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Asymptotics of a Small Liquid Drop on a Cone
and Plate Rheometer

Vincent Cregan, Stephen B.G. O’Brien, and Sean McKee

Abstract A cone and a plate rheometer is a laboratory apparatus used to measure
the viscosity and other related parameters of a non-Newtonian liquid subject to an
applied force. A small drop, of order millimetres, of the liquid is located between the
horizontal plate and the shallow cone of the rheometer. Rotation of the cone ensues,
the liquid begins to flow and the plate starts to rotate. Liquid parameters are inferred
based on the difference in the applied rotational force and the resulting rotational
force of the plate. To describe the flow of the drop, the initial drop configuration,
before rotation commences, must be determined. The equilibrium drop profile is
given by the solution to the well-known nonlinear Young–Laplace equation. We
formulate asymptotic solutions for the drop profile based on the small Bond number.
The modelling of the drop exhibits a rich asymptotic structure consisting of five
distinct scalings which are resolved via the method matched asymptotics.

1 Introduction

The study of surface tension and capillarity has long been an area of interest to both
scientists and applied mathematicians. The importance of capillarity phenomena
is highlighted by their abundance in both nature (self-cleaning behaviour of the
lotus plant [1] and the water repellent properties of water striders [3]) and industry
(glass fabrication [4] and in the application of coatings to surfaces such as television
screens [7]).
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Early attempts at understanding surface tension include Leonardo da Vinci’s
ad-hoc, intuitive explanation for capillary effects and Newton’s experiments involv-
ing the rise of a liquid up a thin tube based on the attraction of the liquid to the
tube [8]. In the early nineteenth century, the independent surface tension research of
Young and Laplace resulted in the Young–Laplace capillary equation

�p D �

�
1

R1

C 1

R2

�
; (1)

which describes the equilibrium profile of a static liquid–gas interface. We observe
that �p is the pressure difference across the liquid interface, � is the surface tension
and R1 and R2 are the principal radii of curvature.

A cone and plate rheometer is a laboratory device used to study the way in which
a non-Newtonian fluid flows and deforms subject to an applied force. A fluid drop
is placed on the flat plate of the rheometer and the shallow cone is lowered towards
and in to the drop (see Fig. 1a). Typically, the plate is rotated though in certain
designs the cone may rotate. The rotational force causes the fluid to flow and thus,
cone rotation ensues. On the basis of the difference of the applied force and the
resulting rotational force exerted on the cone, parameters such as fluid viscosity can
be established. To simulate the fluid flow associated with the drop in contact with
the cone and plate rheometer the initial, static drop profile must be determined.

The method of matched asymptotics is used to derive expressions for the shape
of the static drop profile. The perturbation approach is based on the small Bond
number—where surface tension dominates body force terms—and is similar to
previous work on sessile drops and pendant drops [5].
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Fig. 1 (a) Schematic drop profile. (b) Drop asymptotic regions (neither drawn to scale.)
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2 Mathematical Model and Nondimensionalisation

Assuming that the contact angles are constant, the resulting drop is axisymmetric
with profile z� D z�.r�/ with respect to a polar coordinate system aligned such
that z� D 0 is located at the thinnest part of the upper neck of the drop with the
z�-axis pointing downwards in the direction of gravity (see Fig. 1a). The hydrostatic
pressure in the drop is given by p� C �gz� where � is the fluid density, g is gravity
and p� is the unknown pressure at z� D 0 where the profile becomes vertical. Thus,
at the liquid–gas interface, the hydrostatic pressure in the drop is balanced by the
capillary forces and it follows from (1) that

�

�
z�00

. 1 C z�02 /3=2
C z�0

r� . 1 C z�02 /1=2

�
D p� C �gz�; (2)

where differential geometry has been used to formulate expressions for R1 and R2.
We adopt the standard nondimensionalisation approach [5] and we nondimen-

sionalise (2) via the fundamental dimensionless variables

z� D aY ; r� D aX ; p� D �gaP; (3)

where a � p
�=.�g/ is the liquid capillary length, to obtain

Y
00

. 1 C Y
02 /3=2
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D P C Y: (4)

From a numerical perspective a more convenient parametric formulation of (4) is

dX

ds
D cos � ;

dY

ds
D sin � ;

d�

ds
C sin �

X
D P C Y; (5)

where � is the inclination (see Fig. 1a) and s is the arclength. Finally, elimination of
the arclength from (5) yields

dX

d�
D X cos �

XP C XY � sin �
;

dY

d�
D X sin �

XP C XY � sin �
; (6)

which is the starting point for our asymptotic analysis.
We denote L to be the maximum radius of the drop (or drop half-width) in the

main body of the drop where its profile becomes vertical [9]. From previous work
[5], we assume that the width of the neck is O."3/ where " � L=a � p

L2�g=� is
the dimensionless half-width and may also viewed as a Bond number. We consider
solutions for " � 1 (or L � a) which represents the dominance of surface tension
over body force effects in determining the drop profile.

We begin the solutions from the point of minimum width in the upper neck where
X D 0, Y D 0 and � D �=2 and the corresponding boundary conditions are
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X.� D �=2/ D ˛"3 and Y.� D �=2/ D 0 where ˛ is an O.1/ parameter which is
found via the asymptotic analysis. The dimensionless half-width condition X.� D
�=2/ D " fixes the pressure P . In relation to the contact angles we adopt the strategy
of previous authors whereby the contact angles are used to determine the points at
which the drop is in contact with the cone and the plate [5]. For example if the lower
contact angle is �=2 we truncate the solutions at the point in the main body of the
drop where the profile becomes vertical.

The drop asymptotic structure consists of an upper neck, an upper boundary
layer, an outer region (main body), a lower boundary layer and a lower neck (see
Fig. 1b) and is based on previous work on sessile drops and pendant drops [5, 6, 8].

3 Results

To reflect the balance between the surface tension curvature terms, which are
opposite in sign, in the upper neck of the drop we define the rescaled neck variables

X D "3 u ; Y D "3 v ; P D p=" ; � D O.1/; (7)

which upon substituting into (6) leads to the leading order equations

du

d�
D �u cot � ;

dv

d�
D �u; (8)

with boundary conditions u.� D �=2/ D ˛ and v.� D �=2/ D 0. The correspond-
ing solutions are

u D ˛ csc � ; v D �˛ ln j tan �=2j; (9)

where we note the existence of a singularity as � ! 0 which implies that the upper
rescaling is not appropriate and an alternative set of scaled variables must be defined.

The upper boundary layer provides a transitional layer between the curvature
dominated terms of the upper neck region and the three term balance in the main
body of the drop. Moreover, Fig. 1b illustrates a change in sign in the curvature
in the upper boundary layer which suggests the presence of a point of inflection.
Consequently, (6) is rescaled via

X D "2 � ; Y D "3 � ; P D p=" ; � D "˚; (10)

to obtain the leading equations

d�

d˚
D �

�p � ˚
;

d�

d˚
D ˚�

�p � ˚
: (11)
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We note the solution

� D 1

2
(˚ ˙

p
˚2 C 4C); (12)

where the positive root applies before the point of inflection, located at � D
"

p�4C , and the negative root applies after inflection. The unknown integration
constants are found via asymptotic matching [2].

In the main body of the drop, the basic shape is nearly spherical and the
fundamental balance is between the curvature terms and the pressure term P .
To highlight this balance we rescale (6) by the outer variables

z� D Lx ; r� D Ly; (13)

to attain the outer equations

dx

d�
D x cos �

"2xy C xp � sin �
;

dy

d�
D x sin �

"2xy C xp � sin �
; (14)

with the condition x.� D �=2/ D 1. The presence of the "2 terms in (14) suggest
O."2/ asymptotic expansions in x, y and p. The leading order solutions are

x0 D sin � ; y0 D 1 � cos � ; p0 D 2; (15)

which represents a circular drop profile. Proceeding to O."2/ we have

x1 D 1

6

.1 � 3˛/ cos 2� � 2 cos3 � C 1 � 3˛

sin �
; (16)

which upon inspection reveals a singularity as � ! � and thus an alternative
rescaling for � near � D � is required.

At the base of the drop we encounter a lower boundary layer analogous to the
upper boundary layer and we rescale via

X D "2 � ; Y D 2" C "3 � ; P D p=" ; � D � � "˚; (17)

which upon introduction into (6) leads to a system of equations identical to (11).
Noteworthy is the solution

˚ D � � D

�
; (18)

where via asymptotic matching we find D D 2=3 � ˛. From (18) it is evident that
if D < 0 (and thus ˛ > 2=3) then ˚ > 0 and it follows that � < � . This leads to
another point of inflection in the lower boundary layer and the beginning of a new
drop. Hence, the magnitude of ˛ and thus the sign of D has a profound effect on the
structure of the drop profile. Accordingly, we rescale (6) via a set of lower boundary
layer and lower neck variables (analogous to (7) and (10), respectively) proceed to
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leading order and obtain the relevant solutions. The theoretical results pertaining to
the lower boundary layer (˛ > 2=3) and the presence of another drop structure need
to be validated experimentally.

In reality, the static solutions outlined here may be quite difficult to achieve if
the appropriate experimental configuration is not calibrated correctly. Other authors
have reported on systems which exhibit a similar type of multiple drop structure as
outlined here [8].
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4 Conclusion

The method of matched asymptotic expansions has been used to derive asymptotic
solutions for the profile of a liquid drop in contact with a cone and plate rheometer.
A number of rescalings and boundary layers were required to fully describe the drop
profile. As indicated by Fig. 2 and Fig. 3 the asymptotic solutions display excellent
agreement with the corresponding numerical solutions.
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