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ABSTRACT:  It is important that the impact of the offshore environment on wind turbine reliabil-
ity is reduced significantly due to the importance of offshore wind deployment to global energy tar-
gets. Future development may otherwise be compromised by unsustainable operation and maintenance 
(O&M) costs. This paper aims to improve the accuracy of offshore O&M models by accounting for any 
relationship between certain weather characteristics and wind turbine failure modes. This is done using 
maintenance data from a UK onshore wind farm and weather data from a weather station located nearby. 
Non-parametric Mixture Models are estimated from the data and they are used to calculate a more accu-
rate, weather dependent, failure rate which will be used in future research for Markov Chain Monte Carlo 
Simulation. This research will be of particular interest to wind turbine operators and manufacturers.

Offshore wind has many benefits however to 
make it an attractive prospect. Larger wind tur-
bines can be installed offshore without planning 
restrictions, greater energy yields can be harvested 
where wind is more persistent, less turbulent and 
stronger, therefore producing more electricity 
and a bigger investment return (Henderson et al, 
2003). Reported capacity factors from modern 
offshore wind farms range from 30%–50%, far 
greater than the 25% ball park figure for onshore 
(LORC, 2013).

Despite there being few restrictions on the size 
of offshore wind turbines, the average size of an 
operational or consented wind turbine is 2.8 MW 
(LORC, 2013). In the UK alone, the government 

1  Introduction

The wind energy industry has grown significantly 
around the world in recent years and in the EU 
accounts for roughly 7% of installed capacity 
(EWEA, 2013). Germany and Denmark were the 
early leaders in installed capacity, however the 
UK, which boasts the strongest wind resource in 
Europe, plans to have installed 28GW of wind 
power installed by 2020 (DECC, 2011).

This recent popularity has come now that the 
cost of onshore wind power has decreased con-
siderably to the point where it can now compete 
with some traditional thermal methods of power 
generation, such as nuclear and coal plants (Mott 
McDonald, 2010). Part of this reduction in costs is 
attributable to government subsides, however it is 
also due to there being larger, more reliable wind 
turbines on the market.

Despite these gains in onshore technology, the 
cost of offshore wind power is still relatively expen-
sive. Analysis carried out in 2004, shown in Table 1, 
estimated that offshore wind power must improve 
substantially before it is attractive to potential 
investors (The Royal Academy of Engineering, 
2004). Operation and Maintenance (O&M) is an 
area where this improvement can be made as a 
large amount of the cost of offshore wind is due 
to O&M (Mott McDonald, 2010) (The Royal 
Academy of Engineering, 2004).

Table 1.  Cost of energy and O&M for different generat-
ing technologies.

Power station  
type

Cost per MWh  
(UK pound)

O&M Cost  
(% of cost  
of electricity)

Nuclear 23 19.6%
Gas (CCGT) 22   6.4%
Coal (IGCC) 32 10%
Onshore wind 37* 13.2%
Offshore wind 55* 30.9%

*Not taking standby generation into account.



802

intends to have 13GW of offshore wind turbines 
installed and operating by 2020 (DECC, 2011). 
This equates to roughly 4500 wind turbines in the 
UK alone.

Maintaining this many unmanned offshore 
structures is unprecedented. In order to man-
age these assets economically, operators will have 
to ensure that they have O&M strategies that are 
effective.

Perversely, the stronger winds which pose most 
threat to the health of the wind turbine also gen-
erate the most electricity and return for the inves-
tors. Strong winds however tend to come in the 
winter when access to maintain a wind turbine is 
much less probable (McMillan & Ault, 2008). Due 
to safety reasons access to offshore wind turbines 
is problematic. The significant wave height limit 
is currently 1.5  m. This restricts access consider-
ably; in some cases to around 60% (Van Bussel et 
al, 2001). This low accessibility means that failures 
which for onshore wind turbines would only cause 
a small downtime can last far longer because engi-
neers cannot access the wind turbine. This down-
time must be minimized, as the longer it is the 
more revenue is lost.

Because of the restrictions posed by the off-
shore environment, maintenance must be carefully 
planned and prioritized in advance so that the best 
can be made of any opportunity. There will also 
need to be efforts made to gain a better under-
standing of wind turbine reliability and the vari-
ables that influence component failure.

Onshore wind turbines and their components 
are very reliable when compared to thermal plants 
(Tavner et al, 2006a). Onshore wind turbines 
achieve availabilities in the region of 97%; however 
the offshore wind farms that have published their 
reliability statistics have indicated that they were 
only capable of 67%–88% availability (Van Bussel 
et al, 2001) (Feng et al, 2010). These statistics may 
have improved recently, but not likely to the level 
achieved by onshore.

The industry must improve upon these sta-
tistics as offshore wind farms are getting bigger 
and are increasing their distance from the shore 
where the better wind resources are. This will 
increase travel time and make accessibility even 
more difficult.

This paper aims to improve on the knowl-
edge of  wind turbine reliability by investigating 
how the environment influences component fail-
ures. It is believed that if  a relationship can be 
derived between the weather and wind turbine 
failure modes that maintenance strategies can 
be planned with weather forecasts in mind. This 
may potentially prevent some failures from occur-
ring and aid operators when planning offshore 
maintenance.

2  Literature Review

2.1  General wind turbine reliability

Offshore wind turbine operation and maintenance 
was explored by Van Bussel & Zaaijer (2001). It was 
found that the average failure rate of an onshore 
wind turbine was 2.20 failures per wind turbine per 
year. Van Bussel & Zaaijer (2001) did not believe 
this would be an economical figure for an offshore 
wind turbine due to the excessive operation and 
maintenance costs. They recommended sacrificing 
complex concepts such as variable speed, pitch reg-
ulation with more reliable and simple fixed speed, 
stall regulation. The loss in income could, they 
believe, be offset by the improvements in reliability 
(Van Bussel & Zaaijer, 2001).

The failure rates for sub-assemblies of Dan-
ish and German wind turbines were evaluated by 
Tavner & Xiang (2005) using the wind turbine reli-
ability data from Windstats. They concluded that 
wind turbines were achieving reliability better than 
diesel generators and that inconsistent failure rates 
amongst the data may be attributable to differing 
weather conditions (Tavner & Xiang, 2005).

Work by Tavner et al (2006b) and Echavarria 
et al (2007) showed that wind turbine reliability was 
improving over time, following a bathtub curve. 
However, despite improvements over time, wind 
turbines still consist of components that experience 
lengthy periods of downtime whenever they fail.

Recent work on wind turbine reliability has led 
to questions over what the most reliable wind tur-
bine configuration is. Tavner et al (2008) found that 
the gearbox—which fails relatively infrequently but 
causes long downtimes—was failing too often for 
economical use offshore. Tavner et al (2008) recom-
mended two solutions to this problem; first improve 
the reliability of the gearbox or second, remove the 
gearbox completely. Improving the reliability would 
be a challenge as gearboxes are a mature technol-
ogy and may not be enhanced further.

Work by McMillian & Ault (2010) discussed the 
reliability merits of using a direct drive wind tur-
bine, but found that the reliability of the synchro-
nous generator of the direct drive wind turbine 
was an issue and did not believe it had any advan-
tage over a geared turbine. Their calculations were 
however based around onshore use. It remains to 
be seen if  direct drive has an application offshore, 
recently however some original equipment manu-
facturers have begun building direct drive models 
for offshore use.

2.2  Weather related wind turbine reliability

The effects of weather on turbine reliability were 
first addressed by Hahn (1997). Using wind turbine 
reliability data from the WMEP database it was 
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shown that the number of failures per day increased 
for certain wind turbine components as the average 
daily wind speed increased. The components most 
badly effected in Hahn’s analysis were the electric 
and control components (Hahn, 1997).

Tavner et al (2006c) carried out analysis to 
determine if  there was any similarities between 
failure rate and Wind Energy Index (WEI). The 
methodology was to compare the monthly average 
wind speed across Denmark with monthly fail-
ure data from the Windstats Denmark database. 
Correlations were calculated between the wind 
speed times series and failure time series for wind 
turbine components. Tavner et al (2006c) found 
that the generator, yaw system and mechanical 
control had the strongest correlation with the wind 
speed. This type of analysis however does not take 
non-instantaneous failures into account and con-
ceals detail by aggregating the wind speed data and 
failure data into monthly bins. It was also assumed 
that the average wind speed across Denmark for 
that month was representative for all the wind tur-
bines in the Windstats database.

The research did however show that there was 
a connection between wind speed and component 
failures. Tavner et al (2012) took the research fur-
ther by considering a different database which 
comprised of three distinct sites in Germany, all 
with nearby weather stations. The wind turbines 
used on the sites were a mixture of Enercon E30 
and E33’s. Both concepts are rated at 300  kW, 
have synchronous wound rotors, are variable 
speed, hydraulic blade pitch controlled and were 
manufactured from 1988–1993. They were the last 
geared turbines to be produced by Enercon before 
they switched exclusively to direct drive wind tur-
bines. A more detailed analysis was undertaken 
which considered the cross correlation between 
particular meteorological parameters and wind 
turbine failures. The most closely correlated time 
series with wind turbine failures was the maximum 
wind speed time series, but overall there was a sig-
nificant cross-correlation (55–75%) between the 
weather data and the failure data for each of the 
sites (Tavner et al, 2012).

Using the Garrad Hassan wind turbine data-
base—which has more than 23,000 wind tur-
bines—Wilkinson et al (2012) used SCADA Alarm 
Logs and availability databases to determine the 
impact of the environment on wind turbine fail-
ure rates. Their analysis also showed that down-
time decreased as the monthly mean temperature 
rose. The results appeared to show that extreme 
maximum air temperatures of between 18–21°C 
and maximum wind speeds of between 28–33 m/s 
cause a rise in failure rate and downtime (Wilkin-
son et al, 2012). However is unclear whether this 
research takes account of scheduled maintenance 

(preventative maintenance) and whether the vari-
ations in downtime have taken the accessibility of 
the nacelle and tower into consideration. Wind tur-
bines hubs are inaccessible for maintenance at wind 
speeds over 12 m/s and so if  a failure occurred at 
a time when the wind speed was high, the down-
time would be longer—not because of the failure’s 
severity, but because repairs could not be carried 
out safely (McMillan & Ault, 2008).

3 methodolog y

Often the reliability of engineering systems is 
described as being discrete in that it can exist in 
one state until a transition occurs and the system 
changes to another state. These transitions can be 
represented by a transitional probability matrix. 
This characteristic means that many systems can be 
modeled as a Markov process. Markov Chains have 
been used often to model components and systems 
(Castro Sayas & Allan, 1996) (McMillan & Ault, 
2007) (Besnard & Bertling, 2010) (Billington & 
Allan, 1983). This paper aims to improve this mod-
eling by enhancing the understanding of the tran-
sition rates between the states.

Figure 1 shows a Markov Chain for a wind tur-
bine component. The component can exist in one 
of two states at any time, OK or failed. The tran-
sition rates between the two states are the failure 
rate (λ) and the repair rate (µ); they are defined in 
equations 1 and 2.

µ =
No.of repairs in given periodof time

Total period of repair time 	
(1)

λ =
No. of failures in given periodof time

Total operation time 	
(2)

For a Markov Chain to be applicable the proc-
ess must be stationary, meaning the system must be 
the same at all points in time (Billington & Allan, 
1983). However in reality as aging occurs failure 
rates do not remain constant over time. The reli-
ability of wind turbines, like many other systems, 
follows a bath tub curve which means its transi-
tional probabilities change. For other types of elec-
trical generators, such as nuclear power generators, 
a constant failure rate is more suitable because 
despite aging—which can be modeled using a 

Figure 1.  Markov chain example.
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bathtub curve—operation rarely changes through-
out its lifetime.

However for a wind turbine the weather condi-
tions constantly change affecting every component 
from the blades through the drive train down to the 
foundation. If a relationship exists between weather 
conditions and failure modes then the failure rate 
of a component should change depending on the 
severity of the weather. As weather conditions 
change frequently, this problem is more compli-
cated to model than simply fitting a bathtub curve.

Any relationship between component failure 
rates and weather conditions would have particu-
lar significance when organizing offshore wind tur-
bine maintenance strategies. Accessibility changes 
seasonally offshore and if  a constant failure rate 
was used it may underestimate the challenges in the 
winter season and overestimate the difficulties in 
the summer.

The aim of this paper is to find a way of deter-
mining the failure rate of a component taking the 
weather conditions into account. This approach 
should produce more accurate and informative 
models which can better inform maintenance deci-
sion makers.

The procedure used in this methodology is 
summarized in Figure 2. Each step is explained in 
greater detail in the following sections.

3.1  Data sources

The data used in this analysis was from a set of 
maintenance records used as part of an onshore 
wind turbine management system. A summary of 
the maintenance data is given in Table 2. There is 

the equivalent of 262 wind turbine years of data 
and all the wind turbines come from one site and 
are the same model and age.

The wind turbine system was split into twelve 
sub-assemblies, these are shown in Table  3 along 
with their codes.

The dataset defined a failure as any event which 
had caused the wind turbine to suffer downtime. 
Each individual failure was logged in the dataset as 
an event with a designated code in accordance with 
where the failure took place originally. As well as 
the failure location, the event logs also contained 
the downtime, date and time, turbine number and 
stoppage definition (preventative or corrective). 
Any incomplete failure events were removed from 
the dataset  along with all preventative mainte-
nance events. This filtering left a total of 442 indi-
vidual failures to be analyzed—the failure rate of 
the site during the evaluated period was calculated 
to be 2.36, similar to the figure given by Van Bussel 
et al (2001).

Using equation 2 yearly failure rates were calcu-
lated for the sub-assemblies in the dataset, this is 
shown in Table 4.

Environmental data came from the UK Met 
Office. The wind farm is situated within roughly 
15  miles of the weather station which provides 
hourly relative humidity, temperature and wind 
speed. All of these measurements relate to condi-
tions at ground level, not at hub height. It is assumed 
that the conditions at the weather station represent Figure 2.  Procedure used in this paper.

Table 2.  Summary of data.

Installed  
capacity 
(MW)

Number of  
wind turbines

Duration of  
data (years)

Wind turbine  
years

322 140 1.87 262

Table  3.  List of sub-assemblies and 
their codes.

Code Sub-assembly

100 Emergency systems
200 Meteorological instruments
300 Rotor
400 Blade pitch system
500 Drive train
600 Yaw system
700 Hydraulic system
800 Control system
900 Main generator

1000 Lifting system
1100 Nacelle
1200 Tower
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Figure  3.  Fitting of a kernel to a set of failure data 
points.

Table 4. Y early failure rates (failures/year/wind turbine) 
of sub-assemblies with downtime filter applied.

Code
No  
filter

10 hour  
filter

24 hour  
filter

48 hour  
filter

100 0.0352 0.0186 0.0041 0.0000
200 0.0600 0.0083 0.0021 0.0000
300 0.0269 0.0083 0.0041 0.0021
400 0.0538 0.0248 0.0165 0.0062
500 0.1241 0.0889 0.0248 0.0227
600 0.1199 0.0496 0.0248 0.0124
700 0.0620 0.0310 0.0124 0.0062
800 0.4115 0.2068 0.0662 0.0310
900 0.0248 0.0083 0.0041 0.0021

1000 0.0083 0.0021 0.0000 0.0000
1100 0.0124 0.0000 0.0000 0.0000
1200 0.0476 0.0000 0.0000 0.0000

Figure 4.  Seasonal variations of temperature and wind 
speed at wind farm.

the conditions on the wind farm accurately despite 
the distance between them. Figure  4  shows aver-
aged monthly wind speed and temperature varia-
tions for the weather station using the Met Office 
data over a four year period.

To simplify both sets of data they were reduced 
to daily resolution. Therefore weather data was 
averaged over 24  hour periods and daily failure 
rates were calculated from those shown in Table 4.

3.2  Fit mixture models

The approach taken in this paper to calculate the 
failure rate of a component at a specific weather 
condition uses Mixture Modeling. This method 
has been used by others to provide better estimates 
of wind speeds rather than using a Weibull distri-
bution (Akpinar & Akpinar, 2009) (Morgan et al, 
2011). Mixture Models allow subpopulations to 
be represented together in a probabilistic model. 
They can be used to examine the distributions of 
weather conditions when failures occur for each 
sub-assembly compared to the weather conditions 
recorded by the weather station which represent 
typical site conditions.

Distributions of weather conditions when a 
failure has occurred for each sub-assembly are esti-
mated by calculating kernel density functions of 
the weather data. Non-parametric distributions are 
used as opposed to parametric distributions because 
it is not known what shape the distributions should 
take. These non-parametric distributions are fitted 
to the weather data recorded on the day when a 
failure has occurred to a sub-assembly in the wind 
turbine. Each sub-assembly then has its weather 
data fitted to a distribution. Figure 3 shows how 
a kernel has been fitted to the data. The dots show 
the real data and the line shows the smoothed 
kernel.

Mean squared errors were calculated, using 
equation 3, for each fitting. Any distributions with 
badly fitted curves were filtered out of the dataset. 
Some sub-assemblies had so few failures that they 
were too statistically insignificant to be included 
and they too were filtered out. Statistical signifi-
cance was determined using the Wilcoxon Rank 
Sum Test.

Figure 6 shows an example of a Mixture Model. 
It was calculated by producing three kernel density 
functions from three different datasets. It shows the 
distribution of daily average wind speeds that were 
recorded at the weather station during a 4 year 
period. The two other distributions show the daily 
average wind speeds recorded for only days when a 
failure has occurred to either the drive train (500) 
or the control system (800).

MSE
n

Y Yi i
i

n
= −

=
∑1 2

1
( )


	
(3)
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Weightings were calculated by determining the 
frequency of occurrence of each sub-population. 
In the case of sub-assemblies, the weightings are 
simply their failure rate.

The purpose of this paper is to investigate the 
reliability and operation and maintenance of a 
wind farm rather than a single turbine and so the 
individual wind turbine failure rates were mul-
tiplied by the population of the wind farm. The 
weather station data represents the entire popula-
tion, its weighting was therefore 1.

If  a wind speed x, shown in Figure 5 and 6 as 
a vertical line, is forecast to occur on day y, this 
mixture model can be used to determine the prob-
ability of x occurring on any given day, P(x), using 
the weather station data. The probability of a fail-
ure occurring to a sub-assembly is the failure rate 
of the sub-assembly λsub. So given that a failure has 
occurred in a sub-assembly, the probability that 
wind speed x also occurs is P(λsub | x ).

A downtime filter can be used which removes 
failures from the dataset which did not cause the 

turbine to be shut down over a certain downtime 
limit. Some wind turbine failures can be repaired 
remotely and therefore have very short downtimes, 
these failures would not need to be considered 
when scheduling offshore maintenance. This filter 
alters the yearly failure rate of each sub-assembly, 
as shown in Table 4. Figure 6  shows the mixture 
model when a 24 hour downtime filter is used. The 
drive train had 11 failures which caused downtimes 
equal to or greater than 24 hours.

3.3  Calculating the failure rate

The probability of wind speed x occurring at the 
wind farm is 0.075 according to Figures 5 and 6. 
The probability that wind speed x occurs, given 
a failure has occurred in the controller is 0.009. 
To calculate the failure rate of the controller for 
day y the law of total probability is used, shown 
in equation 4. With no downtime filter used 
P(λ800) = 0.12.This is 0.04 less than the average daily 
wind farm failure rate which does not take weather 
conditions into account, shown in Figure 8.

P A
P A B

P B
( ) ( | )

( )
=

	
(4)

If  a downtime filter of 24 hours is applied, using 
the mixture model in Figure 6, P(λ800) = 0.027 for 
day y, 0.025 more than the non-weather dependent 
failure rate.

This same process can be used for average daily 
wind speed, average daily humidity and average 
daily temperature.

4  Results

Using the procedure described in section 3, a range 
of failure rates were calculated for a wind turbine 
component. The range begins with the lowest read-
ing recorded for a weather characteristic and ends 
with the maximum value recorded.

This is shown in Figure 7. The weather charac-
teristic in this case is the average daily wind speed 
and the component being examined is the drive 
train. No downtime filter is applied. The bold 
horizontal line shows the non-weather dependent 
failure rate for the drive train, given in Table 4.

The failure rate for wind speeds between approx-
imately 0 knots and 11 knots is less than the non-
weather dependent failure rate indicating that 
between these wind speeds the drive train experi-
ences fewer failures than encountered normally. For 
wind speeds higher than 11 knots the failure rate 
increases significantly. This suggests that in high 
wind speeds the drive train suffers more failures.

Figure  5.  Wind speed dependent failure rates for the 
drivetrain.

Figure 6.  mixture model of controller and drive train 
with weather station data.
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Figure 7.  mixture model of controller and drive train 
with 24 hour downtime filter applied.

Figure  8.  Wind speed dependent failure rates for the 
control system.

Figure 9.  Wind speed dependent failures for the drive 
train with a 24 hour downtime filter.

The control system results, shown in Figure 8, 
are very similar to the drive train results which 
again show a lower failure rate at low wind speeds 
and a significantly higher failure rate at higher 
wind speeds.

This pattern is also prevalent when the 24 hour 
downtime filter is applied. Interestingly the drive 
train results from Figure 9 shows that the longer 
downtimes appear to occur at higher wind speeds. 
There is a difference of approximately 2  knots 
between the non-filtered and 24 hour filtered wind 
speed failure data. This suggests that wind speeds 
over 12.5  knots are more likely to cause more 
severe failures. However care must be taken when 
linking downtimes and failure severity as discussed 
in section 2.2.

Figures  10 and 11  show the yaw system com-
ponent and how its failure rate changes as the 
humidity and average temperature changes. The 
low temperatures do not appear to have a negative 

Figure  10.  Humidity dependent failure rates for the 
yaw system.

Figure 11.  Temperature dependent failure rates for the 
yaw system.

effect on the failure rate for the yaw system but 
temperatures between 3 and 12  degrees Celsius 
seem to adversely affect the failure rate.

Analysis on the effect of humidity shows 
that for the yaw system there is a range between 
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approximately 70% and 85% where the yaw system 
fails most often.

5  Discussion

This research has shown patterns which suggest 
that there is a relationship between weather con-
ditions and wind turbine failures. A procedure is 
demonstrated which would allow this relationship 
to be modeled in a Markov Chain.

The results show that in general, when wind 
speed increases the probability of failure increases 
for controller system and drive train components.

Care must be taken when drawing conclusions 
from results that have been filtered for down-
time. Like in previous research by Wilkinson et al 
(2012), results have shown that higher wind speeds 
are more likely to lead to longer downtimes. How-
ever wind turbine accessibility must also be taken 
into consideration and future research will account 
for this.

The data used in this research only involves one 
wind farm; further analysis will be undertaken 
using additional data from a second wind farm 
using the same model of wind turbines but located 
in a different part of the UK. The volume of data 
available from the wind farm is only over a rela-
tively short period of time which means that some 
sub-assemblies with low failure rates have not 
failed often enough for their results to be useful. 
More data will be required before these compo-
nents can be included in future work.

Some of the non-parametric distributions con-
tain probabilities for negative wind speeds and 
improbable temperature and humidity readings. 
At present these readings are omitted using com-
mon sense. However this problem will be elimi-
nated with a larger dataset.

The results in this paper do not necessarily 
describe all wind turbines but at this stage only 
really describe one site and one model of wind 
turbine. Because of differing climates and mod-
els of wind turbine, analysis would have to be 
undertaken on a specific wind farm to understand 
its relationship between failure rate and weather 
characteristics.

6  Conclusion

This paper has outlined a method of calculating 
more accurate failure rates which are a function of 
weather conditions. It has also suggested that there 
is a relationship between some failure modes and 
some weather conditions.

This research will be used in future research to 
produce a Markov Chain Monte Carlo simulation. 

The aim of this model will be to assess the eco-
nomic benefit of different maintenance strategies 
for offshore wind turbines which take weather 
characteristics into consideration.

The research in this paper will be of interest to 
operators and manufacturers of wind turbines.
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