a list of

feature descriptors. This representation is also referred to as bag of features and solely depends
on the visible features but not on their position in the image (textbook: [586]). Recognizing a
place then requires to match the features visible in the current image with the ones visible in
the stored reference image, i.e. to establish correspondences. Therefore, pairwise dissimilarity
values between feature descriptors are computed (in most cases by applying a standard norm
function), and the best-matching pairs are identified as correspondences based on these dissimilarity
values. The matching process is in principle a nearest neighbor search in the often high-dimensional
feature-descriptor space. Its computational effort depends on (i) the number of features to compare
and (ii) their dimensionality. As common descriptors like SIFT or SURF are 128-dimensional, only
a small number of images can be compared for real-time control of a mobile robot. This fact in
particular limits the scalability of map-based navigation methods relying on a feature-based place
representation (section 3.6).
To speedup the process of establishing correspondences, efficient matching techniques operating
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Corner detectors

Harris detector [277]

[329, 364, 529, 569]

Shi-Tomasi detector [583]

[14, 36, 71, 73, 551, 553, 554, 569]

Line detectors

Arbitrarily oriented lines

[82, 84, 265, 434]

Vertical lines

[476, 477, 561, 567, 570]

Blob detectors

SIFT [388, 389]

[18, 36, 55–57, 113, 114, 163, 164,
198, 199, 236, 237, 327, 339, 378,
379, 531, 560, 568, 569, 651, 654,

655, 659, 725, 726]

SIFT modifications

[7, 8, 292, 619, 653]

SURF [33]

[18, 127, 128, 198, 199, 396, 475,
476, 488, 652, 654, 655]

MSER [417]

[529]

Local image features

Figure 3.15.: Overview of local image features used with omnidirectional visual navigation strategies for wheeled
mobile robots. For each detector, different references are given: references above the horizontal line point to the
original publication; references below the this line refer to examples using the corresponding feature for omnidirectional
visual navigation. Please note that the given lists of examples are not exhaustive. The used acronyms are: SIFT:
scale invariant feature transform; SURF: speeded up robust features; MSER: maximally stable extremal regions.
The categorization was adapted after Siegwart, Nourbakhsh, and Scaramuzza [586] and Tuytelaars and
Mikolajczyk [644].

on image features were proposed. The bag of words method relies on a vector quantization of the
descriptors (examples: [34, 127, 128, 394–396, 488, 531, 568], review: [130], textbook: [586]). It
partitions the feature space into a set of cells. Each cell represented by a codebook descriptor and
assigns each feature descriptor the most similar codebook vector. The vector quantization has to
be learned prior to using it for navigation and is usually computed by clustering (textbooks: [46,
148, 533]) a set of feature descriptors detected in a set of training images. The resulting cluster
centroids are then used as codebook vectors. Assigning an observed feature descriptor to its most
similar codebook vector requires a nearest neighbor search in the high-dimensional descriptor space,
which can in this particular case be performed more efficiently by a hierarchical and tree-based
search process (examples: [127, 128, 488, 568], review: [130]). The search tree used for this purpose
is also referred to as vocabulary tree. For representing places, each codebook vector is assigned
a unique integer value (also referred to as visual word or vocabulary), and places are described
by a set of one-dimensional integers rather than by a set of high-dimensional feature descriptors.
This representation allows to efficiently compute the number of common features by comparing the
two lists of visual words. This step can be implemented efficiently by an inverted file (examples:
[34, 568], textbook: [586]). For each visual word, an inverted file lists which images contain the
corresponding visual word. In order to compare the robot’s current image with a set of known
images, these lists are consulted for each feature of the robot’s current image. The most similar
image among the images stored in the map is the image sharing the largest number of common
features with the current image.

With the feature-based matching methods described so far, images are considered to be identical
if they share identical visible features. Depending on the properties of the robot’s environment,
the region for which the same features are visible can be relatively large. For more accurate place
recognition, the results obtained by bag of features or bag of words methods have to be refined.
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This can be accomplished by a consistency check or by constrained matching (review: [191]). Both
approaches also contribute to make feature-based navigation strategies robust against perceptual
variability because they discard ambiguous or erroneous matches which can occur because of
illumination or scene changes.
Consistency checks detect and discard ambiguous matches by analyzing pairwise dissimilarities.

For assessing the consistency of matches, two different approaches are currently used. The first
one discards correspondences for which the dissimilarity value of the best match (i.e. of the
correspondence) is not considerably smaller than the value of the second best match (smaller
dissimilarity means a better match; e.g. [5, 6, 55, 343, 379, 624, 651–654, 725]). The second one
assures a one-to-one matching between feature pairs and discards correspondences if a feature in
the first image is selected as best match for two or more features of the second image and vice versa
(e.g. [5, 6, 529, 651, 652]).

Constrained matching enforces the epipolar constraint which states that for omnidirectional images
each point observed in one image must lie on the epipolar curve in the other image (textbooks:
[40, 131]).5 Navigation strategies using this approach include [34, 54–56, 163, 164, 343, 529, 624,
652, 655, 725]. Only correspondences which can be explained by the epipolar constraint and the
estimated motion parameters are kept, whereas other correspondences are discarded. As standard
technique for detecting and removing outliers based on constrained matching, the random sample
and consensus algorithm (RANSAC; Fischler and Bolles [178], reviews: [191, 563], textbook:
[186, 278, 586]) is usually applied. For testing whether or not two places are identical, this means to
discard all correspondences which cannot be explained by a pure rotation of the robot (i.e. a motion
without translational component). Constrained-matching techniques are capable of accurately
recognizing places, but are computationally too demanding to be executed for a larger number of
image comparisons as it is required e.g. for localization (section 3.6.1.2). They are closely related to
certain correspondence-based local visual homing methods relying on two-view stereo computations
(section 3.5.2.3).

An alternative to these efficient matching methods are staged matching methods. Such methods
apply a coarse-to-fine search combining signature-based and feature-based methods to recognize
places. In the fist (coarse) step, a set of matching candidates is identified based on signature-based
place recognition because signature-based techniques allow to efficiently perform a large number
of image comparisons. For the small number of matching candidates remaining in the first step,
computationally more demanding but also more accurate feature-based techniques are applied.
Examples of staged matching techniques rely on statistical signatures [235–237, 476, 477] or on gist
signatures [473, 475, 590]; on the second level, constrained matches are established.
Feature-based place representations are used for feature-based visual compass methods (sec-

tion 3.4.2.3), for correspondence-based homing methods (section 3.5.2.3), and for mapping in
combination with sparse model-based maps (section 3.6.3.1), topo-metric maps (section 3.6.3.2) and
purely topological maps (section 3.6.4.1).

3.3.2. Role of Position Information
In the previous section, we introduced holistic, signature-based, and feature-based approaches to
represent places based on omnidirectional visual information (sections 3.3.1.1 to 3.3.1.3). These
approaches can be combined with different methods of using metrical position information; the
resulting combinations are depicted in figure 3.16. The simplest case are qualitative navigation
strategies (section 3.2.2) which do not incorporate metrical position information but solely use
visual information for navigation. Qualitative navigation strategies can be implemented with any of
the three methods for characterizing places based on visual information. Quantitative navigation
5The epipolar curve corresponds to the epipolar line for directed cameras. It is curved due to the distortions occurring
for omnidirectional cameras.
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Figure 3.16.: Combining visual place representations with metrical position information. As described in sec-
tions 3.3.1.1 to 3.3.1.3, visual information can be used to represent places by using the entire image (holistic place
representation), by deriving a global image signature (signature-based representation), or by a set of features detected
in the image (feature-based representation). Besides that, visual navigation methods can be categorized into qualitative
and quantitative strategies. Whereas the former do not incorporate position information, the latter use position
information and either estimate only the robot pose at the time of image acquisition or estimate the position of visible
features and of the robot’s pose. This leads to a theoretical number of nine different combinations, among which
two combinations are impossible: for holistic and signature-based place representations position estimates cannot be
assigned to visible features because these methods do not detect features but rather use the image as a whole. The
corresponding methods are marked by crosses (7). Appearance-based methods embrace navigation strategies which
only rely on intensity information without assigning metrical position estimates to visible features. Thus, they include
quantitative methods and qualitative methods which only estimate the robot’s pose but not the spatial positions of
visible features.

strategies involve position information and can be further categorized into (i) methods estimating
only the robot’s pose and (ii) methods estimating the spatial positions of visible features and the
robot’s pose. Methods estimating only the robot’s pose at the time the visual information was
acquired do not compute the spatial positions of visible features. Navigation strategies belonging to
this class can rely on any of the three approaches to characterize places based on visual information.
Navigation methods estimating the spatial positions of visible features are restricted to feature-based
place representations. From the spatial positions of three or more visible features, the robot’s pose
can be derived based on the bearing towards these features (figure 3.17). Holistic or signature-based
place representations cannot be used to estimate the spatial positions of visible features because
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p1

p2

p3

α1 α3

α2

r

Figure 3.17.: Estimating the robot’s pose
(i.e. localization) with a bearing-only sensor.
Based on the bearing angles α1, α2, and α3
towards three or more visible features (or land-
marks) p1, p2, and p3 with known positions
(indicated by the flags), the pose (i.e. position
and orientation) of the robot r = (xr, yr, θr)⊺
can be uniquely derived. The dashed circles
around each feature pi represent positions,
for which the bearing towards the feature li
corresponds to the angle αi. The robot’s true
position p is at the unique intersection of the
three circles.

(1) Omnidirectional stereo setups (2) Two-view stereo (3) Depth from elevation

Figure 3.18.: Methods for determing range from omnidirectional images. Stereo methods (subfigures (1) and (2))
require two views and a distance estimate (referred to as baseline) to compute the range by triangulation. For
omnidirectional stereo setups (subfigure (1)), the baseline is the vertical displacement of the cameras. For two-view
stereo (subfigure (2)), the images are obtained from a monocular omnidirectional vision setup and the baseline is the
distance between the positions of image acquisition. Only depth from elevation methods (subfigure (3)) allow for
estimating the distance to an object from a single image. However, the range estimation is restricted to objects of
constant height.

these representations use the entire image without feature detection. These two combinations are in
(figure 3.16) marked by a cross.

3.3.2.1. Position Estimation Techniques

Position estimation requires to compute the distance of visible objects (not necessarily features) to
the camera. As cameras are bearing-only sensors, the objects’s distance to the camera cannot be
estimated from only one camera image without further assumptions. Typically, two or more camera
images are used to compute an objects’s position in space. The images can either be taken with
an omnidirectional stereo setup at the same position in space (figure 3.18.1) or with a monocular
omnidirectional camera at two different positions in space (figure 3.18.2). Under the assumption that
all objects have identical and constant height, the distance can be derived from a single monocular
image. This technique is referred to as depth from elevation and exploits the vertical angle between
the horizon and the visible object (figure 3.18.3).
To compute position estimates of visible objects or of the robot’s pose and to maintain these

estimates over time, most methods rely on position-estimation frameworks. Approaches to position
estimation (figure 3.19) can be partitioned into probabilistic methods and optimization-based methods.
Here, we only briefly recapitulate the different approaches of position estimation instead of giving a
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Figure 3.19.: Overview of position estimation techniques used with omnidirectional visual information for navigation
of wheeled robots. For exhaustive lists of such techniques, please refer to the textbooks [46, 630] and the reviews [25,
140, 150, 151, 187, 631, 676]. For each estimation technique, two types of references are given: the references above
the horizontal line refer to textbooks (TB) or the original papers. References below the horizontal line are examples
of omnidirectional visual navigation methods applying the corresponding technique. Please note that the given lists of
examples are not exhaustive.
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detailed description; for these details, the reader is referred to the textbooks [110, 630], to reviews
[25, 150, 151, 194, 631], or to the papers given in figure 3.19.

Probabilistic Techniques
Methods of this class are in most cases Bayesian filtering techniques following a predictor-corrector
scheme (theoretical reviews: [140, 151, 188, 676], application to robot navigation: [99, 150, 151, 631],
robotics textbooks: [110, 187, 586, 630]). The robot’s current state is predicted based on internal
sensor data (in most cases odometry information) and corrected by visual sensor information as
an external sensor cue. The prediction step increases the estimation uncertainty, whereas the
correction step improves the estimate and reduces uncertainty. Depending on how probabilistic
methods represent the belief about the robot’s state, Gaussian filters and non-parametric filters
can be distinguished. Gaussian filters represent the belief about the robot’s state by Gaussian
probability distributions. The various subtypes of Kalman and information filters all belong to this
class. Non-parametric filters lift the restriction of representing the robot’s belief by a uni-modal
Gaussian distribution and thus can deal with arbitrary probability distributions. In most cases,
the belief distribution is approximated by a set of particles drawn randomly from the underlying
probability distribution. Examples include particle filters and derivatives thereof for the continuous
case and Markov decision processes for the discrete or grid-based case.
Since the described filtering techniques incrementally estimate the robot’s state in every time

step, difficulties arise for methods also estimating the position of visible features because —at least
with a standard omnidirectional vision setup providing only bearing information— the features’
distance from the camera cannot be estimated with only one camera image. To circumvent this
drawback, most methods use delayed updates (Lemaire and Lacroix [364], reviews: [99, 341]).
They update the map only if the feature’s position can be reliably estimated by triangulation, i.e.
after some time of tracking the feature. Nevertheless, methods relying on undelayed measurements
exist, but they (i) require a special treatment of the immediate update if used with bearing-only
sensors (Lemaire and Lacroix [364], directed vision: e.g. [309, 310, 360, 361]), or (ii) have to
rely on range information obtained from an omnidirectional stereo sensor (e.g. [119, 331, 332, 443,
485]).

Optimization-based Methods6
Optimization-based approaches to position estimation search for the optimal map configuration
by a constrained optimization process ([25, 150, 194, 631], tutorial: [252], textbooks: [110, 630]).
The robot’s former and current positions and —in case of model-based maps— also the position of
sensed features are constrained by the sensor measurements gathered over time. This optimization
process is usually referred to as relaxation (textbook: [630], review: [194, 252, 432]). As the resulting
system of equations is usually sparse, special and more efficient optimization algorithms can be
applied (review: [631]). The term “graph-based” resulted from visualizing the system of equations:
robot (and feature) positions can be represented as graph nodes and sensor measurements can be
understood as links. Optimization-based approaches scale better to large-scale environments than
probabilistic methods based on Kalman filters (reviews: [507, 631]). Like probabilistic methods,
visual graph-based methods require at least two observations of a certain feature (or two constraints)
to estimate its position. Although early works in this field were offline solutions [630, 631] first
gathering all observations and afterwards computing the map (thus making all updates delayed),
recent improvements can achieve graph optimization in real-time allowing for optimizations whenever
new features are added to the map or whenever loops are closed [252]. Examples of optimization
frameworks and pointers to corresponding literature are given in figure 3.19.
6Lorenz Hillen is grateful to Jochen Sprickerhof (Knowledge-Based Systems Research Group, Institute for Computer
Science, Osnabrück) for fruitful and insightful discussion on this section.
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3.3.3. Discussion of Place Representation and Recognition

In this section, we discuss place representation and recognition based on visual information. The
considered aspects include the choice of a particular representation (section 3.3.3.1), its role to achieve
robustness against perceptual variability (section 3.3.3.2), its relation to biological and psychological
research on visual navigation (section 3.3.3.3), and the application of place representations for this
work (section 3.3.3.4).

3.3.3.1. Choosing a Place Representation

The representation of places is an essential building block for all higher-level navigation capabilities
ranging from visual compass methods to mapping (figure 3.2). The choice of a particular repre-
sentation strongly depends on the robot’s application or task and also influences many aspects
of more complex navigation capabilities. When choosing a place representation, the first decision
is whether or not the robot’s task requires position information. In case quantitative navigation
is required or reasonable, one has to further decide if position information for visible features is
required or if it sufficient to only estimate the robot’s pose. The former case allows to reconstruct or
visualize the robot’s environment (structure from motion or scene reconstruction; section 3.6.1.2) but
requires a feature-based representation of places. The latter case only allows to visualize the robot’s
trajectory, but it can be more flexible because it can be used with holistic, signature-based, or
feature-based representations of places. In general, position information can disambiguate different
places with identical or similar visual appearance thus reducing the likelihood of perceptual aliasing
(section 3.2.3.1). If position information is not necessary to accomplish the robot’s task, qualitative
navigation methods can be applied. Qualitative methods can be used with all place representations
and are often computationally more efficient than quantitative methods.
The second question is to decide for the best suited representation of places among the three

possibilities, namely holistic, signature-based, and feature-based representations. This decision
strongly depends on the available computing power and storage capacity. Signature-based approaches
are parsimonious w.r.t. computing power and memory requirements. Often, signatures with a
dimensionality comparable to the dimensionality of a single feature descriptor used for feature-based
representations is used (SIFT and SURF descriptors are both 128-dimensional; Bay, Tuytelaars,
and Van Gool [33] and Lowe [389]). The computational and memory efforts of holistic methods
strongly depend on the size of the images used to represent a place. With a typical resolution
of 1° per pixel, these methods require moderate memory and computing power. The memory
requirements of feature-based approaches strongly depend on the number and on the dimensionality
of the feature descriptors used to represent an image. Regarding computing time, feature-based
methods currently applied for navigation based on omnidirectional vision are computationally more
demanding than the other possibilities to represent places. However, beginning with SURF (Bay,
Tuytelaars, and Van Gool [33]) developed as a faster alternative to SIFT features (Lowe [388,
389]), a series of fast feature detectors and descriptors has been proposed: features from accelerated
segment test (FAST; Rosten and Drummond [542] and Rosten, Porter, and Drummond [543]),
binary robust independent elementary features (BRIEF; Calonder et al. [77]), oriented fast and
rotated BRIEF (ORB; Rublee et al. [547]), binary robust invariant scalable keypoints (BRISK;
Leutenegger, Chli, and Siegwart [365]), and fast retina keypoints (FREAK; Alahi, Ortiz,
and Vandergheynst [2]). These descriptors are binary strings which are computed from a set of
comparisons between pixel intensities within a small image region and which can be very efficiently
compared by the Hamming distance (e.g. [469]). Thus, the descriptors can be both computed and
compared much faster than traditional vector-based descriptors. To the best of our knowledge, these
new feature descriptors have not yet been applied for robot navigation based on omnidirectional
vision, but we expect their application to be only a matter of time.
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3.3.3.2. Robustness Against Perceptual Variability

Since the representation of places based on visual information is a building block for more com-
plex navigation strategies, it plays an essential role for achieving robustness against illumination
changes and dynamic changes of the scene (section 3.2.3.2). For holistic and signature-based place
representations, robustness against illumination changes can be achieved by image preprocessing or
illumination-tolerant dissimilarity functions; in case of signature-based approaches, illumination in-
variance —or at least tolerance— can additionally be achieved by choosing an appropriate signature
function for computing the low-dimensional global image descriptor. For feature-based approaches,
illumination invariance is a property of the used feature descriptors. Thus, independent of the
illumination conditions, feature descriptors can be compared with simple standard dissimilarity
functions (reviews: [19, 91, 92, 225, 635]) which do not tolerate illumination changes.
Robustness against dynamic scene changes is more difficult to achieve, especially if the scene

changes strongly influence the visual appearance of an image. Methods operating on holistic or
signature-based place representations can compensate smaller changes of the visual appearance, but
it is likely that strong changes of the appearance cannot be compensated and cause the navigation
strategy to fail. For feature-based methods, changes of the visual appearance can result in erroneous
or ambiguous matches. As long as a sufficient number of correct matches remains after eliminating
outliers or ambiguous matches, feature-based methods can cope with dynamic scene changes. If the
number of remaining matches becomes too small, navigation is likely to fail.

3.3.3.3. Place Representations and Spatial Cognition

Navigation is an essential behavior for both robots and living beings, necessary for surviving in
their “everyday life” and for accomplishing more complex tasks (e.g. [403, 596, 597, 677, 678]).
Here and in sections 3.4.3.2, 3.5.3.1 and 3.6.5.2, we will briefly recapitulate the current state of
related research in the field of spatial cognition, which embraces ethological research on animal
navigation and psychological research on human navigation capabilities. We discuss these issues
because (i) some methods and applications mentioned in sections 3.6.3 and 3.6.4 are biological
models or bio-inspired navigation strategies, (ii) the methods proposed in chapters 4 to 6 of this
thesis rely on bio-inspired building blocks for achieving robust navigation of an autonomous cleaning
robot, and (iii) because of their large field of view and the relatively small resolution omnidirectional
vision sensors are often compared with the complex eyes of insects (section 3.2.4.1).

The snapshot hypothesis of local visual homing (section 3.5.1 and figure 3.22) states that insects
use the entire visual panorama for navigation. 30 years after the hypothesis was suggested by
Cartwright and Collett [87] and Wehner and Räber [680], evidence exists that insects indeed
represent places by the entire visual panorama (e.g. [247, 248, 702, 703, 717]). Ongoing research on
insect visual homing investigates, how visual information is processed and which information of the
entire panorama is used. Currently, two main hypotheses are discussed: (i) the skyline panorama
resulting from the segmentation between sky and ground (e.g. [31, 247, 248]) and (ii) dynamic
snapshots based on optical flow patterns [141, 142]. Details of these hypotheses are discussed in
section 3.5.3.1. Beyond the hypothesis that insects use the entire panorama for navigation, it is at
the current state of research not possible to further conclude whether insects rely on a representation
comparable to holistic or to signature-based approaches. Although insects are able to react to
salient patterns such as color or texture (reviews: [20, 232]), which could be interpreted to be closely
related to features used in computer vision, it is unlikely that such patterns are used by insects
to represent places in a way similar to the feature-based representations used in robotics (reviews:
[702, 703]).
Early studies on navigation of mammals often concluded that depth information is the essential

cue to represent places (e.g. [100], reviews: [101, 702, 703]). Only recently, results are explained
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by matching entire images (rats: [103, 272, 273, 605], humans: [227]). To this end, it is likely
that mammals also use the entire snapshot to characterize places. However, due to the plethora
of cues and strategies used by rats and humans for navigation, other representations cannot be
definitely ruled out. Information processing steps in the human and mammal visual system include
to detect salient regions differing from the surrounding. Computational models mimicking these
processing steps are referred to as visual saliency or visual attention mechanisms (review: [304]).
Theoretically, such salient points could play a similar role as local image features play for computer
vision. Saliency points are relevant for object detection in mammals, but their role for navigation is
unclear [703].

3.3.3.4. Application of Place Representations in This Work

Throughout this thesis we rely on a holistic representation of places. We opted for this representation
because it allows to apply a 2D warping method for local visual homing, which is an accurate and
efficient homing method developed by our group (sections 3.5.2.2 and 4.4.2). Furthermore, it allows
to easily integrate images representing already cleaned areas into a dense topo-metric map of the
robot’s environment (sections 3.6.3.2 and 4.2 and chapters 5 and 6). Since the visual detection of
already cleaned areas (loop-closure detection) involves comparing the currently perceived image with
a potentially large number of images stored in the map, we suggest an additional signature-based
representation (chapter 6). This approach allows for more efficient image comparisons saving
computing time for other tasks required to autonomously clean complex-shaped areas. Although
feature-based approaches have to be considered the current standard methods in robot vision
and although large achievements were made with feature-based methods during the period of
time considered in this review chapter, we do not consider such navigation strategies. We are
of the opinion that the computational power of an autonomous floor-cleaning robot for domestic
usage is not sufficient for real-time operation on larger dense topo-metric maps if a feature-based
representation of places is used.

3.4. Visual Compass
Together with local visual homing strategies, visual compass methods form the second level of the
proposed navigation hierarchy (section 3.2.2 and figure 3.2). This level is also referred to as local
navigation because it derives information from two images acquired at nearby positions in space.
In the following, we define (section 3.4.1), review (section 3.4.2), and discuss (section 3.4.3) visual
compass methods.

3.4.1. Definition of Visual Compass

Visual compass methods estimate the change of the robot’s orientation between two images acquired
at identical or nearby positions in space (figure 3.20). In the following, we will stick to the notation
of local visual homing (section 3.5.1) and refer to one image as current view and to the other image
as snapshot. Visual compass methods can be understood as partial ego-motion estimation techniques
which are only capable of recovering the rotational motion component between current view and
snapshot but not the direction of translation and its absolute length. The estimate is also referred
to as as compass shift. This term is influenced from wheeled robots operating in the plane and
relying on panoramic images: in this case, a change of the robot’s orientation results in a horizontal
shift of the image (figure 3.20), but the visible image content does not change (section 3.2.4.2). If
snapshot and current view are acquired at different positions in space, there is not only a rotational
but also a translational motion between the robot’s poses. Hence, visible objects appear in the
image not only shifted but also scaled. Up to a certain degree, visual compasses can tolerate such
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Figure 3.20.: Principles of visual compasses. Subfigure (1): situation in space; subfigure (2): sketch of the algorithm.
In the depicted case, two images C and S were acquired at identical positions (c, s) but with different orientation
(solid lines). The compass method (circle) compares two images in order to derive an estimate ψ̂ of the robot’s
true change of orientation ψ. The depicted case is a holistic compass method comparing images as a whole, but
signature-based and feature-based compasses follow the same principle (section 3.4.2).

translational image changes, but the accuracy of the estimates decreases with increasing spatial
distance between the snapshots. If the robot’s task involves not only to estimate the rotational but
also the translational component between two robot poses, a compass method in combination with
local visual homing or a local visual homing method estimating both motion components has to be
applied (section 3.5.1).

Estimates of the compass shift between two images are needed for the following three applications.
First, to physically align the robot w.r.t. a reference direction in order to eliminate the orientation
difference between the images. By this means, the robot can e.g. be guided along a known route
(sections 3.6.3.2, 3.6.4.1 and 3.6.4.2). The current view corresponds to the currently perceived
image, and the snapshot is an image acquired at an intermediate goal along the route. Second,
to align images w.r.t. a common reference direction without physically moving the robot. In this
sense, compass methods are applied prior to local visual homing if the used homing method cannot
operate on arbitrarily aligned input images (section 3.5.2). Images are then aligned by horizontally
shifting one of the omnidirectional images such that the compass shift is compensated. This
mental rotation of one of the images corresponds to a rotation of a mobile robot (section 3.2.4.2).
The third application includes to estimate spatial relations in a topological or topo-metric maps
(sections 3.6.3.2 and 3.6.4.1). For applying compass methods in this sense, current view and snapshot
are two images acquired at former robot positions which do in most cases not correspond to the
image perceived at the robot’s current position.

3.4.2. Literature Review on Visual Compass Methods
Depending on how visual information is used to characterize places (section 3.3), compass meth-
ods can be categorized into holistic methods, signature-based methods, and feature-based methods
(sections 3.4.2.1 to 3.4.2.3 and figure 3.21). The only prerequisite is that the used representation
of places has to be dependent on the robot’s orientation. This aspect has to be considered for
signature-based and feature-based representations.

3.4.2.1. Holistic Compass Methods

Holistic compass methods operate on holistic representations of places (section 3.3.1.1) and use
the entire intensity image or a preprocessed variant of it to derive the orientation estimate. All
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Figure 3.21.: Categorization of visual compass methods.

methods of this class are influenced by the seminal paper Zeil, Hoffmann, and Chahl [718]
which derives the estimate from step-by-step shifting one of the images, comparing the images by
applying an image dissimilarity function (reviews: [19, 91, 92, 225, 635]), and searching for the best
match. Holistic compass methods can be categorized into methods operating in the image domain
and methods operating in the Fourier domain depending on how they compare images in order to
determine the compass shift.
Compass methods operating in the image domain include the original compass by Zeil, Hoff-

mann, and Chahl [718] and improvements thereof. These include improvements of its robustness
against illumination changes [612] and of its compass accuracy [353, 354, 604, 662]. The method
by Labrosse [353, 354] only considers regions in the panoramic image which allow for reliably
estimating the change of orientation, i.e. the rotational motion component between the considered
images. These are the image regions viewing into the robot’s forward and backward directions;
regions viewing into lateral directions do not allow to disambiguate translational and rotational
motion components (e.g. [129, 486]). The methods [604, 662] gather information from several images
in order to exclude unreliable image regions from the estimation process. The algorithm by [604]
excludes image regions containing nearby objects, and the method by [662] discards nearby and
homogeneous image regions. Both methods exploit the fact that orientation is best estimated from
distant objects.

The second group of holistic compass methods exploits that image correlations can be efficiently
computed in the Fourier domain (textbook: [65]) and that the compass shift is identical to the shift
of the maximum correlation value. Compass methods following this principle were proposed for
1D panoramic images [75, 610], 2D panoramic images estimating rotations in two directions [75],
and hemispherical images (figure 3.5.2) estimating 3D rotations [296, 399–401, 571, 572]. In the
latter case, spherical harmonics, i.e. Fourier transformation with spherical basis functions [146, 398],
were applied. The accuracy of the compass depends on the number of used Fourier coefficients. A
small number results in a coarse estimate, and a larger number of coefficients yields more accurate
estimates [296, 400, 571, 572, 609]. Using only a small number of Fourier coefficients makes the
method closely related to signature-based techniques (section 3.4.2.2). The holistic visual compass
method proposed in section 5.2.3 also belongs to this class of compass methods.

3.4.2.2. Signature-Based Compass Methods

Signature-based compass methods derive the estimate of the robot’s orientation change from compar-
ing two low-dimensional signatures (section 3.3.1.2) derived from the corresponding omnidirectional
images. The low dimensionality of the signatures not only allows for efficient image comparisons but
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also for implementing efficient compass methods. However, the change of the robot’s orientation
can only be estimated from rotation-dependent signatures (section 3.3.1.2). Because most of the
navigation strategies relying on signatures to characterize places apply rotation-invariant signatures,
signature-based compasses only play a minor role.

For Fourier signatures including phase information, the orientation change can be estimated from
the phase difference. This technique is applied by [172] and is closely related to the holistic compass
methods operating in the Fourier domain (section 3.4.2.1). Compass methods are proposed for
rotation-dependent statistical signatures [256, 257, 340] and for rotation-dependent histogram-based
signatures [261]. For both types of signatures, each entry of the signature corresponds to a certain
vertical slice of the omnidirectional image (figure 3.13.2). This allows to apply principle of the
compass method by Zeil, Hoffmann, and Chahl [718]: one of the signatures is shifted step-by-step
and repeatedly compared to the other signature, and the compass shift is determined by searching
for the shift leading to the best match.

3.4.2.3. Feature-Based Compass Methods

In case images are represented by a set of visible features (section 3.3.1.3), the compass estimate can
be derived from correspondences established between the image features of both images. Feature-
based compass methods need to incorporate the image positions of visible features because only the
feature position in the image depends on the robot’s orientation. Matching methods such as bag
of features or bag of words methods (section 3.3.1.1) only taking common features but not their
image position into account are rotationally invariant and are therefore not suited for feature-based
compasses.

The compass methods by [5, 6, 560] simply derive the estimate from the horizontal displacement
of the matched features. The compass algorithms proposed by [408–412] are more elaborated but
also computationally more complex. The methods rely on stereo relations between images and can
derive the estimate directly from matching parallel lines [410, 412] and by step-by-step shifting one
of the images until the shift is compensated. In principle, the correspondences could also be used to
estimate the essential matrix and to determine the rotational component from matrix factorization.
However, factorizing the essential matrix not only yields the rotational motion component but also
the translational component, and is therefore considered to be a correspondence-based homing
method (section 3.5.2.3).

3.4.3. Discussion of Visual Compass Methods
In this section, we discuss the relevance of visual compass methods (section 3.4.3.1), their relation
to spatial cognition (section 3.4.3.2), and their application in this work (section 3.4.3.3).

3.4.3.1. Relevance of Visual Compass Methods

The relevance of visual compasses for navigation of wheeled mobile robots relying on omnidirectional
images is often neglected. This is probably due to a classical perspective of navigation methods
which estimate the spatial positions of visible features (sections 3.3.2.1 and 3.6.3.1). As such methods
allow for deriving the robot’s pose from visible features (figure 3.17), the orientation change between
can be computed directly from the pose estimates. Thus, compass methods are not needed with
such methods. Only with the advent of appearance-based methods, which do not estimate spatial
positions of visible features (section 3.2.2), deriving compass information directly from the visual
image information became relevant. Recently, route-following methods relying only on compass
information were proposed (sections 3.6.3.2, 3.6.4.1 and 3.6.4.2). Due to their increased relevance, we
opted to discuss compass methods separate from local visual homing. Since the original application
of compass methods was to align images prior to homing computations, earlier reviews such as
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Möller, Krzykawski, and Gerstmayr [451] or Zeil [717] cover compass methods together with
local visual homing methods.

3.4.3.2. Visual Compass Methods and Spatial Cognition

Compass information is an essential cue for animal navigation. Common senses include magnetic
compasses (birds: [45, 420, 466, 692, 693, 716], monarch butterflies: [534], sea turtles: [383]),
or polarization compasses (insects: [288], birds: [467, 468, 693, 694], monarch butterflies: [534]).
The only evidence that animals can rely on a compass similar to holistic compass methods for
robot navigation are the works by [637, 638]. The authors conclude that bees derive orientation
information from a static snapshot as a backup compass if their solar compass fails because of
overcast weather conditions. Regarding mammals or humans, we are not aware of experiments
which could show that visual compass information comparable to the compass methods reviewed in
this section is used for navigation.

3.4.3.3. Application of Visual Compass Methods in This Work

In the context of this thesis, visual compass methods are applied for visually detecting already
cleaned areas (i.e. for loop-closure detection) with methods operating on a holistic representation of
places (chapter 5). We rely on the compass method proposed by Zeil, Hoffmann, and Chahl [718]
and systematically evaluate combinations of image preprocessing and image comparison techniques
(i) to increase the robustness against illumination changes and (ii) to reliably detect already cleaned
areas (or loop closures, respectively). In addition, we propose a new holistic compass method
operating in the Fourier domain, which follows the same principles as the methods by [75, 610]. For
signature-based loop-closure detection (chapter 6), we rely on rotation-invariant signatures which do
not require a visual compass. As the min-warping method for local visual homing (sections 3.5.2.2
and 4.4.2) applied in this thesis can operate with arbitrarily aligned images, we do not need to
apply visual compass methods prior to home-vector computations.

3.5. Local Visual Homing
In this section, we introduce local visual homing as technique (i) for navigating from the robot’s
current position back to a closeby goal position and (ii) for taking the bearing and (in some cases)
for estimating the compass change between the considered images without physically moving from
one place to the other. The section is structured similar to sections 3.3 and 3.4: section 3.5.1 defines
local visual homing, section 3.5.2 gives a literature on related work of this field, and it ends with a
discussion (section 3.5.3).

3.5.1. Definition of Local Visual Homing7

Local visual homing, which is in some cases also referred to as guidance [189, 642], is the ability to
return to a previously visited place based solely on visual information. Visual homing methods are
strongly influenced by the snapshot hypothesis of insect navigation (Cartwright and Collett
[87] and Wehner and Räber [680]). It states that places are characterized by images taken at their
corresponding positions. By comparing its currently perceived image, usually referred to as current
view, and the image stored at the home position, referred to as snapshot, a movement direction
is computed, which guides the agent into the direction of its goal (figure 3.22). Mathematically,
this movement direction can be described by a vector, the home vector, pointing from the current
position to the snapshot position. Local visual homing methods are only capable of computing
7This section is an extension of section 4.1 in our journal publication Gerstmayr-Hillen et al. [222]
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Figure 3.22.: Principles of local visual homing. The robot is initially located at position s in a certain orientation
(solid black line). It memorizes the currently perceived image S as snapshot. Panoramic images are depicted as
one-dimensional images showing the three surrounding objects or landmarks L1, L2, and L3. After exploration, the
homing process starts at position c1. By comparing the current view C1 and the snapshot S, local visual homing
computes the two estimates ψ̂1 and α̂1. The former is an estimate of the change between the robot’s current (solid
black line) and former (dashed) orientation; the latter is an estimate of the home direction. In terms of ego-motion
estimation, these two estimates correspond to the rotational component and the translational component up to scale
between the two images. By following the home vector (black arrow), the robot is guided towards the snapshot
position s. The influence of erroneous estimates can be reduced by repeating this procedure (in the depicted case at
positions c2 and c3). While approaching the snapshot position s, the current views Ci, i ∈ {1,2,3} become more and
more similar to the snapshot S. In the context of this thesis, local visual homing is not used for guiding the robot
towards a goal position, but for estimating angular relations between two positions in space.

the direction of the vector but not its length. Thus, they can be considered as a partial solution
of the ego-motion estimation problem (textbook: [641], review: [130]). Algorithms for solving
the ego-motion estimation problem recover the translational and the rotational component of the
robot’s movement between two positions in space. The direction of the translational component
corresponds to the home vector direction but only up to scale; the rotational component corresponds
to the compass shift, i.e. the change of the robot’s orientation between current view and snapshot
(section 3.4) prior to homing. Only some homing methods are capable of estimating both the home
direction and the compass shift. Others assume current view and snapshot to be aligned w.r.t. a
common reference direction; this can be accomplished by applying a compass method (section 3.4).
To return to the snapshot position, the robot follows the direction of the home vector and —to

compensate for erroneous estimates— repeats the homing step until it reaches its goal position
(figure 3.22). While approaching the goal position, the intermediate images C1, C2, and C3
perceived at positions c1, c2, and c3 become more and more similar to the snapshot S. By this
means, the robot brings the currently perceived view into accordance with the snapshot and is
guided back to its goal position. In the homing process, places are solely characterized by the image
of the surrounding objects or landmarks (L1, L2, and L3). Thus, local visual homing does not
involve metrical position information (hence it is a qualitative navigation method; section 3.3.2).
Due to operating on two positions in close vicinity to each other, local visual homing methods

belong to the class of local navigation methods (section 3.2.2). Their navigation range is restricted to
the robot’s sensory horizon (Franz and Mallot [189]), and every snapshot position is surrounded
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by a catchment area. For positions within this area, homing to the snapshot position is possible; for
positions outside, homing will fail. The navigation range can be extended by integrating several
snapshots into a map representing the robot’s workspace (section 3.6).
In the context of this thesis, homing is not used for actively guiding the robot towards a stored

snapshot position. Rather, visual homing is used to take the bearing from the current robot position
to a former robot position represented by the corresponding snapshot stored in the topological
map. By this means, former robot positions are used as landmarks, and spatial relations between
different landmarks can be derived. As local visual homing does not involve position information,
these angular relations only define the spatial arrangement of the considered snapshots up to scale.
The absolute scale can be recovered by introducing distance information, for example derived from
the robot’s odometry (sections 3.6.3.2 and 4.3.3.3).

3.5.1.1. Relation to Visual Servoing

So far, we introduced local visual homing from a rather behavior-oriented perspective. More
control-theoretical solutions to local visual homing have evolved in the broad field of visual servoing
embracing navigation strategies for moving a robot from a current configuration to a desired
configuration. The feedback required for controlling the robot is derived by means of computer
vision (reviews: [95–97, 299]). All methods have in common that they are strongly influenced
by control theory (textbook: [143], tutorials: [303, 650]). Visual servoing can be categorized
into position-based and image-based visual servoing. Position-based visual servoing includes (i) to
reconstruct a geometrical model of the robot’s environment, (ii) to estimate the current camera
pose, and (iii) to thereupon derive control commands to transform the current robot configuration
into the desired configuration. Due to those processing steps, position-based visual servoing is
closely related to mapping methods reconstructing the robot’s environment (model-based maps,
section 3.6.3.1). As this involves metrical position information, position-based approaches to visual
servoing are quantitative navigation strategies (section 3.2.2). In contrast, image-based visual
servoing does not reconstruct the robot’s environment but rather operates directly on the images.
As these methods do not incorporate metrical position information, they are qualitative navigation
strategies (section 3.2.2). Algorithms for image-based visual servoing establish correspondences
between visible features detected in the current view and snapshot. Therefore, they rely on a
feature-based representation of places (section 3.3.1.3). Control commands are derived in order to
reduce differences between the current and the desired configuration by minimizing the displacement
of matching feature pairs. Visual servoing methods (both image-based and position-based) exist for
control of robot manipulators and for navigation of wheeled mobile robots. For the latter, algorithms
relying on standard cameras (see the reviews [95–97, 299] for examples) and on omnidirectional
vision (e.g. [265, 408, 409, 411, 434]) were proposed.

Local visual homing and visual servoing methods solve the same task, namely guiding a robot
from one configuration to a desired configuration. In the context of navigation of wheeled robots
moving in the plane, configuration and pose can be used interchangeably. Local visual homing is
traditionally used for local navigation of mobile robots relying on omnidirectional vision as primary
sensory information. The focus is on deriving estimates of the home direction and the compass shift.
Although, it is strongly influenced by the snapshot hypothesis and by modeling animal behavior
(section 3.5.3.1), visual homing methods relying on holistic, signature-based, and feature-based
representations of places exist. In contrast, visual servoing methods are rooted in control theory,
solely rely on a feature-based representation of places, and are applicable to both robot manipulators
and mobile robots with different kinds of sensors. Thus, visual servoing is a much wider field than
local visual homing. The focus of many visual servoing methods is not on estimating home direction
and compass shift, but on finding suitable control laws to reduce the deviation between current and
desired pose. Nevertheless, the particular subdomain of image-based visual servoing for wheeled
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Figure 3.23.: Categorization of local visual homing methods. After Möller and Vardy [452].

mobile robots relying on omnidirectional vision is identical to local visual homing operating on a
feature-based representation of places.

3.5.2. Literature Review on Local Visual Homing
Over the years, a large number of methods for local visual homing was proposed. This review briefly
covers the field by categorizing the different approaches following the categorization proposed by
Möller and Vardy [452]. For more detailed reviews, please refer to [189, 447, 451, 452, 642, 660,
718, 719]. Beyond that, the review briefly documents Lorenz Hillen’s research on local visual homing
neither considered in this dissertation nor published so far. This includes the technical reports [213,
217] by Lorenz Hillen and supervised student projects [37, 328, 667, 669].

3.5.2.1. Depth-Based vs. Intensity-Based Homing

According to Möller and Vardy [452], local visual homing methods can be partitioned into
methods relying on depth information and methods relying on intensity information (figure 3.23).
Methods operating on depth information (figure 3.24) derive information about the distance of
visible objects by using omnidirectional stereo setups (section 3.2.4.1). Deriving depth information
requires more effort regarding the used sensor or the applied processing steps than relying on
intensity information. Due to relying on depth information, methods operating on depth information
are invariant against changes of the illumination. Methods belonging to this class are described
by [124, 610]. The former extends the concept of image warping (section 3.5.2.2) to the depth
profile, the latter determines the home direction based on the distance to a set of visible objects or
landmarks. Hence it is a correspondence method (section 3.5.2.3).
Intensity-based homing methods solely rely on image intensities and, in contrast to depth-based

methods, do not require stereo sensors or special movement patterns. However, achieving illumi-
nation invariance is difficult and requires appropriate image processing and comparison methods
(section 3.2.3.2 and chapter 5). Intensity-based homing methods can be partitioned into holistic
methods (section 3.5.2.2) and correspondence methods (section 3.3.1.3).

3.5.2.2. Holistic Homing Methods

Holistic homing methods use the entire image rather than establishing correspondences between
local features as is the case for correspondence methods (section 3.5.2.3). Depending on how the
home vector is computed, holistic methods can be categorized into warping methods, DID methods,
and parameter methods. The term “holistic homing” methods is used in a broader sense referring to
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Figure 3.24.: Depth-based local visual homing. Subfigure (1): situation in space; subfigure (2): sketch of the
algorithm. The robot is located at position c and is supposed to return to position s; its orientations at c and s are
depicted by a solid lines. The angles α and ψ denote the true home direction and the true compass shift between the
two robot poses. Depth based homing methods derive a distance profile (thick black lines; here created manually, the
footprint is depicted for visualization only). The distance profile is computed from omnidirectional stereo information.
In the depicted case, an omnidirectional stereo setup was used, which acquires two views at identical position in space
but at different height above the ground (figure 3.18.1). This distance profile is by the homing algorithm (circle) used
to compute estimates α̂ and ψ̂ of the home direction and compass shift, respectively. Depth-based homing can process
arbitrarily aligned images.

homing methods operating on the entire image. It subsumes warping and DID methods deriving the
home vector from the entire image thus relying on a holistic representation of places (section 3.3.1.1),
and parameter methods relying on a signature-based place representation (section 3.3.1.2).

Warping Methods
Warping methods rely on a holistic representation of places (section 3.3.1.1) and distort the robot’s
current view according to simulated movement directions (figure 3.25). The home vector is derived
by searching for the best match between the distorted images and the snapshot image with the
matching quality being determined by computing an image dissimilarity measure. Warping methods
have proven to be robust and accurate homing methods and do not require the application of an
additional external compass. Except for the method by [456], they solve the homing problem from a
rather technical perspective. The methods of this class were originally developed for one-dimensional
intensity images [190]. Improvements operating on 1D images include the warping of Fourier
signatures [611] and for depth-based methods the warping of depth-signatures [610]. An extension
to two-dimensional images was proposed by [447], later on improved by [451] and reformulated
to a biologically plausible homing method [456]. Warping methods are best suited for mapping
methods relying on a holistic representation of places, i.e. for building topo-metric maps with holistic
place representation or purely topological maps with holistic place representation (sections 3.6.3.2
and 3.6.4.1). Since warping methods exhibit a moderate computational complexity and can achieve
accurate homing and compass estimates, they are well suited for cleaning-robot control. In the
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Figure 3.25.: Warping methods for local visual homing. Subfigure (1): situation in space; subfigure (2): sketch
of the algorithm. The robot is located at position c and is supposed to return to position s; its orientations at c
and s are depicted by a solid lines. The angles α and ψ denote the true home direction and the true compass shift
between the two robot poses. The current view C (acquired at position c) is warped according to certain translational
and rotational movement parameters (light-gray dashed arrows in subfigure (1)). The resulting warped views are
compared to the snapshot S (acquired at s). By an exhaustive search over movement parameters, the parameter
combination resulting in the best match is determined and returned as home vector and compass estimates α̂ and ψ̂,
respectively. Warping methods can operate on arbitrarily aligned images.

context of this thesis we use the min-warping method proposed by [451] for mapping and trajectory
control (section 4.4.2).

DID Methods
Like warping methods, DID (descent in image distances; figure 3.26) methods rely on a holistic
representation of places (section 3.3.1.1). They achieve homing by gradient descent in the space
of image distances computed from pixel-by-pixel comparisons between the current view and the
snapshot. DID methods therefore rely on holistic representations of places (section 3.3.1.1). The
homing method was originally proposed by Zeil, Hoffmann, and Chahl [718], and later on
used by [13, 31, 103, 333, 404, 605, 612, 617, 618]. For computing the gradient, these methods
have to apply exploratory test steps or special movement strategies. Among these methods, the
papers by [31], [404], and [103, 605] describe homing behavior of desert ants, crickets, and rats,
respectively. By predicting images into two orthogonal movement directions and deriving the
gradient direction based on these predictions, the methods by [44, 354, 452, 454] circumvent the
drawback of requiring exploratory test steps. These methods are rather technically-oriented DID
methods. DID methods require snapshot and current view to be aligned w.r.t. a common direction
or the application of an external compass method with holistic compass methods being best suited
for this purpose (section 3.4.2.1). Regarding homing accuracy, DID-based methods do not reach
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Figure 3.26.: DID methods for local visual homing. Subfigure (1): situation in space; subfigure (2): sketch of the
algorithm. The robot is located at position c and is supposed to return to position s. As DID methods assume images
to be aligned w.r.t. a common reference direction, the robot’s orientations (solid lines) at c and s are identical. The
angle α denotes the true home vector pointing from c to s. DID methods compare the current view C (acquired at c)
and the snapshot S (acquired at s) by applying an image dissimilarity function. Homing is achieved by a gradient
descent in the space of image dissimilarities. Computing the gradient direction (thick solid arrow; α̂) requires small
test movements into two orthogonal directions (light-gray dashed arrows in subfigure (1)).

the accuracy of warping methods. They are computationally more demanding than parameter
methods, but computing the home vector is more efficient than for warping methods. For mapping
applications, DID methods are best applied for topo-metric maps with holistic place representation
and topological maps with holistic place representation (sections 3.6.3.2 and 3.6.4.1). Due to their
computational complexity, they would in principle be relevant for cleaning-robot control. However,
we consider them to be not accurate enough for this particular task.

Parameter Methods
Parameter methods rely on a signature-based place representation and therefore extract a lower-
dimensional description from the entire images (section 3.3.1.2). Homing is realized by a gradient
descent minimizing the distance between the parameter signatures of current view and snapshot
(figure 3.27). In principle, any signature reviewed in section 3.3.1.2 can be applied for homing.
However, most signatures (e.g. statistical signatures, histogram-based signatures, and Fourier
signatures; section 3.3.1.2) require translatory test movements for determining the gradient direction
(dashed arrows in figure 3.27). In case the signatures are not independent of the robot’s orientation,
the images have to be aligned w.r.t. a common reference direction prior to computing the home-vector
estimate. Rotation-invariant signatures can be applied without prior compass alignment, but only
allow for estimating the home direction because orientation information is discarded (section 3.3.1.2).
Comparison studies [177, 537] revealed that parameter methods do not achieve the homing accuracy
of other classes, but are computationally very efficient. By applying the principle of image warping
to Fourier signatures, a parameter-method which does not require test steps and which is capable of
operating on arbitrarily aligned images can be obtained [611]. For hemispheric images (i.e. images
with at least a hemispheric field of view; figure 3.5.2), spherical harmonics [146, 398], the spherical
analogon to the Fourier transform in the plane, can be applied to derive signatures. From these
signatures, the methods by [16, 136–138] derive estimates of the compass change and the home
direction. The method by [402] applies similar concepts, but the approach is at the current point in
time computationally not tractable for real-time control of robots.

Among the parameter methods which do not require exploratory test steps, the average landmark
model (ALV) proposed by [356, 446] is most widely used. As signature, it uses the vector sum of
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Figure 3.27.: Parameter methods for local visual homing. Subfigure (1): situation in space; subfigure (2): sketch of
the algorithm. The robot is located at position c and is supposed to return to position s. As parameter methods
assume images to be aligned w.r.t. a common reference direction, the robot’s orientations (solid lines) at c and s are
identical. The angle α denotes the true home vector pointing from c to s. By applying a signature function s, image
signatures s(C) and s(S) are computed from the current view C (acquired at c) and the snapshot S (acquired at s).
For homing, the signatures are compared instead of the images therefore allowing for efficient image comparisons.
Homing is performed by a gradient descent in the space of parameter distances. For estimating the gradient (thick
black arrow), small test movements into to orthogonal directions are required (light-gray dashed arrows in subfigure
(1)). The direction of the gradient is returned as estimate α̂ of the home direction.

unit vectors pointing towards the landmarks —in this context visible objects— identified in the
image. Thus, the signature is only two-dimensional. During period of time considered for this
review, several extensions of the original method were proposed. The method by [267] circumvents
the step of landmark identification and uses the center-of-gravity vector computed from image
intensities instead of the landmark vector; the method by [244] uses color blobs as landmarks. In
[238, 528], landmarks are identified by local image features thus extending the original method
towards a correspondence-based homing method (section 3.5.2.3). The methods by [648, 649] and
by [714, 715] use distance information to derive the signature and is therefore closely related to
depth-based homing methods (section 3.5.2.1).
Due to their simplicity, ALV models were also applied to explain or model behavioral data of

desert ants [31, 356] and crickets [404]. Bio-inspired applications include route following [592, 593]
and docking [682, 683]. The drawback of ALV-based homing methods is that images need to be
compass-aligned; only the methods by [714, 715] can cope with arbitrarily aligned images.

Parameter-based homing methods are closely related to topo-metric maps with signature-based place
representation or purely topological maps with signature-based place representation (sections 3.6.3.2
and 3.6.4.1). Their computational simplicity makes them appealing for navigation of cleaning robots.
However, we expect their precision to be not sufficient for this particular task.

3.5.2.3. Correspondence Methods

In contrast to holistic methods using the entire image to compute the home vector, correspondence
methods establish correspondences for this purpose. Depending on how correspondences are
established, one can distinguish local optical flow methods and feature-matching methods.

Local Optical Flow Methods
Correspondence-based homing methods establish correspondences implicitly by applying differential
flow methods (figure 3.28). Since the optical flow (textbook: [305, 641], review: [30, 280]) is computed
from the entire image, these methods rely on holistic place representations (section 3.3.1.1). Although
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Figure 3.28.: Local optical flow methods for visual homing. Subfigure (1): situation in space; subfigure (2): sketch
of the algorithm. The robot is located at position c and is supposed to return to position s. As local optical flow
methods assume images to be aligned w.r.t. a common reference direction, the robot’s orientations (solid lines) at c
and s are identical. The vector α denotes the true home vector pointing from c to s. Local optical flow methods
establish correspondences by computing the local optical flow between the current view C (acquired at c) and the
snapshot S (acquired at s). Based on the correspondences, the home vector estimate α̂ is computed pointing from the
current view position c to the snapshot position s. In contrast to feature-matching methods for local visual homing
(figure 3.29), local optical flow methods rely on a holistic representation of places (section 3.3.1.1).

differential flow methods assume snapshot and current view to be spatially close together —an
assumption which is clearly violated if applying differential flow methods for homing—, these
methods achieve a good, yet not perfect performance. Local optical flow methods require the
application of an external compass to align images. For this purpose, holistic compass methods
(section 3.4.2.1) are best suited. The homing methods by [663, 664] uses image processing operations
closely related to local optical-flow computations, and the paper [660] is the first one to apply
local optical flow methods. There, differential optical flow is computed by first- and second-order
differential methods only capable of computing the normal flow. Such methods suffer from the
aperture problem (textbook: [305]) and can only estimate the direction of the flow but not its
length. By applying the Lucas-Kanade algorithm [390] and extensions thereof [61], the homing
accuracy of the original methods could be considerably improved by Lorenz Hillen. The best results
are obtained for a variant of the Lucas-Kanade algorithm relying on multi-scale flow computations
with iterative refinement steps [61]. With this method, the homing accuracy could be considerably
improved in comparison to the original method by [660]. The results of this line of research are
documented in the technical report [213].

The method by [713] detects obstacles from computing local optical flow from consecutive frames
of an image stream. It detects the robot’s ground plane, computes the optical flow, and matches
it with flow templates expected for the robot’s current motion. By this means, the flow field is
segmented into translational and rotational components both matching the expected motion and an
unexpected part. The latter is due to flow resulting from obstacles. Although used for a different
application and —more important— although an estimate of the robot’s motion between snapshot
and current view is not available for local visual homing, the concepts could also be interesting
for local visual homing: home vector and possibly compass estimates could be computed from
flow vectors explainable by translational and rotational flow components, respectively; the third
category of flow components is not considered for deriving these estimates, but could be used to
detect obstacles or dynamic scene changes.
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Figure 3.29.: Feature-matching methods for visual homing. Subfigure (1): situation in space; subfigure (2): sketch
of the algorithm. The robot is located at position c and is supposed to return to position s; its orientations at c
and s are depicted by a solid lines. The angles α and ψ denote the true home direction and the true compass shift
between the two robot poses. Feature-matching methods establish correspondences between the features of the current
view C (acquired at c) and of the snapshot (acquired at s). From these correspondences, estimates α̂ and ψ̂ of the
home vector direction and the compass shift are derived. The depicted case shows a feature-matching method with
feature preselection; most feature-matching can operate on arbitrarily aligned images. In contrast to local optical flow
techniques (figure 3.28), correspondence methods rely on a feature-based representation of places (section 3.3.1.3)
describing the image by a set of feature descriptors (and discarding the image content). For this reason, the current
view and the snapshot are brightened in subfigure (2).

Another working direction includes computing the optical flow based on adaptive approaches to
increase the method’s robustness against illumination changes. In the diploma thesis by Dr. Matthias
Behnisch [37], multi-layer perceptrons (MLP, textbook: [46, 148]) are used as adaptive function
approximators to compute the direction of the flow vectors. Finding appropriate image-preprocessing
methods and network topologies turned out to be rather subtle, and the homing accuracy could not
be improved compared to methods based on the standard Lucas-Kanade algorithm [390].
Local optical flow methods achieve a similar performance than DID-based homing methods, to

which they are closely related [452, 454]. For mapping applications, they are best applied with
topo-metric maps with holistic place representation or with purely topological maps with holistic
place representation (sections 3.6.3.2 and 3.6.4.1, respectively). For application to cleaning-robot
control, homing methods based on optical flow do not offer particular advantages, but only the
drawback that they have to rely on an external compass method. This was also the reason, why we
did not further pursue this research direction and did not consider local optical flow methods for
navigation of cleaning robots. Even though optical flow is a widely used cue in insect navigation
([250, 596, 597, 717] and section 3.5.3.1), we consider these methods to be technical solutions for
the homing problem rather than realistic models of insect behavior.

Feature-Matching Methods
Matching methods explicitly solve the correspondence problem by matching features. In detail,
these methods include the following four steps [451, 456]: (i) detection of points of interest, (ii)
feature extraction, (iii) feature matching possibly including a removal of mismatches (iv) derivation
of the home-vector estimate and depending on the used method of the compass estimate from
the established correspondences (figure 3.29). Methods involving all four steps are referred to as
matching methods with feature preselection [452]. In case the steps of detecting and extracting
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features —i.e. steps (i) and (ii)— are missing, the corresponding homing methods are referred to as
matching methods without feature preselection. For comparing correspondence-based local visual
homing methods, step (iv) is most essential. Thus, the following description will focus on this
issue; steps (i) to (iii) are mostly independent of local visual homing and covered in section 3.3.1.3.
Feature-matching methods are rather technical solutions to the local visual homing problem, and it
is unlikely that similar mechanisms are used by animals or humans. The computational complexity
of matching methods depends strongly on the used feature detection and description methods and
on the approach for matching features in order to derive correspondences. The computational effort
is larger than for DID and parameter-based homing methods (section 3.5.2.2) and should also be
larger than that of local optical flow methods.

Matching Methods With Feature Preselection Matching methods with feature preselection include
all four steps outlined above. Most methods establish correspondences in every homing step
(figure 3.22), which is the bottleneck of correspondence-based homing methods. Only the methods
by [14, 39, 173] reduce the computational effort by tracking features over time. Matching methods
with feature preselection can be further categorized depending whether or not they estimate the
essential matrix to derive derive estimates of the home vector and —in some cases— of the compass
shift. The essential matrix describes the translation and rotation between camera poses up to scale.

Homing methods relying on the essential matrix can therefore cope with arbitrarily aligned images
and can estimate both home vector and compass shift. The method by [408, 409, 411] uses special
properties of the essential matrix to compensate for the rotation between images. Once the rotation
is compensated, the translational component remains and the shift between correspondences is
reduced to guide the robot towards the goal. The algorithm by [265, 434] establishes correspondences
between straight lines and uses the matches to derive the control laws for guiding the robot towards
its former pose when the snapshot was acquired..

In the context of trajectory-based SLAM (sections 3.6.1.2 and 3.6.3.2), homing methods are used
to estimate spatial relations for accurate map-building [133, 134, 163, 164, 235–237]. These method
focus on estimating the home direction and the compass shift, which is by all methods computed
from factorizing the essential matrix into rotational and translational components. For details on
the factorization please refer to the original literature (original paper: Nister [490]; tutorial [563];
textbook: [278]). The factorization can also be applied for feature-based place recognition (in case
two places are identical, the translational component will be zero; section 3.3.1.1). Correspondence-
based homing methods exploiting the epipolar constraint can fail if snapshot and current view
are nearby, i.e. if the baseline between the two considered images is short. In such situations, the
method by [385] can compute reliable estimates by deriving the homing direction and the compass
estimate by establishing correspondences between vertical planes.

Closely related to methods computing the essential matrix are the works of [12, 36] which establish
correspondences between three views (all other methods of this section only use two images for
homing). Based on the correspondences between snapshot, current view, and the image acquired
when homing started, the trifocal tensor is computed, and used to derive home vector and compass
estimates. The trifocal tensor in three-view geometry corresponds to the essential matrix of two-view
geometry (textbook: [278]).
Methods not computing the essential matrix instead exploit other properties of correspondences

to derive estimates of the home vector and —in some cases— of the compass shift. These properties
include their position and shift in the images, their scale change, or the angle between matched
features. The group exploiting the correspondences’ position and shift is formed by three very
different methods by [57, 69, 560]. All three methods are capable of estimating both home direction
and compass shift. The method by [560] applies the vector-mapping originally proposed by [660]
relating each correspondence vector in the image with a home vector in space. The overall home
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vector is then computed by vector averaging. Prior to estimating the home vector, the method by
[560] applies a feature-based compass to compensate for the robot’s rotation between current view
and snapshot (section 3.4.2.3). In [57], the problem of estimating the home-vector direction and the
compass shift is formulated as maximum likelihood estimation. Given the set of correspondences, it
searches for the most likely combination of homing and compass angles. The estimation is very
efficient and can reduce the influence of mismatches e.g. caused by dynamic scene changes. The
homing algorithm by [69] is the only homing method of this class operating on one-dimensional
images and establishes matches keeping the ordering of matched features. Depending on the pattern
how corresponding features are shifted between the images, home vector and compass estimate are
obtained. This processing step makes the method closely related to warping methods (section 3.5.2.2
in particular our 2D warping methods [447, 451]).
The methods by [14, 38, 39, 374, 384] operate on the azimuthal angle between matched features

and usually consider only a small number of landmarks (in this context visible objects) with some
methods assuming known correspondences [38, 53, 384] or compass-aligned images [38, 384]. The
approaches are often referred to as bearing-only methods —a term which we think is misleading
because (i) these methods rely on the angles between matched features and (ii) all intensity-based
correspondence methods use bearing-only information. The methods are mainly of theoretical
interest for control-theoretical considerations such as proofs of convergence or stability (textbook:
[143], tutorials: [303, 650]); only the methods by [14, 39, 374] were tested in real-robot experiments.
Homing based on the scale change between matches can be accomplished by moving towards

increasing features and away from decreasing features [113, 114, 378, 379]. The technique is
independent of the robot’s orientation and can therefore process arbitrarily aligned images.

Because of representing places based on the visible features, correspondence methods with feature
preselection are best used with topo-metric maps with feature-based place representation or with
purely topological maps with feature-based place representation (sections 3.6.3.2 and 3.6.4.1). Feature-
based homing methods would be applicable for navigation of autonomous cleaning robots because
we expect them to be sufficiently accurate and computational efficient for cleaning robot control.
Nevertheless, we prefer to apply our recent warping methods because we have a larger experience
with this method.

Matching Methods Without Feature Preselection In contrast to matching methods with feature-
preselection, these methods lack the steps of detecting and extracting features in the image (steps
(i) and (ii) of above’s list). Instead, they rely on the following matching process to establish
correspondences. Feature descriptors are computed for every pixel of one image, usually the
snapshot. To establish correspondences, feature descriptors computed for the current view are
searched in the snapshot. The computational effort of the search process can be reduced by the
following two means. First, correspondences are not established for every pixel of the current view
but only for a subset of pixel positions (e.g. lying on a regular grid covering the entire image). Second,
the search space in the current view is limited to an image region where matches are expected.
Because of this search process, matching methods without feature preselection rely on a holistic
representation of places (section 3.3.1.1). Based on the established correspondences, the home vector
is derived (this step is again similar to correspondence methods with feature preselection). If not
stated otherwise, the reviewed methods require current view and snapshot to be aligned w.r.t. a
common reference direction.
The method described by [661, 665] establishes correspondences for matching scale-invariant

feature descriptors. The algorithm proposed by [660] builds on the block-matching optical flow
algorithm [35, 293] and establishes correspondences by matching image patches taken from the
current view in a certain rectangular area of the snapshot. This original block-matching method
was later on improved by Lorenz Hillen and by students being supervised by Lorenz Hillen. These
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improvements include (i) the features used for matching, (ii) the shape of the search region, (iii)
the number and distribution of feature positions, and (iv) making the method independent of an
external compass. The bachelor’s thesis of Daniel Venjakob [667] uses techniques to approximate
the image patches used for establishing correspondences by a lower-dimensional description. Due to
only comparing lower-dimensional descriptors instead of image regions, this improvement allows
for more efficient image comparisons and for comparing larger image regions. The tested image
descriptors include principal component analysis (PCA, [471]), local jets [334], differential invariants
[182, 576], and a descriptor based on the eigenvalues of the structure tensor [277]. Compared to the
original method, jet features allow for more efficient image comparisons and did not decrease the
homing accuracy. Furthermore, the work revealed that there is an optimal patch size. Both, for
matching descriptors and for matching image patches, increasing the patch size up to an optimal
value also increases the homing accuracy; for larger patches, it decreases again.

The technical report [217] by Lorenz Hillen describes a version of the original method referred to
as flow-line matching. It uses image patches for establishing correspondences, but restricts the search
space to optical flow lines. Optical flow lines are those lines in the image along which image features
move when the robot moves [216, 334]. Thus, the method constrains the computed correspondences
to image displacements which can occur under real robot movements. Although it does not achieve
the performance of 2D-warping, flow-line matching performs considerably better than the original
method by [660]. Among all our optical flow-based homing methods it currently achieves the best
performance. Improvements could also be obtained with respect to computational complexity:
by restricting the search space to the flow lines, the number of image comparisons mandatory to
establish matches could be significantly reduced. In the bachelor’s thesis of Björn Böttcher, flow-line
matching was tested with different image preprocessing functions and different image dissimilarity
function to increase the method’s robustness against illumination changes (section 3.2.3.2). Among
all tested methods, the combination of the contrast normalization by [612] and zero-mean normalized
cross correleation (e.g. [225]) yielded the best results. However, if strong changes of the illumination
occur, the performance is strongly decreased. Similar approaches for achieving robustness against
illumination changes for loop-closure detection methods are described in (chapter 5).
In the course of the bachelor’s project of Marcus Kesting [328], a variant of flow-line matching

with feature preselection was implemented. For feature detection, the Harris corner detector was
applied. Contrary to our expectations, the variant turned out to be less accurate than original
flow-line matching. We additionally considered a variant of flow-line matching which tracks features
over several homing steps. Thus, it circumvents the bottleneck of establishing correspondences in
every homing step. At the current state, first results look promising, but the method still lacks a
criterion for determining when feature tracking is no longer possible and correspondences have to
be recomputed. Together with the robot’s odometry, the tracking method allows for reconstructing
the position of visible feature points in space. Thus, it opens a so far neglected approach scene
reconstruction (e.g. for obstacle detection) and towards sparse model-based maps (section 3.6.3.1).

Another extension of the flow-line matching method integrated a visual compass into the method
making it independent of an external compass. This extension was developed by Daniel Venjakob
during his master’s project [669]. Although testing several possibilities, flow-line matching with
implicit compass does not reach the performance of 2D-warping (section 3.5.2.2) regarding homing
accuracy and computational efficiency. This result is the main reason why the cleaning strategy
described in chapter 4 of this thesis relies on 2D-warping instead of flow-line matching. Nevertheless,
we could reveal that 2D-warping and flow-line matching are closely related: the equations used in
the flow-line matching method for computing how image features move along flow lines and in the
2D-warping method for computing how image columns are moved and scaled are identical [669]. An
interesting possibility of future work on optic-flow homing is the optic flow algorithm proposed by
[375, 376]. It exploits constrains arising from considering the flow of two points which lie opposite
to each other on the viewing sphere and allows for estimating both the robot’s rotational and
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translational motion components.

3.5.3. Discussion of Local Visual Homing

The field of local visual homing has evolved in the context of biomimetic robotics (reviews: [189,
433, 642, 677, 678]). Thus, it is an interdisciplinary field between biology and engineering, and
several algorithms for robot homing were proposed to model the insects’ behavior. While the focus
of section 3.5.2 was clearly on the technical side, we briefly cover the current state of biological and
psychological homing research in section 3.5.3.1. Finally, we discuss the relevance of local visual
homing for the work presented in this thesis (section 3.5.3.2).

3.5.3.1. Local Visual Homing and Spatial Cognition

Almost three decades have passed since the experiments by Cartwright and Collett [87] and
Wehner and Räber [680] which lead to the snapshot hypothesis. The idea of the snapshot
hypothesis is simple: places are characterized by the image as perceived at the corresponding place
and homing is realized by bringing two images into accordance. However, it is until today not fully
explained how places are characterized or how homing is achieved by animals (recent reviews: [246,
703, 717, 719]). In the following, we briefly recapitulate the current state of research related to
the snapshot hypothesis for local visual homing in insects, rodents, and humans. Although birds
use visual cues for returning to a nest or to a feeder (e.g. [298, 325, 326]), we are not aware of
experiments with results being explained by the snapshot hypothesis.

Most research on local visual homing is done with social insects such as bees and ants gathering
food and returning it to the nest. Such insects are referred to as central-place forages. In the
experiments by [142], bees were able to approach a feeder position defined by three surrounding
landmarks (in this context cylindrical objects). In contrast to the original experiments by [86, 87],
landmarks were camouflaged (i.e. not visible if relying solely on image intensities), but visible if
bees rely on the optical flow pattern (see [596, 597] for current reviews how bees use optical flow
for flight behavior). Based on these findings, a matching of flow templates rather than traditional
snapshot matching is proposed to explain the animals’ behavior. For a more detailed discussion of
static snapshots versus dynamic snapshots please refer to [141].

Homing experiments are also performed with desert ants (review: [679]). Recent results revealed
the importance of the skyline panorama, i.e. the transition from sky to terrestrial objects or ground,
for the homing behavior of ants. The experiments by [247] show that ants rely on the skyline
panorama for navigation. Ants are trained to a certain skyline panorama at their food source.
Under experimental conditions, ants are released in an arena with modified skyline panorama. This
was possible due to using walls of variable height in order to rebuild the natural skyline. If this
skyline panorama is rotated, the ants are misled. In another experiment, parts of the ants’ view are
obscured after accommodating the ants to a skyline panorama [248]. The results show that the
lower portion of the panorama is sufficient and necessary for homing behavior. This portion of the
field of view contains most parts of the skyline panorama. The study by [701] also modifies the
ant’s skyline panorama. It results are in line with the results reported by [247, 248]. The study of
[31] compares parsimonious homing algorithms operating on (i) intensity images or (ii) on skyline
information. Both image representations were computed from a computer simulation of a desert
ant habitat. As the methods relying on skyline information yield more robust homing results, the
authors suggest that ants rely on the skyline panorama. The skyline panorama could, for example,
be extracted by color opponency mechanisms exploiting the spectral contrast between UV and
green [337, 455, 537, 632]. Due to relying on UV information, they can only be applied for outdoor
navigation.
Besides evidence on the information used by ants, a new line of homing models is proposed by
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[245]. Instead of storing a single snapshot characterizing the goal, the authors suggest to store
a set of snapshots acquired in close vicinity of the goal while pointing towards the goal. While
approaching the home, the agent aligns with the best matching goal snapshot. This simple behavior
is sufficient for homing and can also be motivated by learning walks and scanning behavior.
Research on local visual homing in rats is frequently related to the classical Morris-water-maze

experiment [463, 464]. Animals are released in a tank filled with milky water and have to find a
platform hidden underneath the water surface. As rats dislike swimming, resting on the platform
seems to be a reward. The results of the experiments described by [272, 273] can be explained by
the rats relying on nearby visible objects or cues as landmarks. However, it remains unclear (i) if the
animals rely solely on visual cues and (ii) to which extent they rely on snapshot matching and not
on other strategies using the visible landmarks. Another subbranch of research on homing in rats is
influenced by the seminal experiment by [100]. Rats are trained to a feeder in a corner of a rectangular
arena with only one wall painted in a different color. During experiments, rats supposed to find the
correct corner confuse it with the diagonally opposite corner. Based on these results the authors
concluded that rats use a geometrical module (review: [101]) deriving geometrical information about
the rat’s environment. Thus, rats were supposed to rely on geometrical information rather than on
snapshot matching. Only recently, the experiments were repeated in a simulation study [103, 605]
revealing that the results could also be explained by snapshot matching of images preprocessed by
an edge detector. These results suggest that rats could use a representation of places closely related
to holistic place representations (section 3.3.1.1).
Humans are in principle able to solve a local visual homing task in a virtual environment [227].

However, the relevance of the snapshot hypothesis and visual homing in human’s everyday life is
unclear, in particular because many other visual cues and navigation strategies exist. For details
please refer to the reviews by [403, 690, 691].

All experiments reviewed above describe local homing with a homing range up to several meters.
This contrasts long-distance homing with homing ranges up to thousands of kilometers. Well-known
examples of such homing behavior include bird migration, pigeon homing, migration of monarch
butterflies, or salmon migration (reviews: [64, 287]). Due to covering long distances, animals cannot
rely on vision as main sensor modality for guidance towards the goal. They rather use magnetic
compasses (birds: [45, 420, 466, 692, 693, 716], monarch butterflies: [534], sea turtles: [383]), sun
compasses (birds: [467, 468, 693], monarch butterflies: [534]), celestial cues (birds: [629, 693]), or
olfaction (birds: [204, 205, 420], salmon: [599, 645]).

3.5.3.2. Application of Local Visual Homing in This Work

Local visual homing was originally proposed as a method for guiding a robot back to a previously
visited place. It is strongly influenced by the snapshot hypothesis of insect navigation, and several
homing methods were developed as models to explain the insects’ behavior. These methods are of
particular interest, because they operate on small-sized images with a resolution of approximately
1° per pixel and do not incorporate computationally demanding processing steps (review: [453]).
We therefore consider local visual homing methods to be suitable for navigation of autonomous
floor-cleaning robots. Among all homing methods developed in our research group, the variant of 2D
warping referred to as min-warping [451], offers a good homing accuracy while being computationally
efficient (see section 4.4.2 for details on this method). The drawback of local visual homing
methods is that their navigation range is restricted to the catchment area. By integrating several
snapshot positions into a map, this drawback can be resolved. Possible approaches which are in
particular suited for the application with holistic homing methods are topo-metric maps with holistic
place representation and purely topological maps with holistic place representation (sections 3.6.3.2
and 3.6.4.1, respectively).
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3.6. Map-Based Navigation8

Map-based navigation forms the third level of the proposed navigation hierarchy and involves
navigation methods incorporating three or more views (section 3.2.2 and figure 3.2). Similar to
previous section, we define map-based navigation (section 3.6.1), review related work (sections 3.6.3
and 3.6.4), and discuss relevant aspects (section 3.6.5).

3.6.1. Definition and Common Principles of Map-Based Navigation

Regarding the hierarchy of navigation methods introduced in section 3.2.2, map-based navigation
methods form the third level incorporating three or more known positions. By these methods, several
known places together with their spatial interrelations or positions in space are stored in a map of the
robot’s environment. How the map is built and how it represents the information about the robot’s
environment strongly depends on the used visual information (range or intensity information), on
the representation of places (i.e. holistic, signature-based, or feature-based; section 3.3), on the
navigation methods applied at lower levels (sections 3.3 to 3.5), and, of course, on the robot’s task.
Independent of the map’s type, the amount of information stored in the map is only limited by the
robot’s storage capacity and computational power. Nevertheless, compact representations of space
are preferable [74]. To accomplish reliable map-based navigation, the map has to be consistent, i.e.
it has to correctly represent the robot’s environment. For this purpose, the navigation method has
to fulfill the following four prerequisites introduced in section 3.2.3 (see also [74, 99, 175, 432]): (i)
robustness against perceptual aliasing (i.e. the capability to distinguish places with identical visual
appearance; section 3.2.3.1), (ii) robustness against perceptual variability (i.e. robustness against
illumination changes and changes of the scene; section 3.2.3.2), (iii) correct sensor data integration
(i.e. the correct integration of information accumulated over time into the map; section 3.2.3.4),
and (iv) correct place recognition (or loop-closure detection; i.e. the correct detection whether or
not the robot’s current position is already stored in the map in order to avoid inconsistent maps;
section 3.2.3.3).

3.6.1.1. Basic Categorization of Mapping Methods

Although dating back to the beginnings of mobile-robot research, research on map-based navigation
methods is still a vivid and only partially solved research domain. During the last decade, a sub-
stantial number of original research papers about building and using maps based on omnidirectional
image information were published. However, the field lacks a state-of-the art review providing a
sound categorization of map-based navigation methods relying on omnidirectional visual navigation.
We therefore propose such a categorization (figure 3.30) tailored to the specifics of omnidirectional
vision with a focus on different types of maps, i.e. on the spatial representations of the robot’s
environment built by processing the available image information. We are of the opinion that a
categorization based on the spatial representation is best suited for putting our navigation methods
in the context of related work. However, different but equally valid categorizations would result
from focusing on different aspects of map-based navigation.

Approaches to mobile-robot mapping can be partitioned into quantitative and qualitative methods
(figure 3.30). Quantitative maps (section 3.6.3) include an estimate of the robot’s position with
respect to an external frame of reference and, in some cases, also a position estimate of the visible
features. In contrast, qualitative maps (section 3.6.4) do not contain metrical position information,
but rather model spatial interrelations and characterize places by the sensory information, i.e. the
camera image, perceived at the place.
8An earlier and much shorter version of this section was published in section 2 of our recent journal publication
Gerstmayr-Hillen et al. [222].
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(1) (2) (3)

Figure 3.31.: Principles of feature-based simultaneous localization and mapping (SLAM). While moving, the robot
continuously senses features in its environment (black crosses). Instead of mapping every measurement (dotted lines),
the currently perceived features are integrated into the existing map. The map consists of position estimates of
the perceived features (light gray filled circles) and the robot positions (dark gray filled circles) together with their
uncertainties (ellipses). Subfigure (1): features perceived for the first time (elongated obstacle) are added to the map
with position estimates deviating strongly from the true feature position and with a relatively large uncertainty. By
fusing several measurements over time, the estimates become more accurate and the corresponding uncertainties
decrease (squared obstacle). Based on the updated map, an estimate of the robot’s current position is derived.
Thus, the robot is concurrently localized within the map while the map is updated. Subfigure (2): over time, the
estimates of the robot’s positions drift, and the uncertainties accumulate because the robot does not perceive features
stored in the map. Subfigure (3): as soon as the robot closes the loop and perceives known features, the relatively
small uncertainty of these features is used to correct the current position estimate and to reduce the corresponding
uncertainty. Extended after Thrun and Leonard [631].

Besides this basic partition of mapping methods, the terms graph-based representation and
appearance-based representation embrace certain types of quantitative and qualitative maps (fig-
ure 3.30). Graph-based representations subsume topo-metric maps (section 3.6.3.2) and topological
maps (section 3.6.4.1). Both types of map rely on a graph to represent the robot’s environment.
Graph nodes represent known positions in space, and two nodes are linked if the places they represent
are directly reachable from each other. Each node has an omnidirectional image attached, which
was acquired at the position represented by the corresponding node. In case an additional position
estimate is attached to the place node (see section 3.3.2.1 for such estimation techniques), the map
belongs to the class of topo-metric maps; otherwise, it is a purely topological map. Appearance-based
maps embrace topo-metric maps (section 3.6.3.2), topological maps (section 3.6.4.1), and holistic
spatial representations (section 3.6.4.2). Such mapping methods operate solely on image information
and avoid to estimate the spatial positions of features w.r.t. world coordinates (section 3.2.2). Before
describing the different approaches to mapping based on omnidirectional images (sections 3.6.3
and 3.6.4), we first introduce common tasks building or operating on maps (section 3.6.1.2) and
comment on hierarchical maps (section 3.6.2).

3.6.1.2. Common Applications Related to Mapping

Nearly all complex applications of mobile robots require map-based navigation methods building a
map of the robot’s environment or using an a-priori known map. In the following, common building
blocks of more complex applications are defined and their relevance for navigation strategies of
autonomous floor-cleaning robots is discussed:

• Map building, or simply mapping, is the process of building a map as representation of the
robot’s workspace based on the robot’s sensor data (reviews: [74, 432], textbooks: [110, 586,
630]). Mapping methods can be further separated into online methods building the map
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while the robot is navigating and into offline methods computing the map after the robot has
explored its workspace and all visual information used for mapping is available. For all other
tasks given in this list, reliable mapping is an essential prerequisite. A map is also the core of
any navigation strategy for any autonomous cleaning robot, which systematically covers the
workspace (section 2.3). To make the robot usable “out of the box”, the map has to be built
by online mapping methods.

• Localization is the problem of determining the robot’s current position in its environment
(reviews: [74, 175], textbooks: [110, 586, 630]). This involves a search for the position (either a
discrete place or a continuous coordinate) for which the current sensor data best matches the
map. How this search is performed depends on the used spatial representation. Localization
algorithms can be partitioned into local and global localization: the former sequentially tracks
an initial estimate of the robot’s position whereas the latter determines the position without
any prior knowledge. Global localization is also referred to as kidnapped-robot problem [586].
For an autonomous cleaning robot, accurate navigation is essential for (i) consistent mapping,
i.e. for maps which correctly represent the robot’s environment, (ii) reliably detecting cleaned
areas by means of loop-closure detection (section 3.2.3.3), and (iii) for solving the kidnapped
robot problem if the robot is displaced by the user.

• Simultaneous localization and mapping (SLAM) embraces navigation strategies which update
the robot’s map while concurrently localizing the robot in the map (reviews: [25, 99, 130,
150, 194, 631], textbooks [110, 586, 630]). Such methods arose from the tight coupling of
map building and localization. While the former requires an estimate of the robot’s position
the latter requires a correct map of the robot’s environment. SLAM algorithms involve a
subsequent improvement of initial position estimates whenever new information about the
robot’s environment becomes available, e.g. after closing loops (figure 3.31). Traditional visual
SLAM methods are closely related to structure from motion techniques (reviews: [130, 640],
textbook: [278]) and estimate the robot’s and the features’ positions w.r.t. world coordinates.
They are referred to as feature-based SLAM methods (section 3.6.3.1). Trajectory-based SLAM
methods do not estimate the features’ positions in the world, but only the current robot
position and the series of former robot positions (section 3.6.3.2). Approaches to topological
SLAM are qualitative methods and hence do not estimate positions at all. They rather aim at
finding the most likely spatial interrelations of places (i.e. the topology, section 3.6.4.1). Our
mapping method (chapter 4) concurrently extends the map while keeping track of the robot’s
current position. However, at the current state of our work, we avoid the computationally
demanding step of subsequent position corrections inherent to SLAM methods and aim at
covering the robot’s workspace by a set of locally consistent segments. For a detailed discussion
of this issue, please refer to section 4.6.1. Nevertheless, SLAM methods are applied by other
research groups working in the field of cleaning-robot navigation (section 2.2.2), and it is likely
that some commercially available robots rely on SLAM (section 2.2.1).

• Visual odometry is the process of visual ego-motion estimation and of integrating these
estimates over time to obtain an estimate of the robot’s current position (reviews: [191, 563]).
The term was chosen to emphasize the similarity to wheel-based odometry, which is —due
to influences such as wheel slippage— usually less accurate then visual methods. Visual
odometry is closely related to local localization. Algorithms for visual odometry incrementally
integrate ego-motion estimates computed from consecutive camera images or apply visual
SLAM techniques (see section 3.6.3.1 for examples). The former case is some sort of “visual
dead-reckoning”. The focus of the latter group of methods is on accurately estimating the
robot’s position and not on building a globally consistent map as is the case for standard
SLAM methods. Although not considered in this thesis, visual odometry could be helpful
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for cleaning-robot navigation because of the following three reasons: (i) it can detect if the
robot’s wheels are spinning (in this case, the wheel odometry measures a movement of the
robot but the visual information does not change), (ii) it is —in contrast to wheel odometry—
not influenced by wheel slippage which is important for navigating on carpets, and (iii) relying
solely on visual odometry is a means for avoiding the costs of wheel encoders.

• Path planning is the process of computing a safe path to a goal position based on the
information stored in the map (review: [442]; textbooks: [110, 586]). The concrete steps
involved in computing the path from the information stored in the map strongly depends on
the used map. For moving along the path, route following methods are applied. For navigation
of cleaning robots, path planning is applied prior to approaching uncleaned areas or the
charging station.

• Route-following is used to guide the robot along a path computed by path planning methods
or along a route map (sections 3.6.3.2 and 3.6.4.1). For quantitative methods (section 3.6.3),
standard approaches for trajectory control making use of the robot’s current position estimate
can be applied (review: [462]; textbooks: [41, 586]). Qualitative methods (section 3.6.4)
subdivide the route into several segments and navigate between intermediate goals by applying
local navigation strategies such as visual homing (section 3.5). While following the route, the
robot is restricted to the learned route, and navigation fails if this route is blocked. In the
context of cleaning-robot navigation, route following methods are applied to return to the
docking station or to approach the start position of a new cleaning segment.

• Scene reconstruction or image-based rendering methods construct a 3D computer graphics
model from a set of (omnidirectional) images (textbooks: [186, 584, 616]). The resulting 3D
models are often photo-realistic and allow for rendering of novel views of the robot’s workspace,
i.e. views taken from different camera poses than those used to gather the information for
mapping. Methods for scene reconstruction are closely related to feature-based SLAM. Scene
reconstruction is not relevant for the low-level aspects of cleaning robot control considered
in this dissertation. However, such methods are relevant for high-level features visualizing
the robot’s environment (e.g. for an advanced user interface or to extend the application area
towards surveillance tasks).

• Biomimetic navigation summarizes navigation methods from the field of biorobotics. This
research domain brings together engineering and biology (or related disciplines such as
psychology) offering natural sciences a tool to verify models in real-robot experiments and
offering engineers a source of inspiration for efficient, robust and parsimonious solutions of
technical problems (reviews: [433, 677, 678]). If the focus of these methods is on solving
technical problems rather than on exactly mimicking neural information processing, they
are usually referred to as bio-inspired strategies. Biomimetic and bio-inspired navigation
methods can be divided into the following three groups: (i) models for insect navigation aim
at explaining the navigation capabilities of ants, wasps, or bees (reviews: [596, 597, 717]), (ii)
place-cell models describe the neural processes of the hippocampus involved in navigation of
mammals (reviews: [4, 279, 465]), and (iii) cognitive mapping methods model the environment
following the ideas of Edward Tolman (original work: Tolman [634], collection: [308]). Our
navigation methods for cleaning-robot control can be considered to be bio-inspired, because
two essential building blocks, namely topological mapping and local visual homing, are strongly
influenced by the snapshot hypothesis of insect homing (section 3.5.1).

Following the reviews by [25, 99, 130, 150, 194, 432, 631] and textbooks by [110, 586, 630], one
could also understand loop-closure detection, i.e. decision whether or not the robot already visited
its current position, as a sub-task of a more complex mapping application. However, we consider
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Table 3.1.: Spatial representations and long-range navigation tasks. A cell in the table is marked by a 3 if we
are aware of a paper solving the application with the corresponding type of map built from omnidirectional visual
information. See section 3.6.1.2 for definition of the applications.
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Mapping — 3 3 3 — — 3 3 3 — 3 3

Localization — 3 3 — 3 — 3 3 3 3 — —
Feature-based SLAM 3 — — — — — — — — — — —
Trajectory-based SLAM — — — — — 3 3 3 — — — —
Topological SLAM — — — — — — — — — 3 3 —
Visual odometry 3 — — — — — 3 — — — — —
Route following — — — 3 — 3 — — 3 3 — 3

Scene reconstruction — 3 3 — — — — — — — — —
Biomimetic mapping — — — — — — — 3 3 — 3 3

loop-closure detection to be closely related to visual recognition of places and already discussed it
in section 3.3.
It strongly depends on the used map how the tasks described above are solved by a specific

navigation strategy. Some tasks suggest using a certain type of map or vice versa, whereas others
tasks can be accomplished with arbitrary maps. An example for the former group is the tight
coupling of scene reconstruction and dense model-based maps; examples of the latter include
mapping and localization. These interdependencies between map types and mapping tasks are
summarized in table 3.1.

3.6.2. Hierarchical Maps

Independent on how position estimates are computed, these estimates have to be given with respect
to some common frame of reference. Most of the quantitative methods proposed in the literature
use a single frame of reference, usually referred to as world coordinate system. All estimates of the
robot’s position and —in case of model-based maps (section 3.6.3.1)— of feature positions are given
with respect to this reference frame. For applications which build large or very dense maps, the
computational effort to update the map or to operate on the map (e.g. for path planning) can grow
considerably [76]. As operating on several smaller maps is computationally less demanding than
operating on a single large-scale global map, several approaches segment the robot’s entire workspace
into multiple small submaps and link these submaps by an additional higher-level representation.
Such methods are referred to as hybrid maps (theoretical aspects: [76]), as submap methods (review
of corresponding non-visual SLAM techniques: [25]), as hierarchical methods (omnidirectional
vision: [135, 407, 476], SLAM with range data: [165], SLAM with monocular stereo: [574]), or as
diktiometric methods (early, non-visual work: [59, 160, 161, 582]). Here, we prefer hierarchical maps
because this term expresses the segmentation of the robot’s workspace into small submaps linked by
a higher-level map.
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Table 3.2.: Overview of navigation strategies relying on hierarchical maps. The following abbreviations are used
in the table: TM: topological map TMM: topo-metric map LM: landmark. References are subsumed by brackets
if a single navigation method is described in several papers. The methods along the diagonal use the same type of
map (but not the same maps) on both levels of the representation. Nevertheless, they clearly rely on a hierarchical
representation of space and are therefore considered hybrid methods.
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Sparse model-based maps [235–237]
[628]

[210, 211]
[474, 476, 477, 561]

TMM with feature-based LMs [424] [55, 56]
[54, 343, 725, 726]

TM with feature-based LMs [134]
[475]

TM with signature LMs [601]

All approaches to hierarchical mapping have in common that the low-level representation and
the high-level representation can be clearly separated. Usually, this separability results from using
different types of maps for both levels. Table 3.2 summarizes and groups the works describing
approaches to hierarchical mapping considered for this review. The table reveals three major groups
of approaches to hierarchical mapping. The first group is depicted in figure 3.32.1 and uses a set
of sparse-model based maps (i.e. a map with known feature position; section 3.6.3.1) as low-level
map and combines these submaps by a topo-metric map (section 3.6.3.2). This group is formed
by the methods of [210, 211, 235–237, 474, 476, 477, 561, 628]. The second group is depicted in
figure 3.32.2 and relies on dense topo-metric map for the low-level and on a sparse topo-metric map
for representing the higher level. The methods by [54–56, 343, 725, 726] belong to this class. The
third group consisting of the approaches by [134, 475, 601] is identical to the second group except
of using purely topological maps to represent the environment (figure 3.32.3). For the second and
third group, a place node of the high-level map represents a region of the robot’s workspace which
is sampled by several place nodes of the low-level map. The work by [424] using a topo-metric map
as low-level representation and a sparse model-based representation as high-level map has to be
considered an exception.

Hierarchical maps allow for efficient localization. The detailed implementation of the localization
strongly depends on the combination of maps used for representing the two levels of hierarchical
maps. However, all localization methods proposed for hierarchical maps incorporate the following
two steps. In a first step, the robot’s current sensor data is compared to the high-level representation,
and a best matching region is determined. For this region, the corresponding sub-map on the
lower-level is consulted in the second step of the localization process. As the other submaps are
not considered for localization, this procedure strongly decreases the computational complexity of
localization. In contrast, localization in a single global map would also require to match the areas
of the environment not considered for localization with an hierarchical map.
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(1) Quantitative map as low-level
representation in combination with
a topo-metric map as high-level
representation. Each local sparse
model-based submap is depicted by
a local coordinate system
(light-gray arrows) together with
the part of the workspace mapped
by the corresponding submap
(light-gray ellipse). As the position
of visible features is known,
mapping the robot’s environment is
possible (dark gray elements inside
the ellipses). Local maps are linked
by a topo-metric map (black
graph).

(2) Topo-metric map as low-level
representation (light-gray graphs)
in combination with a more sparse
topo-metric map as high-level
representation (black graph).
Nodes of both levels have a
position estimate (flag) w.r.t. a
common world coordinate system
(open arrows) attached.

(3) Purely topological map as
low-level representation (light-gray
graphs) in combination with a more
sparse topological map as high-level
representation (black graph). None
of the levels incorporates position
information.

Figure 3.32.: Categories of hierarchical maps built from omnidirectional visual information. Subfigures (1) to (3)
depict the most common cases as identified from table 3.2. Low-level representations are depicted in light-gray,
high-level representations in black. If existing, the world coordinate system is depicted by open arrows, and position
estimates w.r.t. this frame of reference are depicted by flags.

Hierarchical localization methods have to be distinguished from staged localization or coarse-
to-fine localization strategies operating on a single global representation of space (e.g. [364, 366,
407, 473, 475]). For graph-based representations, localization involves computing the best match
by comparing the robot’s current sensor data with the sensor data attached to each place node
of the map. Depending on the matching method and the size of the map, this process can be
time-consuming. Coarse-to-fine localization strategies improve the localization performance by
relying on the following two steps [364, 366, 407, 473, 475]: First, they compute a small subset of
matching candidates by comparing the robot’s current sensor data to all place nodes stored in the
map, e.g. by applying an efficient matching method like histogram matching, [364, 366]. Then, for
deriving the robot’s position, the robot’s current sensor data is compared to the matching candidates
by applying a computationally more demanding but also more accurate matching method (usually
based on establishing correspondences by feature matching). Thus, staged localization methods do
not operate on two clearly separable and distinguishable representations of space as is the case
for hierarchical methods. Such methods rather use two different approaches to recognize places
—usually by combining signature-based and feature-based approaches (section 3.3.1.3).

For the review of map-based navigation methods presented in sections 3.6.3 and 3.6.4, we do not
distinguish between maps with a single frame of reference and hierarchical maps because (i) the
resulting taxonomy tree (figure 3.30) would be too branched and (ii) the spatial representations
underlying both types of maps are the same. To this end, we only subdivide quantitative maps into
model-based maps (section 3.6.3.1) and topo-metric maps (section 3.6.3.2).
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Regarding vision-based navigation of cleaning robots, the decomposition of the robot’s workspace
into segments of parallel and meandering lanes suggests using hierarchical maps. In this case, each
segment corresponds to a local submap, and local submaps are linked by a global representation
of space. Since the task requires many operations on the level of a single segment, we see the
main advantage of using a hierarchical representation in keeping the computational effort of map
operations as low as possible. Methods for building and operating on such a hierarchical map are
beyond the scope of this dissertation, but they will become relevant for future work (section 7.3.3).

3.6.3. Literature Review on Quantitative Maps

Quantitative methods —in the context of mapping also referred to as geometrical methods— build
a geometrical representation of space and involve position information of the robot and —in some
cases— of the visible features. Places are uniquely defined by their position with respect to some
frame of reference [175] with the relation between visual information and a position in space
depending strongly on the used type of map. Quantitative methods allow for approaching arbitrary
positions or following trajectories by applying standard methods for trajectory control (review: [462];
textbook: [41, 586]). This allows for continuous and accurate navigation or localization and contrasts
the standard usage of purely topological maps, which are usually applied for coarse navigation, i.e.
for less precise or less accurate navigation (section 3.6.4.1). The available position information
can also be used to visualize the maps. However, to estimate and to update the robot’s position
computational effort is required which is avoided by qualitative mapping methods (section 3.6.4).
Quantitative maps can be further divided into model-based maps (section 3.6.3.1) and topo-metric
maps (section 3.6.3.2). These two subgroups will be described in the following.

3.6.3.1. Model-Based Maps

Model-based maps are detailed and geometrical representations of the robot’s environment which
contain the positions of the mapped features w.r.t. an external reference frame. Hence, they rely
on a feature-based representation of places (section 3.3.1.3). As the position of visible features,
which are in the context of model-basd maps used as landmarks, in the world is estimated, mapping
methods of this class are closely related to structure-from-motion methods which recover a model of
the robot’s environment by fusing visual information (review: [130]). Model-based maps are two-
or three-dimensional maps which represent the robot’s workspace by a dense set of geometrical
primitives or by a sparse set of image features [237]. These two categories are referred to as dense
model-based maps (section 3.6.3.1) and sparse model-based maps (section 3.6.3.1).

Both categories have in common that the spatial position of the landmarks is estimated. In order
to update the map or in order to localize the robot within the map, the robot’s current sensor data
has to be transformed into a local map. This step requires a mathematical sensor model of the
robot’s internal and external sensors. Such sensor models also allow for fusing sensor information
obtained by different modalities into a common map. In a second step, the obtained local map has
to be matched with the existing global map in order to localize the robot or to update the map
[139]. Due to the required sensor model and the matching method, model-based mapping methods
are computationally more demanding than other long-range navigation methods.

Sparse Model-Based Maps
Sparse model-based maps represent the robot’s environment by a set of landmarks with known
positions in space (figure 3.33). A landmark is usually characterized by a feature descriptor computed
at a point-of-interest and an attached estimate of the landmark’s position in space. As the maps
resulting from different types of features are very similar, we do not further subdivide this class.
The available position information of the visible features can be directly used to visualize the
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Figure 3.33.: Sparse model-based maps relying on point features as landmarks. For visualization purposes, the map
(i.e. the set of features) is shown in combination with a rendered 3D view. The map’s coordinate system is marked by
arrows. The features were manually selected and not obtained by applying a feature-detection algorithm.

map. However, the resulting maps are difficult to interpret for human users —imagine figure 3.33
only as a set of points without the rendered view of the room. Sparse model-based maps are a
memory-efficient representation of space but, because of the process of estimating and —in some
cases— later on correcting the features’ positions in space, can be computationally demanding.
The maps scale linearly with the number of mapped features, but the effort required to maintain
the map can have a worse complexity. For example, EKF-based approaches to SLAM have a
complexity growing squared with the number of mapped landmarks [507]. In comparison to point
maps (section 3.6.3.1), sparse model-based maps store only a small number of points detected by
feature detectors (section 3.3.1.3) rather than modeling the robot’s environment by a dense point
cloud which consists of a large number of points.
Sparse model-based maps are built by feature-based SLAM techniques, by visual-odometry

methods, and by some methods operating on hierarchical maps. The methods by [62, 206, 235,
237, 262, 292, 329, 331, 332, 364] are feature-based SLAM methods. Since the distance of visual
features towards the camera cannot be estimated from a single monocular image (section 3.3.2.1),
the methods which rely on a monocular omnidirectional image apply delayed updates [206, 262, 292,
329, 364]. In contrast, the methods by [62, 331, 332] operating on omnidirectional stereo images can
perform undelayed updates. The methods can be further grouped depending on the used position
estimation technique: [235, 237, 292, 329, 331, 364] apply a EKF framework, [206, 262, 332] apply
FastSLAM (i.e. a Rao-Blackwellized particle filter), and [62, 147] apply optimization techniques.
Among these methods, only the methods by [262, 364] detect loop closures, either by feature
matching [262] or by histogram matching [364]. All other methods do not detect loop closures. Thus,
only consecutive observations of a feature but not loop closures are used for subsequent position
corrections.
The papers by [71, 82, 84, 322–324, 568, 569, 624] propose approaches to visual odometry. The

algorithms estimate the motion between consecutive camera images and integrate the motion in
order to obtain an estimate of the robot’s current position and orientation. The cited methods
differ in how (i) they incrementally estimate the robot’s ego-motion and (ii) how these estimates are
combined to a position estimate. To correctly estimate the robot’s metrical position, the ego-motion
estimation methods also have to recover the length of the translation between two views and not
only its direction as is the case for local visual homing (section 3.5.1). However, the absolute length
cannot be determined by purely vision-based methods because spatial relations are only defined
up to scale; visual odometry methods solve this issue by (i) direct measurements (e.g. exploiting
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the known size of objects), (ii) motion constraints (e.g. non-holonomic constraints of the robot’s
motion), or (iii) sensor-data fusion with non-visual information (e.g. range information or inertial
measurement data) [563]. These methods by [71, 82, 84, 322–324, 568, 569, 624] perform visual dead
reckoning and —except for [568]— do not consider loop-closure detection. The method by [568]
detects loop closures by image matching based on a vocabulary tree (section 3.3.1.3). In case loop
closures are detected, all position estimates are corrected by applying an optimization technique.

The methods by [210, 211, 235–237, 476, 477, 561] operate on hierarchical maps. They all rely on
a purely topological map as high-level representation and build local sparse model-based maps as
low-level representation (figure 3.32.1). The submaps are used (i) to navigate accurately between
two places nodes of the high-level map and meanwhile detecting obstacles [210, 211, 235–237] or (ii)
to refine position estimates in a localization framework [476, 477, 561].
All methods reviewed in this section include a map-building stage. Although localization in the

map is not covered, the robot’s pose within the map is uniquely defined by the bearing to three
or more mapped features. For trajectory control, standard methods operating on the robot’s pose
estimate can be applied (review: [462]; textbooks: [41, 586]). The method by [322–324] constructs a
sparse model-based map as a basis to build a mesh map of the robot’s environment (section 3.6.3.1).

Sparse model-based maps are best suited for accurate navigation of mobile robots. The involved
algorithms (i) to detect, describe, and match features and (ii) to estimate positions are well
understood. Sparse model-based maps require considerable computational effort, but with modern
computers, it is possible to compute these maps in real-time. With these properties, sparse model-
based maps are also suitable for visual control of cleaning robots. The visual SLAM methods
reviewed in section 2.2.2.2 are all feature-based SLAM methods building sparse model-based maps,
and it is likely that some of the commercially available robots (section 2.2.1) also build sparse
model-based maps. All these strategies rely on visual information obtained from a monocular
directed camera (section 3.2.4.1). Even though these methods could be adopted for application
with omnidirectional vision, we prefer appearance-based methods which avoid the computationally
demanding step of estimating spatial positions of visible features.

Dense Model-based Maps
Dense model-based maps represent the robot’s workspace by a set of geometric primitives (figure 3.34).
Depending on the geometric primitives used to represent the environment, one can distinguish the
following subtypes: (i) three-dimensional mesh maps relying on piecewise planar surface patches
(figure 3.34.1), (ii) two- or three-dimensional point maps representing the environment by a dense
point cloud9, (iii) two- or three-dimensional occupancy grids formed by grid cells (figure 3.34.2),
and (iv) two-dimensional footprint maps using lines to build a map similar to an architectural
floor plan (figure 3.34.3). A similar categorization was proposed by Burgard and Hebert [74].
Since the positions of the geometric primitives which form the map are known, dense model-based
maps can be visualized easily. To build and update sparse model-based maps computationally
demanding processing steps can be involved. However, the computational complexity and memory
requirements strongly depend on the type of map, on its spatial resolution, and on the size of the
mapped area. . Due to their dense environmental representation, human users can easily operate on
dense model-based maps. In the following, we will describe the four subtypes of dense model-based
maps in more detail.

Mesh Maps Mesh maps represent the environment by a mesh, i.e. a set of three-dimensional surface
patches, textured with image content in order to obtain a photo-realistic model of the environment
9We do not present point maps because they are very difficult to visualize with 3D-rendering techniques. They are
similar to sparse model-based maps (figure 3.33) but model surfaces of the robot’s environment by a dense point
cloud (in contrast to a sparse set of interest points).
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(1) Mesh map. The map consists of a set of piecewise planar surface patches.

(2) Occupancy grid. Depicted is
a two-dimensional grid, but 3D
grid cells are also possible.

(3) Footprint map. Footprint
maps use lines to build a map
similar to an architectural floor
plan.

Figure 3.34.: Dense model-based maps represent the robot’s environment by a set of geometric primitives. Depending
on the used primitives, one can distinguish the following different subtypes depicted in subfigures (1) to (3). Another
further subtype, namely point maps, are not included because they are difficult to visualize by 3D-rendering techniques.
They are similar to sparse model-based maps (figure 3.33), but contain much more points to model the robot’s
environment. The maps’ world coordinate system is depicted by arrows; the shown examples were manually drawn
and not obtained from applying one of the reviewed algorithms.

(figure 3.34.1). Building mesh maps starts with an already existing map. This can be a sparse
model-based map [83, 211, 322–324], a 3D occupancy grid [301, 444], a point map [369, 371], or a
map built by fusing laser-range scans [42]. These maps are used for fitting surface patches in order
to derive the mesh representation, which is in a second step textured with image content. Depending
on the depth levels contained in the map, the resulting maps can be more detailed by modeling also
obstacles or furniture [144, 301, 322, 437, 444] or more abstract by projecting obstacles or furniture
to the walls of the workspace [42, 83, 202, 211, 322–324, 369, 371, 437]. The latter case is similar to
the example depicted in figure 3.34.1. The cited papers all describe how the mesh map is built from
an existing map. If considered at all, loop-closure detection is solved at the earlier mapping stage.
Beyond mapping, the methods by [202, 444] propose localization methods based on the following
two stages: first, position candidates are computed by range matching, which are in the second step
refined by comparing visual information.
Mesh maps are best suited for post-processing an existing quantitative map to achieve a better

visualization of the map and to simplify user interaction. However, for navigation tasks, they do not
offer more or better information than the map they are built from. The map’s level of detail can
be adjusted depending on the requirements of the tasks and depending on the available computer
hardware. As mesh maps are not better suited than other quantitative maps (in particular sparse
model-based maps) for robot control, we do not consider them a good choice for the low-level aspects
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of cleaning robot control considered in this thesis. Regarding high-level aspects of cleaning-robot
control, such maps could become interesting if a 3D visualization on an external display (such as a
mobile phone or a computer monitor) is desirable. Possible tasks could include surveillance of the
user’s home or to guide the robot to a position by marking it on the map.

Point Maps Point maps represent the robot’s environment by a dense two- or three-dimensional
point cloud obtained from dense stereo matching between two or more omnidirectional images
(section 3.3.2.1). These maps are related to sparse model-based maps (section 3.6.3.1) because the
map contains a set of points with known position in space. However, the point maps differ from
sparse model-based maps in the following three aspects: (i) point maps are formed by a larger
number of points, (ii) the point cloud forms a dense model of the robot’s environment, and (ii) the
points do not correspond to local features detected in the image. By fitting surface patches to the
point cloud, the original point map can be converted into a mesh map.

Most methods build 3D point maps [15, 70, 73, 180, 181, 344, 368–371]; only the method by [435,
436] builds a two-dimensional point map. The methods by [15, 70, 73, 344] compute point maps by
dense stereo computations from a small number of images; the maps have a moderate resolution
and cover a single room. Methods building large scale and high-resolution maps from many images
include [368–371] for purely vision-based mapping and [180, 181] for fusing visual information and
laser-range data. The resulting maps cover entire buildings or complete streets. The maps built by
all methods of this class are used for visualization purposes but not for navigation relying on the
built map. Thus, the robot is used for collecting the sensor data required to build the map but does
not operate on the map.
Point maps are best suited for applications requiring a high-quality visualization or scene re-

construction from previously gathered sensor data. Since large and detailed maps can contain a
huge amount of points, point maps are computationally very demanding and their applicability for
real-time control of robots is limited. Therefore, we consider them to be not suited for the low-level
aspects of cleaning robot control this thesis deals with. Point maps could be an interesting choice
for high-level features which require a detailed visualization of the robot’s environment. However, it
is questionable whether or not such maps can be computed with a robot’s on-board computer.

Occupancy Grids Occupancy grids were first described by Moravec and Elfes [461] and represent
the robot’s workspace by a discrete two- or three-dimensional grid (figure 3.34.2). Each grid cell
represents the probability that the corresponding position in space is occupied (e.g. by an obstacle).
Thus, free space usually has a probability close to zero (figure 3.34.2, white grid cells), obstacles
receive probabilities close to one (black), and unknown or invisible areas typically have probability 0.5
(gray). Depending on the dimensionality of the grid cells used to represent the robot’s environment,
occupancy grids can be further categorized into 2D occupancy grids [119, 443, 483, 485, 514, 515]
and 3D occupancy grids [301, 444, 527]. By increasing the spatial resolution of three-dimensional
occupancy grids and by discarding grid cells which represent free space, a spatial representation
similar to point maps is obtained. Regarding memory requirements, occupancy grids are less efficient
than other methods because they also represent invisible and hence inaccessible areas of the robot’s
workspace and not only obstacle borders or free space.

Since occupancy grids were developed to fuse uncertain range information, the methods of this
class rely on omnidirectional visual range measurements. The robot’s current range measurement
are matched against the existing map in order to estimate the robot’s position. This scan-
matching process also solves the loop-closure detection problem. Hence, mapping methods which
build occupancy grids do not need an extra loop-closure detection based on image comparisons
(section 3.3). In a second step, the grid probabilities are updated according the sensor data and
the position estimate. Purely vision-based methods [119, 514, 515, 527] obtain the range profile
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(i) from a single omnidirectional image by applying depth-from-elevation techniques [514, 515]
(figure 3.18.3), (ii) from two omnidirectional images acquired with a omnidirectional stereo setup
[527] (figure 3.18.1), or (iii) from two consecutive omnidirectional images acquired with a monocular
omnidirectional vision setup [119] (figure 3.18.2). The method described by [443, 483, 485] fuses
omnidirectional stereo information and range measurements obtained from a laser range finder.
Most approaches of this domain solely describe the mapping process [119, 514, 515]; only the

method by [443, 483, 485] also describes a path-following task. We are neither aware of papers that
deal with visual localization in occupancy grids as a standalone problem (i.e. localization besides
estimating the robot’s position required for mapping) nor with subsequent map corrections based on
omnidirectional visual information as they are usually pursued by SLAM algorithms. For navigation
tasks which rely on occupancy maps, standard algorithms to plan paths and to avoid obstacle can
be applied (textbooks: [110, 359]). Since the robot’s pose is known, navigation strategies operating
on occupancy grids can rely on standard techniques for trajectory control (review: [462]; textbooks:
[41, 586]).

Occupancy grids are well suited if range information is available and —at least for large workspaces
or high-resolution maps— if memory capacity is not critical. They allow for applying established
standard algorithms for tasks such as obstacle avoidance or to plan and follow trajectories. Regarding
the applicability for a cleaning robot, we currently see two drawbacks of occupancy grids: (i) they
are memory-intensive representation (in particular if entire apartments have to be mapped at a fine
spatial resolution) and (ii) we would have to compute range data from matching two consecutive
images because our robot is not equipped with a sensor that provides range information. Coarse
occupancy grids with a grid size being identical to the robot’s size could be interesting for cleaning-
robot control. They can be used to represent obstacles and the cleaned portions of the robot’s
workspace. The state of the latter cells could represent if the cell faces uncleaned areas or if it is
completely surrounded by cleaned areas or obstacles. The video [I108] suggests that the Samsung
robots (table 2.2) could apply such a map in conjunction with a feature-based SLAM method
(section 2.2.2.2).

Footprint Maps Footprint maps represent the robot’s environment by a set of two-dimensional
lines which resembles an architectural floor plan (figure 3.34.3). Such maps are a complete and
dense model of the robot’s environment containing similar information than 2D occupancy grids
but requiring less storage. Footprint maps are mostly used in the context of RoboCup, where
the footprint represents the field markings of the playground [282, 297, 306, 422, 423]. Only the
paper by [423] describes an application in an office environment using an architectural footprint
of the building (like depicted in figure 3.34.3). The dense and complete model of the environment
distinguishes footprint maps from sparse model-based maps (section 3.6.3.1) and graph-based maps
with holistic place representation (sections 3.6.3.2 and 3.6.4.1). Such maps can rely on line features,
but use only the most prominent line features detected by a point of interest detector (see the
references given in figure 3.15). For sake of clarity, we therefore prefer footprint maps over line maps
as proposed by [74].
All strategies relying on footprint maps operate on a-priori known maps and do not contain a

mapping stage therefore avoiding both map-building and loop-closure detection. In the context of
RoboCup, this assumption is reasonable because the size of the playground and the positions of the
field markings are defined by the RoboCup rules. All methods of this class are applied for robot
localization, either globally [297, 306] or incrementally by Monte-Carlo localization [282, 422, 423].
Footprint maps are best suited for navigation and localization in an environment, which can be

modeled by a set of lines with known positions not changing over time. These maps are tailored to
an environment model such as an architectural floor plan, which has to be installed on the robot
prior to usage. Thus, its area of operation is restricted to the installed maps. As we are currently not
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(1) Sparse topo-metric map. This
is the most common type of
topo-metric maps.

(2) Dense topo-metric map. Such
maps sample the robot’s
environment more densely and
often more regularly than sparse
topo-metric maps.

(3) Topo-metric route map. Route
maps are topo-metric maps which
are not branched

Figure 3.35.: Types of topo-metric maps. Subfigures (1) to (3) depict sparse topo-metric maps, dense topo-metric
maps, and topo-metric route maps, respectively. Places nodes consist of an image acquired at the corresponding
position and a position estimate (flags) w.r.t. the reference coordinate system (open arrows). The exact spatial
arrangement represented by the map can be visualized because the position of the place nodes is known (in contrast
to purely topological maps). As the spatial positions of objects visible in the images are unknown, the robot’s
environment is not depicted. The purely topological counterparts of the maps depicted in subfigures (1) to (3) are
visualized in figures 3.36.1 to 3.36.3.

aware of methods to extend and update footprint maps based on omnidirectional visual information,
we consider sparse model-based maps the better choice if mapping is required for the robot’s task.
We are of the opinion that footprint maps are not suited for navigation of domestic cleaning robots
because the user has to provide an environment model which we think is not desirable for household
robots.

3.6.3.2. Topo-metric Maps

Topological maps with metrical information, or topo-metric maps, combine the advantages of both
quantitative and qualitative maps in a spatial representation with a single frame of reference [432].
Like topological maps (section 3.6.4.1), they rely on a graph-based representation of the robot’s
environment (figure 3.35): places are nodes in the graph and are characterized by the raw camera
image (or by information derived directly from the image) taken at that place in combination with
an additional estimate of the robot’s position at the time of image acquisition. Methods which
rely on topo-metric maps are appearance-based methods because they do not estimate the spatial
positions of visible features but solely rely on image-intensity information. Due to the graph-based
representation, all places stored in the map are former robot positions, which are used as landmarks
to derive spatial relations or to correct the map. Most methods estimate the robot’s full pose, i.e.
its position and orientation w.r.t. world coordinates. Some methods, such as the route-following
method by [720] and the trajectory-controller proposed in chapter 4, only perform partial-pose
estimation in order to avoid unnecessary computations.
Based on the maps’ graph structure, topo-metric maps (and purely topological maps; sec-

tion 3.6.4.1) can be categorized into sparse topo-metric maps, dense topo-metric maps, and topo-
metric route maps (figure 3.35). The vast majority of navigation methods operate on sparse
topo-metric maps (figure 3.35.1), which only add nodes at strategically important places with in the
catchment area (section 3.5.1) of neighboring nodes. Keeping the map as sparse as possible is advan-
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tageous because it reduces the amount of memory required to store the map and the computational
effort required to operate on the map. Dense topo-metric maps (figure 3.35.2) are usually applied if
the robot’s task requires a denser sampling of the workspace, i.e. to increase navigation accuracy.
Dense topo-metric maps often have regular or grid-like structure [171, 172, 421, 505, 506, 538].
The graphs underlying both sparse and dense topo-metric maps are branched. Topo-metric route
maps (figure 3.35.3) only represent a single route and the graphs used as representation are not
branched. Another possible categorization of topo-metric maps is to group methods depending on
the used place representation into topo-metric maps with a holistic place representation, topo-metric
maps with a signature-place based representation, and topo-metric maps with a feature-based place
representation. To avoid repeated descriptions, we do not further subdivide the remainder of this
section but give a description of topo-metric maps which focuses on the various applications of such
maps: map-building, localization, route following, navigation of a service robot in a do-it-yourself
store, and cognitive modeling.

Map-Building
Building topo-metric maps can either be done offline, i.e. after the robot has explored its workspace
and all images used for mapping are available, or online, i.e. while the robot explores the workspace.
Offline methods for building dense topo-metric maps with a signature-based representation of places
include [421, 505, 506]. Topo-metric maps can also be obtained by reintroducing distance information
to a purely topological map followed by map relaxation. This approach is by pursued [268, 269] for
a holistic place representation. The algorithm by [601] builds a hierarchical map relying on a sparse
topo-metric representation for both the low-level and the high-level map. The method clusters the
place nodes by local eigenspace methods and applies relaxation techniques between clusters (global
level) and within each cluster (local level).
Most online methods for building topo-metric maps are trajectory-based SLAM methods. To

optimize the position estimates attached to the place nodes of the map, these methods fuse odometry
information with compass and bearing information obtained from local visual homing (section 3.5 or
related ego-motion estimation techniques). Such methods were proposed for holistic [294, 441, 698],
signature-based [261], and feature-based representation of places [5, 6, 34, 133–135, 163, 164, 366,
393–396, 551–554, 557–559]. The latter group of methods differ in the used features and the applied
position estimation framework (section 3.3.2.1). As these differences do not have an influence on
the resulting spatial representation, we do not further discuss differences between these methods.
Loop-closure detection requires to recognize that the currently perceived image is identical to an
image already stored in the map. Therefore, pairwise image comparisons are required with the
specific implementation depending on the used place representation (see section 3.3 for details). In
case loop-closures are detected, links are added to the graph, and the position estimation technique
can update the position estimates. The approach by [472] incrementally builds a topo-metric
map with a feature-based place representation with position information obtained from the global
positioning system (GPS).

Trajectory-based SLAM techniques are closely related to visual odometry because both techniques
reconstruct the robot’s trajectory. The method by [172] is a signature-based method for visual
odometry. It incrementally integrates estimates of the robot’s motion between consecutive images
to derive an estimate of the robot’s current position, but —in contrast to trajectory-based SLAM
methods— it does not involve posterior position corrections. For [172], the robot’s change of
orientation between consecutive images is estimated by a phase-based compass (section 3.4.2.2),
and the difference between the Fourier signatures of the current and the previous image are related
to an estimate of the distance between the positions.
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Localization
Regarding localization in topo-metric maps, most methods are Monte-Carlo methods for incremental
localization which track the robot’s position over time. For this purpose, the robot’s state is tracked
by fusing odometry information and visual information by a particle-filter framework (section 3.3.2.1).
Each particle represents a possible robot pose, and the particle’s importance is determined depending
on how similar the currently perceived camera image is to the images stored in neighboring place
nodes. Thus, efficient image comparisons are an essential aspect of localization with topo-metric
maps. The importance factor is used to resample (more important particles have a higher probability
for reproduction) and to derive an estimate of the robot’s position (usually computed by weighted
averaging). Signature-based approaches operating on sparse and dense topo-metric maps include
[295, 427] and [171, 271, 377, 426, 505, 506, 538], respectively. The feature-based approaches [7, 8,
198, 619] localize the robot in sparse topo-metric maps. All these methods allow for continuous
localization. Only the method by [200, 724] relies on discrete localization and applies a grid-based
estimation technique (section 3.3.2.1) for keeping track of the robot’s discrete state. In contrast to
these incremental localization techniques, approaches for global localization estimate the robot’s
position directly from a single camera image without prior position information. For this purpose,
the method by [421] relies on a signature-based place representation, whereas the methods by [474,
476, 477, 561] rely on a feature-based representation. The method by [68] is the only method which
solves the localization problem by geometrical considerations: it determines the most similar views
in the robot’s surrounding and estimates the current position based on the positions of these views
and the bearing towards them.

Planning and Following Routes
To plan and follow routes, standard methods for trajectory-control can be applied (review: [462];
textbooks: [41, 586]). These methods use the robot’s current position estimate to minimize the
deviation from the desired trajectory. Thus, routes are not restricted to place nodes. This is
in contrast to route-following in topological maps (section 3.6.4.1): there, routes are planned by
standard graph-search algorithms (textbook: [118]) and are segmented into a set of intermediate
goal positions. The map is built from the trajectory-based SLAM method by [441, 698] and is used
for a delivery task in a dynamic office environment. To fulfill the task, the robot plans the route
and follows it in order to approach the goal position. The method by [720] is the only method we
are aware of which applies topo-metric route maps (in this particular case with a holistic place
representation). Snapshots along the route are sampled at equally-spaced distances, and route
following is achieved by aligning the robot’s orientation with the stored reference snapshots. While
the robot navigates along the route, the robot’s traveled distance along the route is tracked. Since
the robot’s orientation and its distance along the route are estimated, the method relies on partial
pose estimation. Route following by aligning the robot’s orientation according to a local reference
direction is closely related to route following based on holistic spatial representations (section 3.6.4.2).
However, holistic spatial representations neither segment the route into intermediate snapshots nor
do they incorporate position information.

Navigation in a Do-It-Yourself Store
The series of papers [255–258, 327, 338–340, 581] describes a robot assistant for a do-it-yourself store.
The robot relies on omnidirectional visual information as primary sensory information (but also
on range information) and on a topo-metric map of its environment. It uses a rotation-dependent
signature built from color statistics (section 3.3.1.2) for purely vision-based Monte-Carlo localization
[255, 256, 258], for Monte-Carlo localization fusing vision and range information [581], and for
trajectory-based SLAM [338, 340]. The trajectory-based SLAM method by [338] does not estimate
the robot’s pose from a single image, but from matching a short series of images, i.e. a small local
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map, against the global map of the environment. This technique can increase localization accuracy
in the store’s repetitive and dynamic environment. Using a short image sequence was not only
evaluated with signature-based methods but also for a feature-based representation of places [327,
339].

Cognitive Modeling
For cognitive modeling, a subdomain of biomimetic navigation, [424] proposes a robotic implementa-
tion of the spatial semantic hierarchy (SHH, reviews: [346, 347]). The method builds a hierarchical
map inspired by the theory of cognitive mapping in humans. On the local level, a topo-metric
map with feature-based place representation is learned which characterizes places by the corners
resulting from the intersection of the robot’s floor plane with walls or obstacles. For the global
level of the hierarchy, the information of the topo-metric map is fused into a sparse model-based
map (section 3.6.3.1) with a single frame, and the features’ positions are given w.r.t. this world
coordinate system.

Discussion of Topo-Metric Maps
Topo-metric maps are best used if the robot’s task requires both accurate navigation and a sparse
representation of space which scales well with the size of the mapped area. If required, maps can
be built online and in real time. In contrast to model-based maps (section 3.6.3.1), topo-metric
maps are an appearance-based representation of space and only allow for visualizing the positions
of place nodes but not the position of visible objects (figure 3.35). Visualizations of the robot’s
environment would require additional computational effort to convert the topo-metric map into
a model-based map —e.g. by identifying visual features and estimating their position in space by
triangulation (section 3.3.2.1). In case the geometry of the robot’s environment is known (e.g. from
a floor plan), the topo-metric map can be visualized together with the environment if the rotation
and the translation between the map’s and the environment’s coordinate systems are known.
In our opinion, topo-metric maps are the type of map suited best for low-level navigation of an

autonomous floor-cleaning robot. In order to keep the robot at a fixed distance to the previous
lane, some sort of metrical position information is required. In case of the trajectory controller
described in chapter 4, this is a partial pose estimate which includes the robot’s distance to the
previous lane and its current orientation w.r.t. world coordinates. In later work, a full pose estimate
is computed by Kalman filtering [314] or particle filtering [457]. Because we apply a warping method
(section 3.5.2.2) to estimate spatial relations, the used maps belong to the class of topo-metric maps
with holistic place representation. At the current state of our work, our methods do not involve
subsequent corrections of position estimates inherent to SLAM methods. Our navigation methods
are sufficiently accurate to build locally consistent maps. Complete coverage of complex shaped
workspaces can then be obtained by combining several locally consistent sub-maps to a hierarchical
representation of space. Thus, it avoids the computational effort of subsequent position corrections
(section 7.3.3). For the low-level aspects of cleaning-robot control considered in this thesis, it is
sufficient to visualize the topo-metric map (and not the robot’s environment). A visualization of
the environment could nevertheless be relevant for an advanced user interface, e.g. for guiding the
robot to a position in space by marking the position in a map of the robot’s environment.

3.6.4. Literature Review on Qualitative Maps
In contrast to quantitative maps, qualitative maps model the robot’s workspace without position
information and directly operate on the raw sensor data or information derived directly from
it (in contrast to model-based maps operating on the spatial positions of visible image features;
section 3.6.3.1). Thus, such navigation methods lack the steps of fusing sensor data into a common
frame of reference and of inferring a metrical estimate of the robot’s position as they are required by
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(1) Sparse topological map. This is
the most common type of
topological maps.

(2) Dense topological map. Such
maps sample the robot’s
environment more densely and
often more regularly than sparse
topological maps.

(3) Topological route map. Route
maps are topological maps which
are not branched.

Figure 3.36.: Types of topological maps. Subfigures (1) to (3) depict sparse topological maps, dense topological
maps, and topological route maps, respectively. Due to the lack of metrical position information, only the topology
of places is known. Thus, only their spatial interrelations but not their exact spatial positions can be visualized.
The topologies of the maps visualized in subfigures (1) to (3) are identical to the topologies of their topo-metric
counterparts depicted in figures 3.35.1 to 3.35.3.

quantitative navigation methods (section 3.6.3). For this reason, qualitative methods are in many
cases computationally less demanding than quantitative methods [175, 189, 432].

Qualitative maps can be divided into purely topological maps (section 3.6.4.1) and holistic spatial
representations (section 3.6.4.2). The former are a graph-based representation of space with nodes
representing places and links expressing direct reachability between the adjacent places (figure 3.36).
We decided for the term purely topological maps to emphasize the difference to topo-metric maps.
Navigation methods relying on holistic spatial representations learn direct associations between the
robot’s current perception and action. Thus, in contrast to purely topological maps, the current
sensor data is associated with an action required e.g. for accomplishing a route-following task and
not with a position in space. Holistic spatial representations must not be confused with holistic
place representation (section 3.3.1.1). In the following sections 3.6.4.1 and 3.6.4.2, we will further
describe purely topological maps and holistic spatial representations.

3.6.4.1. Purely Topological Maps

Like topo-metric maps (section 3.6.3.2), purely topological maps are usually sparse, graph-based
representations of space using former robot positions as landmarks. The nodes of the graph
represent known positions in space characterized by image information, and two nodes are linked if
the corresponding places are directly reachable from each other. As purely topological maps do not
contain an estimate of the robot’s position, it is not possible to distinguish different places with
identical visual appearance as it is the case for topo-metric maps (section 3.6.3). This makes purely
topological maps more prone to perceptual aliasing than quantitative methods. To circumvent this
drawback, a short history of previously visited places can be used to disambiguate different places
with identical visual appearance. Furthermore, only the topology but not the geometrically correct
spatial arrangement of the map can be visualized (figure 3.36). Geometrically correct visualizations
of purely topological maps usually rely (i) on external position information (e.g. obtained from an
external robot tracking system; figures 4.15 and 6.15) or (ii) on reintroduced metrical information
yielding a topo-metric map (section 3.6.3.2).
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Like topo-metric maps (section 3.6.3.2), purely topological maps can be subdivided according to
the graph structure and depending on the method used to characterize places by the available visual
information. Regarding the graph structure, one can distinguish sparse topological maps, dense
topological maps, and route maps. The most commonly used type of maps are sparse topological
maps (figure 3.36.1). In case the application cannot be accomplished with sparse maps, e.g. if the
task requires precise navigation, dense topological maps can be applied [313, 421] sampling the
workspace more densely and often grid-like (figure 3.36.2). In case only a single route should be
represented, a route map is sufficient to accomplish the task (figure 3.36.3). It segments the route
into a list of intermediate goal positions with intermediate positions being only linked to their direct
predecessor and successor. Thus, it can be understood as topological map without branches. In case
the route is blocked, the robot cannot find an alternative path to the goal [189]. Depending on how
visual information is used to characterize places (sections 3.3.1.1 to 3.3.1.3), purely topological maps
can be subdivided into purely topological maps with holistic, signature-based, and feature-based
representations of places. Like for topo-metric maps (section 3.6.3.2), we do not consider these
groups separately to avoid repeated descriptions. We rather focus on the applications of purely
topological maps, namely map building, localization, route following, and biomimetic navigation.

Map-Building
Purely topological maps can be built by offline methods, online methods, or topological SLAM
methods. For all three categories, accurately detecting loop-closures is essential for consistent
mapping. Loop closures are detected by comparing the currently perceived image with the images
stored in the map. This step strongly depends on the used type of place representation; for details
on techniques for recognizing places please refer to section 3.3. For offline mapping methods, the
robot first explores its workspace and collects image data without building a map. In a second step
taking place after the robot completely explored its workspace, the map is built by determining
place nodes and linking neighboring nodes based on the visual information gathered in the first
step. The drawback of offline methods is that the robot cannot use the map while exploring its
environment. The advantage is that maps resulting from offline methods are often considered to
be more accurate or to better represent the robot’s environment because mapping (i) only takes
place if the entire visual information is available and (ii) is not subject to real-time constraints. The
latter approach allows to apply more complex map-building algorithms. The methods by [54–56, 58,
343, 725, 726] rely on a feature-based representation of places; the algorithm by [481] relies on a
holistic place representation. Among these methods, [54–56, 343, 725, 726] describe an approach to
hierarchical mapping (section 3.6.2). The algorithm builds a sparser high-level representation from
grouping similar images at the lower map level (figure 3.32.3).
Online methods map the environment while the robot explores its workspace. To accomplish

this task, the robot needs to concurrently perform localization and map-building. In simpler cases
algorithms for online mapping add links and or place nodes following deterministic rules and do not
remove links and place nodes after adding them to the map. Examples include [666] relying on a
holistic place representation, [210, 211, 380, 473] relying on signature-based place representations, and
[237, 555, 651–653] relying on feature-based representations of places. Topological SLAM algorithms
do not determine the topology based on deterministic rules but by applying probabilistic techniques.
While mapping, they repeatedly estimate the most likely graph topology given the currently available
sensor by means of statistical inference. Topological SLAM algorithms use signature-based place
representations [381, 530, 621–623, 686, 687] or feature-based place representations [126–128, 488,
531] in combination with an efficient image matching methods (section 3.3.1.3). The method by
[127, 128] was shown to reliably estimate the map for trajectories up to 1000 km length.
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Figure 3.37.: Approaching arbitrary positions in topological maps. An arbitrary
position (gray filled circle) can be characterize by the bearing (black arrows) towards
three surrounding place nodes (black filled circles) of the topological map. The place
nodes are used as landmarks, and bearing information can be computed by local
visual homing and uniquely defines the position. To the best of our knowledge, we are
not aware of a navigation strategy exploiting this principle with purely topological
maps. Please note the similarity to the principles underlying local visual homing
shown in figure 3.22.

Localization
Localization in purely topological maps means to compare the currently perceived image with the
reference images stored in the map and to retrieve the best match. The best match is determined
by place recognition strategies reviewed in section 3.3. Each place node of the map is surrounded
by a certain region, in which it is determined as best matching place node. Within such a region,
two images acquired at different spatial positions cannot be distinguished by qualitative localization
methods. This property distinguishes qualitative localization from quantitative localization which
computes a continuous position estimate. The only possibility to achieve a finer spatial resolution is
to sample snapshots more densely. This strategy leads to dense topological maps (figure 3.36.2).
In contrast to the field of topo-metric localization (section 3.6.3.2) where many approaches

perform incremental Monte-Carlo localization (i.e. the estimate of the robot’s position is iteratively
updates), the approaches to purely topological localization are global techniques (i.e. they determine
the most similar place node without tracking the robot’s position over time). Hence, the position
estimate is derived from matching a single camera image without prior knowledge. Since global
localization requires to compare a large number of image comparisons, most localization methods
rely on signature-based place representations (sparse maps: [94, 169, 242, 311, 312, 352, 500, 541,
647, 688], dense maps: [313, 421]). Methods relying on feature-based place recognition include [18,
199, 529, 555, 651, 655]. For localization relying on a holistic place representation, a minimalistic
method is proposed by [440]. It localizes the robot along a known route by matching a short image
sequence against the images stored along the route. This allows for robust and accurate localization
with low-resolution images: the maximum resolution tested in the paper is a total of 512 pixels.

Planning and Following of Routes
Methods operating on purely topological maps cannot rely on standard approaches for trajectory
control (review: [462]; textbook: [41, 586]) for path following or approaching positions in space
because they do not incorporate position information. In principle, methods operating on purely
topological maps are theoretically capable of approaching arbitrary positions by using surrounding
place nodes as landmarks (figure 3.37). Although this principle is commonly applied by strategies
using topo-metric maps, we are not aware of a method exploiting this principle with purely
topological maps. The methods we are aware of restrict navigation to the places stored in the map,
and route following is achieved by moving along a sequence of intermediate snapshots (figure 3.36.3).
Such sequences (or routes) are either learned from a teaching process or selected by a path
planning algorithm (e.g. Dijkstra’s shortest path algorithm; textbook: [118]) operating on the purely
topological map. In the former case [14, 136–138, 235, 236, 355, 658], the robot is only capable
of following the route taught e.g. by manually guiding the robot along the route. The latter case
[210, 211, 237, 379] is much more flexible and allows for navigating between arbitrary points of the
map. In both cases, the robot navigates from intermediate position to intermediate position by
applying local navigation strategies (usually local visual homing methods; section 3.5) until the goal
is reached. Route following methods include [210, 211, 355, 658, 704–706] operating on a holistic
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representation of places, [136–138, 592–594] operating on signature-based representations, and [121,
235–237, 379, 620, 659] operating on a feature-based place representation. The method by [704–706]
implements route following by aligning the robot with the stored reference images. Due to this, the
method is closely related to the topo-metric route following algorithm by [720] (section 3.6.3.2) and
the method proposed by [21–24] relying on a holistic spatial representation of space (section 3.6.4.2).
The methods by [210, 211, 235–237] both rely on a hierarchical representation of space using a
purely topological map as high-level representation. While moving between two consecutive place
nodes along the route, a sparse model-based map is built (section 3.6.3.1).

Biomimetic Navigation
In the context of biomimetic navigation, the method by [266, 268, 269] models the processes
involved in the rat’s hippocampus during navigation by learning a purely topological map with a
holistic representation of places. The map is learned by vector quantization of camera images (in
this particular case by applying a self-organizing map; textbooks: [46, 148]), and links are added
depending on the image similarity of the linked views. The map can be converted into a topo-metric
map (section 3.6.3.2) by reintroducing distance information followed by map relaxation [266, 269].
The series of papers [228–231] describes a hippocampus model operating on a feature-based place
representation. It learns a set of place nodes representing a region in the robot’s environment (in
terms of hippocampus models termed place cells and place fields, respectively), and associates
each place node with an action required to fulfill the robot’s task. The model is applied to route
following and approaching a goal position. The latter task is closely related to local visual homing
(section 3.5.1), but the goal position is not defined by a single snapshot but rather by a set of
snapshots acquired surround the goal position.

Discussion
Purely topological maps are best used for tasks which only require coarse navigation or which can
be solved without position information. The main advantage of purely topological maps is that both
building and operating on such maps requires little computational effort. However, visualization is
difficult because visualizations usually rely on external position information or on reintroducing
metrical position information. Approaching places is restricted to places already stored in the map
(although at least theoretically arbitrary places could be approached; figure 3.37). For navigation
of an autonomous cleaning robot, purely topological maps are not applicable because they do not
contain metrical position information. Metrical position information is required for keeping the
robot at a predefined distance to its previous lane.

3.6.4.2. Holistic Spatial Representations

Holistic spatial representations are strongly influenced by recent work on modeling route-navigation
capabilities of desert ants ([21, 245, 703] and sections 3.3.3.3, 3.4.3.2 and 3.5.3.1). The term holistic
spatial representation follows the description holistic (route) representation originally used by [21–23,
512]. It refers to a spatial representation aggregating information from several places of the robot’s
environment and must not be confused with holistic place representations (definition: section 3.3.1.1;
examples: sections 3.6.3.2 and 3.6.4.1) or holistic local visual homing methods (section 3.5.2.2).

The key idea of holistic spatial representations is to directly link the current sensory information
to an action and not to a position such as a graph node for topological maps or a metrical position
estimate for quantitative maps. Because of the direct coupling between sensor data and an action,
navigation strategies operating on holistic spatial representations are based on recognition-triggered
responses (review: [189, 403, 642]). The knowledge required to accomplish the robot’s task is
integrated into a holistic representation storing perception-action links in an aggregated way without
relating them to a position in space. Thus, the resulting representation does not segment the
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Figure 3.38.: Sketch of the route-following method by [21–23,
512] based on a holistic spatial representation of space. The
robot follows the learned route (thick light-gray line) from the
start position s to the goal g. Therefore, it pursues scanning
movements either by physically rotating the robot or by mentally
rotating the perceived image. For each tested orientation (gray
arrows), the familiarity is determined by consulting the holistic
spatial representation. By moving into the most familiar direction
(open arrow) and by repeating this procedure, the robot follows
the route until it reaches the goal position. Because of the
abstract nature of the holistic spatial representation, we cannot
visualize the representation itself but only the action linked to
the visual information perceived at a certain position in space.
As the method does not compute the spatial positions of visible
features, it is not possible to reconstruct the robot’s environment.

environment into a set of known positions (as is e.g. the case for graph-based representations), and
it cannot be subdivided into local submaps (e.g. for obtaining a hierarchical representation of the
environment section 3.6.2). Since the perceptual information is not related to a position in space,
holistic spatial representations cannot be applied for localization tasks.
Navigation strategies operating on holistic spatial representations require a learning phase to

establish links between perception and action. Although the built representation differs from
traditional maps, the learning stage is comparable to map building. During this learning stage,
all the perceived sensor information is integrated into the map. Once the representation is built,
the agent is capable of navigating over known terrain (e.g. following a learned route), but it is not
capable if using the map for navigating over unknown terrain. While using the representation for
navigation, it can be continuously updated by integrating new visual information. This property
could in robotic applications e.g. be used for adaptive approaches to increase robustness against
illumination or scene changes (section 3.2.3.2). Although representing the robot’s environment
more abstractly than traditional approaches, we consider holistic spatial representations to be
appearance-based navigation methods. Holistic spatial representations were proposed as biologically
plausible models of route-following in insects and are compact representations of space and allowing
for developing parsimonious navigation strategies (section 3.6.5.2).

For the route-following strategy proposed by [21–24] (review: [512]), the holistic spatial represen-
tation is learned and represented by an artificial neural network providing a familiarity measure for
the currently perceived view (different neural networks and image representations are tested in the
different papers). Independent of the which representation is used, the route-following relies on the
following scheme (also depicted in figure 3.38): while moving along the learned route (figure 3.38,
thick light-gray line), the agent (in this case an animal or a robot) performs rotational scanning
movements (gray arrows), determines the familiarity of these scanning view using its holistic spatial
representation, and moves into the direction of the most familiar view (white arrow). By repeating
this procedure, it is guided along the route towards the goal position. The method was demonstrated
to allow for reliable and robust route-following in simulations [21, 23] and real-robot experiments
[22, 24]. Compared to the other reviewed navigation methods, the route following methods by [666,
720] are the most similar to the route-following method based on a spatial holistic representation.
These methods achieve route following by orientation aligning with a reference direction [720] and
by a tight coupling between perception and action [666]. However, both methods segment the route
into a series of intermediate goal positions; the method by [720] also relies on metrical position
information.
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Holistic spatial representations are strongly influenced by research on route following in insects
and reflect recent findings in this field. As the real-robot experiments by [22, 24] were conducted in
an environment differing strongly from office environments, apartments, or outdoor environments,
predicting the method’s performance for such environments is difficult. Holistic spatial representa-
tions are limited to navigation along a previously taught route, and it is currently unclear if they can
be extended to a more flexible representation storing several routes and allowing to flexibly select
routes and paths. We expect that navigation strategies operating on holistic spatial representations
do not achieve the accuracy and repeatability of quantitative navigation methods (section 3.6.3).
Where suitable for the robot’s task, holistic spatial representations offer a parsimonious navigation
methods with respect to both computational power and memory requirements. Holistic spatial
representations are not suited for navigation of cleaning robots because (i) they only allow for
navigation over known terrain and (ii) they do not contain metrical position information. Because
of the latter aspect, they do not allow to keep the robot at a constant distance to its previous lane,
which is an essential prerequisite for cleaning-robot control.

3.6.5. Discussion of Map-Based Navigation
In the following, we will discuss (i) general aspects of map-based navigation (section 3.6.5.1), (ii)
the relation between map-based navigation in robotics and research in the field of spatial cognition
(section 3.6.5.2), and (iii) the application of map-based navigation in this work (section 3.6.5.3).

3.6.5.1. General Aspects of Map-Based Navigation

In most cases, the choice of a specific type of map is already determined by the used representation
of places (section 3.3). The different possibilities to represent places based on visual navigation as
summarized in figure 3.16 exactly fit the categorization of mapping methods depicted in figure 3.30
—except for holistic spatial representations (section 3.6.4.2). These are a special case because they
do not explicitly represent places but directly link the perceived visual information to an action.
Former reviews [175, 189, 432] and textbooks [586, 630] describe a clear separation between

quantitative and qualitative navigation. According to these, quantiative methods are computation-
ally more complex but also allow for more accurate navigation, whereas qualitative methods are
computationally less demanding and typically applied for coarse, i.e. less precise, navigation. We
are of the opinion that this strict separation has softened during the period of time considered for
this chapter. On the one side, there are quantitative methods operating in real-time and —on the
other side— there are qualitative methods involving complex image-processing or map-estimation
steps. We also feel that topo-metric maps (section 3.6.3.2) and hierarchical maps (section 3.6.2)
contributed to reducing the gaps between these two types of maps. The effect could also be due to
the progress in computing power made during the last ten years, particularly in the field of mobile
or embedded processors which now allow for complex image-processing operations in real-time (e.g.
[17, 357, 513, 673, 674]).
Beyond that, substantial achievements were obtained with respect to the size of the mapped

environment. While early work was restricted to single rooms or smaller office environments, recent
methods are capable of mapping large-scale environments such as entire apartments, large office
environments, or outdoor environments like entire cities. Such large scale maps can be built from
thousands of snapshots collected along trajectories up to 1 000 km in length [127, 128].

3.6.5.2. Map-Based Navigation and Spatial Cognition

Animals and humans also rely on map-based navigation strategies to achieve long-range navigation.
We outline the current opinion regarding these navigation capabilities of flying insects (mostly bees),
ground-living insects (ants), rodents, and humans. Despite their tiny brains with approximately
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100 000 (fruit fly: [104]) to 1 000 000 neurons (honey bee: [428]; but please note the comment in [105]
on comparing organisms by the number of neurons) and their low-resolution visual system, insects
show amazing navigation capabilities. To give just one example among many others, honey bees
were observed to successfully return to their hive after being displaced for up to 13 km [497]. These
are exactly the capabilities which have drawn the attention of engineers to mimic design principles
of insects to implement parsimonious but robust visual control algorithms (recent reviews: [250,
596, 597]). Honey bees can rely on different senses to obtain the environmental information required
for navigation among which vision is of special importance (review: [596], textbook: [625]). It is
subject of current research to investigate the influence of different visual cues (e.g. color, patterns,
or entire panoramas; [596, 717]) and determining which cues are used in certain situations. The
same holds for the underlying spatial representation used to memorize the information required
for navigating: the authors of [429–431, 480] argue that shortcutting behavior, i.e. the ability to
find unknown shortcuts between known places, requires a cognitive map. Cognitive maps are maps
with a common frame of reference and are therefore similar to quantitative maps (section 3.6.3).
However, these results cannot be seen as a proof for such a map because (i) the modeling study
[125] reveals that identical behavior can be obtained without a common frame of reference, (ii)
optimal path planning of bumblebees between feeders including shortcutting can also be explained
without such a map [373], and (iii) it cannot be ruled out that the results are not due to the bees
using distant visual cues for navigation (comment by [I42] on [431]).
For central-place foragers such as bees and ants, route-following behavior is essential because

these animals shuttle back and forth between the nest and a food source, carrying food to the nest.
For ants, several studies (e.g. [249, 336]) exist describing how ants learn routes. In contrast to bees
it is accepted that they do not rely on a cognitive map [102, 115, 681]. Whereas earlier work (e.g.
[93, 315, 598]) explained route navigation by following a sequence of snapshots (comparable to a
route map; sections 3.6.3.2 and 3.6.4.1), recent findings [245, 511, 512] suggest a holistic spatial
representation (section 3.6.4.2) of the ants’ environment without explicitly storing images. Assuming
that the holistic spatial representation can be used to determine the familiarity of the currently
perceived view, route following can be explained by performing rotational scanning movements and
moving into the direction of the most familiar view. Although modeling studies reveal that the
observed behavior can be well reproduced [21–23, 512], it is not yet proven that ants rely on this
concept for route following. Further recent studies investigating route-following capabilities of ants
include [536, 699, 700].
Regarding rodents, most of the work is neurophysiological research investigating the role of the

hippocampal place-cell system for navigation. The interplay of three different types of neurons,
namely place cells, grid cells, and head-direction cells, is assumed to be essential for forming a spatial
representation of the environment. Nevertheless, many details still need to be investigated; for an
overview of the current state of research in this domain, the reader is referred to the reviews [4, 279,
465]. The methods by [266, 268, 269] and [228–231] rely on a computational place-cell models for
long-range navigation using omnidirectional vision as primary sensory information (see e.g. [28, 29,
78] for other sensor modalities). The former [266, 268, 269] are more abstract models relying on
a holistic place representation together with a purely topological map (section 3.6.3.2) or —after
reintroducing metrical information— with a topo-metric map (section 3.6.4.1). The latter method
[228–230] applies a more detailed model learning a purely topological map with feature-based place
representation.
For humans, the situation is even more unclear. This is probably due to (i) the large amount of

different navigational tasks (see [690] for a taxonomy of tasks) humans can perform and (ii) the
many different visual cues humans can rely on for navigation. These two aspects make it difficult to
experimentally prove or validate hypotheses. Different tasks could even be solved using different
spatial representations. According to [403], it is likely (i) that humans rely on a graph-like and
hierarchical spatial representation with local metrical information and (ii) that humans do not
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integrate their spatial knowledge into a map with a single global frame of reference.

3.6.5.3. Application of Map-Based Navigation in This Work

A cleaning robot needs a map of its environment to remember cleaned areas, to detect and approach
uncleaned areas, and to efficiently return to its charging station (chapter 2). Furthermore, it requires
some sort of metrical position information in order to cover its workspace by meandering and parallel
lanes which are a predefined distance apart from each other. The latter prerequisite excludes the
application of qualitative maps for our particular task (section 3.6.4). Among quantitative maps,
we consider dense model-based maps to be not appropriate for our task because these maps are
mainly used for visualization purposes and require a computational power, which we think is not
available on a mobile floor-cleaning robot (section 3.6.3.1). Sparse model-based maps are suited for
navigation of domestic floor-cleaning robot and are applied by related work (section 2.2.2.2) and
probably also by some commercially available robots (section 2.2.1). However, this type of map
requires (i) a feature-based representation of places and (ii) the application of position estimation
techniques to compute and maintain the positions of visible features (sections 3.3.1.3 and 3.3.2.1).
Both techniques are usually computationally demanding even though many efficient techniques were
proposed during the last years. Beyond that, additional effort is required to memorize the already
cleaned area (e.g. by storing the robot’s trajectory or a polygon representing the already cleaned
area). Among all types of maps, we consider dense topo-metric maps (section 3.6.3.2) to be best
suited for our purposes. Such maps can be easily built from the available visual information, allow
to apply our 2D warping method for local visual homing (section 3.5.3.2), offer a straight-forward
representation of already cleaned areas, and allow for efficiently detecting already cleaned areas
(chapters 5 and 6).

3.7. Overall Discussion and Outlook

The progress is visible for any level of the proposed hierarchy of navigation strategies, but it is
most prominent for state-of-the-art methods which allow for large-scale navigation under real-world
conditions (e.g. [127, 339, 568, 655]). During the period of time considered for this review, i.e. from
the year 2000 until April 2013, substantial progress was made in the field of navigation of wheeled
mobile robots using omnidirectional vision as primary sensor information. We see the main driving
forces of these achievements in the following three aspects: (i) the advances made in the field of local
image features including their detection, description, and efficient matching methods (section 3.3.1.3),
(ii) the application and improvement of position-estimation frameworks (section 3.3.2.1), and (iii)
the tremendous increase in computing power which makes real-time application of these techniques
possible. Besides the improvements of navigation capabilities, omnidirectional vision setups have
been established as sensors for wheeled mobile robots and as an interesting alternative to both
traditional directed cameras and range finders. Due to the vast progress in camera technologies,
recent cameras are tiny and low-budget sensors yet offering an amazing image quality. We expect
that this miniaturization of cameras will allow to construct more compact omnidirectional vision
setups.
To further advance the field of mobile robot navigation relying on omnidirectional vision, we

currently see three main working directions for future work: (i) the comparability of navigation
strategies (section 3.7.1), (ii) the applicability of strategies under real-world conditions (section 3.7.2),
and (iii) the application of omnidirectional visual navigation strategies to solve real-world applications
(section 3.7.3).
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Table 3.3.: Available omnidirectional image databases. The given references point to download links and to papers
describing the corresponding database.

Database Download Description

COsy Localization Database (COSY) [I78] [522]
From Sensors to Human Spatial Concepts (FS2HSC) [I113] [343, 725, 726]
Rawseeds repository [I79] [48, 89, 415]
SIFT, SURF, and Seasons —1 [651, 652, 654, 655]
Oxford dataset [I98] [126, 488, 595]
Bielefeld databases [I15] [342, 454, 660]

OpenSLAM repository2 [I91] —
Radish repository2 [I45] —
Mobile Robot Programming Toolkit (MRPT)2 [I48] —
1 Available upon request.
2 Mainly contains laser-range data, but can also provide omnidirectional image data.

3.7.1. Comparability of Navigation Strategies
A good comparability of navigation strategies is important to identify and compare their particular
strengths and weaknesses. We currently see two approaches to achieve a good comparability, namely
sharing image databases (section 3.7.1.1) and benchmarking methods (section 3.7.1.2).

3.7.1.1. Sharing Image Databases

Image databases are collections of (omnidirectional) images collected by a real-robot taken in a real
environment. Since the images are collected with real camera hardware, they allow for performing
more realistic simulation experiments than would be possible for simulations relying on virtual-reality
techniques. The robot’s positions and orientations when images were acquired are usually known
(e.g. by relying on an external tracking system; figures 4.15 and 6.15) and can be used as ground
truth for data evaluation. The image databases allow for conducting experiments under identical
experimental conditions, which is important for comparing different navigation strategies (or for
parameter optimization). Several research groups already make their image databases publicly
available (table 3.3) or reuse existing databases —a good practice which should be continued in
the future. Beyond that, new dataset should be collected which cover situations, such as abrupt
illumination changes or strong dynamic changes of the scene, for which current navigation strategies
fail. These datasets can then be used as a starting point to improve existing navigation methods.

In the context of this thesis, existing image databases containing images collected along a regular
grid ([I15] and [342, 454, 660]) are used for visual detection of already cleaned areas (chapters 5
and 6). The dataset of unfolded and rotated images from these databases used for our experiments
can be downloaded at [S1]. Furthermore, Claudius Strub in cooperation with Lorenz Hillen and
Martin Krzykawski developed a method for closed loop control of a robot by integrating external
position information from an active robot-tracking system (figure 6.15) into the particle-filter
framework by [457]. This method will in future work be used to collect high-precision image
databases under operating conditions which are currently challenging to solve for existing navigation
strategies.

3.7.1.2. Benchmarking Methods

Benchmarking methods allow for a sound statistical evaluation of experimental results obtained from
navigation strategies and therefore improve the comparability of results. Existing benchmarking
methods (e.g. [27, 349, 397, 697]) were developed for comparing maps based on range data,
but we expect that similar approaches can be used to compare maps built from omnidirectional
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visual information. We hope that more and more groups will evaluate their data with such
thorough benchmarking methods rather than presenting only a simple demonstration of functionality.
Throughout this thesis, we have spent considerable effort to derive and implement quantitative
performance measures for all our database (chapters 5 and 6) and real-robot experiments (chapters 4
and 6).

3.7.2. Applicability Under Real-World Conditions
Real-world operating conditions include changes of the illumination and dynamic changes of the
scene (section 3.2.3.2). If at all, existing methods only cope with one of these issues (illumination
changes: [8, 136, 138, 506, 538, 651, 652, 654, 655]; dynamic scene changes: [133–135, 282, 297,
306, 379, 422, 423, 441, 698]). Reliable and robust navigation under real-world conditions not only
requires capabilities to cope with all of these aspects together and not just with a single one. From
today’s perspective, there are still a lot of challenges to solve before most navigation strategies
relying on omnidirectional visual navigation can completely deal with real-world operating conditions.
For the work presented in this thesis, we concentrate on achieving robustness against illumination
changes (chapters 5 and 6) and assume static environments —although this assumption is only
partially valid for navigation of domestic floor-cleaning robots. Methods for achieving robustness
against dynamic scene changes are left for future work (section 7.3.1).

3.7.3. Towards Real-World Applications
Solving complex real-world applications such as autonomous floor cleaning or guiding tourists in a
museum requires not only a combination of navigation capabilities (e.g. mapping, map visualization,
localization, and path planning) but also needs to include further aspects such as usability, user
interaction and safety. Currently, the vast majority of papers describe only a single building block
of such a complex system. Only few groups work on more complex robot systems capable of solving
real-world applications relying on omnidirectional visual information. Such applications include a
shopping assistant for do-it-yourself stores ([255–258, 327, 338–340, 581] and section 3.6.3.2), an
autonomous wheel chair (still operating in a lab environment; [235–237] and section 3.6.4.1), or
our project on navigation of autonomous cleaning robots (e.g. [214, 215, 222, 223, 453, 457]). We
think that the surprisingly small number projects dealing with real-world applications or parts
thereof is a hint for the complexity and difficulty of such research projects. Nevertheless, from our
experience on navigation strategies of autonomous cleaning robots, we conclude that focusing on a
concrete real-world application and developing reliable and robust navigation strategies to solve
the application —instead of solely tackling partial aspects independent from a concrete real-world
application— can tremendously contribute to the progress in the research domain.

We consider the past 15 years of research on omnidirectional vision as essential for (i) developing
omnidirectional sensors, (ii) improving and establishing techniques such as feature-based approaches
and algorithms for position estimation, and (iii) developing methods to solve navigation tasks such
as mapping or localization. For the upcoming 15 years, we hope and expect that more and more
robotic systems will be developed solving complex real-world scenarios using omnidirectional vision
as primary sensory information.
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4. Trajectory Controller Based on Partial Pose
Estimation and Dense Topo-Metric Maps

In this chapter, we describe a mostly vision-based trajectory controller for guiding an
autonomous floor-cleaning robot along meandering and parallel lanes. The controller relies
on a dense topo-metric map with partial pose information.
Section 4.1 introduces the main ideas of the proposed navigation strategies. Dense topo-
metric maps and the trajectory controller are described in sections 4.2 and 4.3, respectively.
The experiments and the obtained results are described in sections 4.4 and 4.5. The results
are discussed and conclusions are drawn in section 4.6, and section 4.7 points out future
working directions.
The method was initially developed and tested in simulations during the course of the
diploma theses of Dr. Sven Kreft [342] supervised by Frank Röben and Lorenz Hillen.
On this basis, Frank Röben and Lorenz Hillen pursued an initial implementation on
a Pioneer robot, which was then improved by Daniel Venjakob. Martin Krzykawski
was responsible for porting the code to our custom-built cleaning robot. Lorenz Hillen
conducted experiments, implemented the software for data evaluation, and prepared the
publications [214, 222]. The visual tracking system (section 4.4.5 and figure 4.15) used to
track the robot during the experiments was initially developed during a student project
[159] by Johann Engelbrecht, Martin Höner, Andre Lemme, and Ioannis Moutogiorgos
under the supervision of Frank Röben and Lorenz Hillen. The system was further improved
by Frank Röben and Martin Krzykawski (low-level aspects of client-server architecture)
and Lorenz Hillen (high-level aspects regarding tracking robustness and accuracy, usability,
and data logging).
Except for minor modifications, this chapter is identical to sections 4.2 to 9 of our
article Gerstmayr-Hillen et al. [222] published in “Robotics and Autonomous Systems”.
Beyond that, the method was —without detailed mathematical description— presented
at conferences (Gerstmayr et al. [214] and Möller et al. [453]) and a workshop
(Gerstmayr, Röben, and Möller [215]), described in the dissertation of Frank Röben
[537], and patented [219].

4.1. Introduction

This chapter describes a navigation strategy for an autonomous floor-cleaning robot mapping
its workspace while moving along parallel and meandering cleaning lanes. The map is not only
extended but also concurrently used by the proposed trajectory controller to obtain parallel lanes
at a predefined distance. In the following, we will briefly outline the two essential aspects of this
chapter, namely map building and trajectory control for autonomous cleaning robots (sections 4.1.1
and 4.1.2).
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Figure 4.1.: Key ideas of the proposed trajectory controller. By tak-
ing the bearing to two snapshots stored along the previous lane (black
filled circles) and by combining the angular information (arrows) with
an estimate of the distance between the considered snapshots (double-
tipped arrow), the robot’s distance (thick black line) to the previous
lane can be estimated. Complex-shaped workspaces can be incre-
mentally covered completely by combining several cleaning segments
(dotted areas) of parallel and meandering lanes as resulting from the
control strategy proposed in this chapter.

4.1.1. Mapping for Cleaning Robots
The map has to store all the information about the robot’s environment necessary for accomplishing
the robot’s task at the current or later points in time, and the type of map has to be suitable for the
robot’s application as well as for the robot’s sensory equipment. In our case, the robot (section 4.4.3)
is equipped with an omnidirectional vision system (section 3.2.4) as main source of information.
Among all types of maps reviewed in sections 3.6.3 and 3.6.4, we decided for dense topo-metric maps
with holistic place representation (section 3.6.3.2). We think that such maps are the best choice for
our purpose because (i) building such maps from omnidirectional images is possible in real-time even
with limited computational resources, (ii) they allow to store position information which is required
to keep the robot at a pre-defined distance from the previous lane, (iii) the trajectory controller can
use our existing local visual homing algorithms (section 3.5) for estimating spatial relations between
place nodes, and (iv) their dense spatial resolution allows to frequently update the controller. At
later stages of the cleaning process, the map will provide the spatial information required (i) to
detect and to approach areas which still need to be cleaned and (ii) to visually detect areas which
already have been cleaned (loop-closure problem; chapters 5 and 6) at a fine spatial resolution.

4.1.2. Introduction to the Proposed Trajectory Controller
The trajectory controller proposed in this chapter uses the map to keep the robot on parallel lanes
while concurrently extending the map. By this means, a part of the robot’s entire workspace is
covered by meandering and parallel lanes (figure 4.1, black dotted area). At the beginning of a
cleaning run, the robot moves straight forward and successively adds place nodes (circles) to its dense
topo-metric map. The lane ends if an obstacle is encountered, if it approaches an already cleaned
area, or if it extends beyond the previous lane. In case the current cleaning segment can be extended,
the robot turns and a new lane is started; otherwise a new segment is planned. From the second
lane on, the controller not only stores place nodes while moving, but also uses neighboring snapshots
(filled circles) stored along the previous lane to estimate its current distance to the previous lane.
By applying a local visual homing algorithm, the bearing and the compass information to at least
two snapshots (arrows) are computed. Furthermore, the spatial distance between the considered
snapshots (double-tipped arrow) is determined from the robot’s wheel odometry. Both sorts of
information are then combined in order to estimate the robot’s distance to the previous lane (thick
black line). This estimate is passed to a controller generating a movement command keeping the
robot at a constant distance to the previous lane and hence on a course parallel to this lane.
To estimate the robot’s distance to the previous lane, we do not determine the robot’s full pose
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w.r.t. world coordinates as is the case for most related approaches (sections 2.2.2 and 3.6.3). Rather,
we only compute the information which is sufficient and necessary to fulfill the task. In our case,
this includes estimates of the robot’s distance to the previous lane and of its orientation. With only
one of these estimates lacking, the robot would not be able to fulfill the task. For example, in case
the distance estimate was missing, the robot would not be able keep its distance to the previous
lane constant resulting (i) in a course parallel to the previous lane but following it at an arbitrary
distance and (ii) in inter-lane distances varying from lane to lane. We refer to our approach as
partial pose estimation in order to distinguish it from standard approaches estimating the robot’s
full pose (section 3.6.3.2). The advantage of partial pose estimation over full pose estimation is
that the former is computationally less demanding —which we think is an important aspect if one
considers the limited computational power of an autonomous cleaning robot. Due to this aspect, we
also do not correct the partial pose estimates after adding the corresponding place node to the dense
topo-metric map. This aspect distinguishes our approach from related work on visual simultaneous
localization and mapping (SLAM; sections 2.2.2 and 3.6.1.2). Since the key aspect of our method is
to incrementally estimate the robot’s current position based on prior robot positions, it can also be
considered a visual odometry algorithm (reviews: [191, 563] and section 3.6.1.2).

By the proposed controller, a single segment of parallel and meandering lanes can be covered. The
robot’s entire workspace can be completely covered by combining several of these cleaning segments
(figure 4.1, light-gray); the strategies required for this purpose are subject of future work aiming at
developing a more complex control scheme for an autonomous floor-cleaning robot (section 7.3.2).
Thus, the presented trajectory controller and mapping algorithm can be understood as the basis of
a system making an autonomous floor-cleaning robot relying on omnidirectional vision capable of
cleaning complex areas.

4.2. Dense Topo-Metric Map

For a robot using omnidirectional vision as primary sensory input and relying on local visual homing
to determine the spatial arrangement of landmarks, it is straightforward to build a topological
representation of space. In the context of graph-based maps (sections 3.6.3.2 and 3.6.4.1), landmarks
are images acquired at former robot positions. As described in section 3.6.4.1, purely topological
maps are sparse representations of space, which do not contain metrical position information. We
are of the opinion that the spatial resolution of such a sparse topological map is not suitable for our
application because a certain number of snapshots is required to (i) control the robot’s distance
to its previous cleaning lane and (ii) to determine areas which still need to be cleaned and to
find loop closures on a relatively fine level. These problems can be circumvented by sampling the
robot’s workspace more densely, thereby increasing the number of place nodes stored in the map.
Furthermore, our particular task requires some sort of distance information in order to keep the
robot at a predefined distance to its previous lane. This information is also stored in the place
nodes of the map, therefore leading to dense topo-metric maps.

In our application, the dense topo-metric map is used to guide a floor-cleaning robot along parallel
and meandering lanes. While moving along a cleaning lane i, a new place node P(i,j) is added to the
map whenever the robot’s distance to the previous place node P(i,j−1) exceeds the inter-snapshot
distance ∆s. For this purpose, the distance traveled since adding P(i,j−1) is measured based on the
robot’s odometry. By this means, a regular and grid-like representation of the robot’s workspace is
built. Each place node

P(i,j) = {S(i,j), ŝ(i,j)odo , θ̂
(i,j)
vis } (4.1)
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Figure 4.2.: Positions and coordinate systems in-
volved in the proposed trajectory controller. The
diagram shows the true robot trajectory (black line
with circles), the trajectory based on odometry es-
timates (gray line with diamonds), and the ideal
cleaning trajectory (black dashed line). Circles de-
pict robot positions s(i,j) at which snapshots S(i,j)
were taken; diamonds mark the corresponding odom-
etry estimates ŝ(i,j)odo . The robot’s current distance h
to the previous lane equals the height of the triangle
defined by s(i,j), s(i−1,j′), and s(i−1,j′′). Coordinate
systems are depicted in dark gray with ⟨W ⟩ and ⟨R⟩
denoting the world and the robot coordinate system,
respectively.

contains the sensory information required for the further processing steps of the trajectory controller:
the robot’s current snapshot S(i,j), an odometry-based estimate of the robot’s position

ŝ
(i,j)
odo = (x̂(i,j)odo , ŷ

(i,j)
odo )

⊺

, (4.2)

and a visually determined estimate θ̂(i,j)vis of the robot’s orientation. Lanes and snapshots along a
lane are counted by i = 0,1, . . . , imax and j = 0,1, . . . , jmax, respectively. The following paragraph
will describe the information stored in the place nodes in more detail.

The panoramic snapshot S(i,j) is acquired at the unknown snapshot position
s(i,j) = (x, y, θ)⊺ (4.3)

and is obtained by capturing an omnidirectional camera image, unfolding it to a cylindrical
image, and preprocessing it (section 4.4.3). As we build a topo-metric map relying on a holistic
representation of places (section 3.3.1.1), we use the entire image to characterize the position s(i,j).
The odometry estimates ŝ(i,j)odo (figure 4.2, gray diamonds) are given w.r.t. the world coordinate
system ⟨W ⟩, which is defined as a right-handed coordinate system at the initial robot position with
its x-axis being aligned with the robot’s initial movement direction. Due to the inaccuracy of the
robot’s odometry, the estimates ŝ(i,j)odo can deviate from the true but unknown robot positions s(i,j).
Because of this, true robot positions s(i,j) and corresponding odometry estimates ŝ(i,j)odo are strictly
separated in the description of the proposed controller (section 4.3). The odometry estimates ŝ(i,j)odo
are used for selecting neighboring snapshots (section 4.3.3.1) and for estimating the base of the
triangle for triangulation (section 4.3.3.3). The visual orientation estimate θ̂(i,j)vis is obtained by
fusing the compass information obtained from local visual homing with the orientation estimates of
the previous lane (section 4.3.4.2).

At the current stage, we do not add links to the topo-metric map because the proposed controller
operates solely on the graph’s nodes. Nevertheless, links could, for example, be added depending
on the neighbors or triangulation sets computed by the trajectory controller (sections 4.3.3.1
and 4.3.3.2).

In contrast to related work on trajectory-based SLAM, where the robot’s full pose is determined
for visually correcting the estimate of the robot’s state (section 3.6.3.2), we do not correct the
estimates stored in the map at a later point in time, and we solely compute the robot’s orientation
θ̂vis. We refer to the latter aspect as partial pose estimation. Although we do not compute the
robot’s full pose, we consider the map built by our navigation strategy to be a topo-metric map
because all orientation estimates θ̂(i,j)vis are computed w.r.t. an external reference coordinate system.
In future work, the place nodes can be extended by further task-relevant information such as local
obstacle information.
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Figure 4.3.: Flow chart of the proposed trajectory controller. The numbers in parentheses refer to the section
describing each processing step in detail.

4.3. Trajectory Controller
In this section, the proposed trajectory controller is described in detail. Figure 4.3 visualizes the

sequence of processing steps required to guide the robot along parallel and meandering lanes.

4.3.1. First Lane
While the robot moves along the first lane (lane counter i = 0), it successively adds place nodes
P(0,j) to its topo-metric map. The first lane is considered a special case because it does not have a
predecessor, and therefore all processing steps requiring snapshots stored along the previous lane
cannot be applied. These steps include (i) the lane-distance estimation and (ii) the estimation of the
robot’s current orientation. Both steps are required to compute motion commands for correcting
the deviation from the desired inter-lane distance.

Instead of estimating and controlling the robot’s distance to the previous lane, the first lane has
to be kept straight by beacon aiming (e.g. by exploiting a beacon at the robot’s docking station), by
taking the bearing by means of local visual homing to former snapshots collected along the lane, or
—as in the case of our experiments— by wall following. We are aware that wall following is not an
option for keeping the first lane straight if the robot’s environment is too cluttered, but we consider
it to be a reasonable simplification to address the coverage of open spaces, which we think is (i) the
more challenging aspect of cleaning-robot navigation and (ii) the more relevant aspect for proofing
the method’s feasibility. Since the walls used in our experiments are straight (section 4.4.1), all
orientation estimates θ̂(0,j)vis are assumed to be zero:

θ̂
(0,j)
vis = 0. (4.4)

As a further simplification for our experiments, the first lane is ended after traveling for a fixed
distance. If the proposed controller were integrated in a framework of further cleaning strategies,
the first lane would end if an obstacle were detected or if the robot approached an already cleaned
area. All subsequent lanes end if an obstacle is encountered or if the robot reaches the end of the
previous lane. Since the proposed strategy relies on images stored along the previous lane for taking
the bearing, the current lane cannot exceed its direct predecessor. In case the current lane is not
blocked by an obstacle, reaching the end of the current lane is detected by simply counting the
snapshots stored along this lane and stopping the robot if the number equals that of the previous
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∆r ∆r

s(i−1,j′0)

s(i−1,j′1)

h0
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h1

Lane i − 1

Lane i

Figure 4.4.: Determining neighbors and triangula-
tion sets. At the current robot position s(i,j), a set
N (i,j) of neighbors (filled circles) along the previous
lane is computed. The search radius ∆r influences
how many snapshots are selected as neighbors ac-
cording to equation (4.5). Among all possible trian-
gles with apex s(i,j), three different triangles (dotted
lines), referred to as triangulation sets Tk, are used.
The triangles’ heights hk are then used to compute
an estimate ĥ of the robot’s current distance to the
previous lane. The robot coordinate system ⟨R⟩ is
depicted in dark gray.

lane. In principle, the snapshot counter j could be used to estimate the robot’s traveled distance
along the current lane or for deriving the robot’s full position. However, because this estimate relied
not on external sensor measurements, we expect it to be rather imprecise and we would rely on the
robot’s odometry instead.

4.3.2. Lane Changes
At the end of each lane, the robot performs a lane change. For the lane change, the robot turns by
90°, moves forward for the inter-lane distance ∆l, turns again by 90°, and starts a new lane. The
rotation of the robot is controlled by the visual compass method proposed by Zeil, Hoffmann,
and Chahl [718]. While rotating, the robot continuously acquires images which are compared to
a reference image acquired immediately before rotating. During the lane change, no place nodes
are added to the topo-metric map, and the robot solely relies on its odometry without using any
visual navigation method. In order to achieve optimal coverage, the inter-lane distance ∆l should
be chosen as the width of the robot’s cleaning unit.

4.3.3. Lane-Distance Estimator
Along the second and all subsequent lanes (lane counter i ≥ 1), the robot not only adds place nodes
P(i,j) to the map, but also computes the distance estimate ĥ to the previous lane whenever a new
node is added to the map. The processing steps required for this purpose will be described in the
following.

4.3.3.1. Selection of Neighbors

After adding the current place node P(i,j) to the map, its direct neighbors taken along the previous
lane i − 1 (figure 4.4, filled circles) are determined. These include the set

N (i,j) = {P(i−1,j′) ∣ abs (x̂(i,j)odo − x̂(i−1,j′)
odo ) < ∆r} , (4.5)

i.e. the place nodes P(i−1,j′) taken along the previous lane for which the distance between x̂(i,j)odo
and x̂(i−1,j′)

odo is smaller than ∆r. For sake of simplicity, we only consider snapshots stored along the
previous lane for the selection of neighbors. Since we assume that the robot initially moves into the
positive x-direction of the world coordinate system ⟨W ⟩ (section 4.2), the selection relies solely on
the x-components of the position estimates ŝ obtained by the robot’s odometry. Due to being only
a coarse search for neighboring snapshots, the selection is the only part of the proposed algorithm
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Snapshot:

Current view:
ψ̂

α̂

Figure 4.5.: Local visual homing. The robot moves from its start position (light gray) to its current position (gray).
By comparing the current view (CV) with the snapshot, i.e. the camera image acquired at the start position (SS),
estimates of the home direction α̂ as well as of the relative orientation change ψ̂ between the considered snapshots
(also referred to as visual compass) can be computed w.r.t. the robot’s current orientation (figure: black thick bars).
The panoramic images show the laboratory in which experiments were conducted. Images were obtained with the
omnidirectional vision setup and the parameters used for the experiments (section 4.4). Since parameter optimizations
for the used 2D warping methods have shown that the method performs best with a certain level of low-pass filtering
(Möller [447] and Möller, Krzykawski, and Gerstmayr [451]), the images appear rather blurred.

relying on absolute position estimates obtained by the robot’s odometry (light-gray diamonds).
Alternatively, a snapshot counter along the lanes could be used. The choice of the search radius ∆r
influences how many snapshots are selected as neighbors and by this means also the accuracy of the
estimate ĥk of the inter-lane distance computed in the subsequent processing steps (sections 4.3.3.2
to 4.3.3.3). If ∆r is chosen too small, the snapshots considered along the previous lane for taking
the bearing are too close together, and the quality of the resulting home vectors can be decreased
due to local properties of the environment. Otherwise, if ∆r is chosen too large, the estimate ĥk
becomes more sensitive to small deviations from the true home vector due to the tangents being
involved in equation equation (4.23). According to our experience, good results are obtained if the
resulting triangles are approximately right-angled. This observation is in line with the parameter
optimization in the preliminary study by Dr. Sven Kreft [342] suggesting to use ∆r = 45 cm.

4.3.3.2. Triangulation Sets

Based on the set N (i,j) of neighbors, a subset of place nodes is selected, which will in the following
step be used to compute the robot’s current distance to the previous lane. Among all neighboring
place nodes in N (i,j), we use the outermost nodes P(i−1,j′0) and P(i−1,j′2) as well as an intermediate
place node P(i−1,j′1) with

j′0 = arg min
j′

{x̂(i−1,j′)
odo ∈ N (i,j)} , (4.6)

j′2 = arg max
j′

{x̂(i−1,j′)
odo ∈ N (i,j)} ,and (4.7)

j′1 = floor(j
′

0 + j′2
2

) (4.8)

with the floor function computing the largest index not greater than the function’s argument. The
snapshots S(i−1,j′0), S(i−1,j′1), and S(i−1,j′2) associated with these place nodes are in subsequent steps
used to take the bearing from the current robot position s(i,j) to each of the former robot positions
s(i−1,j′k), at which these snapshots were acquired. For this purpose, three homing angles α̂k and
changes of the orientation ψ̂k are computed by local visual homing (figure 4.5 and section 3.5)

(α̂k, ψ̂k)⊺ = lvh (S(i,j),S(i−1,j′k)) with k ∈ {0,1,2} (4.9)

and lvh describing local visual homing as a function of the two snapshots S(i,j) and S(i−1,j′k). Since
the results of local visual homing have to be considered as a noisy and potentially error-prone
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Figure 4.6.: Visual triangulation used to estimate
the robot’s current distance to the previous lane. An
estimate ĥk of the triangle’s height can be obtained
because the two angles αk1 and αk2 can be deter-
mined by visual homing, and because the base length
bk = bk1 + bk2 can be approximated by the relative
distance b̂ based on the robot’s odometry. For details
please refer to section 4.3.3; dark-gray arrows depict
the robot coordinate system ⟨R⟩.

measurement rather than an exact computation (e.g. [451]), we refer to them as estimates α̂k and
ψ̂k.

Together with the current place node P(i,j), the place nodes P(i−1,j′0), P(i−1,j′1), and P(i−1,j′2) are
combined to three triangulation sets (figure 4.4, dotted lines)

T0 = {P(i,j),P(i−1,j′0),P(i−1,j′1)} , (4.10)

T1 = {P(i,j),P(i−1,j′0),P(i−1,j′2)} ,and (4.11)

T2 = {P(i,j),P(i−1,j′1),P(i−1,j′2)} . (4.12)

Each triangulation set will in the following step be used to compute an estimate ĥk (with k ∈ {0, 1, 2})
of the robot’s distance h to the previous lane (thick black lines). In case the robot’s true trajectory
deviates from the ideal trajectory with its parallel and straight lanes (dashed lines), different
triangulation sets will also result in different estimates ĥk. In order to improve the estimate ĥ
of the robot’s true distance h to the previous lane, the estimates ĥk of several triangles will be
computed and fused. Using three triangulation sets has proven to be a good trade-off between
computational complexity and estimation accuracy because experiments have shown that further
increasing the number of considered triangles could not improve the performance of the algorithm.
Nevertheless, further triangulation sets could be determined by using a similar scheme for more
than three triangles.

4.3.3.3. Distance Estimation

For each triangulation set Tk (k ∈ {0,1,2}) determined in the previous step, an estimate ĥk of the
robot’s true distance h to the previous lane is computed. The following derivation relies on the fact
that a triangle is completely specified by two angles and the length of one of its sides (figure 4.6).
In our case, we use the angles

βk1 =∡ (s(i−1,j′),s(i,j),hk) and (4.13)

βk2 =∡ (hk,s(i,j),s(i−1,j′′)) , (4.14)

where hk is the foot of the triangle’s height. The base is the line segment bounded by the snapshot
positions s(i−1,j′) and s(i−1,j′′). As side length, we rely on the triangle’s base length bk. With these
quantities, the triangle’s height hk can be obtained by resolving the relation

bk = bk1 + bk2 = hk(tanβk1 + tanβk2) (4.15)
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γ̂ = 90° γ̂ = −90° γ̂ = −90° γ̂ = 90°

γ̂

Figure 4.7.: γ̂ depending on direction of travel and direction of meandering. The sign of the angle γ̂ is chosen
depending on the direction of meandering (i.e. the direction of the first turn at the end of the first lane) and on the
robot’s current direction of travel (thick black arrow). Dashed lines depict the robot’s trajectories, black filled circles
snapshot positions, and light-gray arrows the bearing direction computed by local visual homing.

for hk:

hk =
bk

tanβk1 + tanβk2

. (4.16)

However, none of these quantities are known or can be derived from the available information, and
thus further assumptions are required for approximating them.
As angular information, the homing angles αk1 and αk2 between the robot’s current heading

and the snapshot positions s(i−1,j′) and s(i−1,j′′) can be obtained by taking the bearing from the
robot’s current position s(i,j) to the triangle’s base points s(i−1,j′) and s(i−1,j′′) (equation (4.9)).
The homing angles αk1 and αk2 are related to βk1 and βk2 by the unknown angle γk between the
robot’s heading and the triangle’s height hk:

βk1 = γk − αk1 and (4.17)
βk2 = αk2 − γk. (4.18)

By assuming γk = γ̂ ∈ {−90°,90°} with the sign depending on the robot’s current direction of travel
and the direction of meandering (figure 4.7) and by considering that taking the bearing only provides
estimates α̂k1 and α̂k2 of the exact homing angles αk1 and αk2 , we can approximate βk1 and βk2 by

β̂k1 = γ̂ − α̂k1 and (4.19)
β̂k2 = α̂k2 − γ̂. (4.20)

The assumption γ̂ = ±90° holds exactly if and only if the robot is moving parallel to its previous lane
as depicted in figure 4.6 and for the triangulation set T2 in figure 4.4. In other cases, the assumption
is violated (triangulation sets T0 and T1 in figure 4.4), and deviations from the robot’s desired lane
are likely to occur.
Furthermore, the true base length bk is unknown because the positions of image acquisitions

s(i−1,j′) and s(i−1,j′′) are unknown. As the robot’s odometry obtains good estimates for distances
between snapshots taken along a lane, we approximate bk by the Euclidean distance

b̂k = ∥ŝ(i,j
′
)

odo − ŝ(i,j
′′
)

odo ∥ (4.21)
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Figure 4.8.: Computation of the motion vector. The
proposed controller computes a motion vector m which
reduces the deviation e = ∥e∥ from the robot’s current
distance h to the previous lane and the desired lane
distance ∆l. The robot is supposed to return to the
desired lane within some moving target distance t = ∥t∥.
To determine the wheel speeds for controlling the robot,
m is transformed from world coordinates ⟨W ⟩ (dark-
gray arrows) to the robot coordinate system ⟨R⟩ (dark-
gray arrows) and further to an auxiliary coordinate
system ⟨V ⟩ (light-gray arrows).

between the odometry estimates ŝ(i−1,j′)
odo and ŝ(i−1,j′′)

odo . Based on these assumptions, the estimate ĥk
for the robot’s current distance h to the previous lane is then obtained by

ĥk =
b̂k

tan β̂k1 + tan β̂k2

(4.22)

= b̂k
tan (γ̂ − α̂k1) + tan (α̂k2 − γ̂)

. (4.23)

4.3.3.4. Fusion of Several Estimates

To fuse the estimates ĥk of the robot’s current distance to the previous lane, the median ĥ over all
estimates is computed:

ĥ =median
k

ĥk with k ∈ {0,1,2}. (4.24)

The result is used by the control algorithm (section 4.3.4) to derive a motion command keeping the
robot on a course parallel to the previous lane.

4.3.4. Trajectory Controller
The trajectory controller uses the estimate ĥ of the robot’s current distance h to its previous lane to
keep the robot at the desired distance ∆l from the previous lane. To reduce the deviation from the
desired lane, a motion vector m is computed, which is mapped to wheel speeds in order to control
the robot. Keeping the robot’s distance to the previous lane constant implies that the robot’s
desired lane is specified w.r.t. its previous lane.

4.3.4.1. Motion Vector

The motion vector m is supposed to compensate the deviation

e = ∆l − ĥ, (4.25)

and is defined as the vector sum

⟨W ⟩m = e + t = ( 0
se ⋅ e

) + (st ⋅ t0 ) (4.26)

of the deviation vector e and the moving target vector t (figure 4.8). The vector e is chosen parallel
to the y-axis of the world coordinate system ⟨W ⟩ pointing always into the direction compensating
the deviation e. The moving target vector t points parallel to the x-axis of ⟨W ⟩ into the current
movement direction. Its length t = ∥t∥ is the moving target distance within which the robot is
supposed to completely reduce the deviation from its desired lane. With small choices of t, the
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Figure 4.9.: Sign of the multipliers se and st depending on the directions of meandering and of the current lane.
Compensating the deviation e from the desired inter-lane distance by computing a motion vector m = e+ t (black and
light-gray arrows) which guides the robot back to its desired trajectory (dashed line). The directions of e and t are
adjusted by selecting the multipliers se and st (equation (4.26)) depending on the direction of the lane change at
the end of the first lane (left or right) and on the direction of travel along the current lane (even or odd lane). The
multipliers do not depend on the sign of the deviation e. The world coordinate system ⟨W ⟩ is depicted by dark-gray
arrows.

controller is more reactive and capable of quickly reducing the deviation; larger choices of t make
the controller slower but result in smoother trajectories. The multipliers se and st, both from the
set {−1, 1}, adjust the directions of the vectors e and t depending on the robot’s direction of travel
and its direction of meandering, i.e. the directions of its initial turn after finishing the first lane
(figure 4.9).

4.3.4.2. Transformation to Wheel Speeds

In equation (4.26), the motion vector m =⟨W ⟩m was defined w.r.t. world coordinates ⟨W ⟩. In order
to map the motion vector m to wheel speeds correcting the robot’s deviation from the desired
lane distance ∆l, ⟨W ⟩m has to be transformed from the world coordinate system ⟨W ⟩ to the robot
coordinate system ⟨R⟩ and further to an auxiliary system ⟨V ⟩.

As the robot’s position in world coordinates is unknown due to partial pose estimation, only the
rotational component of the coordinate transformation from ⟨W ⟩ to ⟨R⟩ can be computed. However,
this is sufficient for the following processing steps, and we do not have to rely on further assumptions.
To determine the rotation between world coordinate system ⟨W ⟩ and robot coordinate system ⟨R⟩,
an estimate of the robot’s orientation θ̂(i,j)vis is required. It is derived by angular averaging (textbook:
[32])

θ̂
(i,j)
vis =mean

k
θ̂
(i,j)
vis,k (4.27)

the orientation estimates θ̂(i,j)vis,k (k ∈ {0, 1, 2}) obtained for each of the computed home vectors. These
are obtained by the angular summation

θ̂
(i,j)
vis,k = ψk + θ̂

(i−1,j′k)
vis (4.28)

of the relative change of orientation ψk computed in equation (4.9) and the vision-based orientation
estimate θ̂(i−1,j′k)

vis associated with place node P(i−1,j′k) taken along the previous lane. Based on the
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(1) Experiment 1 (2) Experiment 2

Figure 4.10.: Areas ideally covered by the robot ex-
periment 1 and 2 (subfigures (1) and (2), respectively).
Depicted are ground-level objects (e.g. legs of chairs
and desks or closets; dark gray areas), obstacles above
ground level (e.g. surfaces of chairs or desks; dashed
lines), the ideal cleaning trajectories (black arrows),
and the area ideally covered by the cleaning runs (light
gray areas). The area covered by the cleaning trajec-
tories is approximately the field of view of the visual
tracking system (section 4.4.5); the light-gray area was
used as reference for computing the cleaning perfor-
mance (section 4.4.6). The measuring line at the lower
right corner shows a length of 1m.

orientation estimate θ̂(i,j)vis , the vector ⟨R⟩m is obtained by rotating ⟨W ⟩m by −θ̂(i,j)vis around the
robot’s z-axis.
To transform the motion vector ⟨R⟩m into velocities v = (vL, vR) for the left and right wheel of

the robot, the mapping proposed by Möller [446] is applied. Therefore, the movement vector
⟨R⟩m is further transformed into the coordinate system ⟨V ⟩ which is rotated by -45° around the
z-axis of the robot coordinate system ⟨R⟩. To obtain wheel speeds, the resulting vector ⟨V ⟩m is
normalized and scaled with the desired velocity v:

v = (vL
vR

) = v

∥⟨V ⟩m∥
⋅⟨V ⟩m. (4.29)

The resulting velocities vL and vR are passed to the robot’s motion controller and kept constant
until the next place node is added.

4.4. Experiments and Setup
In order to test the proposed navigation strategy, we conducted experiments with a custom-built
cleaning robot. Section 4.4.1 describes the experimental procedure and the parameters used for
the experiments. For computing compass and bearing information, the min-warping method
(section 4.4.2) is applied. Section 4.4.3 briefly introduces the custom-built cleaning robot. To
demonstrate the capabilities of the proposed controller, the motion commands were disturbed with
a strong systematic error to be compensated by the controller (section 4.4.4). The experiments were
recorded with a vision-based tracking system (section 4.4.5), and the resulting trajectories were
analyzed qualitatively and quantitatively (section 4.4.6).

4.4.1. Procedure and Used Parameters
This section introduces the experimental procedure and the parameters used for our experiments.
In order to keep this description compact, details or discussions on different aspects only briefly
mentioned in this section can be found in sections 4.4.2 to 4.4.6. We performed cleaning runs from
two different start positions in our lab (figure 4.10). In experiment 1, the target trajectory consisted
of eight lanes each of 4m length; in experiment 2, it consisted of 15 lanes with a lane length of 2m.
In both experiments, the robot was meandering to the left, and a total of 10 trials per experiment
were recorded. The size and the position of the workspace within our lab were limited by the field of
view of our visual tracking system, which was used to record the robot’s trajectories (section 4.4.5).
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Due to properties of the tracking system, experiments had to be conducted under constant and
diffuse illumination conditions and in a static environment (see section 4.4.5 for details).
The robot’s motion controller was disturbed by a systematic error of 5%, which had to be

compensated by the controller in order to keep the robot parallel to the previous lane (section 4.4.4).
We consider the specific choice to be a reasonable error because its effect is clearly visible if the
robot is moving relying solely on its odometry (figure 4.14 and video [S2]) and because —if moving
under visual control— the performance is not considerably decreased in comparison to a smaller
or a zero error (section 4.5.1 and the videos [S3] and [S4] with and without odometry disturbance,
respectively). Errors larger than 10% can cause the method to fail. Half of the trials were disturbed
with a systematic error causing a trajectory curved to the left; the other half was performed with an
error causing a trajectory curved to the right. For data analysis (section 4.4.6), the results for both
types of error were pooled because the results are independent of the direction of the systematic
error.
Along a cleaning lane, the robot was continuously moving with v = 7.5 cm/s, the inter-snapshot

distance was ∆s = 10 cm, the moving-target distance was t = 45 cm, and the radius of the neighbor
search was ∆r = 45 cm. As our robot (section 4.4.3) is not equipped with a suction unit, we
used an inter-lane distance of ∆l = 30 cm, which is approximately the robot’s diameter. Since we
observed in simulation studies that the system achieves similar performance for different parameter
combinations, we only present results for this parameter set (rather then presenting data for
systematically varying the moving target distance t, the search radius r, the odometry error k, and
the number of triangulation pairs).
The first lane was kept straight by following an artificial wall relying on the robot’s IR range

sensors. The artificial wall has a height of approximately 9 cm and is not visible for the robot
because it is completely below the horizon of its omnidirectional vision system (see figure 4.5 for
omnidirectional images acquired during our experiments). An artificial wall was used (i) because our
lab is too cluttered and does not offer a free wall sufficiently long for our experiments (figure 4.10)
and (ii) because the experiments had to be conducted in an area which is observable by the used
tracking system (section 4.4.5). This restriction (see also the discussion in section 4.3.1) will be
lifted in future work on full-fledged cleaning strategies (section 7.3.2).
For all experiments, min-warping with compass acceleration was used as homing method (sec-

tion 4.4.2). In the search process, the home direction α and the orientation change ψ were varied in
discrete steps of 5°. The compass acceleration restricted the search space to 30% of the possible
orientation changes, image columns were compared by the Euclidean distance, and we used 9
different scale planes in the range [0.2,1.8].

4.4.2. Min-Warping With Compass Acceleration

Among all homing methods (section 3.5.2), image-warping methods [190, 447, 451] have proven
to be accurate and robust. Furthermore, warping methods not only compute an estimate α̂ of
the home direction but also of the azimuthal orientation difference ψ̂ between the two images
(visual compass; figure 4.5). For the proposed navigation strategy, we use a variant of 2D-warping
called min-warping with compass acceleration because it offers a good trade-off between homing
accuracy and computational complexity (Möller, Krzykawski, and Gerstmayr [451]). The
method uses an explicit search for discrete combinations of the home direction α and the orientation
change ψ. Depending on α and ψ, the shift and scale change of an image feature (in the case of
min-warping the complete image column of a panoramic image) can be computed. The search
space of orientation changes can be restricted to a small fraction of likely orientations by applying a
visual compass method implicitly contained in the min-warping method (in Möller, Krzykawski,
and Gerstmayr [451] referred to as compass acceleration). The parameters α and ψ resulting in
the best match between snapshot and current view columns are used as estimates α̂ and ψ̂ of the
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Figure 4.11.: Custom-built cleaning robot with
panoramic annular lens (PAL) as omnidirectional-vision
sensor. For recording the robot’s trajectory, the robot is
equipped with a colored disk (here, the robot is depicted
with a red disk) which is used as tracking target by the
visual tracking system (section 4.4.5 and figure 4.15). In
the shown photo, the tracking target shields the motors,
the motor controllers, the on-board computer, the bat-
teries, and the camera [D9]. The chassis is supported
by a ball caster not visible in the photo. Visible are the
panoramic annular lens (PAL, top center; [D16]) and IR
distance sensors (black vertical blocks, Sharp GP2D12
and GP2D120, [D12, D13]). The artificial wall used for
the experiments is visible in the image’s background. The
robot was mostly designed and built by Klaus Kulitza;
Martin Krzykawski was responsible for developing the
software required for robot communication and control.
Photo by Lorenz Hillen. Figure best viewed in color.

Image
acquisition Unfolding Histogram

equalization Smoothing I

Brightness
controller

Figure 4.12.: Image preprocessing steps. All preprocessing operations are executed on the robot’s on-board computer.
The resulting panoramic image I is transferred to the external host computer via wireless network connection (dashed
arrow) where the further processing steps are executed.

home direction and of the orientation change. Since warping methods use the entire image to derive
the home vector and compass estimates, they are well suited for navigation methods operating on
graph-based maps (with or without position information) and a holistic representation of places
(sections 3.6.3.2 and 3.6.4.1).

4.4.3. Custom-Built Cleaning Robot
Experiments were conducted with a custom-built differential-drive robot (figure 4.11). With a
diameter of 33 cm and a height of 12 cm, its dimensions are comparable to those of commercially
available cleaning robots for domestic usage (section 2.2.1). In contrast to such robots, our robot is
not equipped with a cleaning unit. For obstacle detection and wall following, the robot is equipped
with IR distance sensors (Sharp GP2D12 and GP2D120, [D12, D13]). As an omnidirectional vision
sensor, the robot relies on a camera (IDS Imaging UI-2220SE-M, [D8]) with a panoramic annular
lens (PAL, Tateyama S25G2817-27C [D16], patent: [251]). The used omnidirectional vision setup
is also depicted in figure 3.7.2. Since the PAL is much more compact than standard catadioptric
sensors, it sticks out of the housing by only 3 cm.

Figure 4.12 visualizes the image preprocessing steps. The panoramic camera images were unfolded
to panoramic images by applying a custom-developed model-free mapping method (Krzykawski
[345]). Unfolding included a histogram equalization followed by low-pass filtering (binomial filter
with kernel size 5). The resulting images were sized 360 × 48pixels and covered a vertical field of
view from 0○ to 38○ above the horizon (see figure 4.5 for two example images). Image unfolding
was done on the robot’s on-board PC (IEI Technology PM-US15W-Z530-R10 with an Intel Atom
Z530 CPU, [D10]), and the unfolded images were transmitted to an external host computer (laptop
[D4] with an Intel Core i7 920XM CPU and 4GB of RAM) via wireless network connection. There,
the computations required for the proposed navigation strategy (namely computing three home
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Figure 4.13.: Artificial disturbance of the robot’s motion controller. The velocities v passed to the robot’s motion
controller are disturbed by a systematic error k resulting in biased velocities ṽ causing the robot to move on a circular
path. As the robot’s on-board odometry can measure this disturbance, the position estimate p̂rob should not be used
for the trajectory controller. Instead, the robot’s on-board odometry is bypassed by a secondary odometry computing
the robot’s position p̂sim based on unbiased velocities v.

vectors, estimating the inter-lane distance, and deriving a motion command) were executed, and
the resulting motion command was sent back to the robot. The image capturing and preprocessing
as well as the client-server architecture was written by Martin Krzykawski. Among these processing
steps, computing a single home vector requires approximately 70ms (Möller, Krzykawski, and
Gerstmayr [451]) allowing for real-time control of the robot. In comparison to local visual homing,
the other operations of the visual controller are negligible. The off-board computations and the
client-server architecture were necessary because the proposed method was implemented relying on
the prototyping software framework maintained by our group. Nevertheless, because our method
was designed keeping in mind the limited computational power of autonomous cleaning robots, we
expect it to be executable in real-time on a robot’s on-board computer if the current implementation
is optimized for this computer hardware. Although we are aware of its importance for a fully
autonomous cleaning robot, such an implementation is left for future work.

4.4.4. Systematic Error
In order to verify that the visual trajectory controller (section 4.3.4) can keep the robot on the
desired trajectory, the robot’s motion controller is in all experiments biased by a strong systematic
error. The error simulates differences in the robot’s wheel diameters causing the robot to move
on a circular path, which has to be compensated by the proposed navigation strategy. In case of
differences in the wheel diameters, the robot’s odometry cannot measure that the robot is moving
on a curved trajectory. Thus, the resulting position estimates p̂rob lie on a straight line.
Adding a systematic error to the robot’s desired wheel speeds v = (vL, vR)⊺ by disturbing the

velocities with a constant disturbance factor k proportional to the systematic error

ṽ = (ṽL
ṽR

) = ((1 + k
2) vL

(1 − k
2) vR

) (4.30)

causes the robot to move on a circular path. With this equation, we assure that the error
symmetrically influences both wheels without influencing the overall robot velocity. However, the
robot’s on-board odometry can measure that the robot moves on a curved path. Thus, relying
on the odometry estimates p̂rob would influence the controller, e.g. when the base length b̂ of the
considered triangle is estimated (equation (4.21)).
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Figure 4.14.: Influence of disturbed odometry. Trajectory resulting
from driving the robot along meandering lanes solely based on its dis-
turbed odometry (i.e. without visual correction). The continuous black
line depicts the robot’s true course as recorded by the visual tracking
system; the dashed line depicts the position estimates obtained by the
disturbed odometry. A supplemental video visualizing the depicted
effects is available for download [S2].

In order to eliminate these effects, we bypass the robot’s on-board odometry (figure 4.13). For
this purpose, a position estimate p̂sim is computed by applying a standard odometry model of
differential-drive robots (e.g. section 5.2.4 of Siegwart, Nourbakhsh, and Scaramuzza [586]). As
the computation of this estimate is based on the unbiased wheel speeds v, the simulated odometry
cannot measure the influences of the disturbance k. Whenever the odometry is read out, the request
is not directed to the robot’s on-board odometry, but the simulated odometry is updated, and its
position estimate p̂sim is returned. Since the simulated odometry does not consider environmental
influences (such as motor noise or wheel slippage), and since the simulated odometry assumes
instantaneous changes of the wheel speeds, the position estimates of the simulated and the robot’s
on-board odometry without systematic error (k = 0) differ. However, we think that these differences
are negligible.
Figure 4.14 and the video [S2] visualize the effects of a 5% systematic error (i.e. k = ±0.05) as

used for the experiments (section 4.4.1). In the shown case, the error was k = −0.05, thus simulating
that the robot’s right wheel has a larger diameter than the left one. The robot was driven along
meandering lanes of length 1m without visual correction. As the robot’s true trajectory (continuous
black line) is curved whereas the trajectory obtained from the robot’s odometry (dashed line) is
parallel and meandering, the approach described in this section simulates differences in the diameter
of the robot’s wheels. In case the experiments reveal that the robot is guided along parallel lanes,
these results therefore have to be due to the visual trajectory controller compensating for the strong
systematic error introduced by k. Please note that these errors were only introduced for testing the
trajectory controller; future work focusing on more elaborated cleaning strategies (section 4.7) will
rely on the robot’s on-board odometry.

4.4.5. Passive Visual Tracking System
For external data analysis of the performed cleaning runs (section 4.4.1), a custom-built visual
tracking system was used (figure 4.15). In order to track the robot, a red disk is mounted on top of
the robot (figure 4.11), which is not visible in the robot’s panoramic image. The robot’s workspace
is observed by two cameras mounted statically on the ceiling of the lab. For each camera, the
red disk is detected in the camera image and tracked over time using the mean-shift algorithm
by Comaniciu and Meer [116]. The marker’s center of gravity in the camera image is used to
compute an estimate of the robot’s world position by direct linear transformation (textbook: [278]).
To fuse the estimates of both cameras, a weighted average depending on the agent’s distance to the
camera is used. By this means, the robot’s position but not its orientation can be determined. The
resulting tracking accuracy is approximately 1 cm.
For correctly tracking the robot’s position, the center of gravity detected by color segmentation
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(1) Sketch of the principles (2) Camera setup. Photo by Lorenz
Hillen.

(3) Camera image (4) Distance image

Figure 4.15.: Passive visual tracking system. Subfigure (1) depicts the principles of the tracking system. Two cameras
equipped with wide-angle lenses are mounted statically on the walls of our laboratory observing the experimental area
(light gray). The robot’s position in the world (black circle) is computed from its position in the two camera images.
Subfigure (2) is a photo of the used camera setup (camera: Axis 211 W [D3]; lens: Tamron 13VG308AS Vari-Focal
3–8mm; mount: custom-built and Manfrotto 484RC2 ball head [I68]). Subfigure (3) shows an example image obtained
from one of the cameras. The robot is equipped with a salient tracking target (here, a blue disk and not a red disk as
depicted in figure 4.11), which is detected in the camera image by color segmentation. To facilitate color segmentation,
the camera’s image is oversaturated by setting the saturation parameter to its maximum value. For the pixels inside
the search region (red rectangle), the color dissimilarity to the reference color is computed. Subfigure (4) depicts the
dissimilarity information with white and black coding identical and dissimilar pixels, respectively. The dissimilarity
information is used to track the target, to repeatedly compute its center (blue cross) by applying the mean-shift
algorithm (Comaniciu and Meer [116]), and to adaptively adjust the reference color to the current illumination
conditions. For estimating the robot’s position in the world (black circle in subfigure (1)), the pixel coordinate is
converted into a world position by direct linear transformation (textbook: [278]). This requires a calibration of the
system which relates a set of known world positions with their corresponding image positions and estimates the
mapping between world and image coordinates. As the robot is moving in the plane, distance estimates could in
principle be obtained from a single camera image. The tracking accuracy can be increased (i) by calibrating cameras
in order to remove lens distortions (textbook: [278]) and (ii) by fusing estimates obtained from two cameras by
weighted averaging. As the accuracy of the position estimate decreases with increasing distance to the camera, image
regions containing distant areas of the workspace are weighted less reliable than image regions showing nearby regions.
With an image resolution of 640 × 480 pixels, the used system is capable of tracking at approximately 5 images per
second and has an accuracy of 1 cm. Using a disk as tracking target does not allow to directly compute the robot’s
orientation. It is rather estimated based on the robot’s change of orientation computed from the recorded trajectory
data. Similar robot-tracking systems are described in [79, 80, 170, 386, 387]. Figure requires color printing.
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of the tracking target has to lie at the center of the target, i.e. at the position where the robot’s
camera is imaged. In other cases, the estimated position and the true position differ. Such situations
occur (i) under certain illumination conditions or (ii) under occlusions of the tracking target. The
first aspect includes transitions from sunlit areas to shadow areas within the tracking target. In
such cases, the color-segmentation algorithm fails and only detects parts of the target as belonging
to the reference color —even though the entire target is visible in the camera image. Thus, the
center of gravity of the area belonging to the reference color but not of the entire disk is computed.
This restriction required experiments to be conducted under diffuse and constant illumination. The
second aspect subsumes occlusions caused by people moving in the lab or by obstacles if the robot
moves too close to or underneath them (figure 4.10). In this case, the tracking target is only partially
visible for the tracking system, and the center of gravity computed from the visible part is likely
to differ from that of the entire target. Therefore, experiments had to be conducted in a static
environment and at the center of the lab’s free space.

4.4.6. Data Evaluation

The trajectories recorded with the tracking system were analyzed qualitatively and quantitatively.
For qualitative evaluation, the resulting trajectories were plotted (figure 4.16). For quantitative
data analysis, piecewise polynomials of third order (Matlab function spline) were fitted to the
recorded robot positions along a lane in order to interpolate between snapshot positions and to
estimate the robot’s orientation, which cannot be measured by our visual tracking system. Based
on this, we computed measures for the inter-lane distances and the resulting cleaning performance.
These measures will be described in the following.

4.4.6.1. Inter-Lane Distances

As the proposed trajectory controller (section 4.3.4) is supposed to keep the robot at the desired
lane distance ∆l from the previous lane, we computed for every snapshot position the robot’s true
distance to the previous lane. For this purpose, we minimized the spatial distance between the
considered snapshot position along the current lane and an arbitrary point along the previous lane
approximated by piecewise polynomials. Thus, the search was not restricted to discrete positions of
snapshots taken along the previous lane. The resulting inter-lane distances were pooled over all
trials of an experiment and analyzed lane-by-lane as well as pooled over all lanes. As performance
measures, percentiles and differences between percentiles of the resulting distance distributions were
used. Results are shown in figure 4.17 and described in section 4.5.2.

4.4.6.2. Cleaning Performance

To assess the cleaning performance of the proposed navigation strategy, we analyzed the area covered
by a simulated suction unit sized 30 cm × 5 cm, which was moved in small steps along the robot’s
trajectory. By this means, the area A1 covered exactly once, the overlap between consecutive lanes
A2, and the uncovered area A0 were computed. The percentages are measured w.r.t. the area
covered by an ideal cleaning run (figure 4.10, light-gray areas). Hence, areas outside the ideal area
are not considered for the evaluation. Lane changes are excluded from the evaluation assuming the
robot’s cleaning unit to be switched off. In future work, these measures will be computed w.r.t. the
area accessible for the robot. All percentages of A0, A1, and A2 sum up to 100%; a perfect trial
would yield A1 = 100.0% and A0 = A2 = 0.0%. Similar measures were also used in related work by
Palleja et al. [501], by Rhim et al. [535], and in our recent publication Möller et al. [457].
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4.5. Results

The results obtained by experiments 1 and 2 were analyzed qualitatively (section 4.5.1) and
quantitatively (sections 4.5.2 and 4.5.3). Thereafter, the results will be discussed in section 4.6.

4.5.1. Qualitative Analysis

Figure 4.16 visualizes the trajectories obtained for experiments 1 and 2, respectively. The fig-
ures 4.16.1 and 4.16.2 show all ten trials in one plot in order to analyze the method’s repeatability.
The other plots show a single trajectory with systematic error to the left (k = −0.05; figures 4.16.3
and 4.16.4) and to the right (k = 0.05; figures 4.16.5 and 4.16.6). The video [S3] shows a similar
experiment except for the number of lanes and the lane length which both had to be reduced in
order to fit the camera’s field of view.
Regarding the repeatability, the trajectories of both experiments are close together with only

little variability of up to lane index i = 3. For i > 3, the repeatability of the lanes decreases especially
at the beginning and the end of the lanes. In the middle of each lane (experiment 1: 1m < x < 3m,
experiment 2: 0.5m < x < 1.5m), the lanes are still close together. Since the robot does not move
straight and parallel to the x-axis, but rather oscillates around its desired lane, its orientation at the
end of the lane is not parallel to the x-axis. After changing lanes, this deviation can be increased
due to inaccuracies during the robot’s rotation. At the beginning, the robot has to compensate for
the deviation in order to return to a course parallel to the previous lane. At the end of the lane, the
robot follows the deviations of the previous lane. Up to i = 5 and i = 8 for experiments 1 and 2,
respectively, the trajectories of different lanes are clearly separable from each other; for larger i,
trajectories of different lanes overlap. Thus, the repeatability decreases with increasing number of
lanes i.
Analyzing single trajectories reveals that the robot moves on slightly curved lanes which are

locally parallel to each other. As the robot keeps the distance to its previous lane constant, it
follows the deviations which occurred along the previous lane. One would expect that this leads to
controller errors accumulating over time because additional controller errors occur while moving
parallel to the previous lane. However, the obtained trajectories do not reveal such controller errors
accumulating from lane to lane. Only the last lane of each experiment is usually more curved than
the other lanes. During all experiments, we have never observed that the current lane touches or
even crosses the previous lane.

4.5.2. Inter-Lane Distances

The results for analyzing the robot’s distance from the previous lane are summarized both in
figure 4.17 and in table A.1. For each lane i, the boxes mark the ranges I(i)0.50 from the lower quartile
P
(i)
0.25 to the upper quartile P (i)0.75 containing 50% of the obtained distance values. The median

inter-lane distance P (i)0.50 for each lane is depicted by the short horizontal lines dividing the boxes.
The whiskers span 90% of the distance values ranging from P

(i)
0.05 to P (i)0.95. We refer to this interval

as I(i)0.90. In the figure’s background, the median inter-lane distances P̄0.50 for pooling over all lanes
is visualized by the horizontal line. The gray area marks the range Ī0.50 between the lower quartile
P̄0.25 and the upper quartile P̄0.75 for pooling over all lanes.
For both experiments, the median lane distance for pooling over all lanes and trials is P̄0.50 =

29.8 cm. The lower and upper quartiles are P̄0.25 = 26.3 cm and P̄0.75 = 32.4 cm for experiment 1
(figure 4.17.1), and P̄0.25 = 26.2 cm and P̄0.75 = 32.2 cm for experiment 2 (figure 4.17.2). Thus, both
experiments achieve almost identical results. With few exceptions, the median values and inter-
quartile distances obtained for analyzing single lanes are similar to the overall values. Furthermore,
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Figure 4.16.: Cleaning trajectories of experiments 1 and 2. The plots in the left and right column depict the
trajectories of experiments 1 and 2, respectively. The top row shows the trajectories pooled over all 10 trials. The
second and third row contain a single trajectory obtained with systematic error to the left and the right, respectively.
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Figure 4.17.: Analysis of inter-lane distances of experiments 1 (subfigure (1)) and 2 (subfigure (2)). The boxes
visualize for each lane i the range I(i)0.50 containing 50% of the obtained distance values; the median P (i)0.50 is depicted by
the small horizontal line dividing each box. The whiskers span 90% of the inter-lane distance values ranging from the
P
(i)
0.05 to the P (i)0.95 percentiles. The gray area in the figure’s background marks the range Ī0.50 of inter-lane distances

containing 50% of the values for pooling over all lanes; the overall median P̄0.50 is depicted by the horizontal line.

the obtained results seem to be independent of the lane counter i (e.g. they do not increase with
increasing lane counter).
For experiment 1 (figure 4.17.1), the minimum and maximum median inter-lane distances are

P
(7)
0.50 = 27.9 cm and P (1)0.50 = 32.9 cm, respectively. The boxes span inter-quartile distances ranging from
I
(1)
0.50 = 4.5 cm to I(6)0.50 = 6.5 cm; the whiskers span inter-percentile distances between I(1)0.90 = 11.5 cm
and I(3)0.90 = 17.3 cm. For both measures, the range from the lower percentile to the median is larger
than the range from the median to the upper percentile. The measures for even lanes (robot is
moving in positive x-direction of ⟨W ⟩, i = 2, 4, . . .) and for odd lanes (moving in negative x-direction,
i = 1,3, . . .) do not differ.
The median inter-lane distances obtained for the 14 lanes of experiment 2 (figure 4.17.2) vary

between P (10)
0.50 = 24.2 cm and P (3)0.50 = 34.1 cm. For the first 11 lanes, the median inter-lane distances

of the even and odd lanes differ by several centimeters with the values of the odd lanes being larger.
Most inter-quartile distances I0.50 are approximately 6 cm, with I(1)0.50 = 3.6 cm and I(10)

0.50 = 9.1 cm
being the minimum and maximum inter-quartile distances. Most values of I0.90 are approximately
15 cm; minimum and maximum are I(12)

0.90 = 11.7 cm and I(6)0.90 = 23.9 cm, respectively.

4.5.3. Cleaning Performance
For analyzing the cleaning performance, we computed for each of the 20 trials the percentages of
the uncovered area A0, of the area A1 covered exactly once, and of the area A2 covered exactly
twice due to overlap between consecutive lanes1. As reference area, we used the area covered by
ideal cleaning runs as depicted in figure 4.10; parts of the robot’s trajectory outside these areas
have not been considered. The complete data is given in table A.2 and figures A.1 to A.4.

For experiment 1, the performance varies between A0 = 9.4 %, A1 = 81.6 %, and A2 = 9.0 % for the
worst and A0 = 6.4 %, A1 = 87.7 %, and A2 = 5.9 % for the best trial with an average performance
of Ā0 = 7.9 %, Ā1 = 85.4 %, and Ā2 = 6.7 %. The average performance of experiment 2 is slightly
worse: we obtained a performance of Ā0 = 10.3 %, Ā1 = 81.5 %, and Ā2 = 8.2 %. This experiment
also exhibits a larger variability between trials because the performance ranges from A0 = 17.2 %,
A1 = 71.7 %, and A2 = 11.1 % to A0 = 5.9 %, A1 = 89.3 %, and A2 = 4.8 %. Figure 4.18 shows for
1In more general experiments one would rather measure the area covered more than once.
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Figure 4.18.: Analysis of the cleaning performance for experiments 1 (subfigure (1)) and 2 (subfigure (2)). For each
experiment, one trial with a performance close to the experiment’s average performance is shown. The graphs depict
the robot’s trajectory (black line) together with the uncovered area A0 (light gray), the area A1 covered once (gray)
and the area A2 covered twice (dark gray). All trials of both experiments are depicted in figures A.1 to A.4.

each experiment the trajectory achieving the performance which is most similar to the average
performance. The figure reveals that the uncovered area is mostly due to gaps between consecutive
lanes because of the robot’s distance to the previous lane being too large. Both the uncleaned area
and the overlap between lanes do not increase with increasing lane number i. Rather, the method
seems to achieve equal performance over all lanes.

4.6. Discussion and Conclusions

The results presented in sections 4.5.1 to 4.5.3 show that the proposed trajectory controller is
capable of guiding the robot along parallel lanes while achieving a good coverage of the robot’s
workspace. Although several of the assumptions made for the controller’s derivation (equations (4.4)
and (4.19) to (4.21)) are not completely satisfied, the obtained results reveal that the assumptions
were chosen reasonably and that the controller exhibits a certain robustness against their violations.
In the remainder of this section, aspects related to partial pose estimation, dense topo-metric maps,
image disturbances, and further cleaning strategies will be discussed in more detail (sections 4.6.1
to 4.6.4); the conclusion will be summarized in section 4.6.5.

4.6.1. Partial Pose Estimation

Keeping the robot’s distance to its previous lane constant means that the robot’s desired trajectory
directly depends on its previous lane. This approach is potentially prone to controller errors
accumulating from lane to lane: in case the robot does not exactly follow its current desired
trajectory but oscillates around it, new controller errors occur, and the resulting trajectory will
influence the desired trajectory of the following lane. Nevertheless, such accumulating errors did
not occur during our experiments (figures 4.16 to 4.18). We think that this is due to the following
two reasons: (i) the selection of different triangulation sets and the fusion of the estimates provided
by each of these sets and (ii) the moving target distance t (equation (4.26)). Both aspects seem to
have a dampening influence on the robot’s trajectory causing the robot to follow the previous lane
smoothly. From these results we conclude that our approach relying on partial pose estimation is
sufficient to guide the robot along parallel and meandering lanes.
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In case accumulating controller errors should occur with the proposed method (e.g. under different
environmental conditions), they could be reduced (i) by correcting the estimates attached to the
corresponding place nodes at a later point in time, (ii) by selecting neighbors not along the previous
lane but along its prepredecessor, or (iii) by making the desired lane independent of the previous
lane. Subsequent improvements of initial estimates are usually performed by SLAM methods
(sections 2.2.2 and 3.6.1.2) and are essential for achieving globally consistent maps. However, they
are also the computationally most demanding parts of SLAM algorithms. For our future work, we
hope to avoid this step by completely covering the robot’s workspace by several locally consistent
cleaning segments rather than building a single globally consistent map (section 7.3.3). Selecting
snapshots stored along the last but one lane could probably improve the method’s performance.
However, it would also require a special treatment of the second cleaning lane (i = 1) and is for this
reason not considered.
Making the desired lane independent of the previous lane requires to specify the robot’s desired

lane with respect to world coordinates. However, this would require to estimate the robot’s full
pose ŝ(i,j) = (x̂(i,j), ŷ(i,j), θ̂(i,j))⊺, which could be determined by intersecting the rays defined by the
triangle’s base points s(i−1,j′) and s(i−1,j′′) and by the corresponding homing angles αk1 and αk2

(figure 4.6). The computations required to estimate the robot’s full pose use the same orientation and
bearing estimates than the proposed method. We are therefore of the opinion that directly using the
full pose estimates computed by this means would not considerably improve the navigation accuracy
of our method. We only expect improvements for fusing several estimates by a Bayesian filtering
framework (such as the Kalman or the particle filter; textbooks: [586, 630] and section 3.3.2.1)
which could use the sketched approach for its update step.

In parallel to the work described here, we implemented two similar control strategies based on
the Kalman filter and on the particle filter. The Kalman-filter method was initially implemented
in the diploma thesis by Janina de Jong [314] (co-supervised by Prof. Dr. Ralf Möller and Lorenz
Hillen) and later on refined in the course of her PhD project. Since the parameter tuning of the
Kalman-filter method has proven to be subtle, Prof. Dr. Ralf Möller implemented a similar method
relying on a particle-filter framework for position estimation (Möller et al. [457]). The parameters
of this method can be easily tuned in order to achieve good results. Prof. Dr. Ralf Möller recently
compared the method proposed in this chapter and the particle-filter method. The comparison
revealed that the particle-filter method produces straighter lanes, but both methods achieve a
comparable level of parallelism [457]. The Kalman-filter method and the particle-filter method both
compute the robot’s full pose and therefore allow to specify the desired lane in world coordinates.
For following the trajectory standard methods for trajectory control can be applied (review: [462];
textbook: [41, 586]). However, even such frameworks cannot completely prevent error accumulation
from lane to lane. Rather, a drift of the position estimate is likely to occur for any visual odometry
algorithm (reviews: [191, 563]). This problem is inherent to all methods using former robot positions
as landmarks because the correction step of the filter would still refer to snapshot images stored
along the previous lane. Thus, position errors and the corresponding uncertainties on the previous
lane could affect the estimates on the current lane. Although being computationally more complex,
we prefer the trajectory controller based on the particle filter for our future work because (i) it
produces straighter cleaning lanes and (ii) it allows for specifying trajectories in world coordinates
and applying standard controllers for trajectory following. The latter aspect can facilitate further
strategies required for completely covering complex-shaped workspaces (section 7.3.2) because such
strategies require path following in order to approach uncleaned areas or the robot’s charging station.

4.6.2. Dense Topo-Metric Maps

The results have also shown that dense topo-metric maps are applicable for completely covering
segments of the robot’s entire workspace. By adding new snapshots at regular distances, a sufficiently
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large number of snapshots is available for correcting the robot’s position while still preserving the
advantages of topological maps (section 4.2). We consider the choice of the inter-snapshot distance
∆s = 10 cm to be sufficient for our application and do not expect that smaller choices of ∆s could
improve the performance of the proposed controller. This is due to the observation (unpublished
data) that home vectors computed from a current view and a series of neighboring snapshots taken
along the previous lane have correlated errors with the strength of the correlation depending on the
spatial distance between the snapshots. Furthermore, smaller choices of ∆s would also increase the
memory requirements of the resulting topo-metric map. We expect that more complex cleaning
strategies for completely covering complex-shaped workspaces can be developed based on dense
topo-metric maps (section 4.6.4).

4.6.3. Influence of Image Disturbances

Like any appearance-based method, local visual homing and hence also the proposed trajectory
controller are prone to image disturbances as, among others, caused by dynamic scene changes
(section 3.2.3.2), changes of the illumination (section 3.2.3.2), or a tilt of the robot if rolling over a
cable or a carpet border. In its current implementation, the controller is not capable of detecting or
reacting to such situations. A certain, but probably limited, robustness should arise from fusing
several estimates as described in section 4.3.3.4. By this means, the proposed strategy would be
converted from a deterministic approach to a probabilistic navigation method. If the underlying
homing method is not robust against such image disturbances, the computed home vectors will be
erroneous and the estimated inter-lane distance will deviate. We are of the opinion that achieving
robustness against image disturbances should be part of the underlying homing method and not of
the control algorithm. This assures that correct home vectors are passed to the controller.

As shown by Möller, Krzykawski, and Gerstmayr [451] and observed in many unpublished
real-robot experiments, the min-warping method (section 4.4.2) used in this chapter is capable of
computing accurate home vectors over a wide range of different environments. Although we have
not systematically investigated its robustness against image disturbances, we observed a certain
tolerance against illumination changes and dynamic scene changes. Figure 4.19 gives an impression
how the method performs under strong disturbances due to dynamic changes of the scene. Even
though the method will not be fully invariant against image disturbances like changing illumination
conditions or dynamic scene changes, we expect it to at least tolerate a certain amount of image
disturbances. In case a sufficient robustness against image disturbances cannot be achieved by local
visual homing methods alone, further strategies for detecting image disturbances could consult the
dense topo-metric map. Section 7.3.1 describes such approaches in the context of detecting dynamic
scene changes.
Further aspects which can cause homing to fail are featureless environments or anisotropic

distributions of visible objects. In the former case, our warping method (section 4.4.2) could not
establish matches between image columns, whereas the second case would result in erroneous
home-vector estimates [190, 379, 452]. For a potential product, such special cases should be detected
and backup strategies such as random walk should be provided by the robot’s control scheme
(section 7.3.2).

4.6.4. Implications for Further Cleaning Strategies

In case only a single, rectangular segment is cleaned, the uncleaned area is due to gaps between
consecutive cleaning lanes. Thus, the covered area could be further increased by reducing the desired
inter-lane distance ∆l. However, this would be at the cost of increasing the proportion of repeated
coverage. The results presented in section 4.5 show that relatively large areas can be covered by
the proposed method. As real apartments are usually more cluttered, we expect the maximum
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Figure 4.19.: Trajectory controller and dynamic scene changes. The figure shows five images from a video sequence
recorded during a demonstration of the proposed method given at the science festival GENIALE [I14] (Bielefeld,
October 2008). We demonstrated an earlier implementation of the proposed trajectory controller running on an Adept
MobileRobots Pioneer 3DX [D2] mobile robot equipped with a hyperbolic mirror (Accowle Large Type Wide Angle
[D1]; figure 3.7.3). Subfigure (1) depicts the robot’s trajectory at the end of the fourth cleaning lane. The trajectory
(red line) was recovered manually by analyzing the video sequence. While the robot was moving along the fourth lane,
a boy was moving close to the robot trying to disturb it. The resulting lane is more curved than the previous ones,
but the method did not completely fail. Along the fourth lane, four points in time are marked by yellow circles. The
circles mark the situations depicted in subfigures (2) to (5). Figure requires color printing.

area which can be covered by a single cleaning segment to be much smaller (figure 7.3). For this
reason, good strategies for combining several cleaning segments and for keeping the first lane of
these segments straight have to be developed. Based on these strategies, we hope to be able to
circumvent the computationally demanding steps of subsequent position corrections by building
a hierarchical representation of space with a purely topological representation on top of several
locally consistent submaps each corresponding to a single cleaning segment (section 7.3.3). Even if
real apartments require the decomposition into several smaller cleaning segments, we think that a
decomposition into rectangular segments of parallel lanes is the best choice for most of the cases.
For special cases which cannot be covered efficiently by parallel and meandering lanes, alternative
cleaning strategies or backup strategies could be provided by a more elaborated framework of
cleaning strategies (section 7.3.2).
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4.6.5. Conclusions
We conclude that the proposed method is capable of guiding the robot along parallel and meandering
lanes and of achieving a good coverage with only a small portion of uncleaned areas or repeated
coverage between lanes. It is therefore suitable for covering a single segment of the robot’s workspace
and concurrently mapping it. Such segments can then be combined by a more sophisticated control
architecture to systematically and completely cover complex-shaped workspaces (section 7.3.2).
We furthermore conclude that the dense topo-metric map built while the robot cleans its current
segment is an appropriate spatial representation for cleaning-robot control. With their fine spatial
resolution, these maps are well suited for frequently repeating the distance-estimation steps described
in section 4.3 and for achieving precise navigation. For future work, we will abandon the concept
of partial pose estimation propagated in this chapter in favor of our particle-filter method. The
particle-filter method yields straighter lanes and knowing the robot’s full pose can facilitate more
elaborated cleaning structures. These two advantages outweigh the larger computational effort of
methods estimating the robot’s full pose with a Bayesian filter. To this end, a cleaning-trajectory
controller based on partial pose estimation has to be considered a theoretically intersecting concept
but —at least for the proposed algorithm— has limitations for the application in combination with
full-fledged cleaning strategies.

4.7. Future Working Directions
Several future working discussions were already mentioned in sections 4.6.1 to 4.6.4. They mainly
include working towards a complete framework of cleaning strategies (section 7.3.2). Such a
framework is required to completely cover complex-shaped workspaces by combining several segments
of parallel and meandering lanes as resulting from the proposed trajectory controller. The resulting
system will make use of the underlying dense topo-metric map for detecting areas which still need
to be cleaned, for loop-closure detection to avoid repeated coverage (e.g. by applying the methods
proposed in chapters 5 and 6), for planning and approaching new lanes or new cleaning segments, and
for planning and following paths back to the robot’s charging station. Based on the decomposition
of the robot’s workspace into several segments of meandering lanes, interesting possibilities arise in
the context of hierarchical mapping. These will be further described in section 7.3.3. The dense
topo-metric map built by the trajectory controller proposed in this method could also be used to
increase the robustness of the navigation strategies against dynamic scene changes. For details
please refer to section 7.3.1.
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5. Holistic Loop-Closure Detection and Visual
Compass

We present loop-closure detection methods relying on pixel-by-pixel comparisons of images
and on a visual compass. As the proposed methods compare entire images, we refer to
them as holistic methods. In order to increase the robustness against changes of the
illumination, we apply image preprocessing methods prior to image comparison.
The chapter is structured as follows: section 5.1 briefly introduces loop-closure detection
based on global image comparisons. A detailed description of the used methods follows
in section 5.2. The experimental procedure and evaluation methods are explained in
section 5.3. Sections 5.4 and 5.5 describe the experiments for the standard method and an
accelerated variant, respectively. The chapter ends with a final summary and an outlook
to future work (section 5.6).
Parts of this chapter are inspired by the bachelor’s thesis of Björn Böttcher [60] supervised
by Lorenz Hillen and Dr. Wolfgang Stürzl. For the computation of AUC values (sec-
tion 5.3.1), a program written by Oliver Schlüter during the course of his bachelor’s thesis
[575] (supervised by Lorenz Hillen and Martin Krzykawski) is used; the other evaluation
and visualization software was implemented by Lorenz Hillen. Section 5.3.1.1 of this thesis
is an extension of section IV of our conference publication Gerstmayr-Hillen et al.
[223].
Preliminary results from this chapter have already been presented as a poster Gerstmayr-
Hillen and Möller [220].

5.1. Introduction

In this chapter, we propose holistic loop-closure detection methods relying on pixel-by-pixel com-
parisons between the robot’s current camera image and images stored in the dense topo-metric map
(sections 3.6.3.2 and 4.2) of the robot’s workspace. By such comparisons, an image dissimilarity
value is computed, which can then be used to detect loop closures by classifying whether or not the
compared images are identical. For comparing images, we apply global image dissimilarity functions
which —in contrast to local image dissimilarity functions— do not subdivide the images into local
patches (Giachetti [225]). In the following, we prefer the term “image dissimilarity” over the
commonly used term “image distance” in order to emphasize the difference between image dissimi-
larity and the spatial distance between the positions of image acquisition. Loop-closure detection by
global image comparisons requires that the compared images are aligned w.r.t. a common reference
direction. We therefore apply the holistic visual compass method (section 3.4.2.1) proposed by Zeil,
Hoffmann, and Chahl [718] to align the images prior to loop-closure detection. It aligns the
images by shifting one of the images step-by-step and minimizing the global image dissimilarity
between the shifted image and the reference image. Thus, the residual of this optimization can be
directly used for loop-closure detection. In order to achieve the best possible loop-closure detection
performance, we test the visual compass with a wide range of different image dissimilarity functions.
As most of the tested dissimilarity functions are not robust against changes of the illumination, we

117



5.2. Methods

apply image preprocessing methods such as edge detection or early-vision models before comparing
the images. By this means, we expect to achieve invariance or at least tolerance against changes of
the illumination.

Analogous to holistic representations of places (section 3.3.1.1), using the entire image to represent
places based on visual information, we refer to the methods proposed in this chapter as holistic
loop-closure detection. In comparison to loop-closure detection based on global image signatures
(chapter 6), the methods proposed in this chapter are computationally more complex because images
are compared pixel-by-pixel and not by matching lower-dimensional signatures. The methods tested
in this chapter solve the correspondence problem implicitly by aligning the images w.r.t. a common
reference direction. This distinguishes pixel-based methods from feature-based approaches to loop-
closure detection. Such methods are currently the standard approach to loop-closure detection.
They extract features by a point-of-interest detector (section 3.3.1.3), characterize these features by a
feature descriptor and establish correspondences between such descriptors, frequently in conjunction
with an outlier removal procedure. The advantages of these methods are (i) that they do not require
the images to be aligned w.r.t. a common reference direction for establishing correspondences and
(ii) that —due to using local image patches for all involved operations— they could exhibit a better
robustness against illumination changes. However, they require a large algorithmic effort and in
some cases also a training stage to allow for efficient image comparisons (section 3.3.1.3).
As already outlined in section 3.2.3.3, not correctly detecting loop closures causes maps to

become inconsistent and navigation to fail. For an autonomous cleaning robot, this results in
uncovered areas or in repeated coverage caused by gaps or overlap between neighboring cleaning
segments. Furthermore, if several cleaning segments are combined to completely cover the robot’s
workspace (section 7.3.2), loop-closure detection can be used to find shortcuts between segments.
Since the robot’s position estimate is likely to drift over time, loop-closure algorithms need to be
purely vision-based and cannot rely on the position estimate. For these reasons, visual loop-closure
detection is an essential subsystem for such a robot. The following section describes the proposed
holistic loop-closure detection methods in more detail.

5.2. Methods

The algorithm for loop-closure detection based on global image comparisons is sketched in figure 5.1:
the robot’s current camera image CP is unfolded to a cylindrical camera image IP . If the robot
has traveled a predefined distance since adding the last place node, a new node is added to the map
which has the image IP and an estimate of the robot’s current position attached (see chapter 4 on
details of the map-building and position estimation). As most of the image dissimilarity functions
used for image comparisons are not robust against changes of the illumination, the images are
preprocessed prior to image comparison by applying an appropriate preprocessing function p. This
step is supposed to reduce or even eliminate the influence of illumination changes. Preprocessing
yields the preprocessed image P = p(IP ). If storage capacity is not a limiting factor or repeated
applications of the preprocessing function should be avoided, the preprocessed image P can also be
attached to the corresponding place node. For loop-closure detection, the preprocessed image P is
compared to preprocessed images Qi = p(IQi) stored in the topological map. For each considered
image pair, this results in the image dissimilarity ˆ̀

i which is used to classify whether the images
IP and IQi are identical or not by a binary classification of ˆ̀

i w.r.t. the decision threshold `t.
Depending on the number of images stored in the map, this procedure requires a large number of
image comparisons. By selecting the images Qj only from the borders of cleaning segments, the
number of comparisons can be considerably reduced. Nevertheless, efficient image comparisons are
required to make the proposed methods applicable on a real cleaning robot. For sake of simplicity,
we will in the following omit the subscript i and refer to the second image solely as Q.
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Figure 5.1.: Principles of holistic loop-closure detection. By covering the robot’s workspace with segments of parallel
lanes (dashed lines), a dense topo-metric map (sections 3.6.3.2 and 4.2) is built (edges not shown). Loop closures are
only tested between the current image and the border of cleaning segments to avoid that the robot enters an already
cleaned area. For loop-closure detection, the images IP and IQi are preprocessed by a preprocessing function p. The
preprocessed images P and Qi are compared by the compass function zd, which aligns the images w.r.t. a common
reference direction and computes the dissimilarity ˆ̀

i of the considered image pair (Zeil, Hoffmann, and Chahl
[718]). The images can be aligned by shifting one of the images by ŝi columns; the discrete compass shift ŝi could also
be expressed as angle ψ̂i. The dissimilarity value ˆ̀

i is used for classification w.r.t. a classification threshold `t.

As image dissimilarity functions (reviews: [19, 91, 92, 225, 549, 635]) are not invariant under
rotations of the robot, computing the image dissimilarity ˆ̀ requires the images P and Q to be
aligned w.r.t. a common reference direction. This can be achieved by applying a visual compass
method (section 3.4). As the holistic compass methods implicitly involve pixel-by-pixel comparisons
of the compared images, these methods are best suited for loop-closure detection based on global
image comparisons. The method proposed by Zeil, Hoffmann, and Chahl [718] iteratively shifts
the panoramic image Q by s columns, resulting in the shifted image Q(s). In each step, the image
dissimilarity

`(s) = d (P ,Q(s)) (5.1)

between P and the shifted image Q(s) is computed (figure 5.2). By minimizing `(s) over all possible
column shifts s (0 ≤ s < w with w being the image width), the compass function

zd(P ,Q) =
w−1
min
s=0

` (s) (5.2)

= ˆ̀ (5.3)

computes the image dissimilarity ˆ̀ between images P and Q of width w. The compass shift is
obtained by computing the shift

ŝ = arg
w−1
min
s=0

`(s) (5.4)

which resulted in ˆ̀. Throughout this chapter we consider the compass shift to be discrete and
therefore stick to ŝ rather than denoting it by the angle ψ as is the case in chapters 3 and 4.
The compass method’s overall complexity is O(w2h) because for each of the w possible image
shifts wh pixel-by-pixel comparisons have to be computed. In the following, the tested image
preprocessing methods (section 5.2.1) and dissimilarity functions (section 5.2.2) will be described.
A more detailed analysis of computing times for the proposed methods and tested parameter sets is
given in sections 5.4.4 and 5.4.5.
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Figure 5.2.: Properties of the vision-based compass proposed by Zeil, Hoffmann, and Chahl [718]. The properties
are outlined assuming the following trajectory (left column): the robot is initially located at position (1) facing
upwards, rotates (2), translates (3) and finally reaches pose (4). The middle column shows from bottom to top the
images acquired at positions (1) to (4). The right column visualizes the dissimilarity `(s) vs. the compass shift s
for applying the compass method to images (1) and (1) (bottom), (1) and (2), (1) and (3), and (1) and (4) (top).
With increasing spatial distance to the reference position (1), the image dissimilarity of the minimum `min (open dot)
increases. This effect is exploited for loop-closure detection. The shift smin leading to `min is used as estimate for
the change of the robot’s orientation between the compared snapshots. For increasing spatial distance, the estimate
deviates stronger from the true change of orientation (vertical dotted lines). As distance function, the sum of squared
differences (dssd) was used; all images were taken from the roeben database (section 5.3.1.1).

5.2.1. Image Preprocessing Functions
The image preprocessing functions play an essential role for successful and robust loop-closure
detection: they are supposed to reduce the influence of changes of the illumination on image
intensities, and they should facilitate the loop-closure detection based on the image dissimilarity
computed in the subsequent processing step. For this purpose, an ideal preprocessing method should
exhibit robustness against perceptual aliasing1 (i.e. it should be able to cope with spatially different
places having identical visual appearance; section 3.2.3.1) as well as robustness against perceptual
variability (i.e. they should tolerate a certain amount of illumination changes and dynamic scene
changes; section 3.2.3.2):

p(I(x)) = p(I ′(x′)) iff x = x′, and (5.5)
p(I(x, t)) = p(I(x, t′)). (5.6)

Thus, two preprocessed images P = p(I(x)) and P ′ = p(I ′(x′)) should be identical if and
only if the original images I and I ′ were acquired under identical robot poses x = (x, y, θ)⊺ and
x′ = (x′, y′, θ′)⊺. Furthermore, preprocessed images are supposed to be identical if they were acquired
at a single position in space but at different points t and t′ in time. The image preprocessing
methods p tested in this chapter can be categorized into the identity function (pid), first-order and
second-order edge detectors (ppw, psob, plap, and pdog), early-vision models (pdl, pdlc, and pdv), and
histogram equalization (pheq). The categorization of preprocessing functions is depicted in figure 5.3,
and example images are shown in figure 5.7.

Identity Function
The identity function

pid(I) = I (5.7)
does not change the intensities of image I. It is tested for the sake of completeness and to test
whether or not image preprocessing methods can increase the tolerance against illumination changes.
1“Perceptual aliasing” is often referred to as “spatial aliasing”.
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Figure 5.3.: Categorization of preprocessing functions used for holistic loop-closure detection. Preprocessing functions
tested with several parameters are marked by a star (*). The numbers given in parentheses refer to the equation
defining the corresponding function (except for histogram equalization which is only described in words).

Edge Detectors
Edges are image features which are frequently considered to be invariant against illumination changes
(e.g. [644]). This assumption only holds for edges resulting from static objects but is violated for
edges resulting from shadow casting because the image location and strength of such edges can
change over time due to changes of the illumination conditions. Nevertheless, we test several edge
detectors as preprocessing methods. As first-order edge detectors, we use the magnitudes of the
intensities of the images filtered with horizontal and vertical Prewitt and Sobel operators:

ppw(I) =
√

(Kpw ∗ I)2 + (K⊺

pw ∗ I)2 with Kpw =
⎛
⎜
⎝

1 0 −1
1 0 −1
1 0 −1

⎞
⎟
⎠

and (5.8)

psob(I) =
√

(Ksob ∗ I)2 + (K⊺

sob ∗ I)2 with Ksob =
⎛
⎜
⎝

1 0 −1
2 0 −2
1 0 −1

⎞
⎟
⎠
. (5.9)

As second-order corner detectors, we test the Laplacian

plap(I) =Klap ∗ I with Klap =
⎛
⎜
⎝

0 1 0
1 −4 1
0 1 0

⎞
⎟
⎠

(5.10)

and the difference of Gaussians (DoG) operator:

pdog(I) = (Kgau(σ1) −Kgau(σ2)) ∗ I. (5.11)
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The DoG operator is obtained by subtracting the Gaussian filter kernel Kgau(σ2) with standard
deviation σ2 from the filter kernel Kgau(σ1) with standard deviation σ1. The filter kernels are
computed as a discretization of the 2D Gaussian function

gauss(x, y, σ) = 1√
2πσ2

exp(−x
2 + y2

2σ2 ) . (5.12)

Early Vision Models
Preprocessing functions based on models of the early visual system of mammals are considered here
because this part of the visual system is essential for achieving illumination invariance. These first
stages of the visual pathway and preprocess the incoming visual stimuli for further processing in
higher cortical brain areas. For further details the reader is referred to the reviews focusing on
modeling aspects (reviews: [81, 495, 588]) and on neurobiological aspects (textbooks: [320, 504]).
In order to achieve illumination invariance, the retina and the Lateral Geniculate Nucleus (LGN)
are essential: these brain areas adjust the high dynamic range of the incoming signals to the limited
activity range of subsequent neurons. Luminance and contrast information are processed by separate
mechanisms referred to as luminance control and contrast gain control, respectively [81]. As models
of these mechanisms, divisive normalization techniques (also referred to as divisive inhibition) have
been established in the literature (examples: [50, 51, 162, 192, 276, 406, 487]; review: [81]). The
models include a division of the raw or preprocessed input signal by the local luminance

L(I) =Kgau(σ) ∗ I, (5.13)

by the local intensity variation

V(I) =
√
Kgau(σ) ∗ (I − L(I))2, (5.14)

or by a combination of both. The local luminance L(I) is the locally weighted average of gray-values;
the local intensity variation V(I) is the locally weighted deviation from the local luminance L(I).
Both building blocks for divisive normalization methods operate locally on image patches rather
than on the entire image. The size of the considered patches depends on the standard deviation
σ of the involved Gaussian filter kernel Kgau(σ). This also reduces the influence of signal noise
which would otherwise be amplified. Divisive normalization techniques are closely related to image
whitening, i.e. removing correlations between neighboring pixels (e.g. [233, 494, 495]).

Based on a divisive normalization, we test the following early-vision models: the local-contrast
function

pdl(I) =
V (I)
L(I) , (5.15)

was proposed by Mante et al. [406] and computes the local contrast of the considered image patch.
In this case, the divisive normalization is obtained through dividing the local intensity variation
V(I) by the local luminance L(I). The function

pdv(I) =
I −L(I)
1 − V (I)

σ1/2

, (5.16)
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referred to as dividing by variation was proposed by Stürzl and Zeil [612]. It divides the deviation
of the intensity I from the local luminance L(I) by the local intensity variation V(I). The strength
of the divisive normalization is adjusted by the additional parameter σ1/2 with larger values of σ1/2
resulting in a stronger normalization. As the difference in the function’s numerator can get negative,
this function can obtain negative pixel intensities, and special care was required for implementation
(section 5.3.1.3). The dividing by luminance/contrast function

pdlc(I) =
I

L(I) (1 + V (I)
L(I) )

(5.17)

was derived by Böttcher [60]. It normalizes the image intensities I depending on the local
luminance L(I) and the local contrast V(I)

L(I) . Therefore, it strengthens dark image regions and image
areas with low local contrast similar to properties of the early visual system discussed in (e.g. [162]).

Histogram-Based Preprocessing
The preprocessing function pheq performs a histogram equalization (e.g. [67, 241]) of the image I.
Hence, it adjusts the global image contrast by transforming the image’s gray-value distribution into
a uniform distribution. The uniform distribution is computed w.r.t. a certain number b of histogram
bins.

5.2.2. Global Image Dissimilarity Functions
Within the compass function zd (equation (5.2)), the image dissimilarity function d is used to
compare the preprocessed images P = p(IP ) and Q = p(IQ). Please refer to [19, 91, 92, 225,
549, 635] for reviews on different image dissimilarity functions. For image comparisons, image
dissimilarity functions rely on pixel-by-pixel operations and should —in an ideal case— exhibit the
following four properties:

d(P ,Q) ≥ 0 (5.18)
d(P ,Q) = 0 iff P =Q (5.19)
d(P ,Q) = d(Q,P ) (5.20)
d(P ,Q) ⋅∼ dist(xP ,xQ) (5.21)

Equations (5.18) and (5.19) require the dissimilarity function d to be positive and zero if and only if
the images P and Q are identical. In their usual definition, correlation-based dissimilarity functions
(equations (5.36) to (5.39)) and the mutual information (equation (5.42)) yield a maximum value for
identical images. Nevertheless, by considering the negative of these, this maximization can be turned
into a minimization (the definitions given below follow this principle). This allows to apply the
compass function (equation (5.2)) without further adaptation. However, equations (5.18) and (5.19)
have to be modified to take into account that for these comparison functions (i) a possibly negative
global minimum not equal to zero should be taken for identical images and (ii) a comparison of
different images should lead to values larger than this global minimum. Equation (5.20) requires
the dissimilarity function d to be symmetric; equation (5.21) states that the image dissimilarity
d(P ,Q) should depend monotonically on the spatial distance dist(xp,xq) between the positions of
image acquisition xp and yp.
Within this chapter, we only consider global image dissimilarity functions which compare the

entire image pixel-by-pixel without sub-dividing it into several sub-images as it is the case for
local dissimilarity functions. Local dissimilarity functions compute the dissimilarity for each of the
subpatches and combine the obtained sub-dissimilarities to a scalar dissimilarity value. Here, we do
not consider local image dissimilarity functions because dividing the image into patches and fusing
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Figure 5.4.: Categorization of tested image dissimilarity functions. Dissimilarity functions tested with several
parameters are marked by a star (*); the numbers given in parentheses refer to the equation defining the corresponding
function. Extended after Giachetti [225].

the dissimilarities of the patches would increase the computational complexity of the comparison
methods. Furthermore, the probability of ambiguous matches is larger for comparing smaller image
regions.

In order to achieve robust combinations of image preprocessing and image dissimilarity functions,
we test various dissimilarity functions (figure 5.4) based on absolute gray-value differences (dsad,
dzsad, dssad and dmaxn), based on squared gray-value differences (dssd, deucl, drms, dzssd, dsssd,
dasc, daoc and dasoc), based on image correlations (dcc, dfcc, dncc, and dzncc) and based on an
information-theoretic measure (dmi). These measures will be described in the following.

Dissimilarity Functions Using Absolute Pixel Differences
Difference measures use the difference between corresponding pixels to measure the image dissimi-
larity. In order to achieve a symmetric measure and to achieve only positive distances, the measures
rely on sums of absolute or squared pixel differences. For the class of difference measures relying on
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5. Holistic Loop-Closure Detection and Visual Compass

absolute distances, the sum of absolute differences

dsad(P ,Q) =
w−1
∑
x=0

h−1
∑
y=0

∣P (x, y) −Q(x, y)∣ (5.22)

adds up the absolute values of all pixel differences. The functions

dzsad(P ,Q) = dsad(P − P̄ ,Q − Q̄) and (5.23)

dssad(P ,Q) = dsad (P ,
P̄

Q̄
Q) (5.24)

are variants of dsad: the zero-mean sum of absolute differences dzsad subtracts the average pixel
intensities

P̄ = 1
wh

w−1
∑
x=0

h−1
∑
y=0

P (x, y) and (5.25)

Q̄ = 1
wh

w−1
∑
x=0

h−1
∑
y=0

Q(x, y), (5.26)

and the scaled sum of squared differences dssad scales the image with the ratio P̄
Q̄

of average pixel
intensities. The latter function violates equation (5.20) because scaling the intensities of only one
image results in a non-symmetric dissimilarity measure. It could be turned into a symmetric measure
by scaling both images as proposed by Möller [449], but this approach is not considered here.
As the average pixel intensities are independent of the current shift s, P̄ and Q̄ do not have to be
recomputed for each shift s considered by the compass method.
The maximum norm

dmaxn(P ,Q) = max
x,y

∣P (x, y) −Q(x, y)∣ (5.27)

computes the maximum of all absolute pixel differences.

Dissimilarity Functions Using Squared Pixel Differences
Functions relying on squared pixel differences are all variants of the sum of squared differences
function

dssd(P ,Q) =
w−1
∑
x=0

h−1
∑
y=0

(P (x, y) −Q(x, y))2 . (5.28)

The variants can further be categorized into traditional dissimilarity measures and alternative
dissimilarity measures. Traditional variants are the Euclidean distance deucl obtained by taking
the square root, the root mean square error drms obtained taking the square root of the average
squared pixel differences, the zero-mean sum of squared differences dzssd obtained by subtracting
the average pixel intensities P̄ and Q̄ from the images, and the scaled sum of squared differences
dsssd obtained by scaling the image Q by P̄

Q̄
:

deucl(P ,Q) =
√

dssd (P ,Q), (5.29)

drms(P ,Q) =
√

1
wh

dssd (P ,Q), (5.30)

dzssd(P ,Q) = dssd (P − P̄ ,Q − Q̄) and (5.31)

dsssd(P ,Q) = dssd (P ,
P̄

Q̄
Q) . (5.32)
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The Euclidean distance deucl and the root mean square error drms are tested only for the sake of
the completeness. They are scaled versions of the sum of squared differences and therefore take
identical optima. The scaled sum of squared differences dsssd is not a symmetric measure and
therefore violates equation (5.20). Symmetry could be achieved by scaling both images as proposed
in Möller [449].

Alternative Dissimilarity Functions
In Möller [448, 449] a set of alternative dissimilarity measures2 are proposed which are based
on the sum of squared differences measure but were derived in order to tolerate certain changes of
the illumination. The methods were originally developed for 2D-warping methods (sections 3.5.2.2
and 4.4.2) and are here applied as global image dissimilarity functions. To derive the measures, it
is assumed that changes of the illumination can be modeled as a linear transformation of image
intensities, i.e. as a scaling and a constant shift of the image intensity (section 5.2.4). By minimizing
the influence of such an intensity change onto the resulting sum of squared distances measure, a set
of dissimilarity functions

dasc(P ,Q) = ∥P ∥∥Q∥
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.i.

− ⟨P ,Q⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

r.d.

, (5.33)

daoc(P ,Q) = wh( var(P ) + var(Q)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r.i.

− cov(P ,Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.d.

) , and (5.34)

dasoc(P ,Q) = wh (
√

var(P )var(Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.i.

− cov(P ,Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.d.

) (5.35)

is obtained (see appendix C.1 for a recapitulation of the derivation). Depending on the type
of intensity changes which can be compensated by the dissimilarity function, we refer to these
functions as scale-compensating function (dasc), offset compensating function (daoc) and scale/offset-
compensating function (dasoc).

As the functions do not include a divisive normalization (as is the case for the early-vision
models), these functions do not amplify noise contained in homogeneous image regions. If applied
as dissimilarity function for the visual compass, parts of the functions are rotationally invariant
(in equations (5.33) to (5.35) marked by r.i.) and can be precomputed before the image is shifted.
The rotation-dependent components (marked by r.d.) have to be computed for each tested image
shift. In equations (5.33) to (5.35), the notation of the scalar product, the norm, the variance, and
the covariance are for sake of simplicity extended from vectors to images because every image can
easily be converted into a vector, e.g. by stacking image columns. For matching image columns
in the 2D-warping algorithm, the dissimilarity functions dasc, daoc, and dasoc are combined with a
dissimilarity function measuring the squared differences of the mean image intensities (Möller [448,
449]). This measure is not invariant against changes of the illumination and was introduced in order
to avoid mismatches between image columns resulting from erroneously transforming the intensities
of one image column into those of the other. In the context of 2D warping, such mismatches can for
example occur for comparing two image columns of constant, but different intensities. Nevertheless,
for pixel-based loop-closure detection we test the proposed dissimilarity measures dasc, daoc, and
dasoc without such a combination: First, for global image comparisons, the mean image intensities
are independent of the robot’s orientation and thus the combined distance measure would only have
an influence on the minimum image dissimilarity ˆ̀ but not on the compass shift ŝ. Second, we
consider such erroneous mismatches to be less likely if entire images are compared instead of single
image columns.
2To make explicit that these measures belong to the same class, their acronyms all begin with an “a” for “alternative”.
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Correlation-Based Dissimilarity Functions
All correlation-based dissimilarity functions are variants of the negative cross-correlation function

dcc(P ,Q) = − ⟨P ,Q⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

r.d.

. (5.36)

The computational effort of computing the cross-correlation function can be considerably reduced by
applying the cross-correlation theorem and computing the cross correlation in the Fourier domain
(textbook: [65]). Section 5.2.3 describes a variant of the visual compass method approximating
dcc based on this theorem. The variants of the cross-correlation function include the normalized
cross-correlation coefficient

dncc(P ,Q) = 1
∥P ∥∥Q∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.i.

dcc(P ,Q) (5.37)

= dcc(P ,Q)¿
ÁÁÀw−1
∑
x=0

h−1
∑
y=0

P (x, y)2
w−1
∑
x=0

h−1
∑
y=0

Q(x, y)2

(5.38)

and the zero-mean normalized cross-correlation coefficient (again P̄ and Q̄ are independent of the
considered image shift s):

dzncc(P ,Q) = dncc (P − P̄ ,Q − Q̄) (5.39)

=

w−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )(Q(x, y) − Q̄)
¿
ÁÁÀw−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )2(Q(x, y) − Q̄)2

(5.40)

=

r.d.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
cov(P ,Q)√

var(P )var(Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.i.

. (5.41)

The normalized cross correlation dncc and the zero-mean normalized cross-correlation dzncc are
closely related to the alternative distance measures dasc and dasoc (equations (5.33) and (5.35))
because they combine the same building blocks. Relations between different correlation measures
are discussed by Pan, Xie, and Wang [502]. Again, the covariance cov between the images is
dependent on the robot’s orientation, whereas the image variance var is rotationally invariant.

Information-Theoretic Dissimilarity Measure
The mutual information dmi is an information-theoretic measure and computes the mutual depen-
dence of the gray-value distributions underlying the images P and Q (review: [358], textbook: [122]).
In contrast to the covariance, the mutual information also measures higher-order dependencies being
zero if the images are completely independent of each other. Like for correlation-based dissimilarity
measures, the negative of the mutual information

dmi(P ,Q) = −
b−1
∑
i=0

b−1
∑
j=0

hPQ(i, j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.d.

log

r.d.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
hPQ(i, j)
hP (i)hQ(j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r.i.

(5.42)
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ˆ̀

Figure 5.5.: Principles of accelerated compass variant. The robot’s current camera image CP is unfolded resulting
in the cylindrical image IP . IP is then preprocessed by applying the preprocessing function p and divided into r
one-dimensional subpanoramas P̄ j . Each subpanorama P̄ j is compared to the corresponding subpanorama Q̄i,j by
computing the cross correlation dfcc in the Fourier domain. Thus, for each of the r subpanoramas, a dissimilarity
value ˆ̀

j and an estimate of the orientation change ŝj is computed. The estimates are fused to a scalar dissimilarity
value ˆ̀ used for loop-closure detection and a scalar compass shift ŝ, respectively.

is used for loop-closure detection because the mutual information reaches its maximum for identical
images. The gray-value histograms hP and hQ with b bins represent the gray-value distributions
of the images P and Q; the joint image histogram hPQ approximates the two-dimensional joint
distribution representing the probability that corresponding pixels P (x, y) and Q(x, y) belong to
bins i and j (for 0 ≤ x < w and 0 ≤ y < h). As the gray-value histograms hP and hQ are independent
of the considered image shift s, only the joint histogram hPQ has to be recomputed inside the
compass loop. The mutual information has been applied as a distance measure for stereo matching
(e.g. [285, 286]), image registration (e.g. [120, 516, 627]), visual homing (e.g. [617]), object tracking
(e.g. [503]), and for feature extraction (e.g. [479, 510]).

5.2.3. Accelerated Compass Method Operating in the Fourier Domain
In this section, we describe a new holistic compass method operating in the Fourier domain. The
method is capable of estimating the compass shift more efficiently than the standard compass
method by Zeil, Hoffmann, and Chahl [718] described at the beginning of figure 5.1. Our new
method is more efficient because it computes the compass shift and the image dissimilarity value in
the Fourier domain from a single image comparison without shifting one of the images step-by-step.
The method is sketched in figure 5.5 and relies on the discrete cross-correlation theorem

F(f ⋆ g) = F(f)∗ ⋅F(g), (5.43)

which states that the cross correlation f ⋆ g of two periodic functions f and g can be expressed in
the frequency domain as a multiplication of the complex conjugate F(f)∗ with F(g) (textbook:
[65]). For the special case of the auto-correlation, i.e. for f = g, the cross-correlation theorem is
referred to as Wiener-Khinchin theorem. The theorem generalizes to two- and more-dimensional
functions but also requires the periodicity of the functions in more dimensions. Due to this, the
theorem cannot be applied to 2D panoramic images as the images are periodically closed only in
horizontal direction, but not in vertical.
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To apply the theorem to panoramic images, the preprocessed images P and Q are subdivided into
r subpanoramas P j and Qj (0 ≤ j < r) of equal height. The principle of subpanoramas is also used
by Gonzalez-Barbosa and Lacroix [242] for signature-based navigation and is in chapter 6 used
for signature-based loop-closure detection. By column-wise averaging, each of these subpanoramas
is reduced to a one-dimensional row image referred to as P̄ j for the current image and Q̄j for the
images stored in the topological map, respectively. For each of these one-dimensional images, the
cross-correlation theorem is applied to compute the cross-correlation function

`exact,j = F -1 (F(P̄ j)∗ ⋅F(Q̄j)) . (5.44)

As most of the relevant image information is contained in the lower-order Fourier coefficients (e.g.
[421, 495, 588, 611]), the computation of the cross-correlation function ` can be further accelerated
by multiplying the first b Fourier coefficients only and assuming higher-frequency components to be
zero (with Fb denoting the discrete Fourier transformation restricted to b coefficients):

`j = dfcc (P̄ j , Q̄) (5.45)
= F -1 (Fb(P̄ j)∗ ⋅Fb(Q̄j)) . (5.46)

In contrast to the standard method computing dissimilarities in the image domain (equation (5.1)),
equation (5.46) yields the w-dimensional vector ` of dissimilarity values in a single step. To obtain
a cross-correlation function with w elements in the image domain, all coefficients —and not only
the first b coefficients— have to be considered for the inverse Fourier transformation F -1. We refer
this function as approximated cross-correlation function dfcc. Thereupon, the change of orientation

ŝj = arg w−1max
s=0

`j(s) (5.47)

and the dissimilarity value

ˆ̀
j =

w−1max
s=0

`j(s) (5.48)

= `j(ŝj) (5.49)

are computed. In order to fuse the estimates obtained from each of the r subpanoramas,

ŝ = median (ŝ0, ŝ1, . . . , ŝr−1) and (5.50)

ˆ̀=
r−1
∑
j=0

ˆ̀
j (5.51)

are computed. Based on ˆ̀, a binary classification whether or not the images IP and IQ were taken
at identical positions is performed. The compass shift ŝ is an estimate for the robot’s change of
orientation between capturing images IP and IQ.
As discussed in section 5.2, the complexity of the standard compass is O(w2h). Computing the

cross correlation in the frequency domain results in a complexity of O(rw logw) with O(w logw)
being the complexity of the Fourier-transformation algorithm applied to each of the r subpanoramas.
Thus, the accelerated compass variant is considerably faster for small r and large w. This analysis
neglects the complexity of computing the row images (O(wh)) before applying the compass method,
of computing ŝj and ˆ̀

j (O(rw)), and of fusing them to scalar estimates ŝ and ˆ̀ (O(r)). A more
detailed evaluation of the algorithm’s computing time is given in section 5.5.3.

The holistic visual compass methods proposed by [75, 610] are closely related to our method. The
method by Burke and Vardy [75] also applies the cross-correlation theorem to efficiently compare
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images. However, it does not limit the number of Fourier coefficients and the authors test their
methods either for computing a correlation value for every row of the image or for averaging over
image columns and computing a single correlation value for a 1D image. The method by Stürzl
and Mallot [610] does not apply the cross-correlation theorem to compute the compass shift but
rather uses a coarse-to-fine search for the maximum correlation. This search process —like our
method— uses only a reduced number of Fourier coefficients. For further on related work please
refer to section 3.4.2.1.

5.2.4. Robustness Against Changes of the Illumination
Changes of the illumination conditions can considerably alter the visual appearance of the perceived
omnidirectional images (section 3.2.3.2). Exactly modeling these changes by image-rendering
techniques requires exact geometrical and physical models of the robot’s workspace and a physical
model of the illumination conditions. For an introduction into these techniques, the reader is referred
to computer graphics textbooks (e.g. [47, 184]). As a simplification, the influence of illumination
changes onto the image intensities can be modeled as a linear transformation

I ′ = aI + o. (5.52)

of the pixel intensities with a being the scale factor and o being the intensity offset (e.g. [438, 482]).
Analyzing

d(p(I),p(aI + o)) (5.53)

allows then to draw theoretical conclusions how robust the tested combinations of preprocessing
functions p and dissimilarity function d are against changes of the illumination. In an ideal case, the
combination of preprocessing function p and dissimilarity function d could completely compensate
for the intensity changes resulting from illumination changes. Then, the following relation would
hold:

d(p(I),p(aI + o)) = d(p(I),p(1I + 0)) (5.54)
= d(p(I),p(I)) (5.55)

5.2.4.1. Influence of Illumination Changes onto Image Preprocessing

For this purpose, we first analyze how preprocessing functions are influenced by a linear intensity
transformation

P ′ = p(aI + o) (5.56)

of the input image. Because most considered preprocessing functions are linear, we can analyze

P ′ = ap(I) + o (5.57)
instead of equation (5.56). The results of the first evaluation step are summarized in table 5.1.1,
and a mathematical derivation of these results is given in appendix C.2.
None of the preprocessing functions can completely compensate for such a linear intensity

transformation. The functions ppw, psob, plap, ppw, pdog, and pdv preserve the scaling a and
compensate for the intensity shift o. For the functions pdl and pdlc, preprocessing the transformed
image P ′ = aI +o is identical to preprocessing an image P ′ = I + o

a undergoing an intensity shift of oa
(equations (C.36) and (C.43)). Hence, in case the image intensities are only scaled (i.e. o = 0), these
preprocessing functions compensate for the scaling a. As pid is the identity function, it preserves
both the scaling and the intensity shift (i.e. pid(aI + o) = aI + o). Due to the nonlinearities and
the binning involved in computing the histogram equalization pheq, we cannot draw reasonable
conclusions for this preprocessing function.
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Table 5.1.: Robustness against linear changes of the image intensities. If the parameters a or o of the linear
transformation aI + o are compensated by a preprocessing function p (subtable (1)) or an image distance function
d (subtable (2)), the corresponding cell of the table is marked by 3; otherwise it is marked by 7. Subtable (3)
summarizes the results for each combination of preprocessing and image distance functions. Each cell of the table
contains whether the scale a and offset o (./.) are compensated (3) or not (7). Due to the nonlinearities involved
in the histogram equalization pheq and the mutual information dmi, we cannot make reasonable predictions without
further assumptions of the image’s gray-value distribution. To this end, these entries are in all tables marked by a
dash (—).

(1) Preprocessing functions

Parameter Preprocessing function

pid ppw psob plap pdog pheq pdl pdv pdlc

Scale a 7 71 71 71 71 — 3 71 3

Offset o 7 3 3 3 3 — 72 3 72

1 The offset o is compensated and p(aI + o) = ap(I).
2 The scale a is compensated and p(aI + o) = p(I + a

o
).

(2) Image distance functions

Parameter Dissimilarity function

dsad dzsad dssad dssd dzssd dsssd dasc daoc dasoc dcc dncc dmi

dmaxn deucl dzncc dfcc

drms

Scale a 7 7 71 7 7 71 3 7 3 7 71 —
Offset o 7 3 7 7 3 7 7 3 3 7 7 —
1 In case the image intensities are only scaled (i.e. o = 0), the scale a is compensated: d(P , aP ) = d(P ,P ).

(3) Combination of both

Preproc. Dissimilarity function

dsad dzsad dssad dssd dzssd dsssd dasc daoc dasoc dcc dncc dmi

dmaxn deucl dzncc dfcc

drms

pid 7/7 7/3 7/71 7/7 7/3 7/71 3/7 7/3 3/3 7/7 7/71 —
ppw, psob 7/3 7/3 3/3 7/3 7/3 3/3 3/3 7/3 3/3 7/3 3/3 —
plap, pdog 7/3 7/3 3/3 7/3 7/3 3/3 3/3 7/3 3/3 7/3 3/3 —
pheq — — — — — — — — — — — —
pdl, pdlc 3/7 3/3 3/7 3/7 3/3 3/7 3/7 3/3 3/3 3/7 3/7 —
pdv 7/3 7/3 3/3 7/3 7/3 3/3 3/3 7/3 3/3 7/3 3/3 —
1 In case the image intensities are only scaled (i.e. o = 0), the scale a is compensated: d(p(I),p(aI)) = d(p(I),p(I)).

5.2.4.2. Influence of Illumination Changes onto Image Dissimilarity Functions

In a second step, we analyze equation (5.53), i.e. the influence of applying a dissimilarity function d
to a preprocessed image P = p(I) and a variant P ′ = p(aI +o) of the same image I which underwent
a linear intensity change prior to preprocessing.
The results of this evaluation are summarized in table 5.1.2; a derivation of the results is given

in appendix C.3. The zero-mean normalized cross correlation dzncc and the alternative distance
measure dasoc compensating for scale and offset are the only dissimilarity functions which can
compensate for both a and o. The brightness shift o is compensated by the functions dzsad, dzssd,
and daoc whereas the scaling a is compensated only by the dasc dissimilarity function. For the
special case that the transformed image intensities are only scaled (i.e. o = 0), the functions dssad,
dsssd and dncc can compensate for the resulting intensity changes. As the dissimilarity functions

131



5.2. Methods

dsad, dmaxn, dssd, deucl, drms, dcc and dfcc cannot compensate for the parameters a or o, we expect
that these functions are most sensitive against changes of the illumination. Due to the logarithms
and the binning operations involved in computing the mutual information pmi, we cannot draw
conclusions how linear intensity changes affect this preprocessing function.

5.2.4.3. Combined Analysis

As most of the preprocessing functions p and the dissimilarity functions d can only partially
compensate for linear intensity transformations, we combine the results obtained in the previous
steps (sections 5.2.4.1 and 5.2.4.2) and analyze the influence of linear intensity changes on the
tested combinations of preprocessing and dissimilarity function. The combined results are shown
in table 5.1.3. Except for the dissimilarity measures dasoc and dzncc, the influence of the linear
intensity transformation can only be compensated by a combination of a preprocessing function p
and a dissimilarity function d. The following combinations allow for a complete compensation of
scaling a and offset o (in table 5.1.3 these combinations are marked by 3/3):

• By combining a preprocessing function compensating for the intensity shift o with a dissimilarity
function compensating for the scale a independent of the shift o. In this case, the preprocessing
methods ppw, psob, plap, pdog, or pdv have to be combined with the alternative distance measure
compensating for the scale dasc.

• By combining a preprocessing function compensating for the intensity shift o with a dissimilarity
function compensating for the scale a only for the special case o = 0. This is the case for
combining one of the preprocessing functions ppw, psob, plap, pdog, or pdv with one of the
dissimilarity functions pssad, psssd or pncc.

• By combining a preprocessing function compensating for the scale a with a dissimilarity
function compensating for the offset o. This case is achieved for the preprocessing functions
pdl or pdlc in conjunction with the dissimilarity functions dzsad, dzssd, or daoc.

• For the special case that image intensities are only scaled (i.e. o = 0), the scaling is compensated
for the preprocessing function pid in conjunction with the dissimilarity functions dssad, dsssd,
and dncc. Furthermore, all combinations of preprocessing functions and dissimilarity functions
which compensate for intensity scalings a but preserve intensity offsets also compensate for a
in this case.

• For the special case that image intensities only undergo an intensity offset without a scaling
(i.e. o ≠ 0 and a = 1), all combinations compensating o but preserving a compensate for both
parameters.

Besides these cases, a number of combinations only compensates for one of the parameters of the
linear intensity transformation:

• The scaling a is compensated while the offset o is preserved for combining the local contrast
pdl or the luminance/contrast-dividing function pdlc with one of the dissimilarity functions
dsad, dmaxn, dssad, dssd, deucl, drms, dsssd, dasc, dcc, dfcc, and dncc. These combinations are
marked by 3/7 in table 5.1.3.

• The scaling a is preserved and the intensity offset is compensated for the preprocessing
functions ppw, psob, plap, pdog, and pdv in combination with the dsad, dmaxn, dzsad, dssd, deucl,
drms, dzssd, daoc, or daoc. In table 5.1.3, these combinations are marked by 7/3.
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The combinations preserving both scale changes a and intensity offsets o are in table 5.1.3 marked by
7/7 and include the distance functions dsad, dmaxn, dssd deucl, drms, and dcc as well as the accelerated
variant of the cross correlation dfcc for comparing images without prior preprocessing (pid). These
findings will be compared to the results of the database experiments performed and evaluated as
described in the next section.

5.3. Experiments and Evaluation
The main objective of the experiments is to find a promising combination of preprocessing function
p and dissimilarity function d which allows for robust loop-closure detection under a wide range of
illumination conditions and for different workspaces of the robot. Beside that, the experiments are
assigned to reveal the following aspects:

• How do changes of the illumination influence the proposed methods?

• How does the accelerated compass variant perform in comparison to the standard method
w.r.t. loop-closure detection and compass accuracy?

• How do the image preprocessing methods influence the loop-closure detection performance
and the compass accuracy in comparison to using unprocessed images?

• Can reliable loop-closure detection be achieved for a wide range of workspaces, or does the
best combination of p and d depend on the environment the robot is operating in?

• Are the proposed methods efficient enough for loop-closure detection in a real-robot imple-
mentation?

The experiments were conducted following the experimental procedure as described in section 5.3.1;
the obtained results were evaluated with the performance measures proposed in section 5.3.2.

5.3.1. Experimental Procedure
To assess the performance of the proposed methods, we performed a large number of database
experiments (section 5.3.1.1) while systematically varying the parameters of the proposed methods
(section 5.3.1.2). Section 5.3.1.3 briefly describes implementation details.

5.3.1.1. Image Databases3

In order to run a large number of image comparisons and in order to identify promising approaches,
we performed database experiments. For our experiments, we used image databases containing
images recorded at a regular grid with a grid distance of g = 10 cm. These databases resemble the
dense topo-metric maps built while systematically covering the robot’s workspace (section 4.2). Since
image databases publicly available on the internet (table 3.3) are only applicable for tasks involving
sparse topological or topo-metric maps, we did not include these databases in our experiments. The
used databases (table 5.2) were collected in several apartments under real illumination conditions.
Depending on their size, rooms are covered by several database segments (moellerX and livingX)
or a single database segment (all other databases). Figures B.1 and B.3 show example images
taken at the corners of the database segments, and figure B.4 visualizes the locations within the
rooms where databased have been collected. Since the collection of the larger image databases
took several hours, these databases contain considerable variations of the illumination caused by
changes of the daylight or the weather conditions. For the living databases, images were collected
3This section is an extension of section IV in our conference publication Gerstmayr-Hillen et al. [223].
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Table 5.2.: Image databases used for the loop-closure detection experiments. The number of snapshots in x and
y direction are given by nx and ny, respectively. The databases of the day|day group (upper part of the table)
were collected during the day under natural illumination conditions; the databases of the day|night group are
cross-databases (hence their labels start with “c”) collected at identical spatial positions during the day under natural
illumination conditions and during the night under constant artificial illumination. For the clivingXday databases,
the undisturbed snapshot Ii was taken from the day|day database, whereas the disturbed snapshot I ′j was taken
from the corresponding night database (and vice versa for the clivingXnight databases).

Database Abbr. nx ny Description Changes of the illumination

da
y|

da
y
gr
ou

p

kitchen K 11 8 Tiny kitchen, furniture close-by None

moeller1 M1 22 11 Large living room, white walls Moderate
moeller2 M2 27 19 Considerable

roeben R 36 11 Kitchen/living room Small

living1day L1 19 5

Mid-sized living room Smallliving2day L2 22 5
living3day L3 16 11
living4day L4 15 3

da
y|

ni
gh

t
gr
ou

p

cliving1day C1D 19 5

Mid-sized living room Very strong (cross-database test)cliving2day C2D 22 5
cliving3day C3D 16 11
cliving4day C4D 15 3

cliving1night C1N 19 5

Mid-sized living room Very strong (cross-database test)cliving2night C2N 22 5
cliving3night C3N 16 11
cliving4night C4N 15 3

at identical positions under natural illumination conditions during the day and under artificial
illumination conditions during the night. By pairing an image from the livingXday database with
images from the corresponding livingXnight database (or vice versa), cross-database experiments
simulating drastic changes of the illumination were performed. These databases are named after the
database from which the undisturbed snapshot image was taken, and their labels start with a “c”
to indicate cross-database experiments. For our test application, we consider such drastic changes
to be unlikely because we expect the robot to clean the accessible workspace within a maximum of
1 h. Although the illumination conditions of both databases building a cross database differ, each of
the two databases were collected under nearly constant illumination conditions. With the available
databases we can simulate that the robot operates under constant illumination conditions and
approaches an already cleaned segment which was mapped under very different, but also constant
illumination. Thus, the cross-database experiments do not reflect the full variety of different
illumination conditions which can occur when illumination continuously changes. Nevertheless,
we think that testing the methods with the existing databases is appropriate for assessing the
method’s robustness against changes of the illumination —especially because many of the proposed
methods even fail for the available databases (sections 5.4 and 5.5). Collecting new databases under
more realistic illumination conditions should be addressed in future work; for this purpose our new
database-collecting tool can be applied (section 3.7.1.1).
For each database, we compared each image Ii against each image I ′j taken from the same

database or —in case of cross-database experiments— taken from the corresponding cross-database.
Thus, a total of (nxny)2 image dissimilarity values

ˆ̀
i,j = d (p(Ii),p(I ′j)) (5.58)

were computed for each database (0 ≤ i, j < nxny with nx and ny being the number of images in x-
and y-direction). As we aim to develop methods with an optimal performance over many different
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(1) Original image (2) Rotated (3) Rotated and noise-disturbed

Figure 5.6.: Image disturbances used for loop-closure detection. Subfigures (3) to (3) depict the original (undisturbed)
image, its rotated variant, and the rotated and noise-disturbed variant. The shown example image was taken at
position (18,5) of the roeben database; the noise is Gaussian noise with standard deviation σ = 0.05.

workspaces, we pool the obtained dissimilarity values into two test groups: the day|day group
pools the databases collected during the day (i.e. kitchen, livingXday, moellerX, and roeben)
and contains a total of 540,419 image pairings. In the day|night group, the cross-databases (i.e.
livingXday and livingXnight) are subsumed. This group contains results from 108,252 image
comparisons.
All cylindrical images have a size of 461 × 64 pixels with intensities in the range [0,1] and were

unfolded from the original camera images by a hyperbolic mapping. For all experiments, the second
image I ′j was randomly rotated and disturbed by zero-mean Gaussian noise with standard deviation
σ = 0.05, followed by a thresholding operation to limit the intensities to [0,1] again (figure 5.6). In
order to guarantee identical experimental conditions for all the experiments conducted for pixel-
based loop-closure detection (this chapter) and signature-based loop-closure detection (chapter 6),
auxiliary image databases were created containing the unfolded (but not preprocessed) images as
well as rotated and disturbed variants. These auxiliary databases were used to perform all the
loop-closure detection experiments presented in this and the following chapter and are publicly
available on the internet [S1].

5.3.1.2. Parameter Variations

To identify promising combinations of preprocessing functions p and dissimilarity functions d, we
tested all possible combinations of preprocessing and dissimilarity functions. For the functions
depending on internal parameters, we additionally varied these parameters to achieve the best
possible performance:

b ∈ {4,8,16,32,64} for pheq and dmi, (5.59)
(σ1, σ2) ∈ {(0.01,0.02), (0.01,0.04), (0.01,0.08), (0.025,0.050)} for pdog, (5.60)

w′ ∈ {5,7,11,15} for pdl and pdlc, and (5.61)
(w′, σ1/2) ∈ {5,7,11,15} × {0.0,0.5,5.0,50.0} for pdv. (5.62)

Example images resulting from preprocessing the images according to the given parameters are
shown in figure 5.7. In the remainder of this chapter, we refer to one concrete choice of preprocessing
function, dissimilarity function, and of the corresponding parameters as combination. By varying
the parameters as specified above, 740 different combinations were tested.
The standard deviation of the Gaussian filter kernels involved in the early-vision functions pdl,

pdlc, and pdv was chosen to be σ = w′

6 . By choosing σ depending on the patch size w′, we assure
that the patch tightly fits the Gaussian function without either cropping relevant entries or padding
the relevant entries by values close to zero. We refer to the distance and preprocessing functions
tested with different parameters by numbering the parameter sets in the order as given above; for
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(1) Original image (pid)

(2) Prewitt filter (ppw) (3) Sobel filter (psob) (4) Laplace filter (plap)

(5) DoG filter (pdog1) (6) DoG filter (pdog2) (7) DoG filter (pdog3)

(8) DoG filter (pdog4) (9) Local contrast (pdl1) (10) Local contrast (pdl2)

(11) Local contrast (pdl3) (12) Local contrast (pdl4) (13) Div. by variation (pdlc1)

(14) Div. by variation (pdlc2) (15) Div. by variation (pdlc3) (16) Div. by variation (pdlc4)

(17) Div. by luminance/var. (pdv1/1) (18) Div. by luminance/var. (pdv1/2) (19) Div. by luminance/var. (pdv1/3)

(20) Div. by luminance/var. (pdv1/4) (21) Div. by luminance/var. (pdv2/1) (22) Div. by luminance/var. (pdv2/2)

(23) Div. by luminance/var. (pdv2/3) (24) Div. by luminance/var. (pdv2/4) (25) Div. by luminance/var. (pdv3/1)

(26) Div. by luminance/var. (pdv3/2) (27) Div. by luminance/var. (pdv3/3) (28) Div. by luminance/var. (pdv3/4)

(29) Div. by luminance/var. (pdv4/1) (30) Div. by luminance/var. (pdv4/2) (31) Div. by luminance/var. (pdv4/3)

(32) Div. by luminance/var. (pdv4/4) (33) Histogram equalization (pheq1) (34) Histogram equalization (pheq2)

(35) Histogram equalization (pheq3) (36) Histogram equalization (pheq4) (37) Histogram equalization (pheq5)

Figure 5.7.: Influence of the tested image preprocessing methods. Shown are the original image (1) and preprocessed
variants (subimages (2) to (37)) according to the parameters defined in section 5.3.1.2. The image was taken at
position (18,5) of the roeben database. For visualization, the images were normalized to [0,1].
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example, we refer to the mutual information with b = 8 bins as dmi2 and to the pdv with w′ = 11 and
σ1/2 = 50.0 as pdv3/4.
The accelerated compass variant was tested in combination with all preprocessing functions p.

The number of rings r and the number of Fourier coefficients b were varied in the following ranges:

r ∈ {1,2,4,8,16,32,64} and (5.63)
b ∈ {4,8,16,32,64,96,128,all}, (5.64)

where “all” means that the number of Fourier coefficients was not truncated according to equa-
tion (5.46). With these parameters, a total of 2072 combinations was tested for the accelerated
compass variant. In the remainder of this chapter, we refer to the total number of required Fourier
coefficients r ⋅ b as “dimensionality”. This term is influenced by our work on signature-based loop-
closure detection (chapter 6), where it refers to the signature’s overall dimensionality. We test such a
large number of preprocessing functions p, dissimilarity functions d, and parameters in order to find
the best possible combination for our requirements and to allow for a fair comparison. Furthermore,
we conduct such an exhaustive comparison because we are not aware of comparable work which we
could rely on.

5.3.1.3. Implementation

The methods were implemented in the software framework maintained at the Computer Engineering
group by reusing existing building blocks or by extending the framework if required. As the
experiments are supposed to be a feasibility study, the implementation was done as a prototype
implementation and therefore did not consider optimization possibilities. Computationally more
complex processing steps (e.g. image unfolding, preprocessing, visual compass methods including
image dissimilarity functions) were implemented in C/C++; the code combining these building blocks
in order to generate results was written in Tcl. In this framework, images were represented as
arrays of single-precision floating point numbers (e.g. [602]). The software for data evaluation and
visualization was implemented by Lorenz Hillen in Matlab (Release 14, Service Pack 2). To compute
AUC values, a C program was applied which was developed by Oliver Schlüter during the course
of his bachelor’s thesis [575] supervised by Lorenz Hillen and Martin Krzykawski. As the output
range of the preprocessing function depends strongly on the specific preprocessing functions, the
minimum and maximum output was determined by preprocessing all images of the currently used
database prior to comparing images. For computing the mutual information, these extreme values
were used as lower and upper histogram boundaries for approximating the intensity distribution of
the compared images. A small value ε close to zero was added to the denominator of preprocessing
or dissimilarity functions if required to avoid divisions by zero.

5.3.2. Evaluation

In order to tackle the questions outlined at the beginning of section 5.3, the obtained data was
evaluated w.r.t. (i) loop-closure detection performance (section 5.3.2.1), (ii) robustness against
perceptual aliasing and perceptual variability (section 5.3.2.2), (iii) accuracy of the involved compass
methods (section 5.3.2.3), and (iv) computing time and computational complexity (section 5.3.2.4).

5.3.2.1. Loop-Closure Performance

As a first evaluation step, we assess the loop-closure detection performance by analyzing receiver
operator characteristics (ROC). We first introduce this concept and later on describe how it is
applied in this thesis.
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True-positive rate
= sensitivity

TPR = #(TP)
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False-positive rate
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= precision
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#(TP) +#(FP)

Negative predictive value

NPV = #(TN)
#(TN) +#(FN)

Accuracy

ACC = #(TP) +#(TN)
#(S)

Figure 5.8.: Confusion matrix (rectangular boxes) and derived measures of classification performance (boxes with
rounded corners). The total number of samples and the number of true-positives, false-positives, true-negatives, and
false-negatives samples are denoted by #(S), #(TP), #(FP), #(TN), and #(FN), respectively. Correct classifications
(i.e. true-positives and true-negatives) are highlighted by shaded boxes; the true-negative rate and the false-positive
rate used for ROC-analysis are grouped by a dashed box. Modified after Fawcett [168].

Introduction to ROC Analysis
Since we used image databases, the true outcome of the classification is known for our experiments,
and standard measures for the classification performance as defined in figure 5.8 could be applied.
However, these measures do not fulfill our requirements for several reasons:

• All measures are computed for a certain decision threshold `t. At the current stage of
data evaluation, we are rather interested in identifying methods which offer a good general
discriminability independent of a certain threshold `t. We consider choosing a certain threshold
to be a further step e.g. required for real-robot experiments.

• According to Provost and Fawcett [523], the measures may be misleading if the class
distribution for the classification is skewed. This is the case for our experiments because
for each database there are only nxny positives (loop closures) but (nxny)2 − nxny negatives
(images taken at different positions in space).

• In an ideal case, a classifier would yield a true-positive rate of 1 with a false-positive rate of
0. For practical applications, tuning the classifier has to be considered a trade-off between
a high true-positive rate and a small false-positive rate as optimizing the true-positive rate
usually also increases the false-positive rate (and vice versa) (Provost and Fawcett [523]
and Fawcett [168]). Thus, a combination of two measures has to be considered, which
complicates the ranking of the classification results obtained for the experiments.

These drawbacks are circumvented by analyzing the classifier’s receiver operating characteristic
(ROC; [148, 168, 183, 523, 615]) instead of the simple performance measures summarized in figure 5.8.
ROC analysis was originally used in the field of signal detection theory (textbooks: [122, 148])
and is now considered to be the standard method for analyzing and comparing the performance of
classifiers for a wide range of applications (reviews: [168, 523, 615]).
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Figure 5.9.: Receiver operating characteristic (ROC). The performance of a
classifier with a certain decision threshold `t can be visualized by plotting its
true-positive rate TPR vs. its false-positive rate FPR (cross). By systematically
varying the decision threshold `t, the ROC curve is obtained (solid line). For a
random classifier, the ROC curve is identical to the diagonal (dashed). The area
under curve (AUC, shaded) is a scalar measure for the classifier’s discriminability.

For ROC analysis, the classifier’s true-positive rate (TPR) is plotted vs. its false-positive rate
(FPR). For a single classifier with a certain decision threshold `t, this results in a single point
in the ROC-space [0,1] × [0,1] (figure 5.9, cross). By varying the decision threshold `t, a curve
from (0,0) to (1,1) is obtained. For perfect classification, the curve contains the point (0,1);
for random classification the curve is identical to the diagonal (figure 5.9, dashed line). Thus,
the ROC curve visualizes the classifier’s benefits (correct classifications) and the corresponding
costs (misclassifications) while implicitly coding `t along the curve. Due to this, it allows to draw
conclusions about the discriminability of the classifier instead of the concrete performance w.r.t.
a certain decision threshold [148]. ROC analysis is by [352] applied to evaluate the localization
performance of different signature-based approaches. Nevertheless, as the ROC curve is a graphical
method, it does not allow to rank or compare a large number of classifiers. For this purpose,
the area under the ROC curve is computed by integrating the ROC curve along the x-axis. The
resulting scalar value is widely referred to as AUC [168, 523]. The AUC value ranges from 0
(complete misclassification) to 1 (perfect classification) with 0.5 representing chance level. Due to
these properties, the AUC value can be used for ranking and comparing the classification results
obtained in our experiments. To compute AUC values, we follow the approach by [275]. It sorts
the dissimilarity values ˆ̀

i,j in increasing order and computes the sum Sp of the ranks of positive
samples. The AUC can then be computed by

AUC =
Sp − 1

2 #(P)(#(P) + 1)
#(P) ⋅#(N) . (5.65)

with #(P) and #(N) being the numbers of positive and negative samples, respectively.

Application of ROC Analysis in This Work
The simplest approach for measuring the loop-closure detection performance is to rank all methods
of a test group (i.e. of the day|day or the day|night group) depending on their AUC values.
However, this method leads —with the large number of tested parameters— to very long tables and
complicates the identification of methods with a good performance for both groups. We therefore
apply a two-stage evaluation: (i) we identify a small number of methods with a good performance
for both test groups, and (ii) we analyze AUC values of these methods in detail.
For the first evaluation step, we assign each AUC value to one of the five categories defined in

table 5.3. To get an impression of the performance of a group of methods (e.g. for all methods
of the day|day group comparing images by mutual information and preprocessing images with
edge detectors) we compute the frequency of each of the five categories and analyze the resulting
histogram. To identify promising methods with a good loop-closure detection for both test groups,
this approach can be easily extended to the two-dimensional case. By this means, a 5×5 contingency
table (or histogram) is obtained which represents the 2D frequency distribution resulting from
pairing the categories of the day|day group and the day|night group. Each cell represents the
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Table 5.3.: Categorization of AUC values for analyzing loop-closure detection performance.

Category Range of AUC values Description

− − − 0.00 ≤ AUC < 0.60 Loop-closure detection not possible
○ 0.60 ≤ AUC < 0.90 Moderate loop-closure detection performance
+ 0.90 ≤ AUC < 0.98 Good performance
++ 0.98 ≤ AUC < 1.00 Very good performance
+ + + AUC = 1.0 Perfect classification

frequency for a combination of categories, e.g. for perfect classification (+ + +) of the day|day
group and good classification (+) of the day|night group. Instead of identifying combinations with
promising performance for both test groups based on the 2D contingency table, it has turned out that
it is sufficient to analyze the 1D histograms computed for the day|day and the day|night group
(figures 5.11 and 5.20). The distributions, which are represented by these histograms, correspond
to the marginal distributions of the joint 2D distribution, which would only be needed for a more
detailed analysis of the possible combinations. For the combinations identified by the proposed
approach, we can in the second evaluation step analyze the performance of loop-closure detection in
more detail, e.g. by evaluating the AUC values in dependence on the parameters of preprocessing or
dissimilarity function. The results of the AUC analysis are presented in sections 5.4.1 and 5.5.1.

5.3.2.2. Robustness Against Perceptual Aliasing and Perceptual Variability

Besides the AUC analysis described in the previous section, we also evaluate the robustness of the
proposed methods against perceptual aliasing (also referred to as “spatial aliasing”) and perceptual
variability. Perceptual aliasing occurs if two images Ii and I ′j taken at different positions xi and xj
in space have the same visual appearance (equations (5.5), (5.19) and (5.21)). Perceptual variability
is caused by changes of the visual appearance resulting from dynamic scene changes or from changes
of the illumination conditions (equation (5.6)). For our database experiments, perceptual variability
can result (i) from changes of the illumination during the collection of the image data (day|day
group), (ii) from changes of the illumination introduced by cross-database experiments (day|night
group), or (iii) from the image disturbances described in section 5.3.1.1 (both test groups). Based
on the dissimilarity values as computed by equation (5.58), perceptual aliasing and perceptual
variability cannot be distinguished because in both cases at least one snapshot pair Ii and I ′j exists
for which

∃j ∶ ˆ̀
i,j = d(Ii,I ′j) ≤ ˆ̀

i,i = d(Ii,I ′i) with i ≠ j and 0 ≤ i, j < nxny (5.66)

holds. This means that at least one pair of images Ii and I ′j exists for which the resulting dissimilarity
ˆ̀
i,j is smaller than ˆ̀

i,i = d(Ii,I ′i) obtained from comparing the image Ii and its disturbed variant
I ′i. Regarding the dissimilarity profile resulting from plotting the dissimilarities ˆ̀

i,j vs. the positions
of their image acquisition, this means that the global minimum is moved away from its expected
position i (figure 5.10). Local minima may exist, but are not considered for evaluation.
To assess the method’s robustness against perceptual aliasing and perceptual variability, we

compute the percentage of correct matches

Pcorr =
1

nxny
#{i ∣ ∀j ∶ ˆ̀

i,j > ˆ̀
i,i with i ≠ j and 0 ≤ i, j < nxny} (5.67)

and of mismatches

Pmis =
1

nxny
#{i ∣ ∃j ∶ ˆ̀

i,j < ˆ̀
i,i with i ≠ j and 0 ≤ i, j < nxny} (5.68)
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Figure 5.10.: Dissimilarity profile resulting from plotting the pairwise image dissimilarity `i,j obtained for fixed i
and varying j (0 ≤ j < nxny) vs. the position of image acquisition. Subfigure (1) visualizes the ideal case without
perceptual aliasing or perceptual variability. The minimum is pronounced and located at the expected position (filled
black circle). Subfigure (2) visualizes the occurrence of perceptual aliasing or perceptual variability. In this case, the
global minimum (open circle) is moved away from its expected position (filled black circle), the dissimilarities achieve
larger values, the optimum is not clearly pronounced, and additional local minima exist. In the depicted case, the
distance between the true and expected minima is 1 grid. According to the definition in equation (5.69), the depicted
situation would be counted as “close mismatch”. In both subfigures, the reference position i was at grid position (6, 1)
of the cliving3night database; dissimilarities were computed by the dsad, both figures carry identical axis for d.

among all nxny snapshot positions. For mismatches, the spatial distance between the expected
match and the computed match is relevant: mismatches close to the expected match have a smaller
influence on the resulting navigation capabilities than mismatches far apart from each other. For
the latter, reliable navigation is no longer possible. Therefore, we additionally distinguish between
mismatches in the direct vicinity of the expected match

Pmisc =
1

nxny
#{i ∣ mismatch anddist(xi,xj) ≤

√
2g} (5.69)

and mismatches further apart

Pmisf =
100
nxny

#{i ∣ mismatch anddist(xi,xj) >
√

2g} (5.70)

with g = 10 cm being the grid distance of the used image database.
For erroneous matches, we also analyze the spatial distance dist(xi,xj) between the true match

and the computed match. As performance measures, the mean and median spatial distances between
mismatches, distavg and distmed, are computed over all considered snapshots i for which mismatches
occur. In case ˆ̀

i,j < ˆ̀
i,i holds for several images I ′j , the location xj at which the image resulting in

the smallest value of ˆ̀
i,j was acquired is selected for the computation of the spatial distance.

With these measures, we can assess the proportion of correct and incorrect loop-closure detections.
For incorrect detections, they allow us to draw conclusions on how much navigation is influenced by
the misclassifications. The influence of a small number of mismatches in the close vicinity to the
expected match will have less influence than a large proportion of distant mismatches which can
cause navigation to fail. Results of this evaluation for the standard compass method are described
in section 5.4.2; an application to the accelerated compass method is currently not reasonable
(sections 5.5.1 and 5.5.4).
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5.3.2.3. Compass Accuracy

In addition to the performance of loop-closure detection, we also assess the influence of image
preprocessing methods and different dissimilarity functions on the accuracy of the tested compass
methods. Each comparison between the images Ii and I ′j not only results in a dissimilarity value
ˆ̀
i,j but also in a shift ŝi,j between the images, which is due to a change of the robot’s orientation
between image acquisitions. As we used image databases (section 5.3.1.1), the true shift ti,j between
the considered images is known, and the absolute deviation

ei,j = ∣ti,j − ŝi,j ∣ (5.71)

in pixels can be computed. Due to the horizontal periodicity of the panoramic images, the maximum
absolute deviation is w

2 with w being the width of the images (with the above definition, ei,j has
to be truncated accordingly). The pixel deviation can be converted to an angular error (textbook:
[32]) by

δi,j = ei,j
360°
w

. (5.72)

Angular errors are always in the range [0°,180°], and to derive scalar measures from the set of
computed angular errors, the average angular error (AAE) and the median angular error (MAE)
can be computed and compared (textbook: [32]). These measures are also used for evaluating
homing methods developed by our group (publications: [447, 451, 452, 454, 660], technical reports:
[213, 217, 218]). Since the mean and median angular error are influenced by the spatial distance
between the considered snapshots and since we used image databases of different sizes, we only
consider image pairs with a spatial distance up to 1m. We decided for distances up to 1m because
it is the distance typically considered for local visual homing in our trajectory controller (chapter 4)
plus some tolerance to take inaccuracies into account. Sections 5.4.3 and 5.5.2 describe the results
of evaluating the compass accuracy for the standard and the accelerated compass methods.

5.3.2.4. Computational Aspects

To assess the computing time required for loop-closure detection, we measure the times required
to (i) preprocess a single image with a preprocessing function p and (ii) to compute the visual
compass method which compares and aligns a pair of preprocessed images (excluding time required
for preprocessing). In both cases, the measurements are performed for all possible parameters
of preprocessing or dissimilarity functions. To achieve more reliable measurements, images were
randomly selected and the median over 1000 repetitions is computed. The measurements rely on
the Linux system function gettimeofday returning time with a resolution of microseconds (e.g.
[63]). The experiments were performed on a desktop computer equipped with an Intel Core i7-870
CPU running at a maximum clock frequency of 2.93GHz and equipped with 4GB of RAM. Results
are presented in sections 5.4.4, 5.4.5 and 5.5.3.

5.4. Results of Standard Compass Method
This section describes results of the standard compass method for analyzing the loop-closure
detection performance (section 5.4.1), the robustness against perceptual aliasing and perceptual
variability (section 5.4.2), the compass accuracy (section 5.4.3), the computational effort of image
preprocessing (section 5.4.4), and of the visual compass method (section 5.4.5). Conclusions are
drawn and discussed in section 5.4.6.
Each combination of preprocessing functions p and dissimilarity functions d is tested with two

test groups: (i) day|day containing a total of approximately 500 000 image pairs collected during the
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Table 5.4.: Best combinations of standard compass method w.r.t. loop-closure detection performance. Subtables
(1) to (4) contain for each of the four evaluation groups (id-mi, id-other, pp-mi, and pp-other) the best methods
identified based on AUC values of the test groups day|day and day|night. Categories for AUC values are defined in
table 5.3 and are given in the form day|day/day|night.

(1) id-mi

C
at
. AUC values

p d day|day day|night

+
+
+
/+

pid dmi3 (b = 16) 1.000 0.969
pid dmi4 (b = 32) 1.000 0.968
pid dmi2 (b = 8) 1.000 0.965
pid dmi5 (b = 64) 1.000 0.965
pid dmi1 (b = 4) 1.000 0.935

(2) id-other

C
at
. AUC values

p d day|day day|night

+
+
+
/○ pid dzsad 1.000 0.648

pid dsad 1.000 0.645
pid dssad 1.000 0.603

(3) pp-mi

C
at
. AUC values

p d day|day day|night

+
+
+
/+

+
+

ppw dmi3 (b = 16) 1.000 1.000
psob dmi3 (b = 16) 1.000 1.000
ppw dmi4 (b = 32) 1.000 1.000
psob dmi4 (b = 32) 1.000 1.000
ppw dmi5 (b = 64) 1.000 1.000
psob dmi5 (b = 64) 1.000 1.000

(4) pp-other (both methods with σ1/2 = 50)

C
at
. AUC values

p d day|day day|night

+
+
+
/+
+ pdv1/4 (w′ = 5) dcc 1.000 0.987

pdv2/4 (w′ = 7) dcc 1.000 0.980

day under (nearly) constant illumination conditions, and (ii) day|night consisting of approximately
108,000 image pairs taken from cross-databases simulating strong changes of the illumination
conditions (section 5.3.1.1). With the parameters of the preprocessing functions p and dissimilarity
functions d as defined in section 5.3.1.2, we test a total of 740 methods, i.e. different combinations
of p and d.
Each combinations is analyzed with three different evaluation methods to assess its loop-closure

detection performance, its robustness against perceptual aliasing and perceptual variability, and its
compass accuracy (section 5.4.3). The evaluation methods yield a single (loop-closure detection
performance), two (compass accuracy), or five (robustness against perceptual aliasing and perceptual
variability) measures describing the performance of a method. This particular evaluation procedure
leads to a huge amount of data which cannot be presented comprehensively in this dissertation. The
presentation is therefore restricted to a small subset of the entire data which is still large enough
to compare different methods, to draw conclusions, and to answer the objectives outlined at the
beginning of section 5.3. We divide the combinations of preprocessing functions and dissimilarity
functions into four evaluation groups: id-mi, id-other, pp-mi, and pp-other. The groups were
chosen to assess the influences (i) of using images without prior preprocessing vs. using preprocessed
images and (ii) of comparing images by mutual information vs. comparing images by other image
dissimilarity functions. For each of the four evaluation groups and each of the three evaluation
methods, we seek for the combination of image preprocessing and dissimilarity functions which
achieves the best accuracy for both test groups. By this means, a total of twelve combinations is
obtained.

5.4.1. Performance of Loop-Closure Detection
To measure the performance of loop-closure detection, we computed AUC values which were assigned
to five bins depending on their AUC values (section 5.3.2.1 and table 5.3). Figure 5.11 depicts for
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Figure 5.11.: Frequency distributions of AUC values for the standard compass method. The distributions are used
to identify promising methods for loop-closure detection as described in section 5.3.2.1. Subfigures (1) to (4) show
the frequency distributions computed for each of the four evaluation groups id-mi, id-other, pp-mi, and pp-other.
White and black bars depict the distributions for the test groups day|day and day|night, respectively. Binning was
done w.r.t. the categories defined in table 5.3 as follows: (− − −) loop-closure detection not possible; (○) moderate
loop-closure detection performance; (+) good performance; (++) very good performance; (+ + +) ideal results (i.e.
AUC = 1.0).

each of the four evaluation groups the frequency distributions for these bins with white and black
bars representing the distributions for the day|day and day|night groups, respectively. The overall
impression clearly reveals that the performance for the day|day group is considerably better than
that of the day|night group. For the day|day group most methods achieve perfect classifications
(+ + +), whereas the results for the day|night group are distributed more broadly with a tendency
towards worse categories. Based on the histograms depicted in figure 5.11, we identify for each
of the four evaluation groups methods which achieve the best performance over both test groups
(table 5.4) and which are analyzed in more detail.

All five methods of the evaluation group id-mi achieve a perfect classification (+ + +) of the
day|day group and a good classification (+) for the day|night group (figure 5.11.1). With an AUC
value for the day|night group of 0.969, the best performance is achieved for b = 16 histogram bins;
for 8, 32 or 64 bins, the performance is only slightly worse (table 5.4.1). The worst performance
is obtained for b = 4 histogram bins resulting in an AUC value of 0.935. For the id-other group,
the best possible method can achieve perfect classification (+ + +) for the day|day test group and
moderate classification results (○) for the day|night group (figure 5.11.2). All these methods rely
on variants of the sum of absolute differences function and achieve AUC values for the day|night
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Figure 5.12.: Detailed AUC values for the best methods
of the evaluation group pp-mi. AUC values are plotted
against the number of histogram bins b used for computing
the mutual information dmi. The different lines represent
the values obtained for preprocessing with first-order edge
detectors ppw (○) and psob (+) Dotted horizontal lines depict
the bin limits as defined in table 5.3.
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Figure 5.13.: Detailed AUC values for the best methods
of the evaluation group pp-other. AUC values obtained
for comparing images by the cross-correlation function
dcc are plotted against the window size w′ used for the
dividing by variation preprocessing pdv with σ1/2 = 50.
Dotted horizontal lines depict the bin limits as defined in
table 5.3.

group between 0.603 and 0.648 (table 5.4.2).
For comparing preprocessed images with mutual information (pp-mi; figure 5.11.3 and table 5.4.3)

ideal results are achieved for both test groups. Figure 5.12 visualizes the influence of the bin number
of histogram bins b used to compute the mutual information dmi onto the AUC values. Both first-
order edge detectors (ppw and psob) achieve a perfect classification if more than 16 histogram bins
are used for computing the mutual information dmi (figure 5.12). For b = 8, both methods achieve
AUC values close to 1.0; for b = 4 the resulting AUC value is approximately 0.7. The performance
differences between ppw and psob are negligible. The best method of the evaluation group pp-other
achieves perfect results (+ + +) for the day|day test group and very good classification (++) for the
day|night group (figure 5.11.4 and table 5.4.4). The best methods of this evaluation group all
rely on the dividing by variation preprocessing pdv*/4 with σ1/2 = 50 and compare images with the
cross-correlation function dcc. Figure 5.13 visualizes the AUC values obtained for pdv*/4 and dcc
depending on the window size w′. The AUC values decrease for larger windows.

Table 5.5 summarizes the best combinations obtained for the four cases identified in the previous
evaluation step. For the day|day group, perfect classification with AUC values of 1.0 is achieved
for all four cases. The performance for the day|night group depends on the combination of
preprocessing function p and dissimilarity function d, but is always worse than the performance
of the day|day test group. Among the combinations listed in table 5.5, the worst performance is
obtained for comparing images without prior preprocessing with a dissimilarity function excluding
mutual information (i.e. for evaluation group id-other). In this case, the AUC value is only 0.648
and was obtained for comparing images by the zero-mean sum of absolute differences function dzsad.
With AUC values of 0.648 and below, we do not consider methods of this class to be applicable
for loop-closure detection under strong changes of the illumination. By comparing unprocessed
images with the mutual information (id-mi) the performance can be increased to an AUC value of
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Table 5.5.: Summary of best combinations of standard compass method w.r.t. loop-closure detection performance.
The table summarizes for each of the four evaluation groups (id-mi, id-other, pp-mi, and pp-other) the best methods
from table 5.4. AUC values are given for the two test groups day|day and day|night. The bottom row marks
whether we consider the best methods of an evaluation group to be applicable (3) or not (7) to reliable and accurate
loop-closure detection under constant (day|day) and changing (day|night) illumination conditions. We consider a
method to be applicable if both AUC values are greater than or equal to 0.9

Evaluation groups

id-mi id-other pp-mi pp-other

Best methods
p pid pid ppw, psob pdv4/4

(w′ = 15, σ1/2 = 50)

d dmi3 dzsad dmi3, dmi4, dmi5 dcc

b ∈ {16,32,64}

day|day AUC 1.000 1.000 1.000 1.000

day|night AUC 0.969 0.648 1.000 0.987

Applicability 3 7 3 3

0.969. This value was obtained for approximating the gray-value distribution by histograms with
b = 16 bins. The best methods of the evaluation groups id-mi and id-other, i.e. for comparing
images without prior preprocessing, perform worse than the best methods of the groups pp-mi
and pp-other, i.e. for comparing images after prior preprocessing. The second best performance
is obtained for comparing images preprocessed by the dividing by variation function pdv4/4 and
computing the image dissimilarity by the cross correlation dcc. The resulting AUC value is then
0.987 (pp-other). The best results are obtained for comparing preprocessed image with the mutual
information (pp-mi). The first-order edge detectors ppw and psob in combination with the mutual
information dmi with b ∈ {16, 32, 64} achieve a perfect classification of both test groups. With these
results, the best methods for the id-mi, pp-mi, and pp-other evaluation groups are applicable for
reliable loop-closure detection even if strong changes of the illumination occur.
The overall conclusion is that image preprocessing methods cannot increase the loop-closure

detection performance for almost constant illumination (test group day|day) because perfect
classification is possible in this case. However, image preprocessing does not decrease the performance.
For very strong changes as contained in the cross-dataset day|night, preprocessing can drastically
increase the performance of loop-closure detection. The best methods identified in this section
then achieve a perfect or nearly perfect classification. This allows to choose a specific combination
of preprocessing function p and image dissimilarity function d depending on the computational
complexity of the methods.

5.4.2. Robustness Against Perceptual Aliasing and Perceptual Variability
To assess the method’s robustness against perceptual aliasing and perceptual variability, we follow
the evaluation procedures as introduced in section 5.3.2.2 and analyze the percentage of correct
loop-closure detections Pcorr, the percentage of mismatches in the direct vicinity of the expected
match Pmisc, and the percentage of distant mismatches Pmisf. Additionally, we evaluate the mean
and median spatial distances distavg and distmed between the true match and the erroneous match.
These measures do not only assess the classification quality, but also allow to draw conclusions on
how strongly navigation is influenced by erroneous loop-closure detections.
The best methods for each of the four evaluation groups are summarized in table 5.6. The

overall impression is that for all evaluation groups combinations of preprocessing functions p and
image dissimilarity functions d exist which yield ideal results (i.e. 100% correct classifications) for
the day|day test group. This implies that the measures Pmisc, Pmisf, distavg, and distmed are all
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Table 5.6.: Best combinations of standard compass methods w.r.t. robustness against perceptual aliasing and
perceptual variability. Subtables (1) to (4) contain for each of the four evaluation groups (id-mi, id-other, pp-mi,
and pp-other) the best methods identified based on the performance measures (section 5.3.2.2) computed for the
day|day and the day|night test group. For the day|day group, ideal results with 100% of correct classifications Pcorr

are obtained. We therefore omit the remaining measures which in this case are all equal to zero.

(1) id-mi

Test groups

day|day day|night

p d Pcorr /% Pcorr /% Pmisc /% Pmisf /% distavg/ cm distmed/ cm

pid dmi4 (b = 64) 100.0 89.7 1.9 8.5 57.0 55.2
pid dmi5 (b = 32) 100.0 89.7 2.0 8.3 56.9 55.2
pid dmi3 (b = 16) 100.0 88.3 2.2 9.5 56.2 53.9
pid dmi2 (b = 8) 100.0 83.1 3.8 13.1 49.8 40.6
pid dmi1 (b = 4) 100.0 72.1 6.9 21.0 49.1 31.6

(2) id-other

Test groups

day|day day|night

p d Pcorr /% Pcorr /% Pmisc /% Pmisf /% distavg/ cm distmed/ cm

pid dzsad 100.0 13.9 7.6 78.5 57.9 50.0
pid dsad 100.0 13.1 7.9 79.0 58.2 50.0
pid dssad 100.0 8.8 8.5 82.7 60.7 51.0
pid dsssd 100.0 1.8 6.3 91.9 67.0 60.0
pid dzssd 100.0 1.6 5.3 93.1 64.2 60.0
pid deucl 100.0 1.4 5.2 93.4 63.7 58.3
pid dssd 100.0 1.4 5.2 93.4 63.7 58.3
pid drms 100.0 1.4 5.2 93.4 63.7 58.3

(3) pp-mi

Test groups

day|day day|night

p d Pcorr /% Pcorr /% Pmisc /% Pmisf /% distavg/ cm distmed/ cm

psob dmi3 (b = 16) 100.0 100.0 0.0 0.0 0.0 0.0
psob dmi4 (b = 32) 100.0 100.0 0.0 0.0 0.0 0.0
psob dmi5 (b = 64) 100.0 100.0 0.0 0.0 0.0 0.0
ppw dmi3 (b = 16) 100.0 100.0 0.0 0.0 0.0 0.0
ppw dmi4 (b = 32) 100.0 100.0 0.0 0.0 0.0 0.0
ppw dmi5 (b = 64) 100.0 100.0 0.0 0.0 0.0 0.0

(4) pp-other

Test groups

day|day day|night

p d Pcorr /% Pcorr /% Pmisc /% Pmisf /% distavg/ cm distmed/ cm

psob dssad 100.0 100.00 0.0 0.0 0.0 0.0
ppw dssad 100.0 100.00 0.0 0.0 0.0 0.0
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zero. For this reason, table 5.6 does not contain these results for the day|day group. Regarding
the day|night test group, perceptual variability or perceptual aliasing occur only for comparing
unprocessed images (evaluation groups id-mi and id-other), but not for comparing preprocessed
images (evaluation groups pp-mi and pp-other). In more details, the results for the four evaluation
groups are as follows.
For comparing unprocessed images and computing image dissimilarity by mutual information

(id-mi), all 5 combinations can perfectly classify the day|day group (table 5.6.1). Hence, there are
no occurrences of perceptual aliasing or perceptual variability. The performance for the day|night
group is considerably worse. The optimal performance is obtained for approximating the gray-value
distribution by histograms with b = 32 or b = 64 bins. With these combinations, perceptual aliasing
or perceptual variability only occur in approximately 10% of the cases; 2% are close mismatches,
and with 8% most of the failed detections are far mismatches. The median and mean spatial
distances between the mismatches of distmed = 55.2 cm and approximately distmed = 57.0 cm. Thus,
reliable loop-closure detection under varying illumination conditions is not possible.

Table 5.6.2 shows the best results obtained for the evaluation group id-other, i.e. for comparing
unprocessed images with dissimilarity functions other than mutual information. For the day|day
test group, several combinations achieve ideal values. The best methods for the day|night group
correctly detect loop closures in only 13% of the cases. In case perceptual aliasing or perceptual
variability occur, approximately 7% are mismatches are not in the direct vicinity of the expected
match, but approximately 80% are far mismatches. The median and mean spatial distances are
both larger than 50 cm. These results are obtained for the methods comparing images with the
sum of absolute differences function dsad and the zero-mean variant dzsad. Similar to the evaluation
group id-mi, reliable and accurate loop closure detection is only under nearly constant illumination
conditions, but not under the strong changes of illumination contained in the day|night group.
For the evaluation group pp-mi (table 5.6.3), the best results are obtained by the combinations

of the first-order edge detectors ppw and psob with mutual information with more than 16 bins. All
these six combinations achieve ideal results for the day|day and the day|night groups. If mutual
information is excluded (pp-other), the first-order edge detectors in combination with the scaled
sum of squared differences function dsssd also achieve ideal results for both test groups (table 5.6.4).
Table 5.7 summarizes the best combinations identified by analyzing the robustness against

perceptual aliasing and perceptual variability. In all four evaluation groups, ideal results are
obtained for the day|day test group. Performance differences are only found for the day|night
group. For comparing images without prior preprocessing (evaluation groups id-mi and id-other),
the performance strongly decreases: a substantial proportion of loop closures is not correctly
detected, and the mean and median distances between expected and found matches are larger than
50 cm. Thus, these methods are only applicable to loop-closure detection under (nearly) constant
illumination conditions but fail if strong changes of the illumination occur. The best methods of
the two evaluation groups preprocessing images prior to image comparison (pp-mi and pp-other)
achieve ideal results for both test groups. They are therefore applicable to loop-closure detection
even under the presence of strong illumination changes. In both cases, the methods preprocessing
images by the Prewitt or the Sobel filter (ppw and psob) and comparing images by mutual information
dmi with more than 16 histogram bins or the scaled sum of absolute differences dssad perform best.

5.4.3. Compass Accuracy

For assessing the accuracy of the proposed compass methods, we followed the approach described in
section 5.3.2.3 and computed the average angular error AAE and the median angular error MAE.
Similar to sections 5.4.1 to 5.4.2, we analyzed the compass accuracy for four evaluation groups,
namely id-mi, id-other, pp-mi, and pp-other.

For comparing unprocessed images by mutual information (evaluation group id-mi; table 5.8.1),
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Table 5.7.: Summary of best combinations of standard compass method w.r.t. robustness against perceptual aliasing
and perceptual variability. The table summarizes for each of the four evaluation groups (id-mi, id-other, pp-mi, and
pp-other) the best methods from table 5.6. Performance measures are given for the two test groups day|day and
day|night. The bottom row marks whether we consider the method of an evaluation group to be applicable (3) or
not (7) to loop-closure detection both under constant (day|day) and changing illumination (day|night) conditions.
We consider a method to be applicable (3), if Pcorr > 90 % and distmed < 15 cm.

Evaluation groups

id-mi id-other pp-mi pp-other

Best methods
p pid pid ppw, psob ppw, psob

d dmi4 dzsad dmi3, dmi4, dmi5 dssad

(b = 32) (b ∈ {16,32,64})

day|day

Pcorr / % 100.0 100.0 100.0 100.0
Pmisc / % 0.0 0.0 0.0 0.0
distmed / cm 0.0 0.0 0.0 0.0
distavg / cm 0.0 0.0 0.0 0.0

day|night

Pcorr / % 89.7 13.9 100.0 100.0
Pmisc / % 1.9 7.6 0.0 0.0
distmed / cm 55.2 50.0 0.0 0.0
distavg / cm 57.0 57.9 0.0 0.0

Applicability 7 7 3 3

the best results for the day|day test group are obtained for using b = 64 histogram bins. For
this combination, the median and mean angular errors are 5.47° and 9.41°, respectively. For less
histogram bins, the mean angular error increases whereas the median angular error is almost
constant. The results obtained for the day|night group are much worse with the best values of
MAE and AAE being 26.55° and 41.30° being obtained by the mutual information with b = 32.
In case images are compared by dissimilarities other than mutual information (id-other; ta-

ble 5.8.2), the image dissimilarity functions dsad, dzsad, and dssad for the day|day group all obtain
a median angular error of 5.47°. The angular errors range between 9.88° and 11.94°. The accuracy
for the day|night group is much worse: the median and mean angular errors of the best method
—in this case for comparing images by the sum of absolute differences dsad— are 43.73° and 65.31°.
The performances for comparing images by dzsad and dssad are slightly worse.

For comparing preprocessed images by mutual information, the optimal performance for the
day|day and day|night group are obtained for different combinations (pp-mi; table 5.8.3). For
the day|day group, the best combination is preprocessing images by the difference of Gaussians
pdog3 and using b = 64 histogram bins for approximating the gray-value distribution. The median
and mean angular errors are then 4.69° and 9.70° for the day|day group and 10.15° and 23.65° for
the day|night group. To analyze the influence of the number of histogram bins b on the compass
accuracy, figure 5.14 visualizes the AAE vs. the MAE with different markers coding b as explained
in the figure’s caption. It reveals that —in addition to the methods achieving the best performance—
the combination of pdog3 and dmi2 with b = 8 histogram bins (◻) yields a MAE of 5.47° and an AAE
of 8.37° for the day|day group. However, its performance for the day|night group is rather low.
For the day|night group, the best performance is obtained by the local contrast pdl4 with a patch
size of w′ = 15 pixels achieving a MAE of 8.59° and an AAE of 16.13°. For the day|day group, the
combination yields a MAE of 5.47° and an AAE of 9.17°. Figure 5.15 visualizes the accuracy of
pdl4 depending on the number of histogram bins b used for computing the mutual information. It
clearly shows that the accuracy is better for large choices of b and worse for smaller values of b. In
both cases the AAE grows stronger than the MAE therefore suggesting the existence of a larger
number of outliers.
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Table 5.8.: Best combinations of standard compass method w.r.t. compass accuracy. Subtables (1) to (4) contain for
each of the four evaluation groups (id-mi, id-other, pp-mi, and pp-other) the median angular error (MAE) and
the average angular error (AAE) computed for the day|day and day|night test groups. The highlighted columns
mark the measure used for sorting. In case several combinations achieve identical MAE values, the AAE was used as
secondary sorting criterion. For the evaluation groups pp-mi and pp-other (subtables (3) and (4), different methods
achieve the best performance for the day|day or the day|night groups. In this case, the upper part of each subtable
contains the best methods identified for the day|daytest group, and the lower part contains the best methods identified
for the day|day group.

(1) id-mi

Test groups

day|day day|night

p d MAE / ° AAE / ° MAE / ° AAE / °

pid dmi5 (b = 64) 5.47 9.41 28.11 42.77
pid dmi4 (b = 32) 5.47 9.61 26.55 41.30
pid dmi3 (b = 16) 5.47 9.68 28.89 42.57
pid dmi2 (b = 8) 5.47 10.31 35.14 47.94
pid dmi1 (b = 4) 6.25 12.05 37.48 52.40

(2) id-other

Test groups

day|day day|night

p d MAE / ° AAE / ° MAE / ° AAE / °

pid dsad 5.47 9.88 43.73 65.31
pid dzsad 5.47 11.91 44.51 63.98
pid dssad 5.47 11.94 44.51 63.75

(3) pp-mi

Test groups

day|day day|night

p d MAE / ° AAE / ° MAE / ° AAE / °

pdog3 (σ1 = 0.01, σ2 = 0.08) dmi5 (b = 64) 4.69 9.70 10.15 23.65
pdog3 (σ1 = 0.01, σ2 = 0.08) dmi4 (b = 32) 4.69 9.95 10.93 27.32

pdl4 (w′ = 15) dmi5 (b = 64) 5.47 9.17 8.59 16.13
pdl3 (w′ = 11) dmi5 (b = 64) 5.47 9.20 8.59 16.61
pdl4 (w′ = 15) dmi4 (b = 32) 5.47 8.87 8.59 17.22
pdl3 (w′ = 11) dmi4 (b = 32) 5.47 9.02 8.59 17.58

(4) pp-other

Test groups

day|day day|night

p d MAE / ° AAE / ° MAE / ° AAE / °

pheq5 (b = 64) dsad 4.69 9.97 42.17 52.53
pheq4 (b = 32) dsad 4.69 9.98 42.17 52.57
pheq5 (b = 64) dzsad 4.69 10.00 42.17 52.56
pheq5 (b = 64) dssad 4.69 10.00 42.17 52.57
pheq4 (b = 32) dzsad 4.69 10.03 42.17 52.60
pheq4 (b = 32) dssad 4.69 10.03 42.17 52.61
pheq3 (b = 16) dsad 4.69 10.04 42.17 52.63
pheq3 (b = 16) dzsad 4.69 10.09 42.17 52.66
pheq3 (b = 16) dssad 4.69 10.10 42.17 52.68

pdl2 (w′ = 7) dsad 5.47 10.46 9.37 18.18

150



5. Holistic Loop-Closure Detection and Visual Compass

A
A
E

/
◦

MAE / ◦

4.5 5.0 5.5 6.0 6.5
8.0

8.5

9.0

9.5

10.0

(1) day|day group

A
A
E

/
◦

MAE / ◦

10.0 20.0 30.0 40.0 50.0
20.0

40.0

60.0

80.0

(2) day|night group

Figure 5.14.: Compass accuracy of standard compass method for preprocessing by difference of Gaussians pdog3
and comparing images by mutual information dmi. Subfigures (1) and (2) depict the results for the two test groups
day|day and day|night, respectively. Each subfigure visualizes the AAE vs. the MAE depending on the number of
histogram bins b used for computing dmi. The number of histogram bins is coded as follows: (○) b = 4, (◻) b = 8, (◇)
b = 16, (×) b = 32 and (∗) b = 64. The parameters of pdog3 are σ1 = 0.01 and σ2 = 0.08.
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Figure 5.15.: Compass accuracy of standard compass method for preprocessing by local contrast pdl4 and comparing
images by mutual information dmi. Subfigures (1) and (2) depict the results for the two test groups day|day and
day|night, respectively. The subfigures visualize the AAE vs. the MAE depending on the number of histogram bins b
used for computing dmi. The number of histogram bins is coded as follows: (○) b = 4, (◻) b = 8, (◇) b = 16, (×) b = 32
and (∗) b = 64. The patch size for the preprocessing is w′ = 15.

For the remaining evaluation group pp-other, i.e. comparing preprocessed images with dis-
similarity functions except mutual information, different combinations yield optimal performance
depending on the measure used for ranking (table 5.8.4). For ranking depending on the MAE vales
of the day|day group, the optimal combination is histogram equalization pheq4 with b = 64 bins
and comparing images by the sum of absolute differences. This combination results in a MAE of
4.69° and an AAE of 9.97°. For the day|night group, the resulting accuracy is strongly decreased
and only achieves a MAE of 42.17° and an AAE of 52.53°. In both cases, histograms with a larger
number of histogram bins b yield a better compass accuracy (figure 5.16). For the day|night group,
the best combination is image preprocessing by the local contrast pdl2 with a patch size of w′ = 7
pixels and comparing images by the sum of absolute differences. The resulting MAE and AAE
values are 9.37° and 18.18° for the day|night group and 5.47° and 10.46° for the day|day group.
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Figure 5.16.: Compass accuracy of standard compass method for preprocessing by histogram equalization pheq and
comparing images by the sum of absolute differences dsad. Subfigures (1) and (2) show the results for the day and
day|night test groups. Each subfigure depicts the AAE vs. the MAE depending on the number of histogram bins b
used for computing the histogram equalization. The number of histogram bins b is coded as follows: (○) b = 4, (◻)
b = 8, (◇) b = 16, (×) b = 32 and (∗) b = 64.
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Figure 5.17.: Compass accuracy of standard compass method for preprocessing by local contrast pdl and comparing
images by the sum of absolute differences dsad. Subfigures (1) and (2) show the results for the day and day|night test
groups. Each subfigure visualizes the AAE vs. the MAE depending on the patch size w′ used by pdl. Patch sizes are
coded as follows: (○) b = 4, (◻) b = 8, (◇) b = 16 and (×) b = 32.

Thus the compass accuracy of that combination for the day|day group is only slightly worse than
the accuracy of the optimal combination. The average angular errors obtained with the combination
are smaller for larger patch sizes w′ (figure 5.17).

Table 5.9 summarizes the results obtained for analyzing the method’s compass accuracy. In case
different combinations performed best for the day|day and the day|night test groups (tables 5.6.3
and 5.6.4), the optimal combination for the day|night group is given in table 5.9. These combi-
nations perform only slightly worse for the day|day group, but much better for the day|night
group (tables 5.8.3 and 5.8.4). For the day|day test group, the median angular error MAE of all
four considered evaluation groups is 5.47°; the corresponding average angular errors (AAE) range
between 9.17° and 10.46°. Thus, the accuracy differences of the best methods for the day|day group
are rather small. The resulting accuracy for the day|night group is in all four cases worse than
for the day|day group. The median angular errors of the day|night group range from 8.59° to
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Table 5.9.: Summary of best combinations of standard compass method w.r.t. compass accuracy. The table
summarizes for each of the four evaluation groups (id-mi, id-other, pp-mi, and pp-other) the best methods from
table 5.8. Mean (AAE) and median (MAE) angular errors are given for the two test groups day|day and day|night.
The bottom row marks whether we consider the best method of a group to be applicable (3) or not (7) as a compass
under constant and varying illumination conditions. We consider a method to be applicable if the MAE values of
both test groups are equal to or less than 10°.

Evaluation groups

id-mi id-other pp-mi pp-other

Best methods
p pid pid pdl4 pdl2

(w′ = 15) (w′ = 7)

d dmi5 dzsad dmi5 dsad

(b = 64) (b = 64)

day|day
MAE / ° 5.47 5.47 5.47 5.47
AAE / ° 9.41 9.88 9.17 10.46

day|night
MAE / ° 28.11 43.73 8.59 9.37
AAE / ° 42.77 65.31 16.13 18.18

Applicability 7 7 3 3

43.73°, and the average angular errors vary between 16.13° and 65.31°. Computing the change of
the robot’s orientation based on preprocessed images (pp-mi, pp-other) gives significantly better
results than comparing images without prior preprocessing (id-mi, id-other). Using the mutual
information to compute the image dissimilarity (id-mi, pp-mi) yields better results than comparing
the images by other dissimilarity functions (id-other, pp-other). For comparing images without
prior preprocessing (id-mi), mutual information can greatly improve the accuracy, whereas there is
only a small improvement for comparing images by dmi after prior preprocessing (pp-mi). Regarding
the applicability as a compass method, the combinations without prior image preprocessing (id-mi
and id-other) are only applicable under nearly constant illumination conditions. Only the methods
comparing preprocessed images (pp-mi and pp-other) compute reliable estimates even if strong
illumination changes occur.
From these results we conclude that, for small or moderate changes of the illumination, all four

considered evaluation groups achieve a good compass accuracy. In case strong changes of the
illumination are expected, image preprocessing has a positive influence on the resulting compass
accuracy. With respect to image dissimilarity functions, the best results are obtained for comparing
images by the mutual information dmi. However, combinations of preprocessing functions p and
dissimilarity functions d exist which only yield a slightly worse performance.

5.4.4. Computational Aspects of Image Preprocessing Functions
The results of the time measurements for the tested image preprocessing functions are visualized in
figure 5.18; a tabular presentation of the results is given in table C.1. With a computing time of
0.38ms, the Laplacian plap performs best (table C.1.1). Histogram equalization pheq takes 1.6ms
and is independent of the number of bins b (table C.1.6). The first-order edge detectors ppw and
psob both require approximately 7ms (table C.1.1). Preprocessing the image with a difference of
Gaussians pdog requires approximately 9ms (table C.1.2). As the convolution is computed in the
frequency domain, the computing times are independent of the choice of the parameters σ1 and
σ2. This is in contrast to the early-vision functions, which —with the current implementation—
convolve the image in the spatial domain. Thus, these functions require considerably more effort
to compute, and the computing times depend on patch size w′. In the average over all tested
parameters, the functions pdl, pdlc, and pdv require computing times of 84.6ms, 91.6ms, and
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Figure 5.19.: Computing times for global image comparisons. For the mutual information dmi the average value
over the tested numbers of bins b ∈ {4, 8, 16, 32, 64} (equation (5.59)) is given. Please note the logarithmic scale of the
vertical axis.

91.8ms, respectively (tables C.1.3 to C.1.5). Depending on the patch size w′, the functions pdlc and
pdv require approximately 22ms for w′ = 5, 43ms for w′ = 7, 106ms for w′ = 11ms, and 194ms for
w′ = 15. Like for the average values, the local contrast pdl performs slightly better (21ms for w′ = 5,
40ms for w′ = 7, 99ms for w′ = 11, and 178ms for w′ = 15). By reimplementing these functions with
a convolution in the Fourier domain, a performance comparable or only slightly worse than the
difference of Gaussians pdog should be achievable.
We conclude that preprocessing by applying the Laplacian plap and by applying histogram

equalization pheq perform best. The other edge detectors ppw, psob, and pdog all require less than
10ms. This is also the expected computing time the early-vision functions pdl, pdlc, and pdv would
require if the involved convolutions were computed in the frequency domain. We therefore assume a
computing time of 10ms for preprocessing an image as an upper limit for the discussion whether or
not the proposed methods are applicable on a real cleaning robot (section 5.6.2).

5.4.5. Computational Aspects of Global Image Dissimilarity Functions
The results obtained for measuring the computing times of the compass function, i.e. determining
the compass shift smin and the image dissimilarity `min according to equations (5.2) and (5.4), are
shown in figure 5.19 and in tabular form in table C.2. In the figure, the dissimilarity functions are
ranked by increasing computing times. The dissimilarity functions relying on absolute or squared
pixel differences without a scaling and without subtracting the average image brightness (dsad,
dmaxn, dsad, dssd, deucl, drms, dasc, daoc, and dasoc) as well ass the cross-correlation function dcc
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require the least computational effort: they can all be computed within 24ms. The functions dssad,
dsssd, and dncc involving a scaling or a normalization step require 27ms. With computing times of
approximately 32ms, the functions dzsad and dzssd incorporating a subtraction of the average image
brightness require slightly more computational effort. The zero-mean normalized cross correlation
dzncc takes 38ms to compute. As it involves both a normalization and a subtraction of the image
brightness, it requires more effort than dissimilarity functions incorporating either a scaling or a
subtraction of the average image intensity. By far the largest computational effort is necessary to
compute the mutual information dmi. Depending on the number of bins b used to approximate the
image’s gray-value distribution, it takes between 633ms and 659ms.

Thus, most of the comparison functions compute the compass shift and the image dissimilarity in
less than 30ms. We therefore use 30ms as an estimate for the required computing time in order
to draw conclusions about the applicability of the proposed methods in real-robot experiments
(section 5.6.2). With computing times of more than 600ms, mutual information will not be applicable
on a real robot. We do not expect that the implementation of the mutual information can be
optimized to achieve a performance comparable to that of the other tested dissimilarity functions.
For possible optimization approaches beyond an implementation in integer arithmetic, the reader is
referred to [286, 516, 617, 627].

5.4.6. Discussion and Conclusions

In the previous evaluation steps (sections 5.4.1 to 5.4.5) we evaluated the accuracy of loop-closure
detection, of the visual compass, and the computational efficiency. For the evaluation of the loop-
closure detection accuracy (section 5.4.1), the robustness against perceptual aliasing (section 5.4.2),
and the compass accuracy (section 5.4.3), the results were categorized into the four evaluation groups
id-mi, id-other, pp-mi, and pp-other. These groups subsume methods, i.e. combinations of
preprocessing functions p and dissimilarity functions d depending on whether images were compared
with or without prior preprocessing, or whether images were compared by mutual information
or other dissimilarity functions. For each of the evaluation groups, the combinations of p and d
resulting in the best performance were identified based on tables 5.5, 5.7 and 5.9; the results are
summarized in table 5.10.

In the following, the results of the previous evaluation steps (sections 5.4.1 to 5.4.5) will be briefly
summarized for each of the four evaluation groups:

id-mi The best performance for loop-closure detection is achieved by mutual information dmi
with b = 16 or b = 32 histogram bins for approximating the image’s gray-value distribution.
Regarding the compass accuracy, larger choices of b achieve better results. All the results
for the day|night test group are considerably worse than the results obtained for the
day|day group, making the method neither applicable for loop-closure detection nor as
a visual compass if strong illumination changes are likely to occur. At least with the
current implementation, mutual information is not applicable on a real robot.

id-other The best performance for both loop-closure detection and as a visual compass is obtained
for comparing images by the zero-mean sum of squared differences dzsad. While the
method is applicable under (nearly) constant illumination conditions, it fails under strong
changes of the illumination. Regarding computational efficiency, it is among the most
efficient methods considered in this chapter.

pp-mi For loop-closure detection, first-order edge detection ppw or psob in combination with the
mutual information dmi with b = 16 or more bins resulted in the best performance. The
method is capable of perfectly detecting loop closures with the day|day and day|night
test groups. In case the proposed methods should be used as visual compass, the local
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Table 5.10.: Summary of best combinations for standard compass method. The table contains for each of the four
evaluation groups (id-mi, id-other, pp-mi, pp-other) and the three evaluation methods (LCDP, RPA, and CA) the
combination of preprocessing method p and dissimilarity function d achieving the best performance. The acronyms of
the evaluation methods are as follows: LCDP: loop-closure detection performance (section 5.3.2.1), RPA: robustness
against perceptual aliasing and perceptual variability (section 5.3.2.2), and CA: compass accuracy (section 5.3.2.3).
The data is summarized from tables 5.5, 5.7 and 5.9. Results for the day|day and the day|night test groups are given
in the form day|day/day|night.

Evaluation groups

id-mi id-other pp-mi pp-other

E
va
lu
at
io
n
m
et
ho

ds

LCDP
p pid pid ppw, psob pdv4/4

d dmi3 dzsad dmi3, dmi4, dmi5 dcc

AUC 1.000 / 0.969 1.000 / 0.648 1.000 / 1.000 1.000 / 0.987

RPA

p pid pid ppw, psob ppw, psob

d dmi5 dzsad dmi5 dsad

Pcorr/% 100.0 / 89.7 100.0 / 13.9 100.0 / 100.0 100.0 / 100.0
distmed / cm 0.0 / 55.2 0.0 / 50.0 0.0 / 0.0 0.0 / 0.0

CA
p pid pid pdl4 pdl2
d dmi5 dzsad dmi5 dsad

MAE / ° 5.47 / 28.11 5.47 / 43.73 5.47 / 8.59 5.47 / 9.37

contrast preprocessing pdl4 with a patch size of w′ = 15 in combination with a large
number of bins is preferable. Although the compass is less accurate under changes of
the illumination, we still expect it to be accurate enough to allow for reliable yet not
perfect robot navigation. We consider mutual information to be not applicable on a real
cleaning robot.

pp-other For loop-closure detection, different methods perform best depending on the performance
measure. The combination of the dividing by variance preprocessing function pdv4/4 and
the cross-correlation dcc achieves the best AUC values (1.000 for day|day and 0.987
for day|night). With respect to robustness against perceptual aliasing and perceptual
variability, the combination of first-order edge detectors (ppw and psob) with the scaled
sum of absolute differences dssad) performs best. It achieves a perfect loop-closure
detection Pcorr for the day|day and the day|night test groups. This result is surprising,
because we would expect a combination with Pcorr = 100 % to also achieve an AUC
value of 1.0. We currently cannot explain this result, but, after inspecting the used
program code for several times, we consider a programming error to be unlikely. One
possible explanation are differences how AUC and Pcorr are computed: for the AUC,
the dissimilarity values ˆ̀

i,j are pooled over all databases of a test group, whereas for
computing Pcorr, Pmisc, and Pmisf we first count the occurrences for each of the three
cases on a per-database level and then normalize by the number of image pairs contained
in the test group.
Regarding compass accuracy, the best results were obtained for preprocessing by the local
contrast with a patch size of w′ = 7 and for comparing images by the sum of absolute
differences dsad. The accuracy is negatively influenced if changes of the illumination
occur, but with a MAE of approximately 9° we still consider it to be applicable for most
real-robot tasks. The methods of this class are computationally efficient alternatives
to the methods of the pp-mi group (both for loop-closure detection and as a visual
compass).
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Based on these results, we conclude that accurate and robust loop-closure detection for various
workspaces as covered by our image databases is possible with the proposed methods. We therefore
did not evaluate the performance measures on a per-database level, but only pooled over databases
with similar properties. For small or moderate changes of the illumination as contained in the
day|day test group, perfect results are obtained for comparing images without prior preprocessing.
Although not necessary for achieving perfect results, image preprocessing does not negatively
influence the performance. In case strong changes of the illumination are likely to occur during the
robot’s task (day|night test group), image preprocessing prior to image comparison can drastically
improve the performance of the proposed methods. With computing times of approximately 10ms,
the effort of applying image preprocessing functions is relatively small. Comparing images by
mutual information dmi achieves the best results in all considered cases and evaluations. With more
than 600ms, the time required to compute a single image comparison by mutual information is
approximately 25 times larger than for other dissimilarity functions relying e.g. on pixel differences.
As some of the combinations relying on such dissimilarity functions obtain identical or only slightly
worse results, the mutual information has to be considered a baseline method, and these combinations
should be preferred for applications with limited computational power.

5.5. Results of Accelerated Compass Method
In this section, we describe the results obtained for the accelerated compass method proposed
in section 5.2.3; the experimental procedure and the evaluation were performed according to
section 5.3. Sections 5.5.1 to 5.5.3 describe the results of evaluating the method’s loop-closure
detection performance, its compass accuracy and the computational effort of comparing images.
Section 5.5.4 summarizes and discusses the results described in the following.

With the parameter combinations as explained in section 5.3.1.2, we test a total of 2072 different
methods (i.e. different combinations of preprocessing functions and different parameterizations
of the compass) with two test groups and evaluate the results with several evaluation methods.
The test group day|day contains approximately 500,000 image pairs taken from image databased
collected during the day under (nearly) constant illumination conditions, whereas day|night contains
approximately 108,000 image pairs taken from cross databases simulating strong illumination changes
(section 5.3.1.1). Following the evaluation of the standard compass methods (section 5.4), we reduce
the amount of data presented here by splitting the methods into two different evaluation groups.
The groups were chosen depending on whether images are compared by the compass method with
or without prior preprocessing. We refer to these evaluation groups as id (without preprocessing)
and pp (with preprocessing). For each of the two evaluation groups, we identify the combination of
image preprocessing and compass parameters which achieves a best possible performance for both
test groups.

5.5.1. Performance of Loop-Closure Detection
For evaluating the loop-closure detection performance of the accelerated compass method, we follow
the approach described in section 5.3.2.1. To get a first impression of the data, we grouped the AUC
values into five categories as defined in table 5.3. Figure 5.20 visualizes the resulting distribution
of AUC values for each of the two evaluation groups. In all cases AUC values below 0.6 (− − −)
are obtained making loop-closure detection impossible. With these results, it is not reasonable to
identify the best methods of each evaluation group and to further analyze the AUC values.
In a second evaluation step, we visualize for each database the range of dissimilarity values for

positive and negative samples, i.e. for image pairs taken at identical positions in space and pairs
acquired at different positions. By this means, we analyze whether or not loop-closure detection
is possible, i.e. if if positive and negative samples are separable, on the level of single databases.
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Figure 5.20.: Frequency distributions of AUC values for the accelerated compass variant. The distributions are
used to identify promising methods for loop-closure detection as described in section 5.3.2.1. Subfigures (1) and (2)
show the frequency distributions computed for the two evaluation groups id and pp. White and black bars depict the
distributions for the test groups day|day and day|night, respectively. Binning was done w.r.t. the categories defined
in table 5.3 as follows: (− − −) loop-closure detection not possible; (○) moderate loop-closure detection performance;
(+) good performance; (++) very good performance; (+ + +) ideal results (i.e. AUC = 1.0).
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Figure 5.21.: Database-wise analysis of accelerated compass variant w.r.t. loop-closure detection performance. For
each database, we identified the combination of preprocessing and compass parameters with the largest AUC value
(table C.3), and analyzed the resulting dissimilarity values ˆ̀

i,j . Subfigures (1) and (2) visualize the results for the
databases of the day|day and day|night group, respectively. Positive samples (loop closures) are depicted by white
boxes; negative samples (different positions of image acquisition) are depicted by gray boxes. The boxes cover 50% of
the samples ranging from the lower to the upper quartile. The median is marked by the horizontal black line. The
whiskers span the range from the smallest to the largest dissimilarity value. The figures clearly reveal that positive
and negative samples cannot be distinguished therefore making loop-closure detection impossible. Database names
are abbreviated according to table 5.2.

Figure 5.21 shows the results for analyzing the combination of preprocessing function p, number
of rings r, and number of Fourier coefficients c which obtained for each database the largest
AUC values among all tested combinations. In all cases, positive and negative samples cannot be
separated because overlapping dissimilarity values were obtained for positive and negative samples.
Furthermore, the ranges of dissimilarity values vary strongly depending on the used databases.
For these reasons, the proposed method cannot detect loop closures reliably. We therefore do not
evaluate the method’s robustness against perceptual aliasing and perceptual variability. Possible
solutions to this problem are left for future work and outlined in section 5.6.
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Table 5.11.: Best combinations of accelerated compass method w.r.t. compass accuracy. Subtables (1) and (2)
contain for the two evaluation groups id and ppthe median angular error (MAE) and the average angular error (AAE)
computed for the day|day and day|night test groups. The highlighted columns mark the measure used for sorting.
In case several combinations achieve identical MAE values, the AAE was used as secondary sorting criterion. for
the evaluation group pp (subtable (2)), the optima for the day|day and the day|night test groups are obtained by
different combinations. The upper part of subtable (2) thus contains the best method for the day|day group, the
lower part contains the best method for the day|night group.

(1) id

Test groups

day|day day|night

p r b r ⋅ b MAE / ° AAE / ° MAE / ° AAE / °

pid 64 8 512 5.47 14.44 49.20 69.45
pid 32 8 256 5.47 14.56 49.20 69.45
pid 64 230 14 720 5.47 14.69 51.15 69.94
pid 64 128 8192 5.47 14.71 51.15 69.96
pid 64 96 6144 5.47 14.71 51.15 69.95
pid 64 16 1024 5.47 14.72 51.15 70.17
pid 64 32 2048 5.47 14.72 51.15 69.83
pid 64 64 4096 5.47 14.73 51.15 69.90
pid 32 16 512 5.47 14.82 51.15 70.08
pid 32 32 1024 5.47 14.85 51.15 69.78
pid 16 8 128 5.47 14.91 49.98 70.13
pid 16 16 256 5.47 15.11 51.93 70.76
pid 8 8 64 5.47 15.93 49.59 70.34
pid 8 16 128 5.47 16.06 51.54 70.84

(2) pp

Test groups

day|day day|night

p r b r ⋅ b MAE / ° AAE / ° MAE / ° AAE / °

ppw 8 8 64 3.91 17.91 66.77 77.03

pdl2 (w′ = 7) 1 8 8 5.47 20.00 12.50 34.02
pdl3 (w′ = 11) 1 8 8 5.47 18.16 12.50 36.76
pdl3 (w′ = 15) 1 4 4 8.59 18.43 12.50 26.76

5.5.2. Compass Accuracy

In order to assess the compass accuracy of the proposed method, the median and mean angular errors
MAE and AAE were computed as described in section 5.3.2.3. For each of the two evaluation groups
(id and pp) we search for a combination of preprocessing method and compass parameterization which
achieves best possible results for both test groups day|day and day|night. The best combinations
for each evaluation group are summarized in table 5.11, and figures 5.22 to 5.24 show a more detailed
evaluation of the compass accuracy depending on the dimensionality of the compass method.

For the id group comparing images without prior preprocessing (table 5.11.1), the best combination
achieves a MAE of 5.47° and an AAE of 14.44° for the day|day group. The results for the day|night
group are considerably worse with the MAE and AAE being approximately 50° and 70°. These
values were obtained for r = 64 rings and b = 8 Fourier coefficients resulting in a dimensionality
of r ⋅ b = 512. Figure 5.22 visualizes the MAE depending on the dimensionality r ⋅ b with different
choices of r being coded by different markers. For the day|day group (figure 5.22.1), the optimal
MAE of 5.47° is achieved for a dimensionality of 64 or more dimensions. Combinations with a
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Figure 5.22.: Compass accuracy of accelerated compass variant depending on its dimensionality for comparing
images without prior preprocessing (evaluation group id). Subfigures (1) and (2) show the results for the day|day
and the day|night test groups. As an accuracy measure, the median angular error (MAE) is visualized depending on
the dimensionality r ⋅ b of the compass method. Images are compared without prior preprocessing (evaluation group
id). The number of rings r is coded by different markers as follows: (○) r = 1, (◻) r = 2, (◇) r = 4, (×) r = 8, (+) r = 16,
(∗) r = 32, (☆) r = 64. Please note the different scales of the vertical axes.
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Figure 5.23.: Compass accuracy of accelerated compass variant depending on its dimensionality for images prepro-
cessed by Prewitt filter ppw. The subfigures (1) and (2) visualize the results for the two test groups day|day and
day|night, respectively. As an accuracy measure, the median angular error (MAE) is visualized depending on the
dimensionality r ⋅ b of the compass method. The number of rings r is coded by different markers as follows: (○) r = 1,
(◻) r = 2, (◇) r = 4, (×) r = 8, (+) r = 16, (∗) r = 32, (☆) r = 64. Please note the different scales of the vertical axes.

small number of rings (r = 1 (○) and r = 2 (◻)) obtain larger errors than methods with a larger
number of rings. Despite the much larger angular errors, the same holds for the day|night group
(figure 5.22.2).

For comparing preprocessed images (pp; table 5.11.2), the optimal combinations of the prepro-
cessing function p, the number of rings r, and the number of Fourier coefficients b differ for the
day|day and the day|night group. With an MAE of 3.91°, the combination of preprocessing by the
Prewitt filter ppw with r = 8 and b = 8 achieves the optimal performance for the day|day group; the
corresponding AAE is 17.91°. For the day|night group, the error of this combination increases to
a MAE and an AAE of approximately 67° and 77°, respectively. Figure 5.23 shows the influence of
the dimensionality on the compass accuracy for preprocessing by the Prewitt filter ppw. Regarding
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Figure 5.24.: Compass accuracy of accelerated compass variant depending on its dimensionality for comparing
images preprocessed by local contrast pdl2 with window size w′ = 7. The subfigures (1) and (2) visualize the results for
the two test groups day|day and day|night, respectively. As an accuracy measure, the median angular error (MAE)
is visualized depending on the dimensionality r ⋅ b of the compass method. The number of rings r is coded by different
markers as follows: (○) r = 1, (◻) r = 2, (◇) r = 4, (×) r = 8, (+) r = 16, (∗) r = 32, (☆) r = 64. Please note the different
scales of the vertical axes.

the day|day group (figure 5.23.1), the optimum MAE of 3.91° is obtained for a single combination,
but several other combinations achieve only slightly worse results. It seems that the best results are
achieved by combining a moderate number of rings and a moderate number of Fourier coefficients.
In most of the cases, combinations with a small number of rings (r ∈ {1,2,4}, (○), (◻), and (◇))
achieve relatively large angular errors. Combinations with a dimensionality larger than 210 only
achieve a mediocre accuracy. Analyzing the influence of the dimensionality r ⋅ b onto the MAE
for the day|night group reveals completely different results (figure 5.23.2). In this case, the best
combinations with MAEs ranging from approximately 40° to 50° are obtained for using only a
single ring (○). For more than 2 rings and an overall dimensionality ranging from 24 to 210, all
combinations achieve angular errors between 60° and 70°; further increasing the dimensionality
results in MAE values being close to 70°.
If the optimal combination is chosen depending on the MAE obtained for the day|night group,

three combinations achieve an optimal MAE of 12.20° and an AAEs between 26.76° and 36.76°
(table 5.11.2). The combinations all rely on the dividing by luminance preprocessing pdl with a
patch size w′ of 7 or 11 pixels and have dimensionalities between 4 and 8. For the day|day group,
these combinations all achieve a MAE of 5.47° and AAEs ranging from 9.41° to 14.44°. Figure 5.24
visualizes how the dimensionality influences the resulting compass accuracy for preprocessing by
pdl2. For the day|night group (figure 5.24.2), the best MAE value of 12.50° is only obtained for
r = 1 (○) and b = 8. The combinations relying on r = 2 (◻) and on r = 4 (◇) perform considerably
worse; especially for using r = 2 rings, the MAEs are above 30°. For a larger number of rings, a
good but not optimal accuracy is obtained with MAE values of approximately 15°. Regarding
the day|day group (figure 5.24.1), the best accuracy is achieved for a dimensionality of 27 and
28 in conjunction with r = 16 (+) and r = 32, (∗), respectively. Like for other considered cases,
combinations relying on a smaller number of rings achieve in most cases worse MAE values, and
increasing the dimensionality leads to a moderate accuracy of approximately 6.5°.
On the basis of these results, we can conclude that the accelerated compass variant proposed

in this chapter is capable of estimating the change of orientation between two panoramic images.
For small or moderate changes of the illumination like those occurring in the day|day group, the
method is accurate; if stronger changes occur —as it is the case for the day|night group— the
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Figure 5.25.: Computing times of accelerated compass
method. The plot shows the computing time against
the overall number of coefficients r ⋅ b with r being the
number of subimages and b being the number of Fourier
coefficients. The dotted line marks the computing time
required for a pixel-by-pixel comparison with the cross-
correlation function dcc. The number of rings r is coded
by different markers as follows: (○) r = 1, (◻) r = 2, (◇)
r = 4, (×) r = 8, (+) r = 16, (∗) r = 32, (☆) r = 64. Please
not the logarithmic scale of the vertical axis.

larger errors occur. This effect is only partially compensated by image preprocessing.

5.5.3. Computational Aspects
As the accelerated compass variant used the same image preprocessing methods as the standard
method, we only measure the time required to compare two preprocessed images. The results
of this evaluation are shown in figure 5.25 and table C.2. In the figure, the computing time is
plotted against r ⋅ b, i.e. the number of subpanoramas r times the number of Fourier coefficients
b. The number of rings r is coded by different markers as explained in figure 5.25. For fixed r,
the number of coefficients b increases from left to right according to equation (5.64). For more
than 2 rings, the required computing time depends linearly on the number of rings. As the used
function for the discrete Fourier transformation computes all Fourier coefficients and not only the b
required coefficients (section 5.3.1.3), the computing time solely depends on the number of rings r
(section 5.3.1.3). Thus, the resulting computing times are 1.2ms for r = 1 (○), 2.8ms for r = 2 (◻),
4.9ms for r = 4 (◇), 9.3ms for r = 8 (×), 18.1ms for r = 16 (+), 35.8ms for r = 32 (∗), and 70.7ms
for r = 64 (☆).
To this end, the time required to compute the visual compass and the image dissimilarity spans

a large range. For applications of the method, this allows to flexibly adjust the number of rings
r depending on the robot’s task, the available computational power, and the available computing
time. In comparison to the standard cross-correlation function dcc, which requires approximately
24ms (dotted line in figure 5.25), the accelerated method is faster for up to r = 16 rings. For a larger
number of rings, the accelerated variant performs worse. By using a variant of the FFT computing
only the b required coefficients, we expect that combinations with more rings but less coefficients
can be found which can be computed in less than 24ms.

5.5.4. Discussion and Conclusions
Based on the results described in sections 5.5.1 to 5.5.3, we can conclude that the proposed method
is applicable as visual compass but not for loop-closure detection. For the latter application, the
dissimilarity values computed for positive samples (images taken at identical positions in space) and
for negative samples (images acquired at different positions in space) have to be separable. This is
not the case for the proposed method (figure 5.21). We expect that this is due to summing the
residuals of the maxima obtained for each ring in order to determine the overall image dissimilarity
(equation (5.51)). In contrast to the accelerated method, the dissimilarity value computed by
the standard method is the residual of an optimization searching for a single optimum for the
entire image. In this case the resulting image dissimilarity is a trade-off which is influenced by
good-matching image regions and ambiguous or mismatching regions. We currently think that this
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way of optimization is better suited for loop-closure detection (section 5.7.2).
Regarding its application as a visual compass, the method achieves good results, but its per-

formance decreases considerably under strong changes of the illumination. Since the accelerated
method relies on the cross-correlation function dcc for computing image dissimilarities (section 5.2.3),
it cannot be expected that the accelerated variant is more tolerant against illumination changes
than the original method. If strong changes of the illumination are unlikely during the robot’s task,
preprocessing images with the Prewitt filter ppw yields a better compass accuracy than comparing
unprocessed images. However, for strong changes of the illumination, this combination performs
worse than comparing images without prior preprocessing. In case strong changes are expected
to occur, preprocessing images through the dividing by luminance preprocessing function pdl can
considerably improve the compass accuracy while only slightly decreasing the accuracy under nearly
constant illumination conditions.

With respect to computational complexity, we can conclude that the computing time required to
compare two images linearly depends on the number of rings r. For up to 16 rings, two images can
be compared in less than 20ms. The effort of the accelerated compass variant exceeds that of the
standard method (except for comparing images by the mutual information) if more than 16 rings
are used. By applying a FFT algorithm only computing the required number of Fourier coefficients,
this drawback could be circumvented.

5.6. Overall Discussion and Conclusions
In this chapter, we approached the loop-closure problem by a combination of image preprocessing
techniques to reduce the influence of changes of the illumination and of global image comparisons to
classify whether or not two images are identical. Since global image dissimilarity functions require
the images to be aligned w.r.t. a common reference direction, we integrated the loop-closure detection
into the visual compass proposed by Zeil, Hoffmann, and Chahl [718]. We also proposed a variant
of the visual compass referred to as “accelerated compass variant” (section 5.2.3) which approximates
the computation of the cross-correlation function in the Fourier domain. Computing the correlation
in the Fourier domain allows for computing the compass shift and the image dissimilarity without
repeatedly shifting one of the images as is the case for the standard compass method operating
in the image domain. The proposed method approximates the cross correlation dcc because (i) it
uses only the b largest Fourier coefficients and (ii) computes the dissimilarity from a set of r 1D
subpanoramas. These two aspects in combination with computing the correlation in the Fourier
domain constitute the efficiency of the method.
The remainder of this section is structured as follows: in section 5.6.1, the standard compass

method and the accelerated compass variant proposed in this chapter are compared, and in
section 5.6.2, conclusions about the applicability of the proposed methods on a real cleaning robot
are discussed.

5.6.1. Comparison Between Standard and Accelerated Compass Methods
This section compares the standard compass method (section 5.2) and the newly proposed accelerated
compass variant (section 5.2.3) with respect to loop-closure detection performance and compass
accuracy. Currently, only the standard compass method is suitable for loop-closure detection. As
the accelerated variant sums the residual remaining for each ring in order to compute the overall
image dissimilarity, the dissimilarities obtained for positive and negative class samples cannot be
separated (figure 5.21 and section 5.4.6). An improvement to circumvent this drawback is proposed
in section 5.7.
Table 5.12 summarizes the results obtained for analyzing the compass accuracy of the standard

compass method and the accelerated compass variant. For comparing unprocessed and preprocessed
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Table 5.12.: Comparison between standard compass method and accelerated compass method w.r.t. compass accuracy.
Each table includes the results of three methods which are (i) the best standard compass method with arbitrary image
comparison, (ii) the best standard compass method comparing images with the cross correlation dcc, and (iii) the
best accelerated compass method (i.e. comparing images by dfcc). The subtables (1) and (2) contain the methods for
comparing unprocessed and preprocessed images (evaluation groups id and pp). For the evaluation group pp, different
optima result for the day|day and the day|night test groups. The upper part of subtable (2) thus contains the best
method for the day|day group, the lower part contains the best method for the day|night group. In case several
combinations achieve identical MAE values, the corresponding AAE is used for sorting.

(1) id

Test groups

day|day day|night

p d MAE / ° AAE / ° MAE / ° AAE / °

pid dmi5 (b = 64) 5.47 9.41 28.11 42.77
pid dfcc (r = 8, b = 8) 5.47 14.44 49.20 69.45
pid dcc 6.25 13.29 60.91 78.88

(2) pp

Test groups

day|day day|night

p d MAE / ° AAE / ° MAE / ° AAE / °

ppw dfcc (r = 8, b = 8) 3.91 17.91 66.77 77.03
pdog3 (σ1 = 0.01, σ2 = 0.08) dmi5 (b = 64) 4.69 9.70 10.15 23.65
pheq5 (b = 64) dcc 5.47 11.76 43.73 53.20

pdl4 (w′ = 15) dmi5 (b = 64) 5.47 9.17 8.59 16.13
pdlc4 (w′ = 15) dcc 7.03 13.82 9.37 23.93
pdl3 (w′ = 11) dfcc (r = 1, b = 8) 5.47 20.00 12.50 34.02

images (tables 5.12.1 and 5.12.2), each subtable contains the best results obtained for the stan-
dard method comparing images with any of the tested dissimilarity functions, for the standard
method comparing images with the cross-correlation dcc, and for the accelerated compass variant
approximating dcc by dfcc. This allows us to compare the proposed compass method with the two
parameterizations of the standard compass method which are either most accurate or most similar
to the proposed method.

For comparing images without prior preprocessing (table 5.12.1), the accelerated compass method
achieves for the day|day test group the same median angular error (MAE) of 5.47° than the best
standard method. Both methods perform slightly better than the best standard method comparing
images with the cross-correlation function dcc. Regarding the day|night test group, all methods
perform considerably worse and achieve MAEs of 28° and more. These large errors make them not
applicable for robot navigation tasks. For comparing preprocessed images (table 5.12.2), different
methods yield the best results depending on whether the MAEs of the day|day group or that
of the day|night group are used for ranking. In the former case, the proposed compass method
performs achieves for the day|day group a better MAE than the other two methods. However,
the method (i.e. preprocessing by Prewitt filter ppw and a compass with r = 8 subpanoramas and
b = 8 Fourier coefficients) performing best for the day|day group performs worst for the day|night
group. With 66°, the MAE of the accelerated method is much worse than that of the standard
methods relying on the cross correlation dcc (MAE ≈ 44°) and that of the best standard method
(MAE ≈ 10°). If the methods are ranked depending on the MAE values of the day|night group,
the best methods achieve a good performance for both test groups. For the day|day group, the
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best standard method and the accelerated method both achieve a MAE of 5.47°; the best standard
method comparing images by cross correlation dcc achieves an MAE of approximately 7°. Regarding
the median angular errors for the day|night group, the two standard methods perform better with
MAEs of approximately 9°. The accelerated compass method performs worst for this test group
and achieves a MAE of 12.5°.
Based on this comparison, we conclude that the newly proposed compass variant is competitive

for small or moderate changes of the illumination as contained in the day|day data set. For this
case, it achieves the same or even slightly better results than the standard method comparing images
by mutual information; However, if strong changes of the illumination occur during the robot’s task,
the accelerated compass variant achieves larger angular errors than the best combinations of the
standard method. In all considered cases, the accelerated compass method is more efficient than
the standard method relying on mutual information as dissimilarity function. If other dissimilarity
functions are used, the accelerated compass variant is with its current implementation more efficient
for r = 16 or less subpanoramas.

5.6.2. Applicability on a Real Cleaning Robot
Based on the measurements of the required computing time (sections 5.4.4, 5.4.5 and 5.5.3),
theoretical conclusions can be drawn if the methods proposed in this chapter can be applied on a real
cleaning robot. We assume that the robot moves with 10 cm/s and that it takes a new snapshot every
10 cm. These conditions are comparable to the experimental conditions under which the real-robot
experiments described in (section 6.4 and chapter 4) were conducted. Since loop-closures have to be
detected in the time between adding to consecutive snapshots to the map, there is at most 1 s of
computing time available for this purpose. For the further evaluation, we do not take into account (i)
that the cleaning robot has to concurrently perform further processing steps such as visual homing
or updating its position estimates and (ii) that the robot’s on-board computer probably has less
computational power than the desktop computer used for the experiments described in this chapter.
With a computing time of 600ms for a single image comparison, mutual information is not

applicable on a real robot and has to be considered a baseline method. We further assume that
image preprocessing requires 10ms and that an image comparison requires approximately 25ms
(sections 5.4.4 and 5.4.5). Thus, 39 images can be compared if the preprocessed images are stored in
the topological map; otherwise, only 28 images can be compared due to repeated applications of the
image preprocessing functions. 39 images correspond to a single cleaning lane with a length of 3.8m.
If one analyzes footprints of real apartments, as e.g. depicted in figures 7.3 and B.4, one clearly sees
that cleaning lanes of approximately 4m length can occur even in mid-sized apartments. For safe
loop-closure detection in larger environments, we think that —including some safety tolerance— 80
to 100 comparisons are necessary. Thus, at least with the current implementation, the proposed
methods are not applicable on a real cleaning robot; improvements making the methods applicable
on a real cleaning robot therefore have to halve the current computing time and are discussed in
section 5.7.1.

5.7. Future Working Directions
Future working directions related to holistic loop-closure detection methods include (i) optimizing the
current rapid-prototyping implementation (section 5.7.1), (ii) to improve the Fourier-based compass
method (section 5.7.4), (iii) to test further image preprocessing and image comparison functions
(section 5.7.4), and (iv) to apply the concept of rings also to the standard method and to increase
the method’s accuracy by turning it into a probabilistic (section 5.7.3). As loop-closure detection
based on global image dissimilarities is closely related to signature-based loop-closure detection
(chapter 6), several of the future working directions described in section 6.6 can also be pursued
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for the methods proposed in this chapter. These include topological mapping and inferring spatial
information based on pairwise image dissimilarities or reintroducing metrical position information
based on pairwise image dissimilarities. However, we feel that signature-based approaches are better
suited for these approaches because these methods allow for more efficient image comparisons.

5.7.1. Efficient Implementation

The aim of this working direction is to make the holistic loop-closure detection methods applicable
on a real cleaning robot. A first step is to reimplement the proposed preprocessing and image
comparison functions in integer arithmetic. A second step is to speed up the computation of
image-dissimilarity values by relying on precomputed look-up tables (e.g. for computing pixel
differences) or early termination of summations. Furthermore, as both image preprocessing and
computing image dissimilarities involve many operations which can be executed in parallel, further
optimizations could include to reimplement the methods based on Streaming SIMD Extensions
(SSE; e.g. [I50]). With this programming technique, Prof. Dr. Ralf Möller could recently show that
different (but nevertheless closely related) image dissimilarity functions can be evaluated in less
than 10ms (Möller [450]).

5.7.2. Improvement of the Accelerated Compass Variant

The primary goal of future work should be to improve the accelerated compass method in order
to make it applicable for loop-closure detection. In the current implementation, the overall image
dissimilarity ˆ̀ is computed by summing the residuals ˆ̀

j obtained for every subpanorama: ˆ̀= ∑j ˆ̀
j

(equation (5.51)). As already discussed in section 5.5.4, we expect that the method will be suitable
for loop-closure detection if equation (5.51) is replaced by a method making the overall dissimilarity
ˆ̀ dependent on the resulting overall compass shift ŝ (rather than on that of each subpanorama):

ˆ̀=
r−1
∑
j=0

`j(ŝ). (5.73)

5.7.3. Subdivision of the Panoramic Image Into Rings

To apply the concept of rings onto the standard compass method (Zeil, Hoffmann, and Chahl
[718]), the panoramic image has to be divided into subpanoramas as described in section 5.2.3. For
each subpanorama, the compass shift and the compass residual is computed according to equa-
tions (5.2) and (5.4). The estimates obtained by this means can then be fused to an overall estimate
of the orientation change (equation (5.50)) and an overall dissimilarity measure (equation (5.73)).
By this extension, we expect that the compass accuracy of the standard method can be further
improved because the overall compass shift is derived from several estimates, which should be more
robust against outliers. Furthermore, the extension allows for comparing images by all tested image
dissimilarity functions and is not restricted to the approximation of the cross-correlation function as
is the case for our accelerated compass variant. However, it requires to repeatedly shift and evaluate
the image dissimilarity function.
Turning the currently used methods into probabilistic methods is supposed to increase their

compass accuracy and loop-closure detection performance by reducing the influence of outliers and
ambiguous matches. Instead of fusing the j (0 ≤ j < r) estimates ŝj of the compass shift obtained
for every ring by computing their median (equation (5.50)), the probability density function of a
von Mises distribution

mj = mises(sj , σ2
j ) (5.74)
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centered at the maximum sj and with variance σ2
j can be computed. The von Mises distribution is

also referred to as circular normal distribution (textbook: [32]). In the discrete case considered here,
mj is sampled at discrete positions corresponding to the pixel positions in the ring-shaped image.
Fusing the estimates of every ring is then done by multiplying all mj and finding the maximum of
the resulting product:

ŝ = w−1max
s=0

r−1
∏
j=0
mj . (5.75)

5.7.4. Testing Further Preprocessing and Image-Dissimilarity Functions
The third direction of future work is to test preprocessing methods and dissimilarity functions which
have not been considered yet. As an alternative preprocessing method, histogram warping could
be applied [123, 259, 260]. For this purpose, the gray-value distribution of one image is warped
in order to best possibly fit the gray-value distribution of the other image (rather than equalizing
the gray-value distribution of both images as is the case for histogram equalization; section 5.2.1).
Image dissimilarities are then computed for the image with the warped gray-value distribution and
the reference image. Although we are not aware of an application of this technique for visual robot
navigation, we expect it to be an interesting alternative to histogram equalization. In particular if
the image histograms are similar, we expect it to achieve better results than histogram equalization
emphasizing contrasts for dominating intensity ranges and reducing contrasts for less frequent
intensity ranges.

At the current stage of our work, we do not consider local image dissimilarity functions. Although
we currently see two drawbacks of such dissimilarity functions, they could be applied for loop-closure
detection. First, the computational effort of local image dissimilarity functions is larger because
(i) images have to be divided into subregions, (ii) the regions have to be compared, and (iii) the
dissimilarity values have to be fused to an overall dissimilarity. The second drawback is that local
dissimilarity functions have more internal parameters such as the size, the position, the number, and
the shape of subregions. Despite these drawbacks, we expect that local dissimilarity functions can
achieve a better robustness against changes of the illumination because several local dissimilarity
values are fused to the overall image dissimilarity such that local intensity changes can be tolerated
rather than only global ones. For this purpose, the method should be capable of compensating for
a certain proportion of outliers or erroneous matches. An alternative to local image dissimilarity
functions could be to test the illumination-tolerant correlation measures proposed by Möller [450].
For our 2D warping method (sections 3.5.2.2 and 4.4.2), they exhibit a good robustness against
changes of the illumination and can be efficiently computed.
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The methods proposed in this chapter solve the loop-closure problem by deriving and
comparing global image signatures instead of comparing entire images as in the previous
chapter.
Sections 6.1 and 6.2 introduce and describe the developed methods. The experimental
procedure, evaluation methods and results of database and real-robot experiments are
described in sections 6.3 and 6.4. The chapter ends with a discussion (section 6.5) and an
outlook to future working directions (section 6.6).
This chapter is an extension of the bachelor’s thesis of Oliver Schlüter [575] supervised
by Lorenz Hillen and Martin Krzykawski. Except for the program to compute AUC
values (section 6.3.1.3), which was provided by Oliver Schlüter, the software required to
perform the database experiments was implemented by Lorenz Hillen. During his time as
student assistant, Oliver Schlüter also implemented the software framework for real-robot
experiments under the supervision of Lorenz Hillen. The software for data evaluation and
visualization of the real-robot experiments was implemented by Lorenz Hillen who also
conducted the experiments. The active visual tracking system used to track the robot
during real-robot experiments (figure 6.15) was initially developed by Daniel Venjakob in
a student project [668] supervised by Lorenz Hillen. The system was later on improved by
Martin Krzykawski (low-level aspects of client-server communication) and Lorenz Hillen
(high-level aspects including calibration, robustness against illumination changes, usability,
visualization, and data logging).
Preliminary results of this chapter have already been published as conference paper
(Gerstmayr-Hillen et al. [223]) and presented as poster (Gerstmayr-Hillen et al.
[221]).

6.1. Introduction

Signature-based solutions to the loop-closure problem characterize places by a low-dimensional
image-signature derived from the entire image (section 3.3.1.1). To better distinguish global image-
descriptors from local feature-descriptors computed at image regions around points of interest
(reviews: [226, 372, 438, 439, 577, 644], textbook: [586]), we refer to global image descriptors as
image signatures. For detecting loop closures, signature-based methods compare the low-dimensional
image signatures and therefore allow considerable more efficient image comparisons than holistic and
feature-based loop-closure detection methods. Compared to holistic loop-closure detection methods,
signature-based methods are more efficient because (i) the compass step required by holistic methods
can be avoided by applying a signature function which is invariant under rotations of the robot, and
because (ii) low-dimensional image signatures are compared instead of entire images. Due to the
latter aspect, signature-based methods are also more efficient than feature-based methods, which
have to be considered as the standard approach to loop-closure detection and explicitly solve the
correspondence problem by descriptor matching. For this purpose, several local feature descriptors
need to be matched (section 3.3.2.1), each of which has a dimensionality comparable to or even
larger than the dimensionality of the signatures proposed in this chapter.
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d(⋅, ⋅)

s(⋅)

p

qi

Cp

Ip = ⋃Sj with 0 ≤ j ≤ r − 1
`t

ˆ̀

Figure 6.1.: Principles of signature-based loop-closure detection. By covering the robot’s workspace with segments of
parallel lanes (dashed lines), a dense purely topological map (section 3.6.4.1) is built (edges not shown). Loop closures
can occur at the borders of such segments. By applying a signature function s, image signatures p are computed
which can be stored in the topological map and can be reused in later processing steps. For loop-closure detection,
the current signature p is compared with several image signatures qi stored in the map by applying a dissimilarity
function d. Each comparison results in a dissimilarity value ˆ̀which is used for classification w.r.t. a classification
threshold `t. Since the used signature functions are rotationally independent, signatures can be compared independent
of the robot’s orientation. Thus, signature-based approaches do not require the visual compass step inherent to holistic
loop-closure detection methods (chapter 5).

In the context of topological navigation, image signatures such as color histograms (e.g. [476, 647,
688]), gray-value histograms (e.g. [242]), color statistics (e.g. [476]), rotation-dependent eigenspace
representations (e.g. [210, 311]), rotation-invariant eigenspace representations (e.g. [313]), Haar
integrals (e.g. [94, 352]), and absolute Fourier coefficients (e.g. [169, 171, 172, 421, 427, 506, 530])
have been used (for details on these methods please refer to sections 3.3.1.1, 3.6.3.2 and 3.6.4.1).
All these methods have in common that invariance against rotations of the robot is usually achieved
by deriving image descriptions being independent of exact pixel positions. Signature-based loop-
closure detection is closely related to characterizing places by signatures as it is the case for purely
topological maps or topo-metric maps with signature-based a signature-based representation of
places (sections 3.6.3.2 and 3.6.4.1). Loop-closure detection needs to be a purely vision-based
because the robot’s position estimate can drift over time from the robot’s true position.
For our application, loop closures can occur at the borders of neighboring cleaning segments

(section 3.2.3.3). While traveling along its current cleaning lane and approaching an already cleaned
segment, the robot is supposed to stop exactly at the border of this segment. Otherwise, uncleaned
areas remain or repeated coverage occurs, and the resulting map of the environment becomes
inconsistent. Besides that, loop-closure detection can be applied in order to find shortcuts between
neighboring cleaning segments.

6.2. Methods
For detecting loop closures based on signatures, we pursue the following approach (figure 6.1): the
robot’s current camera image Cp is unfolded to a cylindrical image Ip, which is used to transform
the image into a lower-dimensional image signature p by applying a signature function s(Ip). As
signature functions, we apply functions deriving parameters based on gray-value histograms, on
statistical image properties and on absolute Fourier coefficients (section 6.2.1). In case the robot’s
current position is added as a place node to the dense topo-metric map (section 4.2), the signature
p and the panoramic image Ip are attached to that node. As the stored signature can be reused in
latter processing steps, repeated evaluations of the signature function are avoided.

In a second step, the current signature p is compared to signatures qi stored in the topological map.
For our particular application, it is sufficient to only compare the snapshots at the borders of already
cleaned areas; typical loop-closure applications require to compare the current signature p with all
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the signatures qi stored in the map. Comparisons between signatures p and q are computed by
applying a dissimilarity function d(p,qi) yielding a scalar measure ˆ̀ of the image dissimilarity. We
refer to the comparison function as dissimilarity function and not as distance function to emphasize
the difference between distances in the signature space and spatial distances. As dissimilarity
functions we apply standard norm functions as well as histogram-specific dissimilarity functions
(section 6.2.2). Based on ˆ̀ and a threshold `t, a decision is made whether the images Ip and Iqi ,
and therefore the positions of their acquisition, are identical or not.

6.2.1. Signature Functions

Signature functions s are used to transform the image Ip taken at position x into a global image
descriptor p. In an ideal case, the resulting signature p = s(Ip) and therefore also the signature
functions s exhibit the following properties:

s (I(x)) = s (I ′(x′)) iff x = x′ (6.1)
s (I(x, y, θ)) = s (I(x, y, θ′)) (6.2)

s (I(x, t)) = s (I(x, t′)) (6.3)

Equation (6.1) states that —in an ideal case— identical signatures are computed if and only if
the images were taken at identical positions in space. This property enforces robustness against
perceptual aliasing1 (section 3.2.3.1), i.e. the ability to distinguish two different positions x and
x′ with the same visual appearance. Invariance against rotations of the robot is expressed by
equation (6.2). Rotational invariance can be achieved by applying signature functions which derive
image signatures independent of exact pixel positions. Thus, two images can be recognized as
being identical without aligning them w.r.t. a common frame of reference as it is required for the
holistic loop-closure detection methods proposed in chapter 5. In contrast to rotational invariance,
achieving invariance against perceptual variability (section 3.2.3.2) as is required by equation (6.3)
is more difficult. Perceptual variability means that the visual appearance of an image changes due
to illumination changes or due to dynamic changes of the scene. Most vision-based navigation
strategies are not fully invariant against perceptual variability, but only achieve tolerance up to a
certain extent of variability. We expect that some of the combinations of signature functions s and
dissimilarity functions d tested in this chapter exhibit a sufficient tolerance against illumination
changes to reliably detect loop closures. We therefore avoid the computational effort for additional
image preprocessing prior to loop-closure detection as pursued for holistic loop-closure detection
methods described in chapter 5.
As signature functions, we have chosen signatures which are (i) rotationally invariant and (ii)

can be efficiently computed even with the restricted hardware available on an autonomous cleaning
robot. We therefore use signatures based on gray-value histograms (hist and chist), on image
statistics (cog, mm, mv, ms, mk, mmv, msk, mmvs, mvsk, and mmvsk), and on Fourier coefficients (afc
and zafc). A categorization of the signatures is depicted in figure 6.2.

Signature Functions Based on Gray-Value Histograms
The signature functions

shist(I) = h(I) = (h0, h1, . . . , hb−1)⊺ and (6.4)

schist(I) = c(I) = (c0, c1, . . . , cb−1)⊺ with ck =
k

∑
l=0
hl (k = 0,1, . . . , b − 1) (6.5)

1“Perceptual aliasing” is often referred to as “spatial aliasing”.
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Histogram-based
signatures

Gray-value histogram
shist*

(6.4)

Cumulative gray-value
histogram

schist*

(6.5)

Statistical signatures

Statistical moments
smm, smv, sms, smk, smmv, smsk,

smmvs, smvsk, smmvsk

(6.6)–(6.14)

Length of
center-of-gravity vector

scog

(6.19)

Fourier-based
signatures

Absolute Fourier
coefficients

safc*

(6.22)

Absolute Fourier
coefficients w/o
DC-component

szafc*

(6.23)

Signature functions s

Figure 6.2.: Categorization of signature functions used for signature-based loop-closure detection. The dimensionality
of the signature functions marked by a star (*) not only depends on the number r of rings but also on the number b
of histogram bins or Fourier coefficients. The numbers in parentheses refer to the equation defining the signature
function.

use the histogram h(I) and the cumulative histogram c(I) of relative gray-value frequencies as
signatures (e.g. [132, 242, 476, 549, 647, 688] and sections 3.3.1.1, 3.6.3.2 and 3.6.4.1). Both types
of histograms contain b bins and are normalized in order to sum up to unity (i.e. ∑b−1

k=0 hk = 1 and
∑b−1
k=0 ck = 1). Especially if a small number b of bins is used, we expect histogram-based signatures

to be tolerant against smaller illumination changes; stronger changes should be compensated for by
histogram-comparison functions with cross-bin matching (section 6.2.2.1).

Signature Functions Based on Image Statistics
Among the signatures based on image statistics, we apply two different groups, namely signatures
based on statistical moments and the length of the center of gravity vector. The first group extends
the signatures used by [177, 537] and combine the first four empirical moments mean, variance,
skewness, and kurtosis of the image I (sized w × h pixels) to image signatures. In particular the
signatures which are independent of the mean of image intensities (equation (6.15)) should be
robust against illumination changes influencing the average image brightness. In detail, we use the
following nine signatures:

smm(I) = mean(I), (6.6)
smv(I) = var(I), (6.7)
sms(I) = skew(I), (6.8)
smk(I) = kurt(I), (6.9)

smmv(I) = (mean(I),var(I))⊺ , (6.10)
smsk(I) = (skew(I),kurt(I))⊺ , (6.11)

smmvs(I) = (mean(I),var(I), skew(I))⊺ , (6.12)
smvsk(I) = (var(I), skew(I),kurt(I))⊺ , and (6.13)

smmvsk(I) = (mean(I),var(I), skew(I),kurt(I))⊺ (6.14)
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with

mean(I) = 1
wh

w−1
∑
x=0

h−1
∑
y=0

I(x, y), (6.15)

var(I) = 1
wh − 1

w−1
∑
x=0

h−1
∑
y=0

(I(x, y) −mean(I))2, (6.16)

skew(I) = 1
wh ⋅ var(I) 3

2

w−1
∑
x=0

h−1
∑
y=0

(I(x, y) −mean(I))3, and (6.17)

kurt(I) = 1
wh ⋅ var(I)2 − 3

w−1
∑
x=0

h−1
∑
y=0

(I(x, y) −mean(I))4 (6.18)

The naming of these signatures (equations (6.6) to (6.14)) is as follows: the first letter is a m
indicating that the signature belongs to the class of moment-based signatures, and the following
letters correspond to the first letters of the statistical moments (equations (6.15) to (6.18)) used for
the signatures.
The second group of statistical signatures is formed by a one-dimensional signature cog, which

relies on the length of the center of gravity (CoG) position vector. A similar signature was also
tested by [177, 537]. The signature is defined as

scog(I) =
XXXXXXXXXXX

1
n

w−1
∑
x=0

h−1
∑
y=0

I(x, y)(x̃
ỹ
)
XXXXXXXXXXX

with (6.19)

n =
w−1
∑
x=0

h−1
∑
y=0

I(x, y) and (6.20)

(x̃
ỹ
) = y (cos (2πx

w
)

sin (2πx
w

)) . (6.21)

If image intensities I(x, y) were in equation (6.19) multiplied with Cartesian image coordinates
(x, y)⊺ rather than with (x̃, ỹ)⊺ as defined by equation (6.21), the length of the CoG position vector
would depend on the robot’s orientation (figure 6.3.1). Rotational invariance of the signature is
achieved because the length of (x̃, ỹ)⊺ does not depend on the robot’s orientation. This is similar
to a polar representation of the panoramic image with the angular coordinate ϕ depending on
the image column x and the radius r being equal to the image row y (figure 6.3.2). With such a
representation, the position of the center of gravity C also depends on the robot’s orientation, but
the length of its position vector is rotationally independent.

Signature Functions Based on Fourier Coefficients
Image signatures based on absolute Fourier coefficients were first proposed by Menegatti, Maeda,
and Ishiguro [421] and were applied to visual homing with parameter models (section 3.5.2.2) by
[177, 537]. Instead of applying a 1D FFT to each row of the image I as originally proposed by [421],
we average over the columns of the image I in order to obtain a 1D panorama Ī, which is then
transformed:

safc(I) = (f0, f1, . . . , fb−1)⊺ and (6.22)
szafc(I) = (f1, f2, . . . , fb)⊺ with (6.23)

fk = ∣
w−1
∑
x=0

Ī(x) exp(−2πkι̇ x
w

)∣ . (6.24)
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w
x⇒ 2πx

w
= ϕ

y = r

h

0

Ic c′

(1) Panoramic image in Cartesian coordinates

ϕ = 2πx
w

r = y
c

c′

(2) Panoramic image in polar coordinates

Figure 6.3.: Computation of the center of gravity (CoG) position vector. The CoG is initially located at position c
and moves to position c′ after a rotation of the robot. Both, in a Cartesian (1) and in a polar (2) representation
of the panoramic image, the position of the CoG depends on the robot’s orientation. In Cartesian coordinates, the
length of the position vector pointing towards the CoG (thick arrows) depends on the robot’s orientation, whereas it is
independent in polar coordinates.

To achieve rotation invariance, the phase information is eliminated by using the absolute values of
the Fourier coefficients. The signature afc includes the first Fourier coefficient (DC-component)
f0 and is referred to as absolute Fourier coefficients with DC-component. For the zafc signature,
the first Fourier coefficient f0 is omitted, and the signature is referred to as absolute Fourier
coefficients without DC-component. Because the first coefficient covers the average image brightness,
whereas higher-order coefficients express deviations from the average image brightness, we expect
this signature to be more robust against variations of the illumination changing the average image
brightness. As most of the image information is contained in the lower-order coefficients (e.g. [421,
495, 588, 611]), both signatures are formed by the first b Fourier coefficients only.

6.2.2. Dissimilarity Functions
Dissimilarity functions d are used to compare two image signatures p = s(Ip(xp)) and q = s(Iq(xq)).
In an ideal case, the distance functions would exhibit the following properties, which are identical
to the properties of image dissimilarity functions described in section 5.2.2:

d(p,q) ≥ 0, (6.25)
d(p,q) = 0⇔ p = q, (6.26)
d(p,q) = d(q,p), and (6.27)
d(p,q) ⋅∼ dist(xp,xq). (6.28)

Equations (6.25) and (6.26) state that the dissimilarity function d should be zero if and only if the
signatures p and q are identical; for other cases d should be positive. Because of the properties
of signatures defined in equations (6.1) to (6.3), zero dissimilarity between signatures p and q
should only occur if the signatures result from images acquired at identical positions in space.
Equation (6.27) requires the dissimilarity function d to be symmetric, and equation (6.28) states
that the image dissimilarity d(p,q) should depend monotonically on the spatial distance dist(xp,xq)
between the positions of image acquisition xp and xq.

In order to identify promising combinations of signature functions s and dissimilarity functions d,
we test a wide range of dissimilarity functions (figure 6.4). The functions can be grouped into norm
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Figure 6.4.: Categorization of dissimilarity functions used to compare global image signatures. Functions tested
with multiple parameters are marked by a star (*). The numbers in parentheses refer to the equation defining the
dissimilarity function. Cross-bin matching function without thresholded ground distance rely on equation (6.37) as
ground distance, whereas their thresholded counterparts apply equation (6.46).

functions (dman, deucl, and dmaxn), histogram-comparison functions with bin-by-bin matching (dkl,
djef, dbhat, and dchi), and histogram-comparison functions with cross-bin matching (dqf, dqfc, demd,
dqft, dqfct, and demdt).

Norm Functions
As norm functions we test the Manhattan norm (dman), the Euclidean norm (deucl), and the
maximum norm (dmaxn):

dman(p,q) = L1(p,q) =
b−1
∑
k=0

∣pk − qk∣, (6.29)

deucl(p,q) = L2(p,q) =

¿
ÁÁÀb−1
∑
k=0

(pk − qk)2, and (6.30)

dmaxn(p,q) = L∞(p,q) = b−1max
k=0

∣pk − qk∣. (6.31)

These functions can be used to compute the dissimilarity for all considered signatures. Norm
functions do not exhibit tolerance against illumination changes. Thus, a combination of a signature
function and a norm function to compare signatures can only be robust against illumination changes
if the signature function tolerates illumination changes.
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p

q

(1) Bin-by-bin matching

p

q

(2) Cross-bin matching

p

q

(3) Thresholded cross-bin
matching

Figure 6.5.: Different types of histogram-comparison functions comparing two histograms p and q by matching their
bins pi and qj . Matches between bins are indicted by dashed lines. Bin-by-bin matching functions only compare
corresponding bins (i.e. for i = j; subfigure (1)). Cross-bin matching functions match between arbitrary bins (i.e.
for arbitrary i, j; subfigure (2)). Thresholded cross-bin matching functions compare neighboring bins around the
corresponding bin (i.e. if ∣i − j∣ < t with t being a threshold; subfigure (3)). In case changes of the illumination
occur between acquiring the images represented by p and q, the image intensity distribution and therefore also the
histograms p and q change. Bin-by-bin matching functions are more sensitive against such changes because they
only take corresponding bins into account. Cross-bin-matching functions are more tolerant because they compute
the similarity between p and q not only from matching corresponding bins but also from matching each bin of p
with several (or all) bins of q. For sake of a better visibility, only a reduced number of bin matches (dashed lines) is
depicted in subfigures (2) and (3); (thresholded) histogram-comparison functions with cross-bin matching of course
compare all bins of p with the corresponding bins of q. After Rubner, Tomasi, and Guibas [549].

Histogram-Comparison Functions With Bin-by-Bin Matching
Histogram comparison functions with bin-by-bin matching only compare corresponding bins of

two histograms (figure 6.5.1), i.e. for the histograms p and q they only match the histogram entries
pi and qi for i = j. Bin-by-bin matching functions can be computed efficiently, but they are (i)
more sensitive to bin sizes and boundaries, and (ii) less robust against changes of the illumination
than cross-bin matching methods (section 6.2.2.1). As bin-by-bin matching functions, we test the
Kullback-Leibler divergence dkl, the Jeffrey divergence djef, the Bhattacharyya coefficient dbhat, and
the χ2 distance dchi. The Kullback-Leibler divergence (Kullback [348]) is defined as

dkl(p,q) =
b−1
∑
k=0

pk log pk
qk

(6.32)

and measures the distance between the probability distributions represented by the histograms p
and q. As the Kullback-Leibler divergence is not symmetric and therefore violates equation (6.27),
we also test the Jeffrey divergence proposed by Puzicha, Hoffmann, and Buhmann [524]

djef(p,q) =
b−1
∑
k=0

(pk log pk
mk

+ qk log qk
mk

) with (6.33)

mk =
pk + qk

2
, (6.34)

which is a symmetric variant of the Kullback-Leibler divergence. The negative Bhattacharyya
coefficient (Comaniciu, Ramesh, and Meer [117] and Kailath [319])

dbhat = − log
b−1
∑
k=0

√
pkqk (6.35)
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measures the overlap between the probability distributions approximated by the histograms p and
q. The χ2 distance function (Rubner, Tomasi, and Guibas [549])

dchi(p,q) =
b−1
∑
k=0

(pk −mk)2

mk
(6.36)

(with mk defined by equation (6.34)) is based on χ2 statistics and thus computes the likelihood
that the image signatures are histograms of different distributions. Like all histogram-comparison
functions, the functions dkl, djef, dbhat, and dchi can only be used to compare the histogram-based
signatures shist and schist.

6.2.2.1. Histogram-Comparison Functions With Cross-Bin Matching

Histogram-comparison functions with cross-bin matching do not only match corresponding bins
between two histograms p and q, but rather match each bin pi of histogram p with several or all
bins qj of histogram q (figure 6.5). Comparison functions matching all bins are also referred to as
cross-bin matching functions without thresholded ground distance (figure 6.5.2); functions matching
each bin pi with a small subset of bins from q are referred to as cross-bin matching functions with
thresholded ground distance (figure 6.5.3).

The advantage of cross-bin matching functions over bin-by-bin matching functions is that they
are more tolerant against illumination changes. By matching each bin of p with several bins from q,
such comparison functions can still measure similarities between histograms even if their intensity
distribution changed due to variations of the illumination conditions (figure 6.5). However, they are
computationally more demanding than bin-by-bin matching functions. Like bin-by-bin matching
functions, the cross-bin matching functions described in the following are all restricted to the
histogram-based signatures shist and schist.

Cross-Bin Matching Functions Without Thresholded Ground Distance
Comparison functions of this class match each bin pi of histogram p with each bin qj of histogram q.
Pairings between bins are weighted according to the similarity of the features which are represented
by the bins —in our case image intensities. Pairs of similar or corresponding bins receive high
weights, pairs between distant bins (e.g. between bins representing bright and dark image regions)
receive low weights. The weights are computed depending on a ground distance function g(i, j),
which expresses the similarity between the intensities represented by bins i and j (Rubner, Tomasi,
and Guibas [549]). As ground distance, it is sufficient to use the absolute difference

g(i, j) = ∣i − j∣ (6.37)

between bin numbers rather than a difference measure depending on image intensities (see ap-
pendix D.1 for a proof). Based on g(i, j) the weight Ai,j for comparing bin i and j can be computed
by

Ai,j = 1 − g(i, j)
gmax

with gmax = max(g(i, j)). (6.38)

The matching functions dqf and dqfc described in the following combine these weights to a symmetric
weight matrix A.

Two of the three tested cross-bin matching functions without thresholded ground distance rely on
a quadratic form. These are the quadratic form distance function dqf (Niblack et al. [489]) and
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the quadratic χ2 distance function dqfc (Pele and Werman [509]), which combines the χ2 function
dchi with the quadratic from distance function dqf:

dqf(p,q) =
√

(p − q)⊺A(p − q) and (6.39)

dqfc(p,q) =

¿
ÁÁÁÀ

b−1
∑
i=0

b−1
∑
j=0

⎛
⎝

pi − qi
(∑b−1

k=0(pk + qk)Ak,i)
n

⎞
⎠
⎛
⎝

pj − qj
(∑b−1

k=0(pk + qk)Ak,j)
n

⎞
⎠
Ai,j (6.40)

with n being a normalization constant usually chosen to be n = 0.9.
The third comparison function is the earth-mover’s distance (EMD) originally proposed by

Rubner, Tomasi, and Guibas [548, 549], which is often used as reference comparison functions for
histogram comparison and image retrieval (e.g. [508, 509]; review: [132]). It formulates the cross-bin
matching as a transportation problem, a sub-domain of linear optimization (textbook: [108]). By
solving the transportation problem, the minimal cost to transform one histogram into the other is
computed:

demd(p,q) = min
Fij

∑b−1
i=1 ∑b−1

j=1 Fij g(i, j)
∑b−1
i=1 ∑b−1

j=1 Fij
(6.41)

with Fij being the “flow” which is transported between bins pi and qj . The optimization is
constrained by

Fij ≥ 0 (6.42)
b−1
∑
j=0

Fij ≤ pi, (6.43)

b−1
∑
i=0
Fij ≤ qj , and (6.44)

b−1
∑
i=0

b−1
∑
j=0

Fij = min
⎛
⎝
b−1
∑
i=0
pi,

b−1
∑
j=0

qj
⎞
⎠

(6.45)

Metaphorically, the EMD represents histograms as heaps of earth and measures the minimal energy
required to “shovel” one set of heaps into the other [67]. The constraints define how earth is shoveled:
equation (6.42) only allows to move from p to q, equations (6.43) and (6.44) limit the amount of
earth moved from p to q, and equation (6.45) assures that as much earth as possible is moved. For
our experiments, we do not rely on the original variant of the EMD as proposed by [548, 549], but
apply the Fast-EMD proposed by Pele and Werman [508]. It follows the same principles as the
original EMD as outlined above, but is more efficient.

Cross-Bin Matching Functions With Thresholded Ground Distance
Matching arbitrary bins as is the case for cross-bin matching functions without thresholded ground
distance can increase the probability of mismatches between two histograms. This drawback can be
avoided by restricting the cross-bin matches to comparing only bins which represent similar image
regions. For this purpose, the application of a thresholded ground distance

gt(i, j) = min(g(i, j), t). (6.46)

was proposed by [508, 509], which can be used as a replacement for equation (6.37) with all three
dissimilarity functions defined in equations (6.39) to (6.41). The comparison of two bins pi and
qj with a ground distance exceeding the threshold t will, according to equation (6.38), receive
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a zero weight and therefore does not contribute to the overall dissimilarity value computed for
the histograms p and q. All cross bin matching functions described above are also tested in a
variant with thresholded ground distance and are referred to as thresholded quadratic form distance
dqft, thresholded quadratic χ2 distance function dqfct, and thresholded earth-mover’s distance demdt,
respectively. The distance threshold t is an additional parameter of these functions.

6.2.3. Dimensionality of Signatures
The proposed signatures have fixed dimensionalities (b = 1 for scog, smm, smv, sms, and smk; b = 2 for
smmv, and smsk; b = 3 for smmvs and smvsk; b = 4 for smvsk) or dimensionalities b equal to the number
of histogram bins (shist and schist) and the number of Fourier coefficients (safc and szafc). The
dimensionality of the computed image signature p influences the computational requirements for
storing and comparing signatures as well as their discriminability. Finding an appropriate signature
dimension is a trade-off because the first aspect favors low-dimensional signatures, whereas a larger
number of dimensions should facilitate more reliable loop-closure detection.
In order to increase the dimensionality of the image signatures, we follow the approach of

Gonzalez-Barbosa and Lacroix [242] and subdivide the cylindrical image I into r subpanoramas
Sj (0 ≤ j ≤ r − 1) of equal height. In the original camera image, each subpanorama Sj corresponds
to a concentric ring (figure 5.1). For each of these subimages, an image signature pj = s(Sj) is
computed, and the resulting signatures are combined to the signature

p = (p⊺0 ,p⊺1 , . . . ,p⊺r−1)
⊺

. (6.47)

Hence, the overall dimension of the resulting signature p is the product of the sub-signature’s
dimensionality b and the number of subimages r.
For r > 1, we then compute the dissimilarity ˆ̀ of two image signatures p and q by summing up

the dissimilarities of their sub-signatures:

d(p,q) =
r−1
∑
j=0

d (pj ,qj) . (6.48)

By treating the parameter vector not as a single vector but rather as a set of sub-signatures, this
ensures that the cross-bin matching functions do not match between sub-histograms obtained for
different rings.

6.2.4. Robustness Against Changes of the Illumination
Robustness against changes of the illumination is essential because changes of the illumination
conditions can considerably alter the appearance of the perceived images (section 3.2.3.2). For
signature-based loop-closure detection, robustness against changes of the illumination can be
obtained by an appropriate combination of a signature function s and a dissimilarity function d. To
theoretically analyze the robustness of the considered combinations of signature and dissimilarity
functions against changes of the illumination, we follow the approach described in section 5.2.4. As
a first step, we analyze how the resulting signature p′ is influenced if the signature function s is
applied to an image undergoing a linear transformation of pixel intensities:

p′ = s(aI + o). (6.49)

The results of this analysis are summarized in table 6.1; for a detailed derivation the reader is
referred to appendix D.2. The results show that both the scale a and the offset o of the intensity
transformation are only compensated for by the statistical signature functions sms, smk, and smsk.
The functions smv, smvsk, and szafc can compensate for shifts o of the image brightness, but cannot
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Table 6.1.: Robustness of signature functions s against changes of the illumination modeled by a linear intensity
transformation of the input image. If the parameters a or o of the intensity transformation aI + o are compensated for
by the signature function s, the corresponding cell is marked by 3; otherwise it is marked by 7.

Parameter Signature function

shist smm smv sms scog safc szafc

schist smmv smvsk smk

smmvs smsk

smmvsk

Scale a —1 7 7 3 72 7 7

Offset o — 7 3 3 7 7 3

1 For small intensity changes (i.e. a ≈ 1 and o ≈ 0) and a small number of bins it is likely
that the signatures can compensate for changes of the illumination.

2 In case the image intensities are only scaled (i.e. o = 0), the scale a is compensated:
s(aP ) = s(P ).

compensate for intensity scalings. In the special case of a scaling of the input image without a
constant additional change of the image intensities (i.e. o = 0), the signature function scog can
compensate for the scaling a. Due to the linearity of the mean and the Fourier transformation,
the signature functions smm, smmv, smmvs, smmvsk, and safc cannot compensate for the linear intensity
transformation. The influence of the intensity transformation onto the histogram-based signatures
shist and schist is difficult to predict: on the one hand side, the histograms approximate the
intensity distributions of the images. Hence changes of the illumination will effect the resulting
image histogram. On the other hand side, the image histogram strongly depends on the size and
the limits of the bins. For this reason, it is likely that the histogram-based signatures are robust
against changes of the illumination if the changes are small and the histogram bins are large (i.e.
for small b).

The norm functions dman, deucl, and dmaxn rely on differences of the signature’s components. Thus,
they cannot compensate for changes of the illumination resulting in a change of the signature. The
same holds for bin-by-bin matching functions dkl, djef, dbhat, and dchi for comparing histograms.
For these two types of dissimilarity functions, the signature function is the only possibility to obtain
tolerance against changes of the illumination. Cross-bin matching functions were developed to
be more robust against variations of the image intensities as they can be caused by illumination
changes than the bin-by-bin matching functions (e.g. [509, 549]). The better tolerance of these
methods results from not only matching corresponding bins but also neighboring (dqft, dqfct, and
demdt) or even distant bins (dqf, dqfc, and demd). We expect the cross-bin matching functions to be
sufficiently robust to allow for reliable loop-closure detection under realistic illumination conditions.
For this reason, we do not consider image preprocessing techniques as we did for holistic loop-closure
detection methods (chapter 5).

6.3. Database Experiments

As database experiments allow for rapidly screening a large number of combinations of signature and
dissimilarity functions, database experiments were performed to identify promising combinations
and to optimize the involved parameters. Besides that, we will assess the method’s robustness
against changes of the illumination and computational aspects. The best combinations identified in
this chapter were additionally tested in real-robot experiments in order to assess their performance
under more realistic conditions (section 6.4). The remainder of the section is structured as follows:
the experimental procedure is described in section 6.3.1. Results are presented in section 6.3.2 and
finally discussed in section 6.3.3.
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6.3.1. Methods
To assess the performance of the methods proposed in section 6.2, the methods were implemented
(section 6.3.1.1) and systematically tested (section 6.3.1.2). The obtained results were then evaluated
according to the procedure described in section 6.3.1.3.

6.3.1.1. Implementation

The described methods were implemented in the software framework developed at the Bielefeld
Computer Engineering Group, which internally relies on the FFTW library [I27] for computing the
Fourier transformation. As the implementation was done by rapid prototyping, possibilities for code
optimization were not considered. The image unfolding routines as well as the functions computing
image signatures from the subimages were implemented in C/C++. The fusion of sub-signatures
to an image signature was programmed in Tcl with image signatures being represented as lists of
lists. Computing the signature dissimilarity according to equation (6.48) is also implemented in
Tcl. For each sub-signature, the dissimilarity is computed by calling functions of the linear algebra
package contained in the Tcl standard library [I93], by using the C/C++ matrix library developed at
the Computer Engineering Group or —in case of the EMD– by reusing C/C++ code downloadable
from the internet [I76]. The software for data evaluation was written by Lorenz Hillen as Matlab
code (Release 14, Service Pack 2) in combination with a C/C++program for computation of the AUC
values. This program was provided by Oliver Schlüter and was developed during the course of his
bachelor’s project [575].

6.3.1.2. Experimental Procedure

In addition to testing several combinations of signature functions s and dissimilarity functions
d, we systematically varied the number of subimages r and —for the histogram-based and the
Fourier-based signatures— the sub-signature dimensionality b according to

r ∈ {1,2,4,8,16,32} and (6.50)
b ∈ {1,2,4,8,16,32}. (6.51)

These parameter combinations resulted in signatures with an overall dimensionality r ⋅ b ranging
from 1 to 1024. The distance threshold t of the histogram-comparison functions with thresholded
ground distance was varied in

t ∈ {2,4}. (6.52)

These parameter variations result in a total of 1548 combinations. We perform such exhaustive
experiments (i) to find the best combination of signature function s, dissimilarity function d, and
parameters for our requirements, (ii) to achieve a fair comparison between different methods, and
(iii) to not preassume certain combinations to be more promising or better suited than others.

In order to obtain results which are comparable to the results of the experiments for loop-closure
detection based on global image comparisons (chapter 5), we use the same databases [S1] as used for
our experiments on holistic loop-closure detection (chapter 5) containing images sized 461×64 pixels;
please refer to section 5.3.1.1 and appendix B for details on these databases. For each database,
(nxny)2 dissimilarity values

ˆ̀
i,j = d (s(Ii), s(I ′j)) (6.53)

were computed by using each of the nxny images as snapshot Ii (0 ≤ i < nxny) and comparing the
resulting signature s(Ii) to all signatures s(I ′j) (0 ≤ j < nxny) of the same database (with nx and ny
being the number of snapshots contained in the current database in x- and y-direction, respectively).
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Table 6.2.: Categorization of AUC values for analyzing loop-closure detection performance. See also section 5.3.2.1;
the table is identical to table 5.3.

Category Range of AUC values Description

(− − −) 0.00 ≤ AUC < 0.60 Loop-closure detection not possible
(○) 0.60 ≤ AUC < 0.90 Moderate loop-closure detection performance
(+) 0.90 ≤ AUC < 0.98 Good performance
(++) 0.98 ≤ AUC < 1.00 Very good performance
(+ + +) AUC = 1.0 Perfect classification

As in section 5.3.1.1, the second image I ′j is rotated and disturbed by Gaussian noise of standard
deviation σ = 0.05. The effects of this disturbance are visualized in figure 5.6.

6.3.1.3. Evaluation

The results obtained by the experimental procedure described in section 6.3.1.2 were grouped into
two test groups referred to as day|day group and day|night group. The first group subsumes all the
databases collected during day under natural illumination conditions. The day|night group pools
the results of cross-database experiments pairing images acquired at identical positions in space but
at different points in time. This allows for assessing the performance of the proposed methods under
strong illumination changes. As the images contained in the day|night databases were acquired
once during the day under natural illumination conditions and once during the night under artificial
illumination conditions. Both for the daytime and the nighttime images, the illumination conditions
were nearly constant. The resulting changes of the illumination are very strong, but only reflect a
subset of the variety of illumination conditions which can occur during real-world experiments. The
real-robot experiments (section 6.4) will test the proposed methods under more realistic illumination
conditions. Example images from the databases and their positions of image acquisitions are shown
in figures B.1 to B.4; a more detailed description of the databases is given in section 5.3.1.1.

Loop-Closure Detection Performance
Receiver operator characteristics (ROC) are a standard method for evaluating the performance of
a classifier based on its true-positive rate (TPR) and its false-negative rate (FNR). The resulting
ROC curves are often analyzed graphically (figure 5.9), but a graphical evaluation is in our case not
tractable because of the large number of tested parameter combinations. We rather compute the
area under the curve (AUC), which gives a scalar measure with 1, 0.5, and zero indicating perfect
classification, chance level, and complete misclassification, respectively. For a further discussion of
the AUC measure, the reader is referred to section 5.3.2.1 or to the relevant literature (e.g. [168,
275, 523], textbook: [148]).
The parameter combinations defined by equations (6.50) and (6.51) result in a total of 1548

different methods, i.e. different combinations of signature functions s, dissimilarity functions d, and
different combinations of the parameters r, b, and t. For each different method, two AUC values are
computed, one for the day|day and one for the day|night group.
The main difficulty for evaluating the loop-closure detection performance is to get an overall

impression of the performance and to identify a small number of methods with a best possible
performance for both test groups. For this purpose, we categorize the AUC value for each test
group into five different bins as defined by table 6.2. These categories allow to quickly inspect
the performance of a set of measures (e.g. all methods of the day|day group with (i) Fourier-
based signatures comparing, (ii) the Euclidean distance to compare images, and (iii) arbitrary
dimensionality) by computing a histogram that visualizes the proportions of the AUC values
belonging to each category. In order to identify promising combinations for both test groups, one
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can compute 2D histograms representing e.g. the proportion of methods with perfect categorization
(+ + +) for the day|day group and very good performance (+) for the day|night group. In an
ideal case, the method would achieve perfect classification (+ + +) for both test groups. With our
particular data, for which most of the 25 possible combinations do not occur, it turned out to be
sufficient to identify the most promising combinations w.r.t. loop-closure detection from two 1D
histograms (one for each test group). We therefore do not analyze the joint 2D distributions of
the AUC values computed for each test group, but only the two 1D marginal distributions. By
this means, we can represent a large number of AUC values by a compact and easy to analyze
representation. This representation allows us to identify a small number of promising combinations
to be further analyzed in more detail and to exclude a large number of methods which do not
allow for robust loop-closure detection. For these combinations, we will then analyze how the AUC
values depend on the choice of the method’s parameters r and b. The results of the first and second
evaluation step are described in sections 6.3.2.1 and 6.3.2.2, respectively.

Robustness Against Perceptual Aliasing and Perceptual Variability
As a further evaluation, we analyze the robustness against perceptual aliasing and perceptual
variability of the proposed methods. Perceptual aliasing and perceptual variability influence the
visual appearance of the images and can cause the loop-closure detection methods to fail. In this
case, a pair of images acquired at different positions in space appears to be more similar than
the two images acquired at identical position in space (section 5.3.2.2 and figure 5.10). For our
image-database experiments, we can evaluate how often such situations occur and can —in case of
mismatches— compute the distance between the position of the expected match and the computed
match. We therefore follow the procedure described in section 5.3.2.2 and compute the percentage
Pcorr of correct matches, Pmisc of mismatches in the direct vicinity of the expected match and
Pmisf of distant mismatches. Furthermore, we analyze the mean spatial distance distavg and median
spatial distances distmed between the computed match and the expected match. These measures
allow us to draw conclusions, how often mismatches occur and how strongly these mismatches
influence the robot’s navigation capabilities. The results of this evaluation are summarized in
section 6.3.2.3.

Computation Time of Signature and Dissimilarity Functions
To measure the computation time required to derive and compare signatures, we follow the procedure
described in section 5.3.2.4. For measuring the time required to compute the signatures, the median
over 1000 repetitions is computed for each signature function and for each parameter combination
of r and b. For profiling dissimilarity functions, we compute the median over 1000 repetitions of
measuring for each combination of r and b the time required to compare two signatures. Because
comparing signatures only depends on the signature’s dimensionality but not on the signature
function, the computing times were only measured for comparing histogram-based signatures. Results
are presented in sections 6.3.2.4 and 6.3.2.5 for signature and dissimilarity functions, respectively.

6.3.2. Results
This section describes the results of evaluating the proposed methods with respect to loop-closure
detection performance (sections 6.3.2.1 and 6.3.2.2), perceptual aliasing and perceptual variability
(section 6.3.2.3), and computing times (sections 6.3.2.4 and 6.3.2.5). With the parameters as defined
in section 6.3.1.2, a total of 1548 methods, i.e. different combinations of signature and comparison
functions, are tested. Each method is first tested with two test groups, namely the day|day and the
day|night groups, containing images acquired under natural illumination conditions and simulating
strong illumination changes (section 6.3.1.3), and later on evaluated with two evaluation methods
yielding a scalar (performance of loop-closure detection) and five (robustness against perceptual
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aliasing and perceptual variability) performance measures. An extensive description and discussion
of the obtained results is therefore far beyond the scope of this dissertation. We rather divide the
obtained data into six evaluation groups, which result from the categorizations of signatures and
dissimilarity functions depicted in figures 6.2 and 6.4:

four-norm: Fourier-based signatures compared with norm functions
(i.e. safc and szafc with dman, deucl, and dmaxn),

stat-norm: statistical signatures compared with norm functions
(i.e. smm, smv, sms, smk, smmv, smsk, smmvs, smvsk, and smmvsk with dman, deucl, and dmaxn),

hist-norm: histogram-based signatures compared with norm functions
(i.e. shist and schist with dman, deucl, and dmaxn),

hist-bin: histogram-based signatures compared with bin-by-bin matching functions
(i.e. shist and schist with dkl, djef, dbhat, and dchi),

hist-cbin: histogram-based signatures compared without thresholded cross-bin matching
(i.e. shist and schist with dqf, dqfc, and demd), and

hist-tcbin: histogram-based signatures compared with thresholded cross-bin matching
(i.e. shist and schist with dqft, dqfct, and demdt).

Within these groups, we pool over the parameters r, b, and —for histogram-comparison functions
with cross-bin matching— t. By this means, we reduce the entire data to a relevant subset allowing
us (i) to identify the most promising methods and (ii) to compare these methods between the
different evaluation and test groups. This procedure is applied in sections 6.3.2.1 and 6.3.2.3.

6.3.2.1. Coarse Screening of Loop-Closure Detection Performance

To identify promising combinations of signature functions s and dissimilarity functions d, the AUC
values computed for the day|day and day|night test groups were (i) binned according table 6.2
and frequency distributions were computed as described in section 6.3.1.3 and (ii) pooled into six
evaluation groups (four-norm, stat-norm, hist-norm, hist-bin, hist-cbin, and hist-tcbin;
section 6.3.2). The results are depicted in figure 6.6 with one subfigure for each evaluation group,
and white and black bars depicting the distribution of the day|day and the day|night test group,
respectively. The overall impression of the results is that for the day|day group many methods exist
which achieve perfect (+ + +) or very good classification (++). This contrasts the results for the
day|night group: there, all methods fall into the categories (− − −) or (○) for which classification
is either not possible or only with moderate results. In the following, we will briefly describe the
results for the six evaluation groups.
For comparing Fourier-based signatures by norm functions (four-norm; figure 6.6.1), the best

possible combination can fall into category (+ + +) for the day|day group and in category (○) for
the day|night group. The category contains 25 different methods (table 6.3) with AUC values for
the day|night group between 0.600 and 0.612. All combinations rely on the safc signature, and
for comparing signatures, 2 of 25 use the L1 norm dman, 7 the Euclidean norm deucl and 16 the
maximum norm dmaxn. The best performance is obtained for safc, dmaxn, r = 32 and b ∈ {8,16,32}
and achieves an AUC value of 0.612.

The group of methods containing statistical signatures compared by norm functions (stat-norm)
achieves a broad distributions of AUC values for the day|day group with categories (++) and
(+ + +) each accounting for approximately 20% (figure 6.6.2). However, all AUC values of the
day|night group fall into category (− − −) making loop-closure detection not possible. We think
that for signatures containing the kurtosis, this effect is due to disturbing images with Gaussian
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Figure 6.6.: Frequency distributions of AUC values for signature-based loop-closure detection. Subfigures (1) to (6)
depict the distributions for each of the six evaluation groups as defined in section 6.3.2. The distributions are used to
identify promising methods for loop-closure detection as described in section 6.3.1.3. White and black bars depict the
distributions for the day|day and day|night test groups, respectively. Binning was done w.r.t. the categories defined
in table 5.3 as follows: (− − −) loop-closure detection not possible; (○) moderate loop-closure detection performance;
(+) good performance; (++) very good performance; (+ + +) ideal results (i.e. AUC = 1.0).
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Table 6.3.: Best methods w.r.t. loop-closure detection for four-norm, i.e. for comparing Fourier signatures with norm
functions. The table lists the the methods which achieve best possible performance for both test groups day|day and
day|night. See section 6.3.1.3 for a description how these methods were identified based on figure 6.6.1. Categories
for AUC values are defined in table 6.2 and given in the form day|day/day|night.

C
at
eg
or
y Test groups

day|day day|night

s d r b r ⋅ b AUC AUC
+
+
+
/○

safc dmaxn 32 8 256 1.000 0.612
safc dmaxn 32 16 512 1.000 0.612
safc dmaxn 32 32 1024 1.000 0.612
safc dmaxn 16 8 128 1.000 0.611
safc dmaxn 4 8 32 1.000 0.610
safc dmaxn 16 16 256 1.000 0.610
safc dmaxn 16 32 512 1.000 0.610
safc dmaxn 4 16 64 1.000 0.609
safc dmaxn 4 32 128 1.000 0.609
safc dmaxn 32 4 128 1.000 0.608
safc dmaxn 8 8 64 1.000 0.607
safc dmaxn 8 16 128 1.000 0.607
safc dmaxn 8 32 256 1.000 0.607
safc dmaxn 16 4 64 1.000 0.607
safc deucl 32 32 1024 1.000 0.606
safc dmaxn 4 4 16 1.000 0.606
safc deucl 16 32 512 1.000 0.605
safc dmaxn 8 4 32 1.000 0.605
safc deucl 32 16 512 1.000 0.604
safc deucl 8 32 256 1.000 0.603
safc deucl 16 16 256 1.000 0.603
safc deucl 8 16 128 1.000 0.601
safc deucl 32 8 256 1.000 0.600
safc dman 16 32 512 1.000 0.600
safc dman 32 32 1024 1.000 0.600

noise (section 5.3.1.1): As computing the kurtosis involves the computation of the forth power of the
deviation from the average image brightness, the kurtosis is strongly influenced by low-frequency
image content such as noise (Zoran and Weiss [727]). For this reason, we do not further evaluate
the performance of statistical signatures.
Among the group of methods comparing histogram-based signatures with norm functions

(hist-norm; figure 6.6.3), approximately 50% of the AUC values for the day|day group fall
into category (++), but none of the methods achieves perfect classification (+ + +). The best AUC
values for the day|night group were binned into category (○). Thus, the best possible combination
belongs to categories (++) and (○) for the day|day and the day|night groups, respectively. A total
of 12 methods are identified (table 6.4) with AUC values between 0.600 and 0.612. All combinations
rely on b = 4 histogram bins with each of the signatures shist and schist accounting for 50% of the
cases. As dissimilarity functions, 2 of 12 methods compare signatures by the Manhattan norm dman,
5 by the Euclidean distance deucl and 5 by the maximum norm dmaxn. With an AUC values of
0.997 and 0.612 for the day|day- and the day|night group, the best performance is achieved by
combining the cumulative histogram signature schist, the maximum norm dmaxn, r = 32 rings and
b = 4 histogram bins.
For comparing histogram-based signatures with bin-by-bin matching functions (hist-bin; fig-

ure 6.6.4), the best methods for the day|day group belong to category (++); none of the methods
achieves an ideal classification result. The best method for the day|night group again belong
to category (○). Table 6.5 lists 6 different methods belong to categories (++) and (○) for the
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Table 6.4.: Best methods w.r.t. loop-closure detection for hist-norm, i.e. for comparing histogram-based signatures
with norm functions. The table lists the the methods which achieve best possible performance for both test groups
day|day and day|night. See section 6.3.1.3 for a description how these methods were identified based on figure 6.6.3.
Categories for AUC values are defined in table 6.2 and given in the form day|day/day|night.

C
at
eg
or
y Test groups

day|day day|night

s d r b r ⋅ b AUC AUC
+
+
/○

schist dmaxn 32 4 128 0.997 0.612
shist deucl 32 4 128 0.997 0.609
schist deucl 32 4 128 0.997 0.607
shist dman 32 4 128 0.997 0.603
schist dman 32 4 128 0.997 0.601
schist dmaxn 16 4 64 0.996 0.608
shist deucl 16 4 64 0.996 0.605
shist dmaxn 32 4 128 0.996 0.604
schist deucl 16 4 64 0.996 0.603
shist dmaxn 16 4 64 0.995 0.600
schist dmaxn 8 4 32 0.994 0.606
shist deucl 8 4 32 0.994 0.603

Table 6.5.: Best methods w.r.t. loop-closure detection for hist-bin, i.e. for comparing histogram-based signatures
with bin-by-bin matching functions. The table lists the the methods which achieve best possible performance for both
test groups day|day and day|night. See section 6.3.1.3 for a description how these methods were identified based on
figure 6.6.4. Categories for AUC values are defined in table 6.2 and given in the form day|day/day|night.

C
at
eg
or
y Test groups

day|day day|night

s d r b r ⋅ b AUC AUC

+
+
/○

shist dchi 32 4 128 0.996 0.608
shist dkl 32 4 128 0.996 0.604
shist dchi 16 4 64 0.995 0.606
shist dkl 16 4 64 0.995 0.603
shist dchi 8 4 32 0.993 0.605
shist dchi 4 4 16 0.990 0.603

day|day and the day|night group, respectively. All combinations rely on b = 4 histogram bins and
achieve AUC values between 0.603 and 0.608. 2 of the 6 combinations compare signatures by the
Kullback-Leibler divergence dkl, the remaining 4 combinations use the χ2 dissimilarity function.
The best performance of this group is obtained by the combination of shist, dchi, r = 32, and b = 4
and yields AUC values of 0.996 and 0.608 for the day|day and day|night group, respectively.

Figure 6.6.5 visualizes the frequency distributions for comparing histogram-based signatures with
cross-bin matching functions without thresholded ground distance (hist-cbin). For this group,
only a small number of methods achieves perfect classification (+ + +) of the day|day group, most
methods allow for very good classification (++). For the day|night group, all AUC values fall into
categories (− − −) and (○). Hence, the best possible methods of this group belong to categories
(+ + +) and (○) for the day|day and the day|night group, respectively. Only one method achieves
AUC values belonging to this class (table 6.6): The method relying on histogram signatures shist,
the quadratic form dissimilarity function dqf, and r = b = 32. With an AUC value of 0.601 for the
day|night group, its performance is at the lower limit of the category (○). Further methods with
similar loop-closure detection performance achieve a very good classification (++) of the day|day
group and moderate performance of the day|night group. These methods all rely on the shist
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Table 6.6.: Best methods w.r.t. loop-closure detection for hist-cbin, i.e. for comparing histogram-based signatures
with cross-bin matching functions without thresholded ground distance. The table lists the the methods which achieve
best possible performance for both test groups day|day and day|night. See section 6.3.1.3 for a description how these
methods were identified based on figure 6.6.5. Categories for AUC values are defined in table 6.2 and given in the
form day|day/day|night.

C
at
eg
or
y Test groups

day|day day|night

s d r b r ⋅ b AUC AUC
1 shist dqfc 32 32 1024 1.000 0.601

+
+
/○

shist dqf 32 16 512 0.999 0.607
shist dqf 32 32 1024 0.999 0.607
shist dqf 16 16 256 0.999 0.605
shist dqf 16 32 512 0.999 0.605
shist demd 32 32 1024 0.999 0.604
shist dqf 8 32 256 0.999 0.602
shist dqfc 32 16 512 0.999 0.602
shist dqfc 16 16 256 0.999 0.600
shist dqf 32 4 128 0.998 0.606
shist dqf 32 8 256 0.998 0.604
shist demd 16 32 512 0.998 0.602
shist dqf 8 16 128 0.998 0.602
shist dqf 16 8 128 0.998 0.602
shist dqfc 32 4 128 0.998 0.601
shist dqfc 16 4 64 0.998 0.600
shist dqf 16 4 64 0.997 0.604
shist demd 32 16 512 0.997 0.603
shist dqf 8 4 32 0.996 0.602
shist demd 32 8 256 0.994 0.603
shist demd 8 16 128 0.989 0.600

1
+ + +/○

signature and yield AUC values between 0.600 and 0.607. Among the 20 methods, images are
compared by dqfc in 4 cases, by demd in 5 cases and by dqf in 11 cases. The best performance with
AUC values of 0.999 and 0.607 for the day|day and the day|night group is obtained by the shist
signature with r = 32 rings, b ∈ {16,32} histogram bins and comparing signatures by the quadratic
form dissimilarity function dqf.
The last of the six groups, hist-tcbin, subsumes the methods comparing histogram-based

signatures by cross-bin matching functions with thresholded ground distance (figure 6.6.6). For the
day|day group, 0.5% and approximately 60% of the AUC values fall into categories (+ + +) and
(++), thus achieving perfect or nearly perfect classification. Most of the AUC values obtained for
the day|night group belong to category (− − −), only approximately 4% belong to category (○).
Theoretically, the best possible combinations of AUC categories category (+ + +) for the day|day
group and category (○) for the day|night test group. However, none of the AUC values fall into
this category. This case could have been better identified by a 2D histogram of the joint distribution
of AUC values for the day|day and day|night groups. The most promising methods of this class
therefore belong to category (+ + +) for the day|day group and to category (○) for the day|night
test group. The 20 methods of this combination (table 6.7) all rely on the histogram signature shist
and obtain AUC values ranging from 0.993 and 0.999 and from 0.600 to 0.609 for the day|day and
day|night test groups, respectively. For comparing signatures, 3 of the 23 combinations rely on the
thresholded earth mover’s distance demdt*, 8 on the thresholded quadratic χ2 function dqfct* and
the remaining 12 on the thresholded quadratic-form function dqft*. In case the best combination is
determined depending on the performance for the day|day group, the combination of shist, dqfct4,
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Table 6.7.: Best methods w.r.t. loop-closure detection for hist-tcbin, i.e. for comparing histogram-based signatures
with cross-bin matching functions with thresholded ground distance. The table lists the the methods which achieve
best possible performance for both test groups day|day and day|night. See section 6.3.1.3 for a description how these
methods were identified based on figure 6.6.6. Categories for AUC values are defined in table 6.2 and given in the
form day|day/day|night.

C
at
eg
or
y Test groups

day|day day|night

s d r b r ⋅ b AUC AUC
+
+
/○

shist dqfct4 32 16 512 0.999 0.607
shist demdt4 32 8 256 0.999 0.604
shist demdt4 32 16 512 0.999 0.604
shist dqfct4 16 16 256 0.999 0.604
shist dqft2 32 4 128 0.998 0.609
shist dqft4 32 8 256 0.998 0.608
shist dqft4 32 4 128 0.998 0.606
shist dqfct2 32 8 256 0.998 0.604
shist dqft4 32 16 512 0.998 0.604
shist dqfct4 8 16 128 0.998 0.602
shist demdt4 16 8 128 0.998 0.601
shist dqfct4 32 4 128 0.998 0.601
shist dqfct4 16 4 64 0.998 0.600
shist dqfct4 32 8 256 0.998 0.600
shist dqft4 16 16 256 0.998 0.600
shist dqft2 16 4 64 0.997 0.607
shist dqft4 16 8 128 0.997 0.606
shist dqft4 16 4 64 0.997 0.604
shist dqfct2 16 8 128 0.997 0.602
shist dqft2 8 4 32 0.996 0.604
shist dqft4 8 4 32 0.996 0.602
shist dqft4 8 8 64 0.996 0.602
shist dqft2 4 4 16 0.993 0.600

r = 32 and b = 16 performs best with AUC values of 0.999 and 0.607 for the day|day and the
day|night group, respectively. With AUC values of 0.998 and 0.609, the combination of shist, dqft2,
r = 32 and b = 4 performs best if combinations are determined based on the AUC values obtained
for the day|night group.
From the results summarized in figure 6.6, we conclude that Fourier-based signatures and

histogram-based signatures in conjunction with a comparison by a standard norm function yield the
best performance. As comparing histogram-based signatures by histogram-comparison functions
does not achieve a better performance than comparing histogram-based signatures by norm functions,
we do not further evaluate histogram-specific dissimilarity functions. Among the best combinations
of comparing Fourier-based and histogram-based signatures by norm functions, the best AUC values
were often obtained by the maximum norm dmaxn. We therefore limit the further evaluation to
comparing Fourier-based and histogram-based signatures by the maximum norm. Because none
of the tested combinations achieved AUC values above 0.6 for the day|night group, we do not
consider statistical signatures for the following evaluation step.

6.3.2.2. Performance of Loop-Closure Detection Depending on the Signature Dimensionality

As a second and more detailed evaluation step, we analyze for the most promising methods tested
in this chapter how the AUC values depend on the signature’s dimensionality. The results of
this evaluation are shown in figures 6.7 and 6.8 for histogram-based and Fourier-based signatures,
respectively. The charts visualize the AUC values vs. the signature’s overall dimensionality r ⋅ b. As
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Figure 6.7.: AUC values depending on the signatures’ dimensionality for histogram-based signatures safc and szafc

compared by the maximum norm dmaxn. In the top row (subfigures (1) and (2)), the results for the intensity histogram
signature shist are shown; the bottom row (subfigures (3) and (4)) depicts the results for the comulative histogram
signature schist. The left column (subfigures (1) and (3)) contains the results for the day|day test group, the right
column (subfigures (2) and (4)) visualize the results for the day|night test group. The x-axis of each plot represents
the signature’s overall dimensionality (i.e. r ⋅ b) in a logarithmic scale with base 2; the y-axis carries the AUC values.
The range between the maximum (best) and minimum (worst) AUC values is depicted by the shaded area. The
number of bins b is coded by the marker: (○) b = 1 (not visible), (◻) b = 2, (◇) b = 4, (×) b = 8, (+) b = 16, and (∗) b = 32.
For histograms with a single bin, loop-closure detection is not possible because all intensities are grouped into the
same bin. Thus, the results are at chance level (0.5) or, as in the depicted cases, slightly below (due small numerical
inaccuracies). They are therefore not visible in the figures, but contribute to the shaded area. The horizontal dotted
lines mark the limits of the performance categories as defined by table 6.2.

several combinations of r and b can result in identical overall dimensionalities r ⋅ b, the number b of
histogram bins or Fourier coefficients is coded by different markers as explained in the captions of
figures 6.7 and 6.8. The shaded area marks for each dimensionality the range between the maximum
(best) and minimum (worst) AUC values.

The results of the histogram-based signatures shist and schist are depicted in figure 6.7. In
comparison to the day|day group, the performance of the signatures obtained for the day|night
group is strongly decreased as already observed in section 6.3.2.1. For both signatures and both
test groups, the best AUC value is obtained for a dimensionality of 27 = 128 dimensions. In all
cases, the best performance is obtained for b = 4 (◇) histogram bins. Thus, to achieve an overall
dimensionality of 128 dimensions, r = 32 rings were used. It seems that the methods with a small
number of histogram bins b and a larger number of rings r achieve the best results because for
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Figure 6.8.: AUC values depending on the signatures’ dimensionality for Fourier-based signatures safc (top row;
subfigures (1) and (2)) and szafc (bottom row; subfigures (3) and (4)) compared by the maximum norm dmaxn. The left
(subfigures (1) and (3)) and right (subfigures (2) and (4)) columns depict the results for the day|day and day|night
test groups, respectively. The x-axis of each plot represents the signature’s overall dimensionality (i.e. r ⋅ b) in a
logarithmic scale with base 2; the y-axis carries the AUC values. The range between the maximum (best) and
minimum (worst) AUC values is depicted by the shaded area. The number of Fourier coefficients b is coded by the
marker: (○) b = 1, (◻) b = 2, (◇) b = 4, (×) b = 8, (+) b = 16, and (∗) b = 32. The horizontal dotted lines mark the limits
of the performance categories as defined by table 6.2.

increasing the dimensionality, the performance decreases again. For histograms with only one bin
(b = 1, ○) loop-closure detection is not possible because all pixel intensities are grouped into the
same bin. The resulting AUC values are around chance level or below 0.5 and are truncated in
figure 6.7. For the cases allowing for loop-closure detection, the worst performance is for both test
groups and both signatures obtained for b = 32 (∗) histogram bins. The performance for b = 8 (×)
and b = 16 (+) histogram bins is between the performance of the better parameter choices and the
performance of b = 32. The performance differences between the better parameter choices (b = 2
or b = 4) and the worst choice (b = 32) are stronger for the signature shist based on gray-value
histograms (figures 6.7.1 and 6.7.2) than for the signature schist based on cumulative histograms
(figures 6.7.3 and 6.7.4).

Figure 6.8 shows the results obtained for the Fourier-based signatures safc (figures 6.8.1 and 6.8.3)
and szafc (figures 6.8.2 and 6.8.4), respectively. For the day|day group and more than 4 dimensions,
the signatures safc and szafc obtain perfect classification (AUC=1.0) independent of the specific
combination of r and b. For less than 4 dimensions, both methods still obtain AUC values above 0.98.
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Compared to the day|day group, the performance of the day|night group is strongly decreased. For
the day|night group and the shist signature (figure 6.8.2), the best AUC values are approximately
0.61 and were obtained for 4 and more dimensions. AUC values close to 0.61 were obtained by
several combinations of rings r and Fourier coefficients b; the maximum AUC value is 0.612, but
it is not pronounced. It was obtained for r = 32 rings in combination with b ∈ {8,16,32} Fourier
coefficients resulting in overall dimensionalities of 256, 512 and 1024. Thus, the safc signature seems
to perform best for a larger number of rings r and Fourier coefficients b. The performance range
for the szafc signature and the day|night group (figure 6.8.4) is larger than for the safc signature.
For 64 and more dimensions, the best AUC values are close together. The maximum AUC value
of 0.599 is not pronounced and is obtained for r = 16 in conjunction with b ∈ {16,32}. The szafc
signature is not as robust against changes of the illumination as it was expected from the theoretical
results of section 6.2.4. It even performs slightly worse than the signature safc including the first
Fourier coefficient.
From these results we conclude that —at least for the day|day test group— reliable loop-

closure detection is possible with signatures of more than 32 dimensions. As already mentioned in
section 6.3.2.1, the performance of loop-closure detection is strongly decreased for the day|night
group containing strong changes of the illumination. The best performance is obtained for signatures
with an overall dimensionality of 27 = 128 and of 28 = 256 dimensions for histogram-based and
Fourier-based signatures, respectively. It seems that the histogram-based signatures achieve the
best performance for a large number of rings r and a small number of histogram bins b whereas
the best performance of the Fourier-based signatures was obtained for large r and large b. The
specific choice of the parameters r and b has a smaller influence on the resulting performance for
Fourier-based signatures than for histogram-based signatures. Among the Fourier-based signatures,
the signature safc containing the first Fourier coefficient depends less on the choice of r and b than
the szafc signature, which does not contain the first coefficient.

6.3.2.3. Robustness Against Perceptual Aliasing and Perceptual Variability

In order to assess the methods’ robustness against perceptual aliasing and perceptual variability,
the data was evaluated as outlined in section 6.3.1.3. Computing the performance measures Pcorr,
Pmisc, Pmisf, distavg, and distmed allows us to draw conclusions how often mismatches occur and
how close they are to the expected match.
Among the 1548 tested combinations, 93 achieve perfect results for the day|day dataset, i.e. for

image pairs acquired under nearly constant illumination conditions; a total of 311 combinations
achieve a percentage of correct classification Pcorr of greater than or equal to 95%. In contrast
to that, the best combination of the day|night test group (containing image pairs simulating
strong illumination changes) only achieves correct classifications in 3.5% of the cases. This strong
performance difference is again due to the methods’ low tolerance against changes of the illumination
we already observed when evaluating the performance of loop-closure detection (sections 6.3.2.1
and 6.3.2.2).
To get a more detailed impression of the results, we categorize the results into six evaluation

groups as defined in section 6.3.2: four-norm, stat-norm, hist-norm, hist-bin, hist-cbin, and
hist-tcbin. For each of the six groups and for each of the two test groups, we identified the best
method based on the percentage of correct detections Pcorr. If two or more methods obtain identical
values of Pcorr (including ideal results of Pcorr = 100 %) for a test group, the Pcorr value of the other
group is used for comparison. The best methods for each test group are summarized in tables 6.8.1
and 6.8.2 for the day|day and the day|night group, respectively. The tables also contain the
performance measures of the other test group, and a rating whether the method is applicable for
loop-closure detection. We consider a method to be applicable if the conditions Pcorr > 90 % and
distmed < 15 cm hold. The maximum distance of 15 cm was chosen because it is half the inter-lane
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Table 6.8.: Best methods w.r.t. robustness against perceptual aliasing and perceptual variability. The subtables (1)
and (2) contain for each of the six evaluation groups (four-norm, stat-norm, hist-norm, hist-bin, hist-cbin, and
hist-tcbin; section 6.3.2)) the combination achieving the largest percentage of correct loop-closure detections Pcorr

for the day|day and day|night test group, respectively. In case several methods of a class obtained identical values of
Pcorr for a test group, the combination achieving the best performance (largest AUC value) for the other test group
was used. The value used for identifying the best methods of each group is highlighted in the corresponding subtable.
Please note that the columns in the subtables are not ranked w.r.t. Pcorr, but that the evaluation groups are given in
the order as they were defined in section 6.3.2. We consider a method to be applicable (3) for loop-closure detection
of an autonomous cleaning robot if Pcorr > 90 % and distmed < 15 cm; methods which we consider to be not applicable
are marked by a 7.

(1) day|day group.

Evaluation groups

four-norm stat-norm hist-norm hist-bin hist-cbin hist-tcbin

s safc smmv
1 schist shist shist schist

d dman dmaxn dman dbhat dqfc demdt2

r 32 32 32 32 32 32
b 32 2 32 4 32 32
r ⋅ b 1024 64 1024 128 1024 1024

da
y|

da
y

Pcorr /% 100.0 100.0 99.9 88.5 99.6 99.8
Pmisc /% 0.0 0.0 0.1 9.7 0.4 0.2
Pmisf /% 0.0 0.0 0.0 1.8 0.0 0.0

distavg / cm 0.0 0.0 10.0 12.4 10.7 11.4
distmed / cm 0.0 0.0 10.0 10.0 10.0 10.0

Appplicability 3 3 3 7 3 3

da
y|

ni
gh

t

Pcorr /% 2.6 2.0 1.8 1.2 1.4 2.0
Pmisc /% 9.3 9.7 11.3 8.0 12.0 11.3
Pmisf /% 88.1 88.3 87.0 90.8 86.6 86.7

distavg / cm 66.4 61.2 56.7 62.0 56.0 57.1
distmed / cm 62.0 53.9 50.0 51.0 50.5 50.0

Appplicability 7 7 7 7 7 7

1 For statistical signatures, b is the subdescriptor dimensionality (section 6.2.3).

(2) day|night group.

Evaluation groups

four-norm stat-norm hist-norm hist-bin hist-cbin hist-tcbin

s safc smmv
1 schist shist schist schist

d dman dmaxn dmaxn dchi dqf demdt4

r 32 16 32 32 16 16
b 32 2 4 32 32 8
r ⋅ b 1024 32 128 1024 512 128

da
y|

da
y

Pcorr /% 100.0 99.7 83.2 29.7 97.9 88.9
Pmisc /% 0.0 0.2 13.5 47.2 2.1 9.6
Pmisf /% 0.0 0.1 3.2 23.1 0.0 1.5

distavg / cm 0.0 12.0 13.4 17.2 10.4 12.4
distmed / cm 0.0 10.0 10.0 10.0 10.0 10.0

Appplicability 3 3 7 7 3 7

da
y|

ni
gh

t

Pcorr /% 2.6 2.1 2.5 2.5 3.5 2.7
Pmisc /% 9.3 10.1 10.2 10.8 14.6 12.7
Pmisf /% 88.1 87.8 87.3 86.7 81.9 84.6

distavg / cm 66.4 61.4 59.6 58.8 50.8 53.7
distmed / cm 62.0 53.9 50.0 51.0 41.2 44.7

Appplicability 7 7 7 7 7 7

1 For statistical signatures, b is the subdescriptor dimensionality (section 6.2.3).
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distance (section 4.4). We expect that a smaller percentage of correct detections or larger distances
between mismatches would strongly influence the navigation capabilities and thus consider them to
be not applicable for reliable loop-closure detection.
Regarding the best methods for the day|day group, (table 6.8.1), five of the six combina-

tions achieve perfect (four-norm and stat-norm) or almost perfect (hist-norm, hist-cbin, and
hist-tcbin) results for the day|day group. If mismatches occur for these five methods, they are
spatially very close to the expected match. Only the best method for hist-bin, i.e. comparing
histogram-based signatures in combination with a bin-by-bin comparison function, performs consid-
erably worse. For this combination, namely comparing the shist signature with the Bhattacharyya
coefficient dbhat, mismatches occur in 11.5% of the cases. Although most of the mismatches are
“close” mismatches and although distmed and distavg are relatively small, we consider the method
to be not applicable for loop-closure detection of an autonomous floor-cleaning robot. In contrast
to their performance for the day|day group, the performance for the day|night is much worse
(table 6.8.1, lower part). None of the methods is applicable for reliable loop-closure detection:
loop-closures are only detected correctly in approximately 2% of the cases, and 85% and more
are distant mismatches. The spatial distance between expected match and computed match is in
all cases larger than 50 cm. Beyond that, it is surprising that all methods rely on relatively large
signatures.

None of the best methods identified for the day|night group (table 6.8.2) are applicable to loop-
closure detection. These methods only correctly detect loop-closures for at most 3.5% of the image
pairs contained in the day|night group. More than 80% of the mismatches are “far” mismatches,
and the distance between expected match and computed match is in all cases larger than 40 cm.
The performance of these methods for the day|night group is considerably better than for the
day|night group, but the methods do not achieve the performance of the best methods identified
for the day|night group (table 6.8.1). Three of six combinations achieve perfect (four-norm) or
close to perfect (stat-norm and hist-cbin) results. The remaining three methods (hist-tcbin,
hist-norm, and hist-bin) fail our criterion for applicability because the percentage of correct
matches is too small. Nevertheless, the mean and median spatial distances between expected match
and computed match are in three cases surprisingly small.
This overview of the results clearly reveals that (i) several combinations achieve very good or

perfect results for the day|day dataset, but that (ii) none of the tested methods can cope with the
drastic illumination changes contained in the day|night group. Thus, not even the Fourier-based
signature omitting the DC component (sigzafc) and histogram-based signatures in conjunction
with cross-bin matching functions (dqf, dqfc, demd, dqft, dqfct, and demdt) can compensate for the
illumination changes of the day|night group. The best methods summarized in table 6.8 were
identified based on their Pcorr values for one of the test groups. Since not even the best methods of
the day|night group are considered to be applicable on a real cleaning robot, there cannot exist
a combination of signature function s and dissimilarity function d, which fulfills the criterion for
both test groups. With these results, we consider a more detailed evaluation, e.g. investigating how
the signature dimensionality influences the robustness against perceptual aliasing and perceptual
variability, to be not reasonable. The results rather suggest to increase the methods’ robustness
against changes of the illumination or —as we expect such drastic changes to be unlikely during a
single cleaning run of the robot— to test the methods under more realistic illumination conditions.
For the latter reason, real-robot experiments will be performed (section 6.4).

6.3.2.4. Computational Aspects of Signature Functions

In this section we analyze the computing time required to derive a single signature from a panoramic
image. Computing times were determined for each signature function s and possible parameter
combinations as defined in section 6.3.1.3. All results presented in the following are median
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Figure 6.9.: Average computing times of signature
functions independent of r and b. The black line
depicts the mean computing time obtained from av-
eraging over times obtained for the parameter com-
binations of r and b. The shaded area depicts the
range between minimum and maximum computing
time resulting from averaging over the computing
times obtained for different choices of r and b. The
signatures smm, smv, sms, smk, smmv, smsk, smmvs, smvsk and
smmvsk rely on the same function for computing the
statistical moments and are therefore subsumed
under the label smx.

computing times obtained from 1000 repeated time measurements.
To get a first impression of the results, we pooled the data obtained for each signature function

and computed an average, which is independent of the choice of the parameters r and b. The
results of this first evaluation step are presented in figure 6.9. The average computing time of each
signature is depicted by black circles, signatures are sorted in increasing order depending on the
average, and the shaded area marks the range between minimum and maximum computing time.
Signature functions based on statistical moments (equations (6.6) to (6.14)) are summarized under
the label smx. The 9 different signatures are internally computed by the same C/C++ function which
—independent of the statistical moments contained in the signature— always computes all four
moments. Hence, the computing times of different signatures are identical and only depend on the
number of rings r.
The results reveal that the signatures based on statistical moments can be computed most

efficiently. Computing times range from 0.82ms to 1.65ms with an average of 1.20ms. With mean
computing times of 1.22ms and 1.41ms, the histogram-based signatures shist and schist require a
comparable effort. The computing times of these signatures vary in the ranges between 0.68ms and
2.18ms for shist and between 0.69ms and 3.2ms for schist. Thus, the signature’s dimensionality
only has a small influence on the time required to compute the signature. For the scog signature, we
obtained an average computing time of 3.08ms. As the signature only depends on the number of rings
r, the computing time only varies from 2.72ms to 3.41ms. The Fourier-based signatures safc and
szafc both obtain mean computing times of 5.9ms and therefore require the largest computational
effort. Depending on the specific choice of r and b, the minimum and maximum computing times
range between 0.61ms to 17.42ms for safc and between 0.61ms and 17.52ms for szafc.

As the best loop-closure detection results in sections 6.3.2.1 and 6.3.2.3 were obtained for Fourier-
based and histogram-based signatures, we analyze these signatures in more detail. The results are
shown in figures 6.10 and 6.11 and visualize the computing time against the signature’s overall
dimensionality r ⋅b. The number of rings is coded by different markers (see the captions of figures 6.10
and 6.11 for explanation); along the line obtained for each value of r, the number b of Fourier
coefficients or histogram bins increases from left to right according to equation (6.51). Figure 6.10
depicts the results obtained for the Fourier-based signatures safc and szafc. The results for both
signatures are identical because the computation of the signatures relies on the same C/C++ and
Tcl functions. For up to 8 rings (×), the signature can be computed in less than 5ms. For r = 16
(+) and r = 32 (∗), the computing time increases to 8.9ms and 17.4ms, respectively. The required
computing time only depends linearly on the number of rings r and is independent of the number
of coefficients b. This is due to the used algorithm for the discrete Fourier transformation, which
computes all Fourier coefficients and not only the first b coefficients required for the signature. For
the dimensionalities obtained by several combinations of r and b, the signatures computed with
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Figure 6.10.: Computing times of Fourier-based signatures depending on the number of rings r and the number of
Fourier coefficients b. Subfigures (1) and (2) depict the results for the signatures with and without DC-component,
respectively. The number of rings r is coded by different markers as follows: (○) r = 1, (◻) r = 2, (◇) r = 4, (×) r = 8,
(+) r = 16, and (∗) r = 32.
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Figure 6.11.: Computing time of histogram-based signatures depending on the number of rings r and the number of
Fourier coefficients b. Subfigures (1) and (2) depict the results for the signatures based on intensity histograms and
cumulative intensity histograms, respectively. The number of rings r is coded by different markers as follows: (○)
r = 1, (◻) r = 2, (◇) r = 4, (×) r = 8, (+) r = 16, and (∗) r = 32.

larger r require more effort.
The histogram-based signatures shist and schist can be computed with considerably less effort

(figure 6.11). For the signature shist based on gray-value histograms, the computation with up to 16
rings (+) takes less than 1.3ms. For r = 32 rings (∗), most of the signatures can be computed in less
than 2ms; only the signature with b = 32 histogram bins takes 2.2ms. In comparison to the shist
signature, the signature schist takes slightly longer to compute. In this case, the computation of
signatures with up to 4 rings (×) takes less than 1.3ms. Signatures with up to 16 rings (+) require
less than 2.1ms of computing time. Computing signatures with r = 32 (∗) takes between 2.0ms
and 3.2ms. For both signatures, the effort depends mainly on the number of rings r and to a small
extent on the number of histogram bins b. The latter aspect is probably due to normalizing the
histograms to unity and —in case of the schist signature— to cumulating the histogram.

We conclude that the statistical signatures and the histogram-based signatures can be computed
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Figure 6.12.: Average computating time of dissimilarity functions independent of r and b. The black line depicts
for each dissimilarity function the mean computing time required to compare two signatures. The range between
minimum and maximum computing times is visualized by the shaded area.

faster than the Fourier-based signatures. For the histogram-based signatures, the number of bins b
and the number of rings r only has a small influence on the resulting computing time. This is in
contrast to the Fourier-based signatures, for which the resulting computing times is solely influenced
by the number of rings r. However, by choosing a small or a moderate number of rings r, computing
times of up to 3ms can be obtained. For these cases, the effort required to compute Fourier-based
signatures is comparable to the effort of histogram-based signatures with a large dimensionality. The
computing time of the Fourier-based signatures can further be reduced by recursively computing
the required coefficients as described by Stürzl and Mallot [611].

6.3.2.5. Computational Aspects of Dissimilarity Functions

The objective of this section is to analyze the computational effort of comparing two signatures
with the tested dissimilarity functions. We therefore follow the experimental procedure described
in section 6.3.1.3. For each dissimilarity functions, we determine computing times for comparing
two signatures with dimensionalities for all possible combinations of r and b resulting from equa-
tions (6.50) and (6.51). The given computing times are median values computed from 1000 repeated
measurements.
To get a first impression of the results, we computed for each signature function the average

computing time over all possible parameter combinations of r and b. The results are depicted in
figure 6.12 with the average computing time marked by black circles. Average computing times were
sorted in increasing order, and the shaded area marks the range between minimum and maximum
computing time for each dissimilarity function. The results reveal that the norm functions dman, deucl,
and dmaxn require the least time —even though the used implementation of these functions relies on
the Tcl standard library [I93]. The computing times of all three functions vary between 0.01ms and
1.51ms with average values of 0.21ms. The quadratic form functions (dqf, dqft2, and dqft4) and
the quadratic χ2 functions (dqfc, dqfct2 and dqfct4) achieve average computing times of 0.34ms and
0.45ms, respectively. The maximum computing times of these functions are 2.4ms. Because the
results of these functions are close together, it is hard to draw reliable conclusions which of these
functions performs better or whether thresholded variants require less effort than unthresholded
variants. The thresholded variants of the earth mover’s distance achieve mean computing times of
0.70ms and 0.91ms for demdt2 and demdt4, respectively, and the average computing time for demd is
1.32ms. In this case, thresholded variants with a smaller distance threshold t perform better than
the unthresholded variant demd. For all variants, the exact time required for comparison of signatures
depends strongly on r and b, and the maximum computing times of the earth-movers distance are
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Figure 6.13.: Computing time of maximum norm dmaxn

depending of the signatures’ dimensionality r ⋅ b. The
number of rings r is coded by different markers: (○) r = 1,
(◻) r = 2, (◇) r = 4, (×) r = 8, (+) r = 16, and (∗) r = 32.

considerably larger than that of the quadratic form and quadratic χ2 functions. The bin-by-bin
matching functions dbhat, dkl, dchi, and djef perform worst and require in the average 0.84ms,
1.23ms, 1.88ms, and 2.47ms to compare two signatures. Like for the earth mover’s distance, the
effort required to compute the bin-by-bin matching functions strongly depends on the signature’s
dimensionality.
Since we identified the maximum norm dmaxn as dissimilarity function with a good performance

(sections 6.3.2.2 and 6.3.2.3), and as it will be used for the real-robot experiments (section 6.4),
we analyze this function in more detail. Figure 6.13 visualizes the computing time required to
compare two signatures against the signature’s dimensionality. The computation of the norm takes
less than 0.5ms for r ⋅ b ≤ 128 and less than 1.0ms for r ⋅ b ≤ 512. Comparing two signatures with
an overall dimensionality of 1024 requires 1.5ms. The results show that the computational effort
depends linearly on the overall dimensionality r ⋅ b. For dimensionalities r ⋅ b obtained for several
combinations of r and b, computing the dissimilarity takes longer if more rings are used.
Due to the prototype implementation of the tested dissimilarity functions, drawing conclusions

from this comparison is difficult, because the implementation is based on different frameworks and
on code optimized to a different extent. For a well-founded comparison, the measurements should be
repeated with a reimplementation of the methods in C/C++ and a comparable level of optimization.

6.3.3. Discussion and Conclusions
In the previous sections 6.3.2.1 to 6.3.2.5 we have presented results of testing the proposed signature
functions and dissimilarity functions on image databases. In order to identify promising combinations
and parameter settings (i) for a wide range of different environments and (ii) for different illumination
conditions, we pooled the results into two test groups and searched for methods with best possible
performance for both groups. The test groups are referred to as day|day and day|night group
and contain image databases collected under natural illumination (day|day) and cross databases
collected during day under natural illumination and during the night under artificial illumination
conditions (day|night).
Among all tested signatures, statistical signatures can be computed most efficiently. However,

their loop-closure detection performance is not as good as the performance of histogram-based
and Fourier-based signatures. The histogram-based signatures shist and schist can —even for large
dimensionalities— be computed very efficiently. The drawback of the histogram-based signatures is
that the specific choice of the number of rings r and the number of histogram bins b has a large
influence on the resulting loop-closure detection performance. It seems that the signatures perform
better for a larger number of rings r and a relatively small number of histogram bins b. However, for
none of the two test groups, the histogram comparison functions with cross-bin matching perform
better than standard norm functions. These results contradict our expectations because cross-bin
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matching functions were designed to tolerate a certain extend of variability in the histograms as it
can occur due to changes of the illumination conditions (sections 6.2.2.1 and 6.2.4). We also would
not have expected the low robustness against illumination changes of the earth-mover’s distance,
which was designed to tolerate intensity changes and which is often used as reference in the field
of histogram comparison methods (e.g. [508, 509]). Even in combination with cross-bin matching
functions, histogram-based signatures are not more tolerant against changes of the illumination
than Fourier-based methods.
For the day|day group, the Fourier-based signatures safc and szafc achieve very good results

for more than 8 dimensions and over a wide range of combinations of r and b. However, their
performance is strongly decreased for the day|night test group. Although the szafc signatures
omitting the first Fourier component representing the average image brightness should theoretically
be more robust against changes of the illumination (section 6.2.4), their performance is not superior
to that of the signature safc containing all components. We consider this result to be an effect of the
illumination changes simulated by the cross-database experiments, which cannot be described by a
simple change of the overall image brightness. With the current implementation, the complexity of
the Fourier-based signatures depends linearly on the number of rings r. For a moderate number
of rings, Fourier-based signatures take only slightly more time to compute than histogram-based
signatures. Due to these reasons, we will solely test the Fourier-based signature safc in the real-robot
experiments described in section 6.4. Regarding the dissimilarity functions, the experiments revealed
that the choice of the dissimilarity function does not have a large influence on the performance of
loop-closure detection with Fourier-based signatures. For these purposes, the maximum norm dmaxn
will be used for real-robot experiments.

The main drawback of signature-based loop-closure detection is the methods’ little robustness
against changes of the illumination. For all tested signature and dissimilarity functions, the loop-
closure detection performance strongly impaired for the day|night group. With the large proportion
of misclassifications and the large spatial distance between expected match and computed match, the
methods do not allow for reliable loop-closure detection. These findings also diminish the validity
of the results obtained for assessing the robustness against perceptual aliasing and perceptual
variability. It seems that combinations of signatures with a higher dimensionality are slightly
more robust against changes of the illumination than combinations with a lower dimensionality.
However, the considered cross-database experiments contain strong changes of the illumination
which are resulting from collecting the images during completely different illumination conditions.
We therefore performed real-robot experiments under more realistic illumination conditions in order
to reveal whether the tested methods are sufficient (section 6.4).

Besides the accuracy of loop-closure detection and the robustness of the proposed methods against
changes of the illumination, their applicability on a real robot is an essential aspect. For the
experimental conditions under which the database experiments were conducted, computing a single
128-dimensional Fourier-based signature safc takes 5ms and that comparing two such signatures
requires 0.5ms (sections 6.3.2.4 and 6.3.2.5). Even for large apartments, we do expect that —even
for large-scale environments— 80 to 100 signature comparisons are sufficient for loop-closures (see
section 5.6.2 for a motivation of this number). Loop closures have to be detected in the time between
two consecutive snapshots are added to the robot’s dense topo-metric map. Assuming the robot to
move with 10 cm/s and that new snapshots are added to the robot’s map every 10 cm (these are
similar conditions than used for the real-robot experiments described in sections 4.4.1 and 6.4),
there is at most 1 s of time for loop-closure detection. In case only the current signature has to be
derived and all other signatures are stored in the map, almost 2000 signature comparisons can be
computed. If the signatures of the mapped places are not stored, but have to be recomputed, only
around 180 comparisons are possible. Thus, we consider signature-based loop-closure detection to
be applicable on a real cleaning robot even if such a robot is equipped with less computational
power than the computer used for the database experiments and even if other tasks, such as visual
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Figure 6.14.: Experimental procedure for real-
robot experiments. First, a reference lane of
snapshots (dark gray circles) is recorded, which
is used as “virtual fence”. After the robot is
released from the start position (black cross) it
moves towards the reference lane. While moving,
it continuously compares the current signatures
to the signatures stored along the reference lane
(filled circles). In case a loop closure is detected,
the robot stops, and its final distance d to the
reference lane is analyzed. For further details see
sections 6.4.1.1 and 6.4.1.3.

homing or position estimation, have to be executed in parallel.

6.4. Real-Robot Experiments

In the previous section, the combination of the Fourier-based signature with DC-component safc in
conjunction with the maximum norm dmaxn as dissimilarity function was identified as a promising
approach for visual loop-closure detection being applicable on a real robot. In order to evaluate
the combination under more realistic conditions, real-robot experiments were performed which are
described in this section. The common experimental procedure, the data evaluation methods, and
the robot setup are described in section 6.4.1. Section 6.4.2 describes the results of the experiments;
the section ends with a discussion of the obtained results (section 6.4.3).

6.4.1. Methods

This section first describes the experimental procedure (section 6.4.1.1), robot setup and the
experimental framework used to perform the robot experiments (section 6.4.1.2), and the data
evaluation methods (section 6.4.1.3).

6.4.1.1. Experimental Procedure

The experimental procedure is visualized in figure 6.14. At the beginning of each experiment, a
reference lane is recorded (figure 6.14; black line with black circles). The reference lane is assumed
to be the outer border of an already cleaned segment (light-gray area) and will, during the course
of the experiment, serve as a “virtual fence”. While moving along the reference lane (dark gray),
the robot acquires omnidirectional images every 10 cm (this corresponds to recording an image per
second). The positions of image acquisition xi (i = 0,1,2, . . .) are in figure 6.14 marked by filled
circles. The distance between two snapshots is estimated based on the robot’s on-board odometry.
The images are unfolded and the signatures qi are computed, which are stored in a purely topological
map without position information. After the end of the lane (decided by the operator), the robot
is manually moved away from the reference lane to an arbitrary start position (black cross) and
is released heading towards the reference lane. While approaching the reference lane, the robot
again takes images every 10 cm (filled circles), unfolds them, and derives the current signature p.
The signature p is compared to all signatures qi stored in the map (i.e. along the reference lane)
resulting in n dissimilarity values

`i = d(p,qi). (6.54)

200



6. Signature-Based Loop-Closure Detection

The robot stops if

ˆ̀=
n−1
min
i=0

`i (6.55)

falls below the decision threshold `t:

ˆ̀< `t. (6.56)

The experimental framework (section 6.4.1.2) allows to perform two types of experiments referred
to as short-term and long-term experiments. For the short-term experiments, 10 test trials were
performed immediately after recording the reference lane. As a single short-term experiment
takes approximately 10min, this type of experiments therefore only covers abrupt changes of
the illumination (table 6.9). See section 3.2.3.2 for a more detailed discussion on changes of the
illumination. In contrast, long-term experiments reuse the reference lane recorded at a previous
point in time. Depending on the time between recording the reference lane and testing, the method’s
robustness against medium-term changes and against daytime changes of the illumination can be
assessed. For the long-term experiments, we recorded the reference lane and released the robot
from 5 different start positions. The testing phase began immediately after recording the reference
lane and was repeated for 7 times with approximately 10min between trials. Thus, our experiments
cover changes of the illumination as occurring within 1 h (table 6.11). This is the time expected (i)
to clean a relatively large workspace and (ii) to be the maximum battery life before recharging is
required. Unfortunately, we cannot show panoramic images visualizing the illumination changes
which occurred during both experiments because the image data got during a system update.

6.4.1.2. Implementation and Robot Setup

The experimental procedure (section 6.4.1.1) was mainly implemented by Oliver Schlüter as a
student assistant supervised by Lorenz Hillen. This included (i) a reimplementation in C/C++ of
the signature computation and comparison and (ii) the integration into the Tcl framework for
cleaning-robot control developed by Prof. Dr. Ralf Möller to easily allow for extensions of these
strategies in future work. Minor modifications on the experimental procedure, the parameter tuning,
and the experiments were carried out by Lorenz Hillen.

For the experiments, our experimental cleaning robot was used (section 4.4.3 and figure 4.11). As
setup to acquire omnidirectional images, a panoramic annular lens (Tateyama PAL-S25G3817-27C,
[D16]) in combination with a CCD camera (IDS Imaging UI-2220SE-M, [D9]) were used (see
figure 3.7.2 for a photo of the setup). To keep the average image brightness of the camera images
constant, a PID controller was used to adjust the exposure time. Camera images were unfolded
on the robot’s on-board computer (IEI Technology PM-US15W-Z530-R10 with an Intel Atom
Z530 CPU, [D10]) following the approach described in Krzykawski [345]. Unfolding included
a histogram equalization followed by a low-pass filtering with a binomial filter of kernel size 11.
The size of the resulting images was 360 × 48 pixels covering a vertical field of view from 0° to 38°
above the horizon. The client-server architecture for the communication between the robot and the
host computer as well as unfolding and preprocessing on panoramic images was implemented by
Martin Krzykawski. The unfolded camera images were transmitted via wireless-network connection
to an external host computer, which was used to compute, store, and compare image signatures
(figure 4.12). In our case, a laptop [D4] equipped with a quad-core Intel Core i7 920XM and 4GB
of RAM was used as external host computer.

For all experiments, r = 8 rings and b = 12 Fourier coefficients were used resulting in 96-dimensional
signatures. Due to the smaller field of view and the smaller image size, we also used lower-dimensional
signatures. The robot was moving with 10 cm/s, and the decision threshold was for all experiments
set to `t = 0.4.
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6.4.1.3. Evaluation

During the experiment, the robot’s spatial position x is tracked using the active tracking system
(figure 6.15). This position estimate is solely used for data evaluation and allows for determining
the robot’s current distance d to the reference lane. For this purpose, a single line is fitted through
the positions xi by linear regression. This also reduces the influence of outliers in the position
estimates obtained by the active tracking system. However, if the reference lane is slightly curved
due to systematic errors of the robot’s odometry (section 4.4), a piecewise linear interpolation of
the reference lane would more accurately fit its true shape. For data evaluation, we analyze the
percentages of the following outcomes of the experiment depending on the robot’s distance ds to
the reference lane after stopping because `min fell below the threshold `t (figure 6.16):

correct: In this case the robot stopped on the reference lane with ∣ds∣ ≤ dmax. Although stopping
the robot on the lane means a small amount of repeated coverage, it avoids uncleaned
areas. For our experiments, we chose dmax = 15 cm, which corresponds to approximately
half the diameter of the used robot and the inter-lane distance used to cover the workspace
by meandering lanes (section 4.4).

gap: The robot stopped in front of the lane and ∣ds∣ > dmax. If the robot stops before reaching
the lane, an uncleaned area remains. It should be the main goal of all implemented
cleaning strategies to avoid such uncleaned areas.

overlap: The robot crossed the lane and stops behind the lane with ∣ds∣ > dmax. With respect to
cleaning strategies, this outcome would increase the proportion of repeated coverage
therefore reducing the robot’s cleaning efficiency. Nevertheless, full coverage of the
robot’s workspace could still be achieved.

For the case that the robot does not stop because `min does not fall below the threshold `t, a fourth
case is considered:

failed: The robot’s distance to the reference lane is continuously computed, and the robot is
automatically stopped if the distance increases 2dmax. This case not only results in a large
portion of repeated coverage but also indicates that loop-closure detection failed. Thus,
it increases the probability that an inconsistent map of the environment is maintained
and that the map cannot be corrected in further processing steps.

This evaluation was done online while performing the experiment.
To quantify the changes of the illumination occurring during the course of the experiments, we

use the global radiation R, measuring the directed and diffuse components of the solar radiation.
The measurement values of R are provided online by the weather station located on the campus
of Bielefeld University and are 10min averages updated every 2min [I97]. Abrupt changes of the
illumination are not visible in the measurements due to averaging. Furthermore, the measures of
R do not exactly represent the illumination conditions because (i) we cannot measure the global
radiation inside our lab and because (ii) the weather station is approximately 400m away from
the lab of the Bielefeld Computer Engineering group, in which the experiments were performed.
However, we feel that monitoring the global radiation R gives at least a hint how the illumination
conditions vary during the experiments. For a more detailed discussion on the global radiation, the
reader is referred to Ahrens [1].

6.4.2. Results
Based on the experimental procedure explained in the previous section, 12 short-term and 5 long-term
experiments were performed. Their results are described in sections 6.4.2.1 and 6.4.2.2, respectively.
A video showing an experiment similar to the short-term experiments is available for download [S5].
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(1) Sketch of the principle (2) Camera and pan-tilt unit. Photo by
Lorenz Hillen.

(3) Camera image while tracking (4) Probabilistic color segmentation

Figure 6.15.: Active visual tracking system. Subfigure (1) visualizes the principles of the tracking system. A camera
is mounted on a pan-tilt unit, which is moved such that the robot keeps centered in the camera image. From the joint
angles of the pan-tilt unit and the robot’s position within the camera image, an estimate of the robot’s position (black
circle) in the experimental area (light-gray area) is computed. Subfigure (2) is a photo of the setup consisting of a
pan-tilt unit (Directed Perception PTU-D46.17-5 [D6]) mounted on a tripod (Manfrotto 055XBPro with Manfrotto
496RC2 ball head [I66, I67]) and the camera (camera: Axis 211 W [D3]; lens: Tamron 13VG550ASII [D15]). Subfigure
(3) shows the camera image while tracking. The robot’s tracking target (in the shown case a blue disk), is detected
in the camera image by color segmentation. To facilitate color segmentation, the camera’s color segmentation is
oversaturated by setting the corresponding camera parameter to the maximum value. For the pixels inside the search
region (red rectangle), the color dissimilarity to the reference color is computed. Subfigure (4) depics the dissimilarity
information with white and black coding identical and dissimilar pixels, respectively. The dissimilarity information is
used to track the target, to repeatedly compute its center (blue cross) by applying the cam-shift algorithm (Bradski
[66]), to adjust the size of the search window (red rectangle), and to adaptively adjust the reference color to the
current illumination conditions. The computed center position is used to generate a motion command for the pan-tilt
unit to keep the robot centered in the camera image. The deviation of the center position from the image center is
fused with the joint angles of the pan-tilt unit to estimate the robot’s position based on triangulation. For further
details, please refer to the project thesis by Daniel Venjakob [668], who also implemented the system. With an image
resolution of 640 × 480 pixels, tracking is possible at approximately 5 images per second and an accuracy of 1 cm. In
its current implementation, the system can only estimate the robot’s position but not its orientation. The advantages
of the active tracking system over the passive system (figure 4.15 and section 4.4.5) are its portability and ease of
calibration. Figure requires color printing.
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correct
overlap

failed

gap

Figure 6.16.: Possible outcomes of real-robot ex-
periments. When the robot stopped, its distance
to the reference lane (dark gray line with circles
indicating snapshot positions) is evaluated and
grouped into four different categories: gap if the
robot stops before the reference lane (light-gray
area), correct if it stops on or close to the lane
(white), overlap if it stops behind the reference
lane (mid gray), and failed if the robot does not
detect loop closures (black). For further details
see sections 6.4.1.1 and 6.4.1.3.

Table 6.9.: Experimental conditions of short-term experiments. Experiments 1 to 8 were conducted under nearly
constant illumination conditions; experiments 9 to 12 include rapidly changing conditions due to strong natural or
artificial changes of the illumination. The global radiation R measures the illumination conditions outside the main
building of Bielefeld University. The measures are 10 min averages provided by [I97]. For some experiments, the values
of R are not available due to server errors; the values are only given for experiments which were performed under
natural or under natural with additional artificial illumination.

R / W/m2

Exp. Date Time Begin End Weather and illumination conditions

1 2011-09-30 15:35 — — Light-proof curtain closed, artificial illumination only.
2 2011-09-30 15:45 n.a. 510 Overcast. Additional artificial illumination
3 2011-09-30 16:00 510 n.a. Overcast. Diffuse natural illumination without artificial illumination.
4 2011-10-04 11:55 224 118 Overcast, rainy. Diffuse natural illumination.
5 2012-02-13 11:30 129 160 Overcast. Diffuse natural illumination.
6 2012-02-13 13:25 143 113 Overcast. Diffuse natural illumination.
7 2012-02-13 17:05 47 41 Overcast. Sunset at 17:35. Diffuse natural illumination only.
8 2012-02-16 12:20 148 161 Overcast. Diffuse natural illumination.

9 2012-02-17 14:00 325 143 Partly cloudy with clear spells. Illumination rapidly darkened during
recording of reference lane. Diffuse illumination during tests.

10 2012-02-20 14:40 245 206 Mostly overcast with a clear spell. Diffuse illumination, rapidly
brightened during recording of reference lane. Diffuse illumination
during tests.

11 2012-02-21 14:30 145 133 Overcast. During recording of reference lane additional artificial
illumination. Artificial illumination turned off for tests.

12 2012-02-21 14:55 115 114 Overcast. Natural and artificial illumination. During recording of
reference lane, the neon lamps closer to the door were switched on.
For tests, the neon lamps close to the door were switched off and the
ones close to the windows were turned on. See figure D.1 for positions
of neon lamps.

6.4.2.1. Short-Term Experiments

For the short-term experiments, the test trials are performed immediately after recording the
reference lane. A total of 12 short-term experiments with 10 test trials per experiment were
conducted. The start positions of the reference lane and the reference lanes are visualized in
figure 6.17.1. The start positions and orientations of the test trials were randomly chosen and are
documented in figure D.1.1. Table 6.9 summarizes the weather and illumination conditions under
which experiments were performed.

As experiments 1 to 8 were collected under nearly constant illumination conditions and as
experiments 9 to 12 were performed under strong changes of the illumination, we separate the
evaluation of the experiments into two groups. For the first group (table 6.10.1), the robot stopped
correctly on the lane in approximately 86% of the cases. In 10% of all tests, the robot stopped
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(11, 12) (9)

(8)

(7)

(6)

(5)

(4)

(3)

(2, 10)

(1)

(1) Short-term experiments

r5r4

r3 r2 r1

(2) Long-term experiments

Figure 6.17.: Experimental condi-
tions of short- and long-term robot ex-
periments. For the short-term exper-
iments (subfigure (1)), the reference
lanes of the 12 experiments are shown
with start positions marked by a filled
circle. Subfigure (2) visualizes the ref-
erence lanes of the long-term exper-
iments (start position again marked
by a black circle) together with the
five tested start positions. The five
start positions ri are marked by black
crosses; the release directions (but not
the full lanes) are depicted by black ar-
rows. The measuring line at the right
bottom of the figures shows the length
of 1m.

Table 6.10.: Results of short-term experiments. The two subtables subsume experiments conducted under nearly
constant illumination conditions (subtable (1)) and under strongly varying illumination conditions (subtable (2)).
The outcomes of the experiments and the performance measures given in the table are introduced in section 6.4.1.3
and figure 6.16.

(1) Nearly constant illumination conditions

Outcome

Exp. correct/ % gap/ % overlap/ % failed/ %

1 70.0 20.0 0.0 10.0
2 80.0 20.0 0.0 0.0
3 90.0 10.0 0.0 0.0
4 70.0 30.0 0.0 0.0
5 80.0 0.0 0.0 20.0
6 100.0 0.0 0.0 0.0
7 100.0 0.0 0.0 0.0
8 100.0 0.0 0.0 0.0

Avg.: 86.25 10.00 0.00 3.75

(2) Strong illumination changes

Outcome

Exp. correct/ % gap/ % overlap/ % failed/ %

9 10.0 0.0 0.0 90.0
10 0.0 0.0 0.0 100.0
11 0.0 0.0 0.0 100.0
12 0.0 0.0 0.0 100.0

Avg.: 2.50 0.0 0.0 97.50
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Table 6.11.: Experimental conditions of long-term experiments. The global radiation R measures the illumination
conditions outside the main building of Bielefeld University. The measures are 10 min averages provided by [I97]. The
values of R are only given for experiments which were performed under natural illumination.

R / W/m2

Exp. Date Time Begin Min Max End Weather and illumination conditions

1 2012-02-13 17:30 — — — — Light-proof curtain closed. Constant artificial illumi-
nation only.

2 2012-02-14 08:40 45 45 76 66 Overcast with light snow. Diffuse natural illumination
with clearly visible brightness changes.

3 2012-02-14 16:50 65 34 65 34 Overcast. Experiment conducted during dusk (sunset
17:37). Diffuse illumination getting considerably darker.
For the last trial, the illumination was not sufficient
for tracking the robot.

4 2012-02-20 09:00 80 80 135 135 Partly cloudy with clear spells. Overcast at the end of
the experiment. Mostly diffuse illumination.

5 2012-02-20 14:55 174 174 342 296 Mostly sunny with some clouds. Illumination condi-
tions ranging from diffuse to directed illumination.

too early (gap); the tests failed in approximately 4% of the cases. Thus, with a decision threshold
of `t = 0.4 and nearly constant illumination, reliable loop-closure detection is possible. With 10%
of the trials resulting in the outcome gap, the threshold could further be decreased because with
the current parameter choice, the decision threshold seems in some cases to be reached before the
robot reaches the reference lane. However, this would probably also increase the proportion of
overlap or failed. None of the tests resulted in the outcome overlap. We therefore suspect that
the dissimilarities increase again once the robot crossed the reference lane.
For experiments 9 to 12 performed under strong changes of the illumination (table 6.10.2), the

tests failed in 97.5% of the cases. The robot only stopped correctly in 2.5% of the 40 trials;
the outcomes gap and overlap did not occur. Thus, reliable loop-closure detection under strong
changes of the illumination is not possible with the used combination safc, dmaxn, r = 8, and b = 12,
or with the specific choice of the decision threshold `t. Increasing the decision threshold `t could
improve the proportion of correct detections under strong illumination changes, but it would also
increase the proportion of gap situations while reducing the proportion of correct detections for
constant illumination conditions. With the experiments described in the following section, we
further investigated the robustness of the proposed methods against changes of the illumination
occurring over a longer period in time.

6.4.2.2. Long-Term Experiments

A total of five long-term experiments were conducted under the illumination and weather conditions
summarized in table 6.11. After recording the reference lane, we performed tests from five different
release positions (figure 6.17.2) in our lab (figure D.1.2). For all experiments, identical start positions
of the reference lane and of the test trials were used. We decided for start positions of the test
runs (figure 6.17.2; crosses) being relatively close to the reference lane because this allows us to
perform the five test runs of each trial shortly after each other. By this means, all five test runs of a
trial could be conducted under the same illumination conditions. Furthermore, it left us enough
time to change batteries and restart the robot between two consecutive trials without delaying
the start of the next trials because a single experiment could not be performed within one battery
charge. However, with start positions in the vicinity of the reference lane, local minima causing
false-positive loop-closure detections are extremely unlikely. Such false positives would cause the
robot to stop before reaching the reference lane, therefore increasing the proportion of the outcome
gap. For all experiments conducted in our lab —including not only the presented experiments
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Figure 6.18.: Results of long-term experiments. Subfigures (1) to (5) depict the results for the five different
experiments. Each bar of the subfigures corresponds to a trial (trials are not numbered but rather the time since
recording the reference lane is given) of the corresponding experiment with the outcomes coded by different gray
values as follows: white: correct; light-gray: gap; black: failed. The outcome overlap did not occur during the
experiments. For experiment (3), tracking the robot during trial with an offset of 60min was no longer possible
because of the illumination inside the lab being too dark. The corresponding trial is therefore marked by a black cross.

but also preliminary test while developing the experimental framework and adjusting the decision
threshold— we never observed false positives due to local minima. This effect is most likely due
to the environmental properties of our lab. Thus, we do not expect that choosing start positions
farther apart from the reference lane had influenced our results, but for repeating the experiments
in a different room, this issue has to be considered for defining the start positions of the test runs.
The first test trial was started immediately after recording the reference lane. The following six

test trials were performed with approximately 10min of time between trials. Thus, experiments
were performed over 1 h. The resulting trajectories are visualized in figure D.3. During the course
of the experiments, the frequencies of the four outcomes correct, gap, overlap, and failed were
computed as described in section 6.4.1.3. The results of the experiments are shown in figure 6.18.
The figures show for each test trial the proportion of the outcomes correct (white), gap (light gray),
and failed (black). Like for the short-term experiments, the outcome overlap did not occur.
Experiment 1 (figure 6.18.1) is the control experiment performed under constant and artificial

illumination with the lab’s light-proof curtain being closed. In all but one cases, the robot stopped
correctly on the lane; in a single case it stopped too early (gap). All remaining experiments
were performed under natural illumination conditions with the lab’s curtain and sun-blind being
open. The results of the trials for experiment 2 (figure 6.18.2) vary: the experiment was started
approximately 1 h after sunrise under visible changes of the brightness inside the lab. For trials with
0 and 20min offset, the robot stopped correctly in all cases, whereas for the trial with 10min offset it
only stopped correctly in one case; in the other cases the outcome failed occurred. The remaining
cases yielded the outcome correct in approximately half of the cases. In all case the robot did not
stop correctly, the experiment failed. Experiment 3 (figure 6.18.3) was started approximately 50min
before sunset. Thus, the illumination in the lab darkened during the course of the experiment.
For trial 7 (60min offset), the active tracking system was no longer capable of tracking the robot
(the trial is in figure 6.18.3 marked by a cross). Over time, the proportion of correct loop-closure
detections decreases: for the first three trials (0 to 20min), the robot stops correctly in three of five
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cases, for the trial with 30min offset it stops correctly in two cases and for the trials with offsets of
40min and 50min it did not stop correctly. As experiment 4 was performed (figure 6.18.4) under
relatively small changes of the illumination, the robot correctly detects loop-closures in all cases.
During recording the reference lane of experiment 5 (figure 6.18.5), strong abrupt changes of the
illumination occurred. The results therefore show a large variability and only a weak performance.
Correct detection in three of five cases was obtained for the trials with offset of 10min, 30min, and
60min; two of five cases were correctly detected for the trial with an offset of 20min. The trial
performed immediately after recording the reference lane yielded only a single correct detection,
and for the trials with offsets of 40min and 50min all test runs failed. All other triales failed.
The results clearly show that reliable loop-closure detection over a longer period of time is only

possible if the illumination conditions are nearly constant; for stronger changes of the illumination,
the performance decreases. In case the illumination conditions changed during the course of
the experiment, the variability of illumination conditions is reflected in the variability of correct
loop-closure detections. Like already mentioned in the discussion of the short-term experiments
(section 6.4.2.1), replacing the threshold-based decision by a more sophisticated approach could
increase the method’s performance. We therefore conclude that the used cross-databases (day|night
test group) are more realistic than we expected. Furthermore, we expect to be realistic scenarios
even more challenging then the laboratory situation tested here. In the following section, the results
obtained by the short-term and long-term robot experiments will be discussed.

6.4.3. Discussion and Conclusions

To assess the proposed methods’ robustness against changes of the illumination under more realistic
conditions, real-robot experiments were performed. Therefore, we recorded a reference lane which
was during the test trials used as “virtual fence”: while approaching the reference lane from various
release positions, the current signature was compared to the signatures derived from the snapshots
taken along the reference lane. The robot stopped if the minimum dissimilarity between the
current signature and the reference signatures fell below the decision threshold `t. For performance
evaluation, the proportion of the following four cases was analyzed: (i) correct loop-closure detection
(correct), (ii) stopping too early (gap), (iii) stopping to late (overlap), and (iv) stopping because
the robot’s spatial distance to the reference lane increased the threshold dmax (failed). Following
this procedure, two types of experiments covering different types of illumination changes were
performed. Short-term experiments mainly cover abrupt changes of the illumination because test
trials were performed immediately after recording the reference lane. Long-term experiments were
performed over 1 h with repeated tests of the reference lane recorded at the beginning of the
experiment. Thus, these experiments cover abrupt, medium-term, and, to some extent, also daytime
changes of the illumination.
Regarding the robustness against changes of the illumination, we think that the currently used

method is not yet applicable on a real cleaning robot. The results of both types of experiments clearly
reflect the variability of the illumination conditions: on the one hand side, reliable loop-closure
detection is possible in case of small or moderate changes of the illumination influencing mainly
the overall image intensities. In this case the used exposure controller can reduce the influence
of illumination changes already at the time of image acquisition. On the other hand side, abrupt
changes of the illumination or changes of the illumination mainly causing local intensity changes
currently cause the loop-closure detection to fail. Increasing the tolerance against changes of the
illumination should therefore be the primary goal of future work.

With respect to computational complexity, the results of the experiments show that the proposed
method is applicable on a real robot. Although the number of compared snapshots will probably be
larger if the method is integrated into more complex cleaning strategies (section 6.6) and a real
cleaning robot will use an on-board computer with less computational power, we expect that there
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will be sufficient time for the required signature comparisons.

6.5. Overall Discussion and Conclusions

In this chapter, we have approached the loop-closure detection problem by deriving global image
signatures from the entire image and comparing these signatures instead of a pixel-by-pixel compar-
ison of entire images as for holistic loop-closure detection methods (chapter 5). As the signature
dimensionality is considerably smaller than the number of pixels in the image, the method allows
for much more efficient image comparisons. In case parsimonious signature functions are chosen,
the effort of deriving the signature is negligible, and signatures can be stored in the robot’s map.
Thus, repeated applications of the signature functions are avoided. This approach is suitable for
topological maps with and without metrical position information.

From screening a wide range of signature and dissimilarity functions, the Fourier-based signatures
with (safc) or without DC component (szafc) and the signatures based on intensity histograms
(shist) or cumulative intensity histograms schist have been identified as promising signatures
(section 6.3.2.1). As dissimilarity function, we prefer the maximum norm dmaxn because the tested
histogram-comparison functions —both with and without cross-bin-matching— did not achieve
a better loop-closure detection performance but are computationally more complex. Especially
the earth mover’s distance demd and its thresholded variants demdt2 and demdt4 did not yield better
results than the other distance functions —although they are widely used as baseline method for
image-retrieval experiments (e.g. [132, 508, 509]). These results are surprising because the cross-bin
matching functions (dqf, dqfc, and demd and their threshold counterparts dqft, dqfct, and demdt) were
designed to compensate for variations of the histograms resulting from changes of the illumination.
Since we expected these functions to allow for reliable loop-closure detection even under strong
illumination changes as simulated by our cross-database tests, we did not test image preprocessing
methods as we did for holistic loop-closure detection. This issue will be addressed in future work
(section 6.6.1).

Further evaluations of the Fourier-based and histogram-based signatures in combination with
the maximum norm dmaxn (section 6.3.2.2) revealed that the performance of the histogram-based
signatures depends stronger on the choice of the parameters than the performance of the Fourier-
based signatures. The latter allow —at least for the test group containing smaller changes of
the illumination— for a very accurate loop-closure detection. Furthermore, the Fourier-based
signatures in conjunction with the maximum norm dmaxn as dissimilarity function offer a wide range
of parameter combinations with perfect or close to perfect robustness against perceptual aliasing
and perceptual variability (section 6.3.2.3). For the test group containing strong changes of the
illumination, the performance regarding loop-closure detection (sections 6.3.2.1 and 6.3.2.2) and
robustness against perceptual aliasing and perceptual variability (section 6.3.2.3) is considerably
reduced. Especially for the latter evaluation, identifying suitable combinations of signature and
dissimilarity functions and optimal parameters is hardly possible, because results only vary over a
small and comparably worse performance range. According to the results obtained for our database
experiments, the signature szafc without the first Fourier coefficient (DC component) is less robust
against changes of the illumination than the signature safc containing the first coefficient. These
results are surprising: because the signature szafc is independent of the first Fourier component,
which represents the average image brightness, we would have expected that it is more robust
against illumination changes than safc. A possible explanation of the result is that the changes
of the illumination simulated by our cross-database experiments cannot be described by a simple
change of the overall image brightness (equation (5.52)). Due to the obtained results, we prefer the
safc signature over the szafc signature. For this signature, the best results were obtained for 16-
to 128-dimensional signatures. In case of 128-dimensional signatures, this means that the image
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information is reduced to approximately 5% of its original size. The computation of a signature
with such a dimensionality takes approximately 5ms with the current implementation and the
currently used hardware; the comparison of two signatures requires at most 0.5ms. To this end, we
conclude that the proposed methods are applicable on a real cleaning robot and that the comparison
is efficient enough to compare a larger number of signatures as required for navigation based on
dense topological maps.
This conclusion was also validated by real-robot experiments (section 6.4). For the real-robot

experiments, a set of reference snapshots was collected in regular distances while the robot was
moving along a straight cleaning lane. These reference snapshots were during the experiment
used as the border of an already cleaned segment (metaphorically speaking they form a “virtual
fence”). For testing, the robot was released heading towards the reference lane and was supposed to
stop on the lane thus avoiding both gaps between cleaned segments and larger areas of repeated
coverage. Therefore, the robot’s current signature was repeatedly compared to the signatures stored
along the reference lane. When the resulting dissimilarity fell below a threshold, the robot stopped
and its spatial distance to the reference lane was analyzed. Following this procedure, two types
of experiments were conducted: short-term experiments covering changes of the illumination as
occurring over a period of 10min, and long-term experiments covering changes as occurring over
1 h. The results of both types of experiments (sections 6.4.2.1 and 6.4.2.2) reveal that reliable and
accurate loop-closure detection is possible for constant illumination conditions or moderate changes
of the illumination. For stronger changes of the illumination or changes influencing only parts of
the images’ appearance, the proposed methods fail. As such changes occurred independent (i) of
the time of day when experiments were performed and (ii) of the duration of the experiments, we
conclude that the proposed methods are not yet applicable on a real cleaning robot. Approaches to
increase the robustness should therefore be the primary goal of future work (section 6.6).
In comparison to holistic loop-closure detection methods relying on global image comparisons

(chapter 5), the methods described in this chapter are clearly superior with respect to computational
complexity and storage requirements. Storing the lower-dimensional signature together with the
snapshot in the robot’s topological map requires considerably less storage than storing the snapshot
together with a preprocessed variant of it. A further advantage over holistic methods is that the
proposed image signatures are invariant against the robot’s orientation. Thus, signature-based
methods do not need the compass step requiring most of the computing time of holistic methods.
Regarding the robustness against changes of the illumination and against perceptual aliasing or
perceptual variability, the best methods relying on image signatures perform significantly worse
than the best methods relying on global image comparisons. Although much information is lost by
the transformation to the lower-dimensional signature, we expect that the future working directions
can improve the robustness of signature-based methods.

6.6. Future Working Directions

As already pointed out, the primary goal for future work should be to increase the methods’ robustness
against changes of the illumination (section 6.6.1). Once the robustness against illumination changes
is increased, we expect the methods to be a valuable sub-system of more complex cleaning strategies
(section 6.6.2). Signature-based approaches also offer interesting properties for topological or topo-
metric map-building (section 6.6.3) and for modeling insect navigation behavior (section 6.6.4).
Beyond that, the proposed methods could also be used as parameter-based homing methods
(section 3.5.2.2). As extensive tests in [177, 537] have shown that parameter-based homing methods
are not competitive to other homing methods, we do not further discuss this possible line of research.
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6.6.1. Increasing the Robustness Against Illumination Changes

In chapter 5 we could show that image preprocessing can considerably increase the robustness
against changes of the illumination. This principle is also applicable for signature-based loop-closure
detection, and we expect that it can increase the method’s robustness against illumination changes.
In addition, signatures computed from edge information could be tested because edge information is
often less dependent on the illumination than intensity information (e.g. [644]). One starting point
is the signature proposed by Gu and Chen [261], which is a histogram of edge-detector responses
computed by summation over the image columns of a panoramic image preprocessed with a vertical
edge detector (in this particular case the Sobel filter; equation (5.9)). In contrast to the signatures
tested in this chapter, the signature by [261] is orientation-dependent and therefore requires the
application of a compass. To achieve rotation invariance, [261] suggest to align the histogram w.r.t.
the strongest edge response, i.e. with the largest entry of the histogram. In principle we expect this
signature to exhibit a certain tolerance against illumination changes, but its robustness strongly
depends on the quality of the compass method, which is difficult to judge without testing the
signature. Two images acquired at identical or nearby positions in space can only be correctly
aligned if their strongest edges result from the same object in space. If the visual appearance of the
images is too different (e.g. because of illumination changes), the strongest edge could result from
different objects. In this case, the compass and hence also loop-closure detection will fail.

6.6.2. Integration into a More Complex Control Scheme

In case the robustness against changes of the illumination can be increased, the methods should be
integrated into the framework for cleaning strategies currently developed by several members of
the Bielefeld Computer Engineering group (section 7.3.2). The framework allows for systematically
cleaning complex workspaces by combining several segments covered by meandering lanes. To reliably
detect loop-closures is a prerequisite for achieving a consistent map of the robot’s environment
thus avoiding both uncleaned areas and large proportions of repeated coverage. Therefore, every
snapshot added to the topological map has to be compared to snapshots at the border of already
cleaned areas. If loop-closures are detected, the spatial relations between cleaning segments can be
corrected in order to increase the quality of the underlying topological map. Such an approach is
closely related to hybrid mapping and hierarchical SLAM (sections 3.6.2 and 7.3.3). By comparing
the robot’s current signature to all signatures stored in the map (and not only to the signatures
at the borders of cleaning segments), the proposed methods could also be applied to solve the
kidnapped-robot problem, i.e. the problem that the robot has to relocalize after being manually
displaced by the user (section 7.3.2).

6.6.3. Signature-Based Approaches to Topological Mapping

The proposed signature-based loop-closure detection can also be applied for mapping and localization
in combination with topological or topo-metric maps with a signature-based place representation
(sections 3.6.3.2 and 3.6.4.1). Especially for systems with limited computational power and limited
storage capacities, the proposed methods allow for efficient navigation strategies and offer a possibility
to cover larger workspaces.
Beyond purely map-building, clusters computed in the signature space can be exploited to

derive spatial information about the robot’s workspace. Each cluster represents a region of the
robot’s workspace; doors or passages between regions should be detectable by transitions between
clusters. Such approaches are similar to the methods described by [475, 545, 725, 726]. For
room segmentation, the methods establish correspondences based on two-view stereo geometry
or based on a feature-based dissimilarity measure incorporating the relation of correspondences
and the total number of features (Zivkovic, Bakker, and Kröse [725] and Zivkovic, Booij,
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and Kröse [726]). Rottmann et al. [545] proposes to segment rooms by applying an AdaBoost
classifier (e.g. [196, 671]) on the sensor data obtained from a laser range finder and a monocular
camera. Clustering techniques could also be used to reduce the number of images contained in a
topological map or for hierarchical localization (section 3.6.2). In both cases a “centroid signature” is
computed representing an entire set of similar images in its spatial vicinity. For clustering, standard
methods (e.g. k-means or hierarchical clustering; textbooks: [46, 148, 533]), vector quantization
methods (e.g. neural gas [197, 413]), or optimal graph cuts [725, 726] could be used. To obtain
topo-metric maps by reintroducing metrical information (section 3.6.3.2), algorithms related to
multi-dimensional scaling (textbooks: [148, 533]) could be used to optimize the spatial positions of
the snapshots according to pairwise dissimilarities computed in the higher-dimensional signature
space. Beyond classical multi-dimensional scaling, extensions such as locally linear embedding
(e.g. [546]), relevance learning vector quantization (e.g. [274]), or isometric feature mapping (e.g.
[626]) could be used. Alternatives to such methods are mass-spring models as already considered in
related work (sections 3.3.1.3, 3.6.3.2 and 3.6.4.1). This branch therefore opens many possibilities for
developing visual SLAM methods relying on a topo-metric map and a signature-based representation
of places (section 3.6.3.2). For testing the proposed methods, the image databases summarized in
table 3.3 applicable for building sparse topological maps could be used, which we think are better
suited for this problem than the dense databases used in this chapter.

6.6.4. Biological Modeling
The proposed methods can also be applied to tackle interesting working directions in the field of
visual insect navigation. There is an ongoing debate how insects make use of the visual navigation
and how image information is represented (sections 3.3.3.3, 3.5.3.1 and 3.6.5.2). In Graham and
Cheng [248], parts of the visual panorama were masked, and the ants’ homing performance was
compared for masking different regions. The experiments revealed that the lower portion of the
visible panorama is necessary and sufficient for insect homing. Following the idea of this experiment,
one could mask out one or more rings from the signatures by not considering the corresponding
subdescriptors for computing dissimilarities (equation (6.48)). By systematically analyzing how
masking out certain rings influences the loop-closure detection performance, one could identify the
most relevant parts of the image. From a biological perspective, if applied to biologically plausible
input data (i.e. images collected in the insect’s habitat and at the level of the insect’s eyes, Zeil
[717]) this technique should be capable of identifying the image regions containing the most relevant
information. By a similar approach, the transition between ground and sky was identified as most
relevant image region for desert ants (Basten and Mallot [31]). For robotics, this approach can
help to further improve the methods’ complexity by only comparing relevant subdescriptors or to
increase the loop-closure detection performance by weighting subdescriptors depending on their
relevance or reliability. In this working direction, we see the concepts of rings as a tool to identify
relevant image regions, but we do not presuppose that something comparable is also found in insect
brains.

212



7. Overall Summary, Discussion, and Outlook

Section 7.1 of this chapter summarizes the proposed navigation strategies and the obtained
experimental results of (chapters 4 to 6). Section 7.2 briefly discusses the main result and
the main conclusions; future working directions are described in section 7.3.
Several aspects of future work are currently pursued or were already tackled by other
members of our research group working on the same project, namely by David Fleer,
Michael Horst, Janina de Jong, Martin Krzykawski, Prof. Dr. Ralf Möller, and Andreas
Stöckel. The corresponding paragraphs and figures are marked accordingly.

7.1. Overall Summary
The objective of this section is to give a condensed summary of the main results and conclusions
described in more detail in section 7.2. This thesis describes basic navigation strategies for a
domestic floor-cleaning robot using omnidirectional vision as primary sensory information. Our
particular application poses two main challenges for the developed navigation strategies (section 2.2).
First, the robot has to efficiently cover its entire workspace while avoiding both uncleaned and
repeatedly covered areas. Second, the developed strategies have to be in line with the sensory and
hardware equipment of the robot. Since domestic cleaning robots are consumer goods, they can
only be equipped with a small number of cheap sensors and limited computational power.

Our navigation methods rely on dense topo-metric maps as spatial representation, on local visual
homing to estimate spatial relations, and on meandering lanes as basic motion strategy. As dense
topo-metric maps and local visual homing are concepts which are strongly influenced from biological
research on visual insect navigation, these two building blocks of our methods can be considered
to be bio-inspired. Bio-inspired navigation methods have proven to be parsimonious yet robust
and powerful solutions [189, 453, 677, 678]. The experiments described in this thesis successfully
prove the feasibility of the these building blocks for cleaning-robot control. We are furthermore of
the opinion that they are feasible for a potential consumer product. Our navigation strategies are
the first application of these building blocks for navigation of domestic floor cleaning robots, and
—together with the navigation strategies for a mobile service robot operating in a do-it-yourself store
[255–258, 327, 338–340]— the first application of omnidirectional vision to a complex real-world
task. Since a complete control scheme for a full-fledged cleaning robot is beyond the scope of this
thesis, we focused on trajectory control and mapping and on visual detection of already cleaned areas.
We consider these two substrategies as most important because they can be used as basis for more
complex strategies such as detecting and approaching uncleaned areas.

Trajectory Control and Mapping
Regarding trajectory control and mapping (chapter 4) we propose a mostly vision-based controller,
which is used to guide the robot along parallel and meandering lanes while concurrently mapping the
robot’s environment. We use a dense topo-metric map as spatial representation, which characterizes
places with the visual information, in our case a panoramic image, perceived at the place. Thus, we
use former robot positions as landmarks for estimating spatial relations and obtain a straightforward
representation of already cleaned areas. The map is extended while the robot moves along a cleaning
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lane. The visual information stored along its current lane is used on the subsequent lane to estimate
the robot’s current distance to its previous lane. Using a dense topo-metric map has proven its
value because (i) it can be easily built from the available sensor information, (ii) it offers the fine
spatial resolution required for accurate cleaning-robot navigation, and (iii) it scales well with the
size of both the robot’s environment and the already cleaned area.

For estimating the robot’s current distance to the previous lane, we rely on a parsimonious lane-
distance estimator fusing bearing information from local visual homing and odometry information.
By minimizing the deviation between the robot’s true and desired distance to the previous lane, the
robot can be guided along meandering and parallel lanes. Despite the simple control algorithm,
which does not rely on an elaborated position estimation technique such as particle- or Kalman-
filtering, we obtain a total coverage of approximately 90% (80% of the workspace are covered exactly
once, 10% are covered twice, while 10% remain uncleaned). In contrast to the vast majority of
related approaches (section 3.6.3.2), we do not estimate the robot’s full pose but only perform
partial pose estimation. By solely computing the robot’s current distance to the previous lane
and its current orientation, we compute exactly the information which is sufficient and necessary
to solve the task: with only one of these estimates lacking, the robot could no longer fulfill its
task. The idea behind partial pose estimation is to save unnecessary computations. Our method
is computationally less complex than comparable methods maintaining a full pose estimate by
particle-filtering (Möller et al. [457]) or Kalman-filtering (Jong [314]). However, since our method
lacks a full pose estimate, it does not allow to follow arbitrary trajectories specified in world
coordinates. It therefore complicates further navigation strategies such as approaching uncleaned
areas or returning to the robot’s charging station. To this end, we will in future work abandon
partial pose estimation in favor of the particle-filter method by Möller et al. [457], which in
addition produces straighter cleaning lanes.

Visual Detection of Already Cleaned Areas
We investigated two approaches for visual detection of already cleaned areas: holistic and signature-
based loop-closure detection methods. Both methods compare the robot’s currently perceived
camera image with the images stored in the map. Holistic methods (chapter 5) compare the entire
images pixel-by-pixel, whereas signature-based methods (chapter 6) derive low-dimensional image
signatures from the entire images and compare these instead. For both types of methods, we
systematically tested a wide range of different approaches to evaluate their loop-closure detection
accuracy and their robustness against illumination changes. The results of our experiments reveal
that holistic measures allow for very accurate loop-closure detection even under strong changes of
the illumination. The drawbacks of these methods are (i) that they are computationally demanding,
(ii) that they require the application of a visual compass (see below), and (iii) that they are —at
least with the current rapid-prototyping implementation— not applicable on a cleaning robot which
is supposed to clean large rooms. In contrast, signature-based approaches are very efficient. They
allow for accurate loop-closure detection under (nearly) constant illumination conditions, but their
performance is strongly impaired if strong changes of the illumination occur. Nevertheless, we
favor the application of signature-based approaches for application on a real cleaning robot, even
though additional effort is needed to increase their tolerance against illumination changes. An ideal
loop-closure method would fuse the efficiency of signature-based methods with the robustness of
holistic methods.
A difficulty of both holistic and signature-based loop-closure detection methods is to find an

appropriate decision threshold for classification whether or not the compared images are identical.
Each place node stored in the map is surrounded by a region in space, and images acquired within
this region are by our loop-closure detection methods considered to be acquired at the same position
in space than the image associated with the place node. The region’s extent directly depends on
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the decision threshold used for loop-closure detection: a small threshold leads to a small region,
whereas a large threshold leads to a large region. If the threshold is chosen too large, loop-closures
are detected although the robot is a certain distance away from the place node. For cleaning, this
will result in gaps between segments. If the threshold is chosen too small, detecting the border of an
already cleaned segment may fail, and repeated coverage could occur. To this end, our particular
application requires small decision thresholds and a fine spatial resolution for precise and accurate
loop-closure detection avoiding both uncleaned and repeatedly covered areas.
Holistic loop-closure detection methods require the considered images to be aligned w.r.t. a

common reference direction, a prerequisite which can be fulfilled by applying a visual compass
method prior to loop-closure detection. The standard compass method by Zeil, Hoffmann,
and Chahl [718] requires a step-wise shift of one of the images and a repeated evaluation of the
comparison function. We proposed an accelerated compass variant which operates in the Fourier
domain and can estimate the compass shift from a single image comparison. Under constant
illumination conditions, our method computes accurate compass estimates, but its performance
drastically decreases under changing illumination conditions. In this case, the standard method
achieves more accurate results, but it is computationally less efficient than the accelerated compass
variant.

The substrategies proposed in this thesis will in future work be used as basis for more elaborated
substrategies which are required to make the robot capable of completely covering complex-shaped
workspaces. This is achieved by decomposing the entire workspace into several segments of
meandering and parallel lanes as they are obtained from our trajectory controller. More elaborated
substrategies will use the dense topo-metric map for (i) identifying uncleaned areas, (ii) approaching
them, and (iii) for orientation along the first lane of a new cleaning segment. Further directions of
future research include hierarchical mapping based on the decomposition into cleaning segments
and using the omnidirectional vision setup as multi-purpose sensor for further purposes such as
obstacle detection or user interaction.

7.2. Overall Discussion

The navigation strategies proposed in this thesis are a first step towards a full-fledged cleaning robot
capable of autonomously and reliably covering complex-shaped workspaces such as entire apartments.
Among all strategies needed for such a robot, we focused on two essential substrategies: (i) visual
trajectory control and mapping (chapter 4), and (ii) visual detection of already cleaned areas
(chapters 5 and 6). These two substrategies were implemented based on the following four building
blocks (section 1.2): (i) omnidirectional vision as primary sensory information, (ii) meandering
lanes as motion strategy, (iii) dense topo-metric map as spatial representation, and (iv) local visual
homing to estimate spatial relations. As far as we know, these building blocks have been for the first
time applied for navigation of a domestic floor-cleaning robot. The proposed navigation strategies
were experimentally tested with our custom-built research platform. The promising results obtained
throughout chapters 4 to 5 clearly reveal the applicability of the proposed strategies and of the
underlying building blocks. The particular strengths and weaknesses of our methods have already
been discussed in earlier chapters. Here, we rather focus on aspects which are relevant for several
of the considered substrategies. These include aspects of map consistency (section 7.2.1), the
relation of the proposed work to research from the field of spatial cognition (section 7.2.2), working
towards a prototype product (section 7.2.3), and alternative applications for the proposed methods
(section 7.2.4).
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7.2.1. Local Map Consistency vs. Global Map Consistency

The navigation strategies proposed in this work rely on a dense topo-metric map storing the already
cleaned parts of the robot’s environment. The map is built by the proposed trajectory controller
(chapter 4) and can be understood as a locally consistent submap of the entire workspace. If
several cleaning segments are combined, the entire workspace is covered by several locally consistent
submaps. For the navigation strategies considered in this thesis, the map built by this means is the
basis for guiding the robot along meandering cleaning lanes and for detecting already cleaned ares
(chapters 5 and 6). At the current state of our work, we keep position estimates attached to the
place nodes constant after adding the place node to the map. We therefore avoid the computational
effort required by SLAM applications (section 3.6) for subsequent position updates. Instead of
enforcing global consistency by SLAM techniques, our future research aims (i) at combining several
segments of locally consistent cleaning lanes and (ii) at achieving global consistency between cleaning
segments by reliable and accurate loop-closure detection. With respect to future work, interesting
questions regarding hierarchical mapping arise from the decomposition of the robot’s workspace
into several cleaning segments (section 7.3.3). We expect that this line of research will develop
interesting and parsimonious alternatives to currently existing SLAM methods.

7.2.2. Relation of the Proposed Work to Spatial Cognition

The field of spatial cognition embraces research on navigation capabilities of animals and humans.
Local visual homing and —to a minor extent— also dense topo-metric maps are influenced by the
snapshot hypothesis of vision-based insect navigation which states that places can be characterized
by the visual information perceived at the place. We consider our navigation methods to be
influenced or inspired from biological concepts even though in our concrete case technical solutions
are applied (rather than biologically plausible algorithms) to solve an engineering problem. Our
triangulation controller uses the min-warping method (section 4.4.2), which was by Möller [456]
reformulated to a biologically plausible homing method. Bio-inspired approaches have proven to
be parsimonious yet efficient and powerful navigation strategies [189, 453, 677, 678]. As outlined
in sections 3.3.3.3, 3.4.3.2, 3.5.3.1 and 3.6.5.2, the question how animals use visual information to
represent places, to approach places, or to follow route is subject of ongoing research. In particular
our work on signature-based loop-closure detection (chapter 5) can also be used as starting point to
contribute mathematical models for animal behavior.

7.2.3. Towards a Prototype Product

When choosing a robot platform for our experiments, none of the commercially available robots
was suitable for our needs: the platforms with suitable shape and dimensions did not allow for
low-level control, and existing cleaning robots were suitable regarding shape and dimensions, but
did not allow for low-level control as is required for the work presented in this thesis. Thus, we
decided to custom-built a mobile robot platform similar to available cleaning robots. At the current
stage of our work, our robot is rather a research platform than a domestic floor-cleaning robot: (i)
computations are performed off-board on an external host computer, and (ii) it is equipped with a
better omnidirectional vision setup than a potential product. We decided to equip our platform with
a better omnidirectional vision sensor than a potential product because this assures that failures
of our navigation strategies are due to limitations of the method itself and not to the quality of
the available sensor information. While this decision was reasonable at the early state of our work
described in this thesis, a more realistic proof of concept has to rely on hardware which can also
be used in a potential product. We will therefore work towards an optimized implementation of
our navigation methods which can be executed on-board, and we will equip our robot with sensors,
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which are also suitable for a potential product. A potential product could be equipped with ARM
processor technology by Atmel [I13] or with Atom processors by Intel [I49].
The promising results obtained throughout this thesis reveal that omnidirectional vision is an

appropriate sensor modality for a floor-cleaning robot. For working towards a product prototype,
the currently used omnidirectional vision setup has to be replaced by a setup which is appropriate for
the product’s target price. The camera technology available on the market has made a tremendous
progress which led to tiny cameras with amazing image quality that are available at relatively
low costs (e.g. [600]). In contrast to cameras, catadioptric setups or ultra wide-angle lenses are
not yet a mass product, and only a few cheap components at the order of 20e are commercially
available. These components are currently a niche product, and we expect that the price will be
further reduced once these setups are produced in larger quantities. These include the catadioptric
mirrors designed for cell phones [I41, I62] or for a consumer photo camera [I90]. The lens-mirror
combination proposed by [605, 607] could be produced at larger quantities by injection molding for
similar price.
We furthermore feel that omnidirectional vision has a large potential as multi-purpose sensor,

which can also be applied for further purposes beyond the ones currently investigated. Such purposes
include obstacle detection, visual tilt detection, or gesture recognition (section 7.3.4). We expect
that applying omnidirectional vision for such purposes can replace the dedicated sensors used
otherwise, by this means reducing the hardware costs of a potential product.

7.2.4. Alternative Applications for the Proposed Methods

Alternative applications of our methods include all robot tasks, which require a complete coverage of
the robot’s workspace. The possible applications can be divided into applications for the consumer
market and for a professional market. The level of consumer robots includes robot lawn mowers.
Similar to first-generation cleaning robots (section 2.2.1.1), most of the lawn-mowing robots currently
available on the market (table 2.1.3) rely on random-walk strategies. The Bosch Indego 10 [I1, I16] is
currently the only commercially available cleaning robot relying on a systematic movement strategy.
To this end, developing a robot lawn mower capable of systematically covering its workspace seems
a promising working direction with a large market potential. We think omnidirectional vision
is an appropriate sensor for this field, because relying solely on GPS information (review: [149],
textbooks: [41, 586]) is not an option: standard GPS for private usage does not achieve the accuracy
required for this task, and differential GPS techniques are too expensive for the consumer market.
Instead, a mobile lawn mower relying on omnidirectional visual information could exploit the
spectral contrast between ultraviolet and green light. This contrast can be used to segment sky
from ground [337, 455] and is similar to the concept of the skyline panorama currently discussed in
biology (section 3.5.3.1).
On the professional level, robots can be equipped with expensive high-quality sensors. Our

navigation strategies could also be applied for navigation of professional cleaning robots. However,
elaborated solutions for professional floor-cleaning robots exist (table 2.1.2), and we are therefore
of the opinion that placing a product on this market is difficult. Current outdoor applications for
professional robots building on complete coverage are, among others, harvesting or demining. For
such robots, differential GPS is commonly applied (agricultural robots: [43, 152]) and provides an
accuracy sufficient for navigation of such robots. A future application for professional robots could
be to systematically cover a polluted or hazardous terrain while collecting measuring samples at
a fine spatial resolution. Nevertheless, evaluating omnidirectional vision as a cheap alternative to
differential GPS would be an interesting and —if successful— very profitable working direction.
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7.3. Future Working Directions
This section discusses four major working directions, which we consider to be the most promising
directions substantially extending or improving the work proposed in this thesis. These research
directions are (i) ideas for increasing the robustness against dynamic scene changes (section 7.3.1), (ii)
extending the proposed strategies towards a full-fledged cleaning robot control scheme (section 7.3.2),
(iii) hierarchical mapping based on the decomposition of the robot’s workspace into cleaning segments
(section 7.3.3), and (iv) using omnidirectional vision as multi-purpose sensor (section 7.3.4). Besides
these four main directions of future research, several minor issues for future work were already
described in previous chapters. These are only briefly recapitulated here:

Section 3.7.1.1: Collecting image databases with our active visual tracking system (figure 6.15)
under difficult illumination conditions or in dynamically changing environments. This allows
for benchmarking different navigation methods under difficult illumination conditions and to
improve them if necessary. Since we plan to make the databases available on the internet,
other research groups can test their methods with these databases thus allowing benchmarks
of methods developed by different research groups.

Section 5.7.1: Optimizing the current implementation of the proposed holistic loop-closure detection
methods in order to make them applicable on a real cleaning robot.

Section 5.7.2: Improving the accelerated compass method by eliminating a minor weakness in
the currently used method for computing the image dissimilarity of the best match. By
reformulating the computation of the overall matching residual we hope to achieve similar
loop-closure detection results with the accelerated compass variant than with the standard
compass method.

Section 5.7.3: For our accelerated compass variant and for signature-based loop-closure detection
we subdivided the panoramic image into rings. This principle could also be applied for the
standard compass method by Zeil, Hoffmann, and Chahl [718]. Each ring would than
contribute a compass estimate, and all the ring-wise estimates are then fused to an overall
compass estimate. By this means, we hope to reduce the influence of erroneous estimates.
The approach could lead to a more accurate compass method which is also more tolerant
against image disturbances.

Section 5.7.4: By testing image preprocessing techniques and image dissimilarity functions not
considered so far, we hope to find alternatives to the tested methods being executable on
a robot’s on-board computer. Regarding image preprocessing, we plan to test histogram-
warping methods as alternative preprocessing technique (e.g. [123, 259, 260]). As image
dissimilarity functions, we will test local image dissimilarity functions computing the overall
image dissimilarity from comparing a set of local image patches (reviews: e.g. [92, 225]) and
the illumination-tolerant correlation sequential correlation measures recently proposed by
Möller [450]. The implementation of both, the new and the already tested measures, will
be optimized in order to allow the methods to be executed on the on-board computer of a
mobile cleaning robot.

Section 6.6.1: Increasing the robustness of signature-based loop-closure detection methods against
illumination changes to be competitive to holistic methods in order to make it competitive to
holistic loop-closure detection.

Section 6.6.3: Investigating methods for signature-based mapping methods and for inferring spatial
information from the map structure by clustering signatures. By this means, we could, for
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Figure 7.1.: Detecting dynamic scene
changes by image prediction. The robot’s
current view (white circle) can be predicted
from neighboring views (thick black arrows).
Comparing the prediction and the the re-
ally perceived image allows for identifying
image regions which are disturbed by dy-
namic scene changes. The robot’s movement
direction is indicated by the open arrow.

example, segment the map into different rooms. The obtained segmentation could than be
used by further cleaning strategies (section 7.3.2) to optimize the robot’s behavior.

Section 6.6.4: Signature-based place representations (section 3.3.1.2) are a parsimonious way to
memorize places and to use visual information for navigation. Because of these properties, it is
also an interesting hypothesis for how insects use visual information. The proposed signatures
and signature-comparison methods can be a basis for further investigating open issues at the
intersection between biology and robotics.

Section 7.2.3: In their current implementation, all navigation strategies proposed in this thesis are
executed on an external host computer. For future work towards a potential product, it is
necessary to reimplement the proposed methods which will be used with a more sophisticated
cleaning-robot control scheme in order to make them executable on the robot’s on-board
computer.

Section 7.2.3: Our custom-built cleaning robot is currently equipped with a better omnidirectional
vision setup than a potential product. In the near future, this setup should be replaced by a
setup which could also be used for a potential product, and the methods proposed in this
work should be extensively tested with this new setup.

7.3.1. Increasing Robustness Against Dynamic Scene Changes
Throughout this thesis, we assumed that the robot is operating in a static environment without
dynamic scene changes. The assumption is valid if the robot is cleaning while the user is not at home
or in a different room than the robot, but it is clearly violated if humans or pets are moving in the
same room as the robot and are visible for the robot. In this case, the dynamic scene changes caused
by persons or pets disturb the robot’s image and can cause local visual homing or loop-closure
detection to fail (section 3.2.3.2).

The robustness of visual navigation methods could be increased by first detecting disturbed areas
in the image and not considering them later on for navigation. To identify disturbed image regions,
one could predict the robot’s current camera image from surrounding images stored in the robot’s
dense topo-metric map (figure 7.1). For image prediction, we could apply our 2D warping method
(Möller, Krzykawski, and Gerstmayr [451] and section 4.4.2) to predict how image columns
are shifted and scaled given certain movement parameters of the robot. Disturbed areas are then
detected by comparing the predicted image with the actually perceived camera image. The regions
identified by this means are then excluded from computing the home vector or from comparing
images in the context of loop-closure detection.
Alternatives to the approach outlined above include methods segmenting the optical flow field

(textbook: [305, 641], review: [30, 280]) into components due to ego-motion and due to dynamic
scene changes. The segmentation is achieved by computing the optical flow between consecutive
frames of the camera’s video stream. Since the robot’s motion between two frames is known (e.g.
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Figure 7.2.: System overview of the control architecture for cleaning complex-shaped workspaces. The shaded
subsystems are considered in this thesis.

from odometry), one can predict for each image position the direction (but not the length) of the
expected flow vector. In case the predicted and the true direction of the optical flow differ, it is
likely that the image shift resulted from an image disturbance. A similar approach is proposed by
Yoshizaki et al. [713] for obstacle detection based on optical flow.

7.3.2. Towards a Full-Fledged Cleaning Robot Control Scheme1

Based on the navigation strategies outlined in chapters 4 to 6, the robot is capable of (i) mapping its
environment while concurrently cleaning a single segment with meandering lanes, and (ii) recognizing
already cleaned areas. These two substrategies are only essential prerequisites for an autonomous
cleaning robot, but are not yet sufficient for completely covering complex-shaped workspaces. For
this purpose, several other substrategies (figure 7.2) are required which are not considered in this
thesis.

The proposed trajectory controller (chapter 4) covers a rectangular area of the entire workspace by
guiding the robot along meandering and parallel lanes. If extending the currently cleaned segment
by another parallel lane is not possible because of obstacles or due to reaching an already cleaned
area, the system’s control architecture (textbook: [41], review: [416]) has to decide where to place
the next segment. For this purpose, it consults the map in order to identify border nodes at the
border of an already cleaned area facing free space (i.e. place nodes not facing an obstacle or an
already cleaned area). In the next step, it has to decide which position is best suited for attaching
the next segment. For this purpose, the robot simulates movements over uncleaned terrain and in
parallel to the detected border of cleaned areas, and it determines the position of the new segment
by searching for the longest possible lane. Then the robot has to plan a path to its start position
and has to approach this position. Route planning can be accomplished by standard graph-search
1Lorenz Hillen was not involved in implementing the system described in this section, but contributed conceptually
and supervised the final theses of Sebastian Ruwisch [550] and Christian Munier [470]. The current system was
initially implemented by Prof. Dr. Ralf Möller, and is now further developed by David Fleer and Michael Horst.
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(1) Footprint “Hillen” (2) Footprint “Gerstmayr”

Figure 7.3.: Simulation results for more complex cleaning-robot control scheme. The robot (gray circle) started from
the depicted position and covered the largest part of the accessible workspace by several segments of meandering lanes.
The robot’s trajectory is depicted by thick black lines; the covered area is depicted in light-gray (assuming the width
of the sucction unit to be identical to the robot’s diameter, i.e. 30 cm). The trajectories were in this example obtained
from the particle-filter method by Möller et al. [457]. The environment (walls and furniture only) was modeled after
two real apartments, namely “Hillen” (subfigure (1)) and “Gerstmayr” (subfigure (2)), each about 50m2 in size. The
results were obtained in cooperation with Martin Krzykawski by applying the cleaning strategies developed by Prof.
Dr. Ralf Möller.

algorithms (textbook: [118]), and local visual homing can be applied for local navigation between
intermediate snapshots of the route. After reaching the start position, the robot starts a new
cleaning segment and uses border nodes of the previous segment for position estimation and for
keeping the segment’s first lane straight. This procedure is repeated until the robot’s workspace is
completely covered.
Besides the subsystems for detecting uncleaned areas and for path planning and following

mentioned above, a cleaning robot has to include several other substrategies. These include among
others (i) approaching its docking station after cleaning or for recharging batteries, (ii) backup
navigation strategies if the homing-based trajectory controller fails (e.g. underneath beds if the
camera image cannot provide enough visual information), and (iii) the detection of particular
situations such as getting stuck (e.g. underneath obstacles or at carpet borders) or approaching
stairs. A further aspect not considered in this thesis is the robot’s user interface allowing the user
to turn the cleaning process on or off, to select the cleaning mode, or to guide the robot to a certain
position it is supposed to clean. Figure 7.2 visualizes a possible system architecture of a full-fledged
cleaning robot, and figure 7.3 depicts the results of two simulated experiments in floor plans of real
apartments obtained with such a control scheme.
Such a full-fledged control system can not only operate on the camera images and the position

estimates attached to each place node of the dense topo-metric map, but it can also add further
task-relevant sensor information acquired when visiting the place and use this information at a later
point in time to control the robot. Examples of such information are, among others, local obstacle
information, tilt information, or camera parameters. The available information could, for example,
be used to only select reliable snapshots for taking the bearing by excluding tilted snapshots or by
excluding snapshot pairs acquired with very different camera parameters, which could be a hint
for detecting abrupt illumination changes. Thus, enriching the map with additional task-specific
information has to be considered a means to improve our navigation strategies.
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Figure 7.4.: Hierarchical mapping based on the decomposition of the robot’s
workspace into cleaning segments. Cleaning segments (light gray) are linked
by the high-level, graph-based representation (black) if (i) place nodes of one
segment were used for navigating along the first lane of the other cleaning
segment or (ii) if loop closures between segments were detected. On the lower
level, this information can be used to estimate metrical spatial interrelations
between segments and to estimate the spatial positions of place nodes w.r.t. a
common frame of reference (black arrows).

7.3.3. Hierarchical Mapping Based on the Decomposition Into Cleaning Segments

Based on the decomposition of the robot’s workspace into several cleaning segments, interesting
questions in the field of hierarchical mapping arise. Hierarchical maps consist of two levels of spatial
representations (section 3.6.2): the lower level is formed by a set of local submaps each describing a
region of the robot’s workspace. The higher level represents spatial interrelations between submaps.
In the context of our application (figure 7.4), the lower level corresponds to the cleaning segments
obtained from either applying the trajectory controller proposed in chapter 4 or the particle-filter
method by Möller et al. [457]. Future work aims at finding the most appropriate hierarchical map
for navigation of cleaning robots and to develop efficient algorithms operating on the maps.
For the higher-level representation, it is then straightforward to represent each segment by a

graph node and to link neighboring segments. By this means, two segments are linked (i) if the
border nodes of one segment were used for trajectory control along the first lane of the other segment
or (ii) if loop closures between the two segments were detected. In the simplest case, the higher-
level representation is a purely topological map and therefore does not contain metrical position
information. However this would discard information, because a coarse estimate of the metrical
relations between segments is available from the known extent of the segments. More accurate
estimates could be derived from compass and home-direction estimates (i) already available from
position estimation along the first lane or (ii) computed for image pairs identified by loop-closure
detection. This suggests to also use a topo-metric map as higher-level representation. The open
question regarding this issue is whether or not to correct the available position estimates stored in
the high-level map if new information about the spatial interrelations of segments becomes available
—e.g. when closing loops in the high-level map. On one side, we expect that the best results regarding
mapping accuracy are obtained if the available estimates are updated based on the new information.
This leads to a hierarchical SLAM method which maintains estimates of the spatial relations between
a set of local cleaning segments. With this method, only the high-level representation is influenced
by position updates, whereas position estimates in the low-level submaps are kept constant after
adding the place nodes to the map. Thus, we would further stick to our concept of locally consistent
submaps which do not undergo position corrections by SLAM techniques. On the other side, one
can argue that mapping accuracy is not essential for our purpose and that a coarse estimate of
the spatial interrelations between segments is sufficient. In this case, the computational effort for
subsequent position optimizations could be avoided, and estimates would be computed solely from
the information available at the point in time when the cleaning segment is started.

7.3.4. Omnidirectional Vision as Multi-Purpose Sensor

The experiments described in this thesis reveal that omnidirectional vision is an appropriate sensor
modality for cleaning-robot control. Besides for omnidirectional visual navigation, it can also be
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7. Overall Summary, Discussion, and Outlook

applied for several other purposes such as (i) obstacle detection (section 7.3.4.1), (ii) tilt detection
(section 7.3.4.2), or (iii) gesture recognition (section 7.3.4.3). We consider these four working
directions to be most promising and therefore discuss them in the following. For issues (i) and (ii),
visual information can replace dedicated sensors otherwise used for these purposes. By this means,
the hardware costs of a potential product can be reduced.

7.3.4.1. Visual Obstacle Detection

Obstacle detection based on omnidirectional image information can avoid hardware costs of distance
sensors such as IR sensors or laser-range finders. Nevertheless, we expect that a bumper is still
required as a backup sensor if other obstacle-detection methods fail. Visual obstacle detection
can be categorized into passive and active approaches. Passive approaches solely rely on image
information and detect obstacles from optical flow (textbooks: [305, 641], reviews: [30, 280]). Under
translations of the robot, nearby obstacles are subject to a strong shift which allows to segment
obstacles in the image. Since an estimate of the robot’s motion between the two omnidirectional
images can be derived either from odometry or from full pose estimation, we can compute the
absolute distance of the detected obstacles, and the sensed obstacles can be integrated into a map.
Optical flow-based obstacle detection allows for detecting obstacles in arbitrary viewing directions
in the image. However, it requires structured image regions and cannot be applied for measuring
the distance to large homogeneous regions such as walls. Currently, Andreas Stöckel develops such
a method as a student project being supervised mainly by David Fleer and Michael Horst and to a
lesser extent by Lorenz Hillen. Since the robot’s motion between images is known, flow lines, i.e.
the image regions along which obstacles move [216, 334], can be predicted. By restricting the search
space for flow computations to these flow lines, the optical flow can be estimated accurately and
efficiently. Hence, the method relies on similar principles than flow-line matching method for local
visual homing developed by Lorenz Hillen ([217] and section 3.5.2.3). First results of the obstacle
detection method look promising. Related approaches which operate on omnidirectional vision but
do not exploit the flow lines are described by [418, 670, 713].
Active approaches to obstacle detection project a light pattern or light spots onto surrounding

obstacles and detect this patterns in the image. Based on the position in the image, the distance
to the obstacle can be computed. Such methods are also referred to as structured light (review:
[179]). Their advantage is that they also allow for measuring the distance to obstacles with a
homogeneous surface; their disadvantages include (i) to only provide sparse distance information
into a small number of predefined directions and (ii) that additional light-emitting devices are
required which also consume battery power. This line of research is investigated by Michael Horst
[289]. The obstacle maps produced by visual distance measurement with a set of spot-laser diodes
are of considerably better quality than the maps produced with the previously used Sharp GP2D12
and GP2D120 sensors [D12, D13]. Related approaches include [496, 712, 723] for omnidirectional
vision and [201, 316, 317, 392] for directed cameras, respectively.

7.3.4.2. Visual Tilt Detection

Usually, cleaning robots are moving in the ground plane. In this case, vertical structures in the
robot’s environment are —if the navigation strategy operates on camera images without image
unfolding— imaged as radial lines intersecting in the camera’s principle point. If unfolded panoramas
are used, vertical structures are imaged as vertical lines (section 3.2.4.1 and figure 3.8). However, in
certain situations like moving over a carpet border or over other small steps, a tilt of the robot can
occur. In this case, vertical lines in the world are no longer imaged as vertical lines (figure 7.5), but
characteristic deviations occur. These deviations can be analyzed in order to estimate and later on
to compensate the robot’s tilt. As vertical structures in the world are usually visible as edges in

223



7.3. Future Working Directions

↑ ↑↓→ ←
(1) Untilted robot.

↑ ↑↓→ ←
(2) Tilted robot.

Figure 7.5.: Image disturbances resulting from a tilt of the robot. In subfigure (1), the robot is not tilted. Vertical
lines in the world are imaged as vertical lines and the horizon (in the shown image close to the lower image border)
is imaged as horizontal line. Subfigure (2) shows a panoramic image if the robot is tilted for 6° into its forward
direction. Only vertical lines in forward (↑) and backward (↓) direction are imaged as vertical lines; vertical lines in
lateral viewing directions (←,→) appear slanted. Furthermore, the horizon is imaged as sinusoidal line. Used with
kind permission of Martin Krzykawski.

the image, the tilt could be detected by applying steerable edge-detection filters. Steerable filters
are rotation-sensitive filter kernels with Gabor filters being one of the most well known examples
(textbooks: [186, 305]). By visual tilt detection, the costs for an inertial measurement unit (IMU)
could be avoided. David Fleer recently started to investigate this research direction.

7.3.4.3. Gesture Recognition

Gesture recognition enables the user to easily communicate the robot what it is supposed to do.
For example, a waving gesture could attract the robot’s attention and could serve as a command to
make the robot move towards the user. Another idea is to use pointing gestures to show the robot
locations, which it is supposed to particularly clean (e.g. by a spot cleaning program). Related
work on gesture recognition for robot navigation includes [98, 405, 573]. Beyond that, human robot
interaction based on gestures is strongly influenced by sensors such as the Microsoft Kinect [I69]
and the Asus Xtion PRO LIVE [I12], and it is an open question how approaches developed for these
sensors can be applied for data obtained from omnidirectional cameras.

7.3.5. Summary and Appraisal of Future Work
The four main directions of future work outlined in sections 7.3.1 to 7.3.4 clearly aim towards a
full-fledged cleaning robot. They are therefore an extension of the basic building blocks considered
in this thesis. We expect that our future work (i) will bring us closer to a potential product and (ii)
will also prove the feasibility and applicability of the building blocks and algorithms proposed in
this thesis for a full-fledged cleaning robot. The work will certainly contribute to advance the field
of mobile robots using omnidirectional vision as primary sensory information and to reach the goal
of bringing such a robot into the customer’s home. It was exciting to see the field grow and proceed
during the years we worked on this dissertation, and it will also be exciting to see the developments
until this goal is reached (and of cause also beyond).
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A. Lane Controller With Partial Position
Information

Table A.1.: Tabular presentation for results of true inter-lane distances as depicted in figure 4.17. Subtables (1)
and (2) contain the results for experiments 1 and 2, respectively. Pooled percentiles were obtained by pooling over
all lanes and are in section 4.5.2 referred to as P̄x. Abbreviations are as follows: Perc.: percentile; Pld.: pooled; all
results in centimeters.

(1) Experiment 1 (data depicted in figure 4.17.1).

Lane i

Perc. 1 2 3 4 5 6 7 Pld.

P
(i)
0.05 26.9 22.4 21.3 21.6 19.8 21.4 19.0 20.9

P
(i)
0.25 30.6 26.6 26.8 25.3 25.8 25.9 24.4 26.3

P
(i)
0.50 32.9 29.1 30.3 28.9 28.8 29.7 27.9 29.8

P
(i)
0.75 35.2 31.7 32.8 31.8 30.6 32.5 30.8 32.4

P
(i)
0.95 38.5 37.0 38.4 36.1 33.7 37.3 34.7 37.0

(2) Experiment 2 (data depicted in figure 4.17.2).

Lane i

Perc. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Pld.

P
(i)
0.05 23.9 21.3 28.3 21.1 25.8 20.5 21.7 18.7 22.3 15.0 18.3 16.1 21.8 16.4 19.4

P
(i)
0.25 29.1 26.3 30.8 26.9 29.7 24.7 27.8 23.8 26.4 19.8 24.5 26.2 28.3 24.9 26.2

P
(i)
0.50 30.5 29.0 34.2 29.7 32.0 27.9 29.9 26.7 29.9 24.2 30.1 30.1 30.9 29.4 29.8

P
(i)
0.75 32.7 30.7 37.9 32.2 35.8 30.1 32.7 29.8 32.2 28.9 31.8 32.7 33.0 31.5 32.2

P
(i)
0.95 37.4 34.6 42.2 37.3 39.4 32.3 37.4 32.0 35.4 32.2 35.1 40.1 36.7 39.2 37.7

225



Table A.2.: Tabular presentation for results of cleaning performance as depicted in figure 4.18. Subtables (1) and (2)
contain the results for experiments 1 and 2, respectively. All results in percent. A0, A1, and A2 refer to the uncovered
area, the area covered once, and the area covered repeatedly. The last column contains the average computed over
all trials; these values are in section 4.5.3 referred to as Ā0, Ā1, and Ā2. Trials 1–5 were biased with a systematic
error (section 4.4.4) causing the robot moving to the left (k = −0.05); for trials 6–10, the robot was biased to the right
(k = +0.05). The highlighted columns mark the trials visualized in figures 4.18.1 and 4.18.2.

(1) Experiment 1

Trial

1 2 3 4 5 6 7 8 9 10 Avg.

A0 7.4 9.4 7.8 7.3 6.4 7.8 7.6 7.9 8.1 8.8 7.9
A1 85.9 81.6 86.4 86.4 87.7 85.1 85.3 84.8 85.8 85.2 85.4
A2 6.7 9.0 5.9 6.3 5.9 7.1 7.1 7.3 6.1 6.0 6.7

(2) Experiment 2

Trial

1 2 3 4 5 6 7 8 9 10 Avg.

A0 5.9 14.6 9.7 9.6 6.6 9.6 8.4 10.4 17.2 11.3 10.3
A1 89.3 75.5 82.6 84.6 86.9 81.1 82.6 79.4 71.7 81.5 81.5
A2 4.8 9.8 7.7 5.9 6.6 9.3 9.0 10.2 11.1 7.2 8.1
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A. Lane Controller With Partial Position Information
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Figure A.1.: Cleaning performance of experiment 1. The subfigures (1) to (5) depict trials 1 to 5 of the experiment
and were performed with a systematic error k = −0.05 causing the robot to turn to the left. Each plot shows the
robot’s trajectory (black line) together with the uncovered area A0 (light gray), the area A1 covered once (gray), and
the area A2 covered twice (dark gray).
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(2) Trial 7 (also depicted in figure 4.18.1)
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Figure A.2.: Cleaning performance of experiment 1. The subfigures (1) to (5) depict trials 6 to 10 of the experiment
and were performed with a systematic error k = 0.05 causing the robot to turn to the right. Each plot shows the
robot’s trajectory (black line) together with the uncovered area A0 (light gray), the area A1 covered once (gray), and
the area A2 covered twice (dark gray).
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A. Lane Controller With Partial Position Information
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Figure A.3.: Cleaning performance of experiment 2. The subfigures (1) to (5) depict trials 1 to 5 of the experiment
and were performed with a systematic error k = −0.05 causing the robot to turn to the left. Each plot shows the
robot’s trajectory (black line) together with the uncovered area A0 (light gray), the area A1 covered once (gray), and
the area A2 covered twice (dark gray).

229



Lane i

y / m

x
/
m

0 2 4 6 8 10 12 14

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

0.0

0.5

1.0

1.5

2.0

(1) Trial 6

Lane i

y / m

x
/
m

0 2 4 6 8 10 12 14

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

0.0

0.5

1.0

1.5

2.0

(2) Trial 7

Lane i

y / m

x
/
m

0 2 4 6 8 10 12 14

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

0.0

0.5

1.0

1.5

2.0

(3) Trial 8

Lane i

y / m

x
/
m

0 2 4 6 8 10 12 14

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

0.0

0.5

1.0

1.5

2.0

(4) Trial 9

Lane i

y / m

x
/
m

0 2 4 6 8 10 12 14

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

0.0

0.5

1.0

1.5

2.0

(5) Trial 10 (also depicted in figure 4.18.2)

Figure A.4.: Cleaning performance of experiment 2. The subfigures (1) to (5) depict trials 6 to 10 of the experiment
and were performed with a systematic error k = 0.05 causing the robot to turn to the right. Each plot shows the
robot’s trajectory (black line) together with the uncovered area A0 (light gray), the area A1 covered once (gray), and
the area A2 covered twice (dark gray).
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B. Panoramic Image Databases

B.1. Example Images

(1) kitchen

(2) moeller1

(3) moeller2

(4) roeben

Figure B.1.: Image databases of the day|day test group (figure 1 of 2; continued on the following page). For
each of the databases subsumed in this test group (kitchen, moeller1, moeller2, roeben, living1day, living2day,
living3day, and living4day), the images corresponding to the four corners of the database are shown in the subfigures.
The image databases were collected in real apartments (the positions are visualized in figure B.4) under natural
illumination conditions. Smaller databases were collected under (nearly) constant illumination conditions, larger
databases are subject to moderate illumination changes. All databases were collected by Dr. Sven Kreft and Sebastian
Ruwisch during their diploma theses; the work was supervised by Dr. Frank Röben and Lorenz Hillen. To achieve a
high precision, the database-collection method proposed in the diploma thesis of Dr. Sven Kreft [342] was applied.
It uses an additional camera observing a thread clamped on the floor. The thread is too thin to be visible in the
panoramic database images and carries distance markers. By tracking the tread and the markers, the robot’s position
can be computed and its orientation is kept constant while moving along the thread. The method positions the robot
with an accuracy of less than 1 cm; the orientation accuracy is better than 1°.
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B.1. Example Images

(1) living1day

(2) living2day

(3) living3day

(4) living4day

Figure B.2.: Image databases of the day|day test group (figure 2 of 2; continued from previous page).
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B. Panoramic Image Databases

(1) cliving1day, cliving1night

(2) cliving2day, cliving2night

(3) cliving3day, cliving3night

(4) cliving4day, cliving4night

Figure B.3.: Image databases of the day|night test group. For each of the databases of this test group (cliving1day,
cliving1night, cliving2day, cliving2night, cliving3day, cliving3night, cliving4day, and cliving4night), the
images corresponding to the four corners of the database are shown in the subfigures. The lower image of each corner
is the image acquired during day, the upper image was acquired during night. The databases were collected at identical
positions once during day under natural illumination conditions and during night under constant artificial illumination
conditions and allow for simulating changes of the illumination. The databases were acquired by Dr. Sven Kreft and
Sebastian Ruwisch with the method briefly described in the caption of figure B.1; the locations of the databases in the
apartments are depicted in figure B.4.
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B.2. Positions of Image Acquisition

B.2. Positions of Image Acquisition

(1) kitchen (2) moeller1 (3) moeller2

(4) roeben (5) living1day, cliving1day,
cliving1night

(6) living2day, cliving2day,
cliving2night

(7) living3day, cliving3day,
cliving3night

(8) living4day, cliving4day,
cliving4night

Figure B.4.: Spatial layout of apartments where image databases were collected. Each subfigure shows a single
position of database acquisition; if several database were collected in an apartment, the databases are depicted in
several subfigures. Visualized are the apartment’s footprint (thick solid lines), ground-level furniture (thin solid lines),
obstacles above ground (thin dashed lines), and the database area (gray filled rectangle). The measuring line at the
right lower corner of each subfigure shows a length of 1m.
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C. Holistic Loop-Closure Detection and Visual
Compass

C.1. Derivation of the Distance Measures Proposed by Möller [448,
449]

This section briefly recapitulates the derivation of the distance measures proposed in Möller [448,
449]. The distance measures are based on the Euclidean distance and were designed to reduce
the influence of changes of the illumination modeled by a linear intensity transformation of the
compared images (equation (5.52)).
The dasc function is derived to compensate for intensity scalings (Möller [449]). In order to

obtain a symmetric measure, both images are scaled symmetrically:

dasc(P ,Q, a) =
1
2
∥ 1√

a
P −

√
aQ∥

2
(C.1)

Minimizing subject to a yields

amin =
∥P ∥
∥Q∥ . (C.2)

Inserting this result in equation (C.1) gives

dasc = ∥P ∥∥Q∥ − ⟨P ,Q⟩. (C.3)

The dissimilarity function daoc was proposed in Möller [448] and is supposed to compensate for
constant shifts of the image intensities. The derivation minimizes

daoc(P ,Q, o) =
1
2
∥P −Q + o1∥2 (C.4)

subject to o resulting in

omin =
1
wh

(P −Q) (C.5)

with

P =
w−1
∑
x=0

h−1
∑
y=0

P (x, y) and (C.6)

Q =
w−1
∑
x=0

h−1
∑
y=0

Q(x, y). (C.7)

By combining these equations one obtains

daoc =
1
2
((∥P ∥2 − 1

wh
P 2) + (∥Q∥2 − 1

wh
Q2)) − ⟨P ,Q⟩ + 1

wh
PQ (C.8)

= wh(var(P ) + var(Q)
2

− cov(P ,Q)) . (C.9)
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C.2. Influence of Linearly Transformed Pixel Intensities on Preprocessed Images

In order to compensate for scalings of the intensity a and constant shifts of the brightness o, the
dissimilarity function dasoc was proposed in Möller [448]. For the derivation,

dasoc(P ,Q, a, o) =
1
2
∥ 1√

a
P −

√
aQ + o1∥2 (C.10)

is minimized with respect to a and o. This yields

amin =
¿
ÁÁÀ∥P ∥2 − 1

whP
2

∥Q∥2 − 1
whQ

2 and (C.11)

omin =
1
wh

(
√
aQ − 1√

aP
) . (C.12)

Thus, we obtain

dasoc(P ,Q) =
√

(∥P ∥2 − 1
wh

P 2)(∥Q∥2 − 1
wh

Q2) − ⟨P ,Q⟩ + 1
wh

PQ (C.13)

= wh (
√

var(P )var(Q) − cov(P ,Q)) . (C.14)

C.2. Influence of Linearly Transformed Pixel Intensities on
Preprocessed Images

Changes of the illumination conditions can be modelled by a linear transformation

I ′ = aI + o (C.15)

of pixel intensities I (equation (5.52)). In this section, we analyze how a linear transformation of
the input images I influences the images obtained from preprocessing the input images with the
preprocessing functions described in section 5.2.1.
The preprocessing functions ppw, psob, plap, and pdog (equations (5.8) to (5.11)) rely on a

convolution of the image I with the kernel Kx.
Hence, a linear transformation of the input image yields

px(aI + o) =Kx ∗ (aI + o) (C.16)
=Kx ∗ (aI) +Kx ∗ (o1) (C.17)
= a(Kx ∗ I) + o(Kx ∗ 1) (C.18)

where 1 is an image with constant pixel intensities of 1. With ∑
x,y
Kx(x, y) = 0, this results in

= a(Kx ∗ I) (C.19)
= apx(I) (C.20)
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C. Holistic Loop-Closure Detection and Visual Compass

Hence, the convolution with a kernel Kx with entries summing up to 0 preserves the scale change a
whereas the offset o is canceld out. In contrast to the second-order edge detectors plap and plap,
the first order edge detectors ppw and psob filter the image with a horizontal and a vertical Kernel
and combine the resulting images by computing the magnitude:

px(aI + o) =
√

(Kx ∗ (aI + o))2 + (K⊺

x ∗ (aI + o))2 (C.21)

=
√

(a(Kx ∗ I))2 + (a(K⊺

x ∗ I))2 (C.22)

= a
√

(Kx ∗ I))2 + (K⊺

x ∗ I)2 (C.23)
= apx(I) (C.24)

Thus, computing the preprocessing functions ppw and psob preserve the scale parameter a while the
offset o is cancelled out.

The preprocessing functions pdl (equation (5.15)), pdv (equation (5.16)), and pdlc (equation (5.17))
inspired by early vision models rely on the local luminance L (equation (5.13)) and the variation of
local luminance D (equation (5.13)). Therefore, we first analyze the robustness against changes of
the illumination of these building blocks:

L(aI + o) =Kgau(σ) ∗ (aI + o) (C.25)
=Kgau(σ) ∗ (aI) +Kgau(σ) ∗ (o1) (C.26)
= aKgau(σ) ∗ (I) + o (C.27)
= aL(I) + o (because ∑

x,y

aKgau(σ) = 1) (C.28)

and

V(aI + o) =
√
Kgau(σ) ∗ (aI + o − L(aI + o))2 (C.29)

=
√
Kgau(σ) ∗ (aI + o − aL(I) − o)2 (C.30)

= a
√
Kgau(σ) ∗ (I − L(I))2 (C.31)

= V(aI + o). (C.32)

With equations (C.28) and (C.32), one can analyze the influences of preprocessing an image with
pdl, pdv, and pdl, respectively:

pdl(aI + o) =
V(aI + o)
L(aI + o) (C.33)

= aV(I)
aL(I) + o (C.34)

= V(I)
L(I) + o

a

(C.35)

= pdl (I +
o

a
) (C.36)

pdv(aI + o) =
aI + o − L(aI + o)

1 + V(aI+o)
σ1/2

(C.37)

= aI + o − aL(I) − o
1 + aV(I)

σ1/2

(C.38)

= pdv(aI) (C.39)
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pdlc(aI + o) =
aI + o

L(aI + o) (1 + V(aI+o)
L(aI+o) )

(C.40)

= aI + o
aL(I) (1 + aV(I)

aL(I)+o)
(C.41)

=
I + o

a

L(I) + o
a +

V(I)
L(I)+ o

a

(C.42)

= pdlc (I +
o

a
) . (C.43)

From equations (C.36), (C.39) and (C.43) one can conclude that none of the preprocessing
functions pdl, pdv, and pdlc can completely compensate for scalings a and shifts o of the image
brightness. However, the preprocessing function pdv cancels out the offset o while preserving the
scaling parameter a. The images resulting from preprocessing a linearly transformed input image
with the functions pdl and pdlc are identical to preprocessing an image whose pixel intensities were
not scaled but only shifted by o

a . Thus, arbitrary scalings a are compensated in case the image
brightness is not shifted (i.e. o = 0).

C.3. Influence of Linearly Transformed Pixel Intensities on Image
Dissimilarity Functions

In this section, we analyze how the dissimilarity values d(P , aP + o) obtained from various image
dissimilarity functions d are influenced if one of the input images is linearly transformed according
to equation (C.15).
For dissimilarity functions based on gray-value differences, it is not necessary to derive the

complete mathematical terms for dx(P , aP +o). Rather, it is sufficient to analyze pixel differences d
are computed; The image dissimilarity functions dsad (equation (5.22)), dmaxn (equation (5.27)), dssd
(equation (5.28)), deucl (equation (5.29)) and drms (equation (5.30)) cannot compensate for linear
transformations of the image brightness because none of the parameters a and o can be reduced. As
it is impossible to draw the parameters out of the summations and the pixel differences, we expect
these functions to be strongly influenced by changes of the illumination.

The zero-mean dissimilarity functions dzsad and dzssd compute pixel differences d after subtracting
the average image brightness from each of the considered images P and (aP + o):

d = (P (x, y) − P̄ ) − ((aP (x, y) + o) − (aP + o)) (C.44)
= (P (x, y) − P̄ ) − ((aP (x, y) + o) − (aP̄ + o)) (linearity of expectation) (C.45)
= (P (x, y) − P̄ ) − a(P (x, y) − P̄ ). (C.46)

Thus, the distance functions dzsad and dzssd compensate for brightness shifts o but cannot compensate
for changes of the illumination resulting in a scaling of the pixel intensities.

The dissimilarity functions dssad and dsssd scale the pixel intensities of one input image with the
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ratio of the average image intensities before computing the pixel difference d:

d = P (x, y) − P̄

aP + o
(aP (x, y) + o) (C.47)

d = P (x, y) − P̄

aP̄ + o
(aP (x, y) + o) (C.48)

d = P (x, y) − aP (x, y) + o
a + o

P̄

. (C.49)

To this end, these dissimilarity functions do not compensate for a and o. However, in case the image
brightness is not shifted (i.e. o = 0), they compensate for arbitrary scalings a.
The distance measures proposed by Möller [448, 449] were derived to be invariant under

brightness scalings (dasc, equation (5.33)), under brightness shifts (daoc, equation (5.33)), and both
scalings and shifts (dasc, equation (5.33))). Thus, we find (for sake of simplicity we apply the
notation of norm functions ∥.∥ and the dot product ⟨., .⟩ to images because an image can be simply
transformed into a vector by stacking the image column-by-column):

dasc(P , aP + o) = ∥P ∥∥aP + o∥ − ⟨P , aP + o⟩ (C.50)

= ∥P ∥
√

⟨aP + o, aP + o⟩ − ⟨P , aP + o⟩ (C.51)

= ∥P ∥
√
a2⟨P ,P ⟩ + 2ao⟨P ,1⟩ + o2⟨1,1⟩ − a⟨P ,P ⟩ − o⟨P ,1⟩ (C.52)

= ∥P ∥

¿
ÁÁÁÀa2⟨P ,P ⟩ + 2ao

w−1
∑
x=0

h−1
∑
y=0

P (x, y) +who2 − a⟨P ,P ⟩ − o
w−1
∑
x=0

h−1
∑
y=0

P (x, y)

(C.53)

and with assuming o = 0:

= a∥P ∥2 − a∥P ∥2 (C.54)
= dasc(P ,P ) (C.55)

daoc(P , aP + o) = n(var(P ) + var(aP + o)
2

− cov(P , aP + o)) (C.56)

= n(var(P ) + a2 var(P )
2

− a cov(P ,P )) (C.57)

= d(P , aP ) (C.58)

dasoc(P , aP + o) = n (
√

var(P )var(aP + o) − cov(P , aP + o)) (C.59)

= n (
√
a2 var(P )2 − a cov(P ,P )) (C.60)

= n (avar(P ) − avar(P )) (C.61)
= dasoc(P ,P ). (C.62)

For the correlation-based dissimilarity measures dcc (equation (5.36)) and dncc (equation (5.37)),
the parameters a or o cannot be reduced. Due to the involved normalization, we expect the
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normalized cross-correlation dncc to be more robust against changes of the illumination than the
standard cross-correlation coefficient dcc. The normalized cross-correlation dzncc (equation (5.39))
completely compensates both scalings a and shifts o of the image intensities:

dzncc(P , aP + o) = dncc (P − P̄ , aP + o − (aP (x, y) + o)) (C.63)

= dncc (P − P̄ , aP + o − (aP̄ + o)) (C.64)
= dncc (P − P̄ , a(P − P̄ )) (C.65)

=

w−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )(a(P (x, y) − P̄ ))
¿
ÁÁÀw−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )2
w−1
∑
x=0

h−1
∑
y=0

(a(P (x, y) − P̄ ))2

(C.66)

=
a
w−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )(P (x, y) − P̄ )

a

¿
ÁÁÀw−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )2
w−1
∑
x=0

h−1
∑
y=0

(P (x, y) − P̄ )2

(C.67)

= dncc (P − P̄ ,P − P̄ ) (C.68)
= dzncc(P ,P ) (C.69)
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C.4. Further Results

Table C.1.: Computing times for image preprocessing functions. The results are grouped into subfigures according
to the taxonomy given in figure 5.3 and to the function’s parameters.

(1) Edge detectors ppw, psob and plap.

ppw psob plap

Time / ms 6.91 6.91 0.38

(2) Difference of Gaussians pdog.

pdog1 pdog2 pdog3 pdog4

σ1 0.010 0.010 0.010 0.025
σ2 0.020 0.040 0.080 0.050

Time / ms 8.95 8.94 9.76 9.09

(3) Local contrast pdl.

pdl1 pdl2 pdl3 pdl4

w′ 5 7 11 15

Time / ms 20.76 40.17 99.05 178.37

(4) Dividing by variation pdlc.

pdlc1 pdlc2 pdlc3 pdlc4

w′ 5 7 11 15

Time / ms 22.69 43.46 106.77 194.14

(5) Dividing by luminance/contrast pdv.

pdv*/1 pdv*/2 pdv*/3 pdv*/4

w′ = 5 w′ = 7 w′ = 11 w′ = 15

pdv1/* σ1/2 = 0.0 22.61 43.17 106.32 192.71
pdv2/* σ1/2 = 0.5 22.65 43.24 106.63 194.68
pdv3/* σ1/2 = 5.0 22.68 43.38 106.10 194.38
pdv4/* σ1/2 = 50.0 22.66 43.37 106.69 194.11

(6) Histogram equalization pheq.

pheq1 pheq2 pheq3 pheq4 pheq5

b 4 8 16 32 64

Time / ms 1.57 1.60 1.60 1.59 1.59
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Table C.2.: Computing times for global image comparison functions. The results are grouped into subfigures
according to the taxonomy proposed in figure 5.4.

(1) Image dissimilarity functions relying on absolute
pixel differences

dsad dzsad dssad

Time / ms 24.35 31.45 27.68

(2) Image dissimilarity functions relying on squared pixel differences

dssd deucl drms dzssd dsssd

Time / ms 24.15 24.23 24.21 32.37 27.65

(3) Alternative image dissimilarity functions relying on
squared pixel differences

dasc daoc dasoc

Time / ms 23.19 23.06 23.19

(4) Correlation measures

dcc dncc dzncc

Time / ms 24.21 27.73 38.31

(5) Mutual information

dmi1 dmi2 dmi3 dmi4 dmi5

b 4 8 16 32 64

Time / ms 632.71 632.99 635.13 641.60 659.44

Table C.3.: AUC analysis for accelerated compass method. The ranking was obtained by sorting w.r.t. the AUC
values. In case of identical AUC values, the overall number of coefficients r ⋅ b and the number of rings r were used as
secondary and tertiary sorting criterion. Subfigures (1) and (2) show the results of the day|day and the day|night
test groups, respectively.

(1) day|day group

p r b r ⋅ b AUC

pdl4 1 4 4 0.580
pdog4 1 4 4 0.466
pdv4/4 1 4 4 0.455
psob 1 4 4 0.401
ppw 1 4 4 0.400
pdlc 1 4 4 0.396
plap 1 4 4 0.395
pid 1 4 4 0.390
pheq4 1 4 4 0.373

(2) day|night group

p r b r ⋅ b AUC

pdv1/4 1 8 8 0.574
pheq4 1 4 4 0.541
plap 2 230 460 0.535
pdlc1 1 4 4 0.529
pdog4 1 8 8 0.523
pdl4 1 4 4 0.510
pid 1 16 16 0.498
ppw 1 8 8 0.456
psob 1 8 8 0.455
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D.1. Ground Distance and Relation to L1-Norm
Let h be an histogram with n equally spaced bins numbered from 0 to n − 1. Furthermore, let b be
the difference between two histogram borders of h. Then, the representative ri of bin i is given by

ri =
i

n − 1
+ 1

2
b. (D.1)

The L1-norm between two bin representatives ri and rj is given by:

d(ri, rj) = ∣ri, rj ∣ (D.2)

= ∣ i

n − 1
+ 1

2
b − j

n − 1
i
1
2
b∣ (D.3)

= ∣ i

n − 1
− i

n − 1
∣ (D.4)

= 1
n − 1

∣i − j∣ (D.5)

= 1
n − 1

d(i, j). (D.6)

Thus, the L1-norm between bin representatives ri and rj is identical up to scale to the absolute
difference between bin numbers i and j. As all tested ground distances further normalize the
resulting distance values by the largest possible distance value, the two distances become identical.

D.2. Influence of Linearly Transformed Pixel Intensities on Signature
Functions

For parameter-based loop-closure detection, we aim at using signature functions, which are robust
against changes of the illumination. Therefore, we analyze how a linear intensity transformation of
the input image influences the resulting parameter vectors:

p′ = s(aI + o). (D.7)

The signature functions shist and schist (equations (6.4) and (6.5)) are an estimator for the
probability density function and the cumulative density function, respectively, of image intensities.
As a transformation of pixel intensities also changes the underlying distribution of gray values, the
hist- and chist-signatures will also change. The influence of such an intensity transformation on
the resulting histogram or cumulative histogram strongly depends on the number of histogram bins
o. For small illumination changes (i.e. a ≈ 1 and o ≈ 0) and a small number of bins o, it is likely that
the resulting histograms are approximately identical:

shist(aI + o) ≈ shist(I) (D.8)
schist(aI + o) ≈ schist(I). (D.9)
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The statistical signature functions combine the empirical moments to parameter vectors. We
therefore analyse the influence of a linear intensity transformation onto the mean, variance, skewness,
and kurtosis of image intensities:

mean(aI + o) = amean(I) + o (D.10)

var(aI + o) = a2 var(I) (D.11)

skew(aI + o) = 1
wh ⋅ var(aI + o) 3

2

w−1
∑
x=0

h−1
∑
y=0

((aI + o)(x, y) −mean(aI + o))3 (D.12)

= 1
wh ⋅ (a2 var(I)) 3

2

w−1
∑
x=0

h−1
∑
y=0

(aI(x, y) + o − amean(I) − o)3 (D.13)

= 1
wh ⋅ var(I) 3

2

w−1
∑
x=0

h−1
∑
y=0

(I(x, y) −mean(I))3 (D.14)

= skew(I) (D.15)

kurt(aI + o) = 1
wh ⋅ var(aI + o)2 − 3

w−1
∑
x=0

h−1
∑
y=0

((aI + o)(x, y) −mean(aI + o))4 (D.16)

= 1
wh ⋅ a4 var(I)2 − 3

w−1
∑
x=0

h−1
∑
y=0

(aI(x, y) + o − amean(I) − o)4 (D.17)

= a4

wh ⋅ a4 var(I)2 − 3

w−1
∑
x=0

h−1
∑
y=0

(I(x, y) −mean(I))4 (D.18)

≈ kurt(I). (D.19)

To this end, the signature functions sms, smk, and smsk (equations (6.8), (6.9) and (6.11)) completely
compensate for linear intensity transformations. The functions smv and smvsk (equations (6.7)
and (6.13)) compensate for brightness shifts whereas the functions smm, smmv, smmvs and smmvsk
(equations (6.6), (6.10), (6.12) and (6.14)) incorporating the average image intensity mean(I) cannot
compensate for linear transformation of the image intensities.
The signature function scog can only compensate for linear intensity transformations in special

cases:

scog(aI + o) =
1
n′

XXXXXXXXXXX

w−1
∑
x=0

h−1
∑
y=0

(aI + o)(x, y)(x̂
ŷ
)
XXXXXXXXXXX

(D.20)

= 1
n′

XXXXXXXXXXX

w−1
∑
x=0

h−1
∑
y=0

(aI(x, y) + o)(x̂
ŷ
)
XXXXXXXXXXX

(D.21)
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= 1
n′

XXXXXXXXXXXXXXXXXXXXXX

a
w−1
∑
x=0

h−1
∑
y=0

I(x, y)(x̂
ŷ
) + o

w−1
∑
x=0

h−1
∑
y=0

(x̂
ŷ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=z

XXXXXXXXXXXXXXXXXXXXXX

(D.22)

= a

n′

XXXXXXXXXXX

w−1
∑
x=0

h−1
∑
y=0

I(x, y)(x̂
ŷ
)
XXXXXXXXXXX

(D.23)

= a
w−1
∑
x=0

h−1
∑
y=0

(aI + o)(x, y)

XXXXXXXXXXX

w−1
∑
x=0

h−1
∑
y=0

I(x, y)(x̂
ŷ
)
XXXXXXXXXXX

(D.24)

= a

a
w−1
∑
x=0

h−1
∑
y=0

I(x, y) +who

XXXXXXXXXXX

w−1
∑
x=0

h−1
∑
y=0

I(x, y)(x̂
ŷ
)
XXXXXXXXXXX

(D.25)

because

z = o
w−1
∑
x=0

h−1
∑
y=0

(x̂
ŷ
) (D.26)

= o
w−1
∑
x=0

h−1
∑
y=0

y (cos (2πx
w

)
sin (2πx

w
)) (D.27)

= o
h−1
∑
y=0

y
w−1
∑
x=0

(cos (2πx
w

)
sin (2πx

w
))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

(D.28)

= 0. (D.29)

To this end, the signature function scog cannot compensate for linear intensity changes. However, in
case the average image intensity does not change (i.e. o = 0), arbitrary scale changes are compensated
for. In this case, equation (D.25) becomes

= 1
w−1
∑
x=0

h−1
∑
y=0

I(x, y)

XXXXXXXXXXX

w−1
∑
x=0

h−1
∑
y=0

I(x, y)(x̂
ŷ
)
XXXXXXXXXXX

(D.30)

= scog(I). (D.31)

A one-dimensional row-image I(j) with pixels 0 ≤ j < w can be written as Fourier series (e.g.
[611], textbook: [65])

I(φ) = 1
2
a0 +

∞

∑
k=1

(ak cos(kφ) + bk sin(kφ)) (D.32)

with coefficients

ak =
2
w
∑
j

I(j) cos(k2π
w
j) and (D.33)

bk =
2
w
∑
j

I(j) sin(k2π
w
j) . (D.34)
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For k = 0 the component

a0 =
2
w
∑
j

I(j) cos(02π
w
j) (D.35)

= 2
w
∑
j

I(j) (D.36)

represents twice the average image intensity, whereas b0 = 0. Larger coefficients therefore express
the deviation from the average image intensity. By analyzing

ak =
2
w
∑
j

(aI(j) + o) cos(k2π
w
j) and (D.37)

bk =
2
w
∑
j

(aI(j) + o) sin(k2π
w
j) , (D.38)

one can easily show (i) that a0 is independent of scale changes a but a constant shift of the image
brightness by o is preserved and (ii) that for coefficients ak and bk for k > 1 scalings a of the
image intensities are preserved, whereas the coefficients are independent of o. Thus, the signature
safc cannot compensate for linear intensity transformations. As the signature function szafc does
not contain the first Fourier coefficient a0, it is invariant against a constant shift o of the image
intensities, but not against a scaling a of intensity values.

D.3. Further Results
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(2) Long-term experiments

Figure D.1.: Footprint of the lab of the Bielefeld Computer Engineering group in which the experiments were
performed. The light-gray rectangles depict the experimental areas for the short-term experiments (subfigure (1)) and
the long-term experiments (subfigure (2)); the trajectory plots given in figures D.2 and D.3 are restricted to these
areas. The black cross and the thick marks the positions of the active tracker; the positions of the neon lamps on the
lab’s ceiling are visualized by dashed lines (subfigure (1) only). The measuring lines at the right lower corner show a
length of 1m.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure D.2.: Trajectories of short-term experiments. Subfigures (1) to (12) contain the results of the twelve different
short-term experiments. Each subfigure shows the rectangle highlighted in figure D.1.1; the measuring line at the
left lower corner shows a length of 1m. In the figures, the area of correct loop-closure detection is depicted by the
light-gray area along the reference lane. The start positions of the reference lane and the test trials are marked by
filled circles and crosses, respectively. The end positions of the test trials corresponds to the positions of the last stored
snapshot and not to the robot’s true end positions. If the robot was stopped, the final position plotted in the figures
is not the robot’s true position but the position of the last snapshot before the robot was stopped. Thus, trajectories
recored while the robot approaches the reference lane can be up to 10 cm longer than depicted here. This drawback of
the currently used software to conduct real-robot experiments only affects the visualization of the trajectories but not
the evaluation of the experiments. It will be improved in future work.
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(1) (2) (3)

(4) (5)

Figure D.3.: Trajectories of long-term experiments. Subfigures (1) to (5) contain the results of the five different
long-term experiments. Each subfigure shows the rectangle marked in figure D.1.2; the measuring line at the left
lower corner shows a length of 1m. The area of correct loop-closure detection is visualized by the light-gray bar.
Start positions of the reference lane and test trials are marked by a black circles and black crosses, respectively. The
end positions of the test trials corresponds to the positions of the last stored snapshot and not to the robot’s true
end positions. Thus, trajectories recored while the robot approaches the reference lane can be up to 10 cm longer
than depicted here. This drawback of the currently used software to conduct real-robot experiments only affects the
visualization of the trajectories but not the evaluation of the experiments. It will be improved in future work.
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