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Analysis of the causal behavior in energy transfer between atoms

E. A. Power and T. Thirunamachandran
Department of Mathematics and Department of Chemistry, University College London, London WC1E 6BT, England

~Received 21 April 1997!

A critical analysis of the problem of causality in the energy transfer between a pair of atoms is carried out.
One of the pair, the source, is initially excited and the other, the detector, is in its ground state. The probabili-
ties are calculated for the detector to be excited at a later timet under different experimental conditions. In the
first, a precise specification is made of the state of the source and that of the radiation field at the observation
time t. In the second, the final state of the field is unspecified, whereas in the third, the state of neither the field
nor the source is specified at timet. These three cases correspond to predicting the outcomes of different
experimental measurements. It is shown that of the three cases, only the third exhibits exact causal behavior.
The other two are noncausal. The noncausal contributions to the probability arise from the correlation of
vacuum fluctuations at the two atoms at different times in the interval 0 tot. The probabilities for these cases
can be significant for times slightly less thanR/c, whereR is the interatomic separation. Explicit expressions,
correct to fourth order in the transition moments, for the probabilities in the three cases are given. A proof of
strict causality to all orders is presented for the third case where the final measurement is solely made on the
detector. In Appendix A the related problem of the time dependence of the electric energy density associated
with the source is analyzed and shown to be causal.@S1050-2947~97!03410-0#

PACS number~s!: 03.65.Bz, 32.80.2t, 42.50.2p
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I. INTRODUCTION

The energy transfer between a pair of atoms and the
of causality is a long-standing problem in the quantu
theory of atom-radiation interaction. This was first studi
using perturbation theory by Fermi@1# in connection with the
propagation of light in vacuum. An earlier paper by Kikuc
@2#, often referred to in this context, however, addresses
causality question in relation to the emission of radiat
from a single atom by considering the time development
the field energy density in its neighborhood. In these a
later papers@3–5#, and in textbooks, e.g., Louisell@6#, vari-
ous approximations were employed that led to causal be
ior. They include the neglect of terms with nonresonant
nominators in the probability amplitudes and the extens
of the integrals that appear in these amplitudes to
negative-frequency domain. It was pointed out by Shirok
@7# and by others@8–10# that a calculation without thes
approximations gave a noncausal result for the probability
energy transfer. In terms of the interatomic separationR, the
expected causal result would be that the probabilityP(t)
vanishes exactly fort,R/c. Shirokov found that the non
causal component of the probability can be large in the
terval (R2l)/c,t,(R1l)/c, where l is the reduced
wavelength for a typical atomic transition. Rubin@9# calcu-
lated the probability amplitude to lowest order in the tran
tion moments using time-dependent perturbation theory
extracted from it the noncausal term. The correspond
probability for t,R/c was examined in the interval 0,t
,(R2l)/c, outside the Shirokov domain, and found to
very small. In a later paper Craig and Thirunamachand
@10# confirmed the probability to be noncausal and obtain
an explicit expression for it in terms of ci and si function
They suggested that the noncausal behavior may be du
the limits imposed by the time-energy uncertainty relatio
561050-2947/97/56~5!/3395~14!/$10.00
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ship on the specification of energy eigenstates at a gi
time.

Ferretti @11#, Valentini @8#, and Craig and Thirunama
chandran@10# pointed out that an examination of the pro
lem within a wider framework could restore causality. In t
earlier works the time-dependent probability was calcula
for a complete specification of the final state. In addition
the absorber being excited, the emitter was specified to b
its ground state and the field was in the vacuum state at t
t. Clearly, alternative questions that are closer to reali
experimental situations can be posed. For example,
could ask for the inclusive probability of finding the absorb
excited, without making observations on either the emitter
the field. In Sec. II we frame three questions involvin
sharply defined conditions. The first of these relates to
historic Fermi problem and the last refers to the aforem
tioned inclusive question. The second concerns an inter
diate situation with a less stringent specification compare
the first. It is interesting to find in the literature statemen
that mirror all these three cases. The question dealing w
the Fermi problem is clearly stated by Louisell@6#: ‘‘The
problem is to find the probability that, at timet, the final
state in which the emitter atom has decayed and the ph
has been absorbed by the receiver atom is given byu~re-
ceiver! excited,~emitter! ground;~radiation! vacuum&.’’ The
second case where no specification is made of the final s
of the radiation field has been enunciated by Shirokov@7~a!#:
‘‘At t50 one atom is excited and the other atom is in t
ground state. Initially there are no photons. We compute
probability of finding the second atom in the excited state
time t, the first atom being in the ground state.’’ The thi
case in which the final specification is that for the receiv
atom alone has been raised by Craig and Thirunamachan
@10#: ‘‘We should calculate the probability of the receive
atom being excited at timet without making any reference to
the @final states of the# emitter atom and the field.’’ This is
3395 © 1997 The American Physical Society
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also implicit in calculations that focus on the time evoluti
of the occupation operator as in the work of Compagno
co-workers@12# and Milonni, James, and Fearn@13#. Models
used in discussions of photodetection@14# also ask questions
about the state of the detector alone; in this respect t
resemble the third case. In this context it is of interest to n
Ferretti’s early remarks@11# that the ‘‘troubles have thei
origin in the fact that if a velocity is to be correctly an
rigorously defined we have to use information concern
only objects that can be rigorously localized in space a
time; in our case the information must only be related to t
of the detector. Instead, in Fermi’s case, other informatio
required concerning the number of quanta, that is, the c
straint that in the final state that number is zero.’’ In a ve
recent paper Kaup and Rupasov@15# claim to have reexam
ined the Fermi problem and to have found no violation
causality. However, their calculations were based on a mo
described by an effective Hamiltonian and not on the r
physical system. In fact, their calculation has causality b
in by virtue of their extension to negative frequencies of
relevant integrals.

In the papers referred to above, the initial and final sta
of atoms were taken to be bare states. Attempts@7~b!,16# to
go further in terms of dressed atoms~renormalized states! are
fraught with difficulty. The dressed states of a pair of ato
by their very nature involve the interatomic separationR.
Hence the initial specification is necessarily nonlocal an
is not possible to formulate sharp questions of causality@17#.
For causal questions to be meaningful it is essential to h
local specification of the initial state. For example, it
meaningful to ask whether the time evolution of the elect
magnetic fields and their energy densities arising from
single excited atom are causal. This in fact was the ques
first studied by Kikuchi@2# in 1930 and the problem of de
tection did not arise. He used time-dependent states
turbed to first order to obtain an expression for the elec
energy density quadratic in the transition moments. He fo
the propagation to be causal after extending the relevan
tegrals to negative frequencies. We show in Appendix A t
to obtain a complete expression for the energy density
rect to second order it is necessary to employ states pertu
to second order in the moments. In this calculation the ad
tional terms provide the precise contribution needed to
tend the integrals to the negative-frequency domain. Thus
time evolution of the electromagnetic energy densities
strictly causal.

In Fermi’s treatment@1# of the propagation of light, the
dynamics of the detector atom was taken into account
the problem became one of energy transfer between ato
In the present work we study this problem with special r
erence to the three cases referred to above. In Sec. II
probabilities for the three cases are formally expressed an
Sec. III the methodology to find expressions for these pr
abilities is outlined. The equations of motion for the creati
and annihilation operators for both photons and electrons
found from the quantum electrodynamical Hamiltonian fo
pair of atoms interacting with the radiation field. From the
coupled equations, the Heisenberg operator for the Maxw
field dW (rW,t) is obtained as the sum of the source-free a
source-dependent fields, the latter being fully retarded.
retarded nature of the source terms is used in Sec. IV to
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a formal proof, to all orders in the dipole moments, that t
predicted probabilityPIII (t) for case III is exactly zero for
t,R/c. In Sec. V the explicit expressions for the probabili
in all three cases are found to fourth order. The probabi
PI(t) for the first case is not causal, confirming the previo
calculations@7~a!,9,10#. The probability PII(t) for case II
contains noncausal terms in addition to those inPI(t). How-
ever, for case III, both of these noncausal terms are foun
cancel terms arising from interference of first- and thir
order probability amplitudes. This provides explicit confi
mation to fourth order of the general result given in Sec.

II. STATEMENT OF THE PROBLEM

We consider the specific problem of excitation trans
between two atoms:S the source andD the detector. The
atoms are taken to be fixed atRW S and RW D , with S in the
excited stateup& andD in its ground stateug& at the initial
time t50 and the Maxwell field is assumed to be in i
ground state, namely, the vacuumuvac&. With the notation
uD,S;F& for a state of the composite system, the initial sta
is ug,p;vac&. The well-known question considered by Ferm
is the following: Given that att50, the state of the system
was ug,p;vac&, what is the probability of finding the system
with detector atomD in the excited stateuq&, source atomS
in its ground stateug& and the field in its vacuum state at
later time t? To answer this question experimentally o
would require simultaneous measurements to be made oD,
S, and the field att. This of course is experimentally de
manding. Other questions of a similar nature may also
asked. For example, given the same initial conditions, w
is the probability of findingD in the excited stateuq& andS
in its ground stateug& at time t? Here the final state of the
field is not specified. A question much more amenable
experiment is the following: Given the same initial cond
tions, what is the probability of finding the atomD in the
excited stateuq& at time t? The relevant experiment to an
swer this question is less demanding since only a meas
ment onD is needed at timet. No final specification of the
states ofS and of the field is made.

In Secs. III and V we consider these three cases and
culate the probabilities of excitation transfer using the the
of nonrelativistic quantum electrodynamics. The first, cas
is the original Fermi problem. Case II deals with the inte
mediate question where the field is unspecified att and case
III with the one-center measurement question, namely,D
alone is specified at timet. The initial state for each of the
three cases is

u i &5ug,p;vac&. ~2.1!

The corresponding probabilitiesP(t) are: case I,

PI~ t !5 z^ f ueiH 0t/\e2 iHt /\u i & z2, ~2.2!

with u f & in our notation given by

u f &5uq,g;vac&; ~2.3!

case II,
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PII~ t !5(
F

z^F;g,queiH 0t/\e2 iHt /\u i & z2, ~2.4!

where uF& is a complete set of field states including t
vacuum; and case III,

PIII ~ t !5(
F

(
S

z^F;S,queiH 0t/\e2 iHt /\u i & z2, ~2.5!

whereuS& is a complete set of atomic states ofS.

III. METHODOLOGY

For the processes under discussion, the dynamics is
erned by the multipolar Hamiltonian~3.1! in second-
quantized form

H5Hatoms1H rad1H int , ~3.1!

where

Hatoms5(
n

En
Dbn

†Dbn
D1(

n
En

Sbn
†Sbn

S , ~3.2!

H rad5 (
modes

\va†a. ~3.3!

In the electric-dipole approximation

H int52(
m,n

mW mn~D !bm
†Dbn

D
•dW ~RW D!

2(
m,n

mW mn~S!bm
†Sbn

S
•dW ~RW S!. ~3.4!

In Eqs.~3.2!–~3.4! b andb† are the annihilation and creatio
operators for atomic states anda anda† are the annihilation
and creation operators for photons. These obey the stan
anticommutation-commutation relations. The displacem
vector field operatordW (rW) in Eq. ~3.4! is given by the mode
expansion

dW ~rW !5 i (
modes

S 2p\ck

V D 1/2

~eWaeikW•rW2ēWa†e2 ikW•rW!. ~3.5!

The equations of motion for the operatorsa andbn are

ȧ5
1

i\
@a,H#52 iva1

1

\ S 2p\ck

V D 1/2

3(
m,n

mW mn~D !•ēWe2 ikW•RW Dbm
†Dbn

D1
1

\ S 2p\ck

V D 1/2

3(
m,n

mW mn~S!•ēWe2 ikW•RW Sbm
†Sbn

S ~3.6!

and

ḃn5
1

i\
@bn ,H#52

i

\
Enbn1

i

\ (
m

mW mn
•dW ~RW !bm .

~3.7!
v-

ard
nt

The atomic label is implicit in Eq.~3.7!. The simple form of
Eq. ~3.7!, i.e., its linearity in theb’s, is a direct consequenc
of the use of the multipolar formalism.

We now express the amplitudes that appear in the pr
abilities ~2.2!, ~2.4!, and ~2.5! for the three cases in th
Heisenberg picture. For case I, where the final state
uq,g;vac&, the amplitude is

^vac,g,queiH 0t/\e2 iHt /\ug,p;vac&

5^vac;0̄ubg
S~0!bq

D~0!e2 iHt /\ug,p;vac&eiEq
Dt/\eiEg

St/\

5^vac;0̄ue2 iHt /\bg
S~ t !bq

D~ t !ug,p;vac&eiEq
Dt/\eiEg

St/\,

~3.8!

where the Heisenberg operators are given by

bn~ t !5eiHt /\bn~0!e2 iHt /\. ~3.9!

The stateu0̄& in Eq. ~3.8! refers to the no-particle fermion
state with the propertiesbnu0̄&50 andbn

†u0̄&5un&. The state
u0̄;vac& is the vacuum state of the composite system satis
ing

Hu0̄;vac&50. ~3.10!

Using the interaction representationbn(t)5exp@2iEnt/
\]bn(t) and Eq.~3.10!, the amplitude~3.8! for case I be-
comes

^vac;0̄ubg
S~ t !bq

D~ t !ug,p;vac&. ~3.11!

Hence the probability of finding the detector in stateuq&, the
source atomS in stateug&, and the field in its vacuum state a
time t is

PI~ t !5 z^vac;0̄ubg
S~ t !bq

D~ t !ug,p;vac& z2. ~3.12!

An evaluation of this probability to fourth order is given i
Sec. V.

For case II, where the field is unspecified, two-phot
amplitudes such as

^k8,k;g,queiH 0t/\e2 iHt /\ug,p;vac& ~3.13!

5^vac,0̄uak~ t !ak8~ t !bg
S~ t !bq

D~ t !ug,p;vac& ~3.14!

contribute in addition to Eq.~3.11!. In Eq. ~3.14! we have
used the interaction representation for the field opera
a(t)5exp@2ivt#a(t). The probability thatD is in stateuq&
andS in ug& at time t is

PII~ t !5(
F

^ i ubq
D†~ t !bg

S†~ t !u0̄;F&^F;0̄ubg
S~ t !bq

D~ t !u i &,

~3.15!

where the sum is over a complete set of field states. Clos
over field states gives

PII~ t !5^ i ubq
D†~ t !bg

S†~ t !bg
S~ t !bq

D~ t !u i &, ~3.16!

which is evaluated in Sec. V.
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When the state ofS is also unspecified at the time o
measurement~case III!, the probability of finding the detec
tor in stateuq& is

PIII ~ t !5 (
p8,F

^ i ubq
D†~ t !bp8

S†
~ t !u0̄;F&^F;0̄ubp8

S
~ t !bq

D~ t !u i &

5^ i ubq
D†~ t !bq

D~ t !u i &, ~3.17!

where we have used closure over the source states in add
to those over the field. A typical amplitude contributing
the probability~3.17! is

^vac;0̄uak~ t !bp8
S

~ t !bq
D~ t !ug,p;vac&. ~3.18!

The amplitudes and probabilities are calculated using per
bation theory in Sec. V. The probabilities are evaluated
the order ofm2(S)m2(D) and theR-dependent terms ex
tracted.

For the calculations in Secs. IV and V we need t
Heisenberg equations for thea and b operators. The equa
tion of motion for the annihilation operatorbn(t) for elec-
tron states is, from Eq.~3.7!,

ḃn~ t !5
i

\ (
m

mW mn
•dW ~RW ,t !bm~ t !e2 ivmnt, ~3.19!

from which

bn~ t !5bn~0!1
i

\ (
m

E
0

t

dt8mW mn
•dW ~RW ,t8!bm~ t8!e2 ivmnt8.

~3.20!

The total displacement vector fielddW (rW,t8) in the integrand
of Eq. ~3.20! is evaluated atRW S for bn

s(t) and atRW D for
bn

D(t).
Similarly, for thea operators, we have from Eq.~3.6!

ȧ~ t !5
1

\ S 2p\ck

V D 1/2

(
m,n

mW mn~S!•ēWe2 ikW•RW Seivt

3eivmn
S tbm

†S~ t !bn
S~ t !1

1

\ S 2p\ck

V D 1/2

3(
m,n

mW mn~D !•ēWe2 ikW•RW Deivt

3eivmn
D tbm

†D~ t !bn
D~ t !. ~3.21!

The operatora(t) is then a sum of the free field and atom
dependent terms

a~ t !5a~0!1aS~s!~ t !1aD~s!~ t !, ~3.22!

where the atom-dependenta’s have the form

a~s!~ t !5
1

\ (
m,n

mW mn
•ēWe2 ikW•RW S 2p\ck

V D 1/2

3E
0

t

dt8ei ~v1vmn!t8bm
† ~ t8!bn~ t8!. ~3.23!
ion

r-
o

For a single source, the Heisenberg operator for the displ
ment fielddW (rW,t) is

dW ~rW,t !5dW ~0!~rW,t !1dW ~s!~rW,t !, ~3.24!

wheredW (s)(rW,t) is found from the mode expansion~3.5! us-
ing Eq. ~3.23! @18#. We have

di
~s!~rW,t !5

i

\ (
m,n

(
modes

m j
mnS 2p\ck

V D
3eiēje

ikW•~rW2RW !e2 ivt

3E
0

t

dt8ei ~v1vmn!t8bm
† ~ t8!bn~ t8!1H.c.

~3.25!

The polarization sum and the angular integration over
direction ofkW give

di
~s!~rW,t !5

ic

p
(
m,n

m j
mn~2¹2d i j 1¹ i¹ j !

3
1

urW2RW u
E

0

t

dt8E
0

`

dk~sin kurW2RW u!

3@e2 iv~ t2t8!2eiv~ t2t8!#eivmnt8bm
† ~ t8!bn~ t8!

~3.26!

for rWÞRW . Thek integral in Eq.~3.26! is

E
0

`

dk~sin kurW2RW u!@e2 iv~ t2t8!2eiv~ t2t8!#

5
1

2i E2`

`

dk@eikurW2RW u2e2 ikurW2RW u#e2 ikc~ t2t8!

52 ip@d„urW2RW u2c~ t2t8!…2d„urW2RW u1c~ t2t8!…#.

~3.27!

Hence, fort.urW2RW u/c,

di
~s!~rW,t !5(

m,n
m j

mn~2¹2d i j 1¹ i¹ j !
eivmn~ t2urW2RW u/c!

urW2RW u

3bm
† ~ t2urW2RW u/c!bn~ t2urW2RW u/c!. ~3.28!

Of course, fort,urW2RW u/c, di
(s)(rW,t) is zero, reflecting the

causal character of the source field.
For a many-atom system, such as the source plus dete

in the present problem, the Maxwell field is formally add
tive. Using Eq.~3.22!, we can write

dW ~rW,t !5dW ~0!~rW,t !1dW S~rW,t !1dW D~rW,t !, ~3.29!

with dW S(rW,t) anddW D(rW,t) given by Eq.~3.28!. However, we
emphasize that the atom-dependent termdW S(rW,t) is not iden-
tical to its value in the absence of the detector. Similar
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dW D(rW,t) is not identical to the corresponding expression
the isolated detector. This is a consequence of the fact
theb operators in expression~3.28! for the field do not refer
to the initial timet50. At any time other thant50, theb’s
operate on the composite space of the field and both ato

It is of interest to note that the mixing of the source a
detector operators first occurs in the third term in a pertur
tion expansion in dipole moments; the first- and seco
order terms are strictly additive. The first-order term is fou
by replacing theb’s in Eq. ~3.28! by their values att50, and
this leads to the familiar result

di
~1!~rW,t !5(

m,n
m j

mn~S!~2¹2d i j 1¹ i¹ j !

3
eivmn

S
~ t2urW2RW Su/c!

urW2RW Su
bm

†S~0!bn
S~0!

1(
m,n

m j
mn~D !~2¹2d i j 1¹ i¹ j !

3
eivmn

D
~ t2urW2RW Du/c!

urW2RW Du
bm

†D~0!bn
D~0!. ~3.30!

The additivity in second order follows by approximating t
b’s in Eq. ~3.28! to first order@19#. Higher-order approxima-
tions to the displacement vector field have contributions t
are nonadditive in the sense that they are dependent on
transition moments of both the source and the detector.
nally, it must be stressed that, despite the general nonadd
nature ofdW (rW,t), the fields are nevertheless strictly additi
for t,R/c5uRW D2RW Su/c; that is, in this time intervaldW S(rW,t)
depends only onm(S) anddW D(rW,t) only on m(D).

IV. PROOF OF STRICT CAUSALITY FOR CASE III TO
ALL ORDERS IN PERTURBATION THEORY

In this section we prove thatPIII (t) @Eq. ~3.17!# is causal
to all orders, i.e., theR-dependent part ofPIII (t) vanishes for
times less thanR/c, where RW 5RW D2RW S , the interatomic
separation. The probabilityPIII (t) can be expressed as th
expectation value of the projection operatorgqq

D (t) for the
detector being found in stateuq&,

PIII ~ t !5^vac;p,gugqq
D ~ t !ug,p;vac&. ~4.1!

In terms of the fermion operatorsb, the projection operato
is

gqq~ t !5bq
†~ t !bq~ t !, ~4.2!

which is a diagonal term of the general operator

gmn~ t !5bm
† ~ t !bn~ t !. ~4.3!

To find an integral equation forgmn(t) we first write down
its equation of motion using the expression~3.21! for the
b’s,
r
at

s.

-
-

d

t
the
i-

ive

ġmn~ t !5ḃm
† ~ t !bn~ t !1bm

† ~ t !ḃn~ t !

52
i

\
mW uv

•dW ~RW ,t !g rs~ t !Tmn,uv
rs ~ t !, ~4.4!

with

Tmn,uv
rs ~ t !5du

r dn
sdmve2 ivuvt2du

sdm
r dnveivuvt; ~4.5!

Tmn,uv
rs (t) is a c number independent ofmW andRW . Hence

gmn~ t !5gmn~0!2
i

\ E
0

t

dt8mW uv
•dW ~RW ,t8!Tmn,uv

rs ~ t8!g rs~ t8!.

~4.6!

We now show that fort,R/c, gmn
D (t) is independent ofR;

the causal nature of the probabilityPIII (t) follows as a spe-
cial case.

The general operatorgmn
D (t) for the detector is found by

iterating Eq.~4.6!:

gmn
D ~ t !5gmn

D ~0!2
i

\ E
0

t

dt8@mW uv~D !•dW ~RW D ,t8!#

3Tmn,uv
rs ~ t8!g rs~0!1S 2

i

\ D 2E
0

t

dt8E
0

t8
dt9

3@mW uv~D !•dW ~RW D ,t8!#@mW u8v8~D !•dW ~RW D ,t9!#

3Tmn,uv
rs ~ t8!Trs,u8v8

r 8s8 ~ t9!g r 8s8
D

~0!1••• , ~4.7!

with the Nth term given by

S 2
i

\ D NE
0

t

dt1E
0

t1
dt2•••E

0

tN21
dtN@mW ~D !•dW ~RW D ,t1!#

3@mW ~D !•dW ~RW D ,t2!#•••@mW ~D !•dW ~RW D ,tN!#

3T~ t1!T~ t2!•••T~ tN!g r NsN

D ~0!, ~4.8!

where the indices labeling the states of the detector are
plicit. In Eq. ~4.8! the displacement vector field is the tot
field evaluated at the detector. For 0<t,R/c, t i is also less
thanR/c anddW S(RW D ,t i)[0, so that

dW ~RW D ,t i !5dW ~0!~RW D ,t i !1dW D~RW D ,t i !. ~4.9!

Now dW D(RW D ,t i) is independent ofm(S) and hence ofR.
Therefore,dW (RW D ,t i) is also independent ofR. This implies
that afterN iterations~for arbitraryN! gqq(t) has noR de-
pendence for 0<t,R/c and hence the causal nature
PIII (t).

V. CALCULATION OF THE PROBABILITIES UP TO
FOURTH ORDER

For an examination of the fundamental causal proper
of the probabilities, it is sufficient to employ a two-leve
model for each atom. We denote the frequency differe
(Ep

S2Eg
S)/\ by vS and (Eq

D2Eg
D)/\ by vD. The generali-

zation to multilevel atoms is straightforward and does n
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change the conclusions concerning causality reached in
section.

A. Case I

For this case we calculate the probability of finding t
system in a pure state where detectorD is excited, the source
S has decayed to its ground state, and the field is the vacu
Starting from the initial stateug,p;vac&, the probability of
finding the system in stateuq,g;vac& at time t is, from Eq.
~3.12!,

PI~ t !5 z^vac;0̄ubg
S~ t !bq

D~ t !ug,p;vac& z2. ~5.1!

This probability is shown to be noncausal. Although nonz
for t,R/c, it is small except for timest close toR/c and
vS'vD. For t.R/c andvS'vD, the probability is domi-
nated by its causal part. In the general case the leading
tribution to the probability amplitude is second order in t
dipole transition moments. Using Eq.~3.20!, with its second
term denoted bybn

(s)(t), the amplitude may be written as

M ~ t !5^vac;0̄u@bg
S~0!1bg

S~s!~ t !#

3@bq
D~0!1bq

D~s!~ t !#ug,p;vac&

5^vac;0̄ubg
S~0!bq

D~s!~ t !ug,p;vac&

1^vac;0̄ubg
S~s!~ t !bq

D~s!~ t !ug,p;vac&

5Mc~ t !1Mnc~ t !, ~5.2!

where we have usedbq(0)ug&50. This partitioning corre-
sponds to causal and noncausal terms. Inserting the exp
expression forbq

D(s)(t), the first term of Eq.~5.2! becomes

Mc~ t !5^vac;0̄ubg
S~0!S i

\ Dm i~D !E
0

t

dt8bg
D~ t8!

3di~RW D ,t8!eivDt8ug,p;vac&, ~5.3!

from which we find the lead term that depends on the pr
uct of the two transition momentsm(S)m(D). Since Eq.
is

m.

o

n-

cit

-

~5.3! hasm i(D) as an explicit factor,bg
D(t8) can be replaced

by bg
D(0); also it is sufficient to finddW (RW D ,t8) up to first

order inm(S). Thus this approximation toMc(t) leads to

i

\
m i~D !E

0

t

dt8eivDt8^gudi
S~1!~RW D ,t8!up&, ~5.4!

where the matrix element in Eq.~5.4! is in the source-atom
space alone. Sincedi

S(1)(RW D ,t8) is zero fort8,R/c, the am-
plitude ~5.4! vanishes fort,R/c. For t8.R/c, we have,
from Eq. ~3.28!,

di
S~1!~rW,t8!5(

m,n
m j

mn~S!~2¹2d i j 1¹ i¹ j !

3
e2 ivS~ t82urW2RW Su/c!

urW2RW Su
bm

S†~0!bn
S~0!. ~5.5!

Hence, fort.R/c,

Mc~ t !5
i

\
m i~D !m j~S!E

R/c

t

dt8eivDt8

3~2¹2d i j 1¹ i¹ j !
1

R
e2 ivS~ t82R/c!

5
1

\
m i~S!m j~D !ei ~vD2vS!R/c

3F ~2¹2d i j 1¹ i¹ j !
civSR/c

R
G

3Fei ~vD2vS!~ t2R/c!21

vD2vS G . ~5.6!

In the large-R limit, the probability arising from Eq.~5.6! is
proportional to the inverse square of the separation. We n
that the time-dependent factor in Eq.~5.6! is the familiar
expression that appears in first-order time-dependent pe
bation theory. For near resonancevS'vD, the modulus
squared leads to Fermi’s result@1#.

The second termMnc(t) of the amplitude~5.2! is now
evaluated. This is found to depend on the correlation fu
tion between the vacuum fluctuations atS andD. In contrast
to Mc(t), this is noncausal. Substituting for the sourc
dependentb operators inMnc(t), we get
Mnc~ t !52
1

\2 m i~D !m j~S!E
0

t

dt8e2 ivSt8E
0

t

dt9eivDt9^vacudj
~0!~RW S ,t8!di

~0!~RW D ,t9!uvac&

52S 1

\ Dm i~D !m j~S!~2¹2d i j 1¹ i¹ j !
F~R,t;vS,vD!

R
, ~5.7!

whereF(R,t;vS,vD) is defined by

F~R,t;vS,vD!5
c

p E
0

`

dk~sinkR!
@ei ~vD2vS!t2ei ~v1vD!t2e2 i ~v1vS!t11#

~v1vD!~v1vS!
. ~5.8!
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The k integral can be expressed in terms of sine and co
integrals @10#; it does not vanish fort,R/c and hence
Mnc(t) is noncausal.

Before discussing the probabilities we consider the ab
amplitudes in the far zone, namely,R.l, wherel is the
reduced wavelength of a typical atomic transition. In partic
lar we examine the behavior of the noncausal amplitude
the interval (R2l)/c,t,(R1l)/c. We make two ap-
proximations: first, the far-zone approximation, which resu
in

M nc~ t !'
1

\
m i~D !m j~S!~d i j 2R̂i R̂j !

1

R

d2F

dR2 , ~5.9!

and second, the stationary phase approximation near
point uct2Ru'0, which gives

Mnc~ t !'
1

2p\c
m i~D !m j~S!~d i j 2R̂i R̂j !

1

R~R2ct!

3~eivDt1e2 ivSt!. ~5.10!

This noncausal amplitude is clearly large in the neighb
hood R'ct @7~b!#. We now compare this with the caus
amplitude~5.6!. For R.l,

Mc~ t !'
1

\c2 m i~D !m j~S!~d i j 2R̂i R̂j !
1

R
F vS2

vD2vSG
3@eivS~R/c2t !2eivD~R/c2t !#eivDt, t.R/c

50, t,R/c. ~5.11!

In the neighborhood ofR'ct, Mc(t) is small; in fact, it is
identically zero forR.ct. For R,ct,

U Mc~ t !

Mnc~ t !U' ~ct2R!2

l2 , ~5.12!

so that the noncausal contribution to the probabilityPI(t) is
the dominant one for 0,t,(R1l)/c.

The time-dependent probabilityPI(t) in terms of the two
amplitudes is

PI~ t !5uMc~ t !1Mnc~ t !u25uMc~ t !u21@Mc~ t !M̄nc~ t !

1M̄ c~ t !Mnc~ t !#1uMnc~ t !u2. ~5.13!

For t,R/c,

PI~ t !5uMnc~ t !u25
1

\2 m i~D !m j~S!mk~D !m l~S!

3F ~2¹2d i j 1¹ i¹ j !
F~R,t;vD,vS!

R G
3F ~2¹2dkl1¹k¹ l !

F̄~R,t;vD,vS!

R G . ~5.14!

As noted above, this is small except forR/c.t.(R
2l)/c. In this interval,PI(t) for a randomly oriented pair is
found to be
e

e

-
in

s

he

-

PI~ t !'
1

9p2\2c2 um~D !u2um~S!u2
1

R2~R2ct!2

3@11cos~vD1vS!t#. ~5.15!

For t.R/c, the causal termuMc(t)u2 dominates~except in
the intervalR/c,t,(R1l)/c) and

PI~ t !'uMc~ t !u25
1

\2 m i~D !m j~S!mk~D !m l~S!F ~2¹2d i j

1¹ i¹ j !
eivSR/c

R
GF ~2¹2dkl1¹k¹ l !

e2 ivSR/c

R
G

3Uei ~vD2vS!~ t2R/c!21

~vD2vS!
U2

. ~5.16!

In physically realistic situations, energy transfer betwe
neighboring atoms occurs whenvD'vS. In such cases, the
probability ~5.16! dominates because of the near-reson
denominator. In the large-R limit, the probability ~5.16! is
equivalent to the Fermi result@1#.

B. Case II

For this case, the initial conditions are the same as bef
namely, the detectorD is in its ground stateS, the source
atom is in the excited stateup&, and the radiation field is the
vacuum. In contrast to case I, we now find the probability
time t that D is excited andS in its ground state, with the
field unspecified. From Eq.~3.15!

PII~ t !5(
F

z^F;0̄ubg
S~ t !bq

D~ t !ug,p;vac& z2. ~5.17!

It is clear that up to fourth order in the transition momen
the only field statesuF& that can contribute are the vacuu
uvac& and the two-photon statesuk,k8&. The contribution in-
volving the vacuum is the same as that for case I. So

PII~ t !5PI~ t !1 (
modes

z^k,k8;0̄ubg
S~ t !bq

D~ t !ug,p;vac& z2.

~5.18!

We now calculate the amplitude up to orderm(A)m(B) for
the term involving the two-photon states. This amplitude

^k,k8;0̄ubg
S~ t !bq

D~ t !ug,p;vac&

52
1

\2 m i~D !m j~S!E
0

t

dt8e2 ivSt8E
0

t

dt9eivDt9^k,k8u

3dj
~0!~RW S ,t8!di

~0!~RW D ,t9!uvac&. ~5.19!

The off-diagonal matrix element in Eq.~5.19! is for the cor-
relation function operator for the vacuum fluctuations atS
andD at different times. Hence the amplitude~5.19! is non-
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causal. Using the mode expansion fordW (0) and performing
the time integrals, we obtain for the amplitude

2
1

\2 m i~D !m j~S!S 2p\ck

V D 1/2S 2p\ck8

V D 1/2

3F ēj8ēie
2 ikW•RW Se2 ikW•RW D

ei ~v82vS!t21

v82vS

ei ~v1vD!t21

v1vD

1k↔k8G . ~5.20!

TheR-dependent terms in the probability for the two-phot
final state is found, in terms of the functionF defined in Eq.
~5.8!, to be

1

\2 m i~D !m j~S!mk~D !m l~S!

3F ~2¹2d i j 1¹ i¹ j !
F~R,t;2vS,vD!

R G
3F ~2¹2dkl1¹k¹ l !

F̄~R,t;2vS,vD!

R G . ~5.21!

The noncausal part ofPII(t) is the sum of Eqs.~5.14! and
~5.21!. Both these terms are small except whenR is close to
ct. ThenPII(t) for a randomly oriented pair is

PII~ t !'
2

9p2\2c
um~D !u2um~S!u2

1

R2~R2ct!2

3@11cosvDt cosvSt#. ~5.22!

For R.ct, the causal part dominates and is the same as
for case I, namely, Eq.~5.16!.

C. Case III

For this case, again with the same initial state, we ca
late the probability at timet that the detector is excited wit
no reference to the states of the emitting atom and the ra
tion field. This probability is causal and an explicit expre
sion for it could be found up to fourth order in the momen
using the approach discussed in Sec. IV. However, in
subsection we follow a procedure similar to the one used
cases I and II. This enables us to identify the contributio
that cancel the noncausal terms found in the previous ca
The probabilityPIII (t) may be expressed as

PIII ~ t !5(
F

(
p8

u^F;0̄ubp8
S

~ t !bq
D~ t !ug,p;vac&u2,

~5.23!

where the sums are over complete sets of states for the
diation field and for atomS, ThusPIII (t) up to fourth order
in the moments and in the two-level approximation is
at

-

ia-
-

is
r
s
es.

ra-

PIII ~ t !5u^vac;0̄ubg
S~ t !bq

D~ t !ug,p;vac&u2

1 (
modes

z^k,k8;0̄ubg
S~ t !bq

D~ t !ug,p;vac& z2

1 (
modes

z^k;0̄ubp
S~ t !bq

D~ t !ug,p;vac& z2

5PII~ t !1 (
modes

z^k;0̄ubp
S~ t !bq

D~ t !ug,p;vac& z2.

~5.24!

Using the decomposition~3.20!, the amplitude of the addi-
tional term in Eq.~5.24! can be written as the sum of tw
matrix elements

^k;0̄ubp
S~0!bq

D~s!~ t !ug,p;vac&1^k;0̄ubp
S~s!~ t !

3bq
D~s!~ t !ug,p;vac&. ~5.25!

The first term has a nonvanishing first-order contribution
pendent onm(D). Hence, to find the probability correct t
fourth order in the moments, it is necessary to evaluate
amplitude to third order, namely, to orderm(D)m2(S). The
first-order term is immediate and is given by

M ~1!~ t !5~ i /\!m i~D !E
0

t

dt8eivDt8^kudi
~0!~RW D ,t8!uvac&

5m i~D !S 2p\ck

V D 1/2

ēie
2 ikW•RW D

ei ~v1vD!t21

v1vD .

~5.26!

There are no terms of orderm(D)m(S). The required third-
order term arises from both matrix elements of Eq.~5.25!. It
is

M ~3!5^k;0̄ubp
S~0!~ t !bq

D~3!~ t !ug,p;vac&1^k;0̄ubp
S~2!~ t !

3bq
D~1!~ t !ug,p;vac&5Mc

~3!1Mnc
~3! . ~5.27!

As will be seen below, the contribution to the probabili
from the interference betweenM (1) and Mc

3 is causal and
betweenM (1) andMnc

(3) is noncausal.
We first obtain the noncausal contribution to the probab

ity and show that it cancels the noncausal terms inPII(t).
We have

Mnc
~3!~ t !5^k;0̄ubp

S~2!~ t !bq
D~1!~ t !ug,p;vac&

52
i

\3 mk~D !m j~S!m l~S!

3E
0

t

dt-eivDt-E
0

t

dt8eivSt8E
0

t8
dt9e2 ivSt9

3^kudl
~0!~RW S ,t9!dj

~0!~RW S ,t8!dk
~0!~RW D ,t-!uvac&,

~5.28!

where we have used the solution~3.20! for the b (s)(t) op-
erators. The noncausal contribution to the probability at ti
t is
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M̄ ~1!~ t !Mnc
~3!~ t !1M ~1!~ t !M̄nc

~3!~ t !

52
1

\4 m i~D !m j~S!mk~D !m l~S!

3E
0

t

dt8eivSt8E
0

t8
dt9e2 ivSt9E

0

t

dt-eivDt-

3E
0

t

dt8888e2 ivDt8888^vacudi
~0!~RW D ,t8888!

3dl
~0!~RW S ,t9!dj

~0!~RW S ,t8!dk
~0!~RW D ,t-!uvac&1c.c.

~5.29!

The evaluation of the fourth-order correlation function
straightforward. On inserting a complete set of field sta
uF& we have

(
F

^vacudi
~0!~RW D ,t8888!dl

~0!~RW S ,t9uF&^Fudj
~0!~RW S ,t8!

3dk
~0!~RW D ,t-!uvac&. ~5.30!

The only field states that can contribute are the vacuum
the two-photon states. WhenuF& is the vacuum, the corre
sponding contribution to Eq.~5.29! is found to be the nega
tive of Eq. ~5.21!; when uF& are two-photon states, the con
tribution is the negative of Eq.~5.14!. Hence these cancel th
noncausal terms inPII(t) andPIII (t)[0 for t,R/c.

It remains to find an expression forPIII (t) when t.R/c.
It has two contributions: the causal part ofPI(t), which
is the modulus square of the probability amplitu
~5.6!, and the causal part of the interference te
M̄ (1)(t)Mc

(3)(t)1M (1)(t)M̄ c
(3)(t). The second of these i

found in Appendix B. For the case of near resonancevD

'vS, the lead term arising from interference is

1

9p\2 um~D !u2um~S!u2F ~2¹2d i j 1¹ i¹ j !
eivSR/c

R
G

3
1

vD2vS E
0

` dv

~vD1v!~vS1v!

3F ~2¹2d i j 1¹ i¹ j !
sin~vR/c!

R G~e2 i ~vD1v!t21!

3~ei ~vD2vS!t2ei ~vD2vS!R0 /c!1c.c., ~5.31!

which is proportional to (vD2vS)21. On the other hand, the
term from the square of the amplitude~5.6! that is propor-
tional to (vD2vS)22 dominatesPIII (t) for t.R/c. For ran-
domly oriented molecules, we find from Eq.~5.16!
s

d

PIII ~ t !.
1

9\2 um~D !u2um~S!u2F ~2¹2d i j 1¹¹ j !
eivSR/c

R
G

3F ~2¹2d i j 1¹ i¹ j !
e2 ivSR/c

R
G

3Fsin2$@~vD2vS!/2#~ t2R/c!%

@~vD2vS!/2#2 G
5

2

9\2R6 um~D !u2um~S!u2$31~kR!21~kR!4%

3Fsin2$@~vD2vS!/2#~ t2R/c!%

@~vD2vS!/2#2 G , t.R/c, ~5.32!

where ck5vS'vD. We reiterate thatPIII (t)[0 for t
,R/c.

VI. SUMMARY

We have used the Heisenberg picture to calculate the
citation transfer probability between two atoms. Ferm
early calculation was based on a complete specification
the final states of the atoms and the field. He employed
approximation that extended the integrals over frequenc
the negative domain. This led to a causal result. Howeve
calculation without this approximation gives a noncau
probability, which has been confirmed with our method.
the present work we have used perturbation theory correc
fourth order in the transition moments to calculate the pr
abilities for the outcomes in various experimental setups c
responding to different specifications of the system at
time of measurement. These probabilities show in gen
noncausal behavior. However, for the case where neither
state of the source nor that of the field is specified,
fourth-order result is causal. This probability is a sum
three types of terms, differing in the number of photons
the intermediate states~5.24!. Each of these types has a
R-dependent part that is nonzero fort,R/c. Nevertheless,
their sum is zero, thus providing an explicit demonstration
the causal behavior up to fourth order. We also have give
formal proof showing that toall orders in the transition mo
ments, the probability is strictly causal when the measu
ment is inclusive, i.e., the measurement is solely made on
detector.
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APPENDIX A

In this appendix we obtain the energy density of the el
tromagnetic field in the neighborhood of an atom. In partic
lar, the energy density is found at timet.0 given that att
50 the atom is known to be in an excited state that ha
dipole-allowed transition to the ground state. As mention
in the Introduction, the time development of the energy d
sity exhibits causal behavior. In the Heisenberg picture
demonstration of this causality is straightforward as
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Heisenberg source fields are causal@20#. A demonstration
within the Schro¨dinger picture is less direct. We outline th
calculation of the energy density~correct to quadratic term
in the transition moments! within this picture and explicitly
show the causal behavior. Given that the initial stateu i & is
up;vac&, the state at timet, correct to second order, is

uC~ t !&5e2 iHt /\u i &5uC~0!~ t !&1uC~1!~ t !&1uC~2!~ t !&,
~A1!
where

uC~0!~ t !&5e2 ivptup;vac&, ~A2!

uC~1!~ t !&5~2 i /\! (
modes

e2 i ~vg1v!tug;kW &^kW ;gu

2mW •dW up;vac&E
0

t

dt8ei ~v2v0!t8, ~A3!
avior by
q.

its is not
y

uC~2!~ t !&5~2 i /\!2 (
modes

e2 i ~vp1v1v8!tup;kW ,kW8&^kW8,kW ;pu2mW •dW ug;kW &^kW ;gu

2mW •dW up;vac&E
0

t

dt8ei ~v81v0!t8E
0

t8
dt9ei ~v2v0!t9, ~A4!

wherev05vp2vg .
The change in the energy density at timet is

K C~1!~ t !Ud2~rW !

8p
UC~1!~ t !L 1K C~0!~ t !Ud2~rW !

8p
UC~2!~ t !L 1K C~2!~ t !Ud2~rW !

8p
UC~0!~ t !L , ~A5!

with a similar expression for the change in magnetic energy density. In his calculation, Kikuchi@2# used only the first term of
Eq. ~A5!. For a randomly oriented dipole source this term is

K C~1!~ t !Ud2~rW !

8p
UC~1!~ t !L 5

m2

3

c2

4p3 U~2¹2d i j 1¹ i¹ j !
1

r E
0

`

dk~sinkr !e2 ikctE
0

t

dt8ei ~k2k0!ct8U2

~A6!

5
m2

3

1

4p3 U~2¹2d i j 1¹ i¹ j !
1

r E
0

`

dk~sinkr !e2 ikct
ei ~k2k0!ct21

k2k0
U2

. ~A7!

The far-zone limit of Eq.~A7! is essentially Kikuchi’s result@Eq. ~20! of Ref. @2##. The integral in Eq.~A7! does not vanish
for r .ct and hence this contribution to the energy density is not causal. However, he was able to obtain causal beh
extending the limits of the integral to include all negative frequencies. We show that this behavior easily follows from E~A6!
by extending thek limits before doing the time integral. Using

E
2`

`

dk~sin kr !e2 ikctei ~k2k0!ct852 ipe2 ik0ct8@d„r 2c~ t2t8!…2d„r 1c~ t2t8!…# ~A8!

and noting thatt.t8 in the integrand in Eq.~A6!, we have

^C~1!~ t !u
d2~rW !

8p
uC~1!~ t !&5H ~m2/12p!U~2¹2d i j 1¹ i¹ j !

eik0r

r U2

for t.r /c

0 for t,r /c.
~A9!

Kikuchi justified the extension of the limits of thek integral on the basis that the integral is small for negativek. However, we
point out that the added terms, though small, are noncausal. As shown below, the approximation of extending the lim
needed in a complete calculation. The inclusion of the second and third terms of Eq.~A5! makes the total energy densit
expressionexactlycausal.

We now evaluate the second term in Eq.~A5! using Eqs.~A2! and ~A4!,
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K C~0!~ t !Ud2~rW !

8p
UC~2!~ t !L 52

1

8p\ (
modes

e2 i ~k1k8!ctK vac;pUd2~rW !

8p
Up;kW ,kW8L ^kW8,kW ;pu2mW •dW ug;kW &^kW ;gu

2mW •dW up;vac&E
0

t

dt8ei ~k81k0!ct8E
0

t8
dt9ei ~k2k0!ct9 ~A10!

52
m2

3

c2

4p3 E
0

`

dkE
0

`

dk8F ~2¹2d i j 1¹ i¹ j !
sinkr

r G
3F ~2¹2d i j 1¹ i¹ j !

sink8r

r Ge2 i ~k1k8!ctE
0

t

dt8ei ~k81k0!ct8E
0

t8
dt9ei ~k2k0!ct9 ~A11!

5
m2

3

1

4p3 ~2¹2d i j 1¹ i¹ j !
r

1

r
~2¹2d i j 1¹ i¹ j !

r̄
1

r̄
E

0

`

dkE
0

`

dk8

3
1

2
~sinkr sink8 r̄ 1sinkr̄sin k8r !e2 i ~k1k8!ctH ei ~k1k8!ct21

~k2k0!~k1k8!
2

ei ~k81k0!ct21

~k2k0!~k81k0!
J , ~A12!

where, for convenience, we have introducedr̄ ~to be set equal tor after the differentiations!. The third term in Eq.~A5! is the
complex conjugate of Eq.~A12!. Hence the change in the total energy density~A5! can be written as

m2

3

1

4p3 ~2¹2d i j 1¹ i¹ j !
r

1

r
~2¹2d i j 1¹ i¹ j !

r̄ 3
1

r̄ H E
0

`

dkE
0

`

dk8
1

2
~sinkr sink8 r̄ 1sinkr̄ sink8r !

3F12e2 i ~k82k0!ct2ei ~k2k0!ct1ei ~k2k8!ct

~k2k0!~k82k0!
1

12e2 i ~k1k8!ct

~k1k8!~k2k0!
2

e2 i ~k2k0!ct2e2 i ~k1k8!ct

~k81k0!~k2k0!
1

12ei ~k1k8!ct

~k1k8!~k2k0!

2
ei ~k2k0!ct2ei ~k1k8!ct

~k81k0!~k2k0!
G J . ~A13!
ck
e

We consider separately the integrals within the curly bra
ets with different numerators: For terms with no time d
pendence in the numerator

1

2 E
0

`

dkE
0

`

dk8~sinkr sink8 r̄ 1sinkr̄ sink8r !

3F 1

~k2k0!~k82k0!
1

2

~k1k8!~k2k0!G
5

1

2 E
0

`

dkE
0

`

dk8~sinkr sink8 r̄ 1sinkr̄ sin k8r !

3F 1

~k82k!~k2k0!
2

1

~k82k!~k82k0!

1
2

~k1k8!~k2k0!G5E
0

`

dkE
0

`

dk8~sinkr sink8 r̄

1sinkr̄ sink8r !
1

k2k0
S 1

~k1k8!
1

1

~k82k! D ~A14!

the k8 integral is elementary and Eq.~A14! becomes

pE
0

`

dk
sink~r 1 r̄ !

k2k0
~A15!
-
-
and for terms withe6 i (k2k8)ct ande6 i (k1k8)ct

1

2 E
0

`

dkE
0

`

dk8~sinkr sink8 r̄ 1sinkr̄ sink8r !

3Fei ~k2k8!ct

k2k8 S 1

k82k0
2

1

k2k0
D

1
e2 i ~k2k8!ct

k1k8 S 1

k81k0
D1

ei ~k2k8!ct

k1k8 S 1

k81k0
D G

5
1

2 E
0

`

dkE
2`

`

dk8 sinkr sink8 r̄

3F ei ~k2k8!ct

~k2k8!~k82k0!
2c.c.G1r↔ r̄ ~A16!

the k8 integral depends on the sign ofr 2ct. For r .ct, Eq.
~A16! becomes

pE
0

`

dk
sinkr

k2k0
@2coskr̄1cos~k2k0!ct cosk0r̄ #1r↔ r̄ .

~A17!

For r ,ct, Eq. ~A16! becomes
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pE
0

`

dk
sinkr

k2k0
sin@~k2k0!ct#sink0r̄ 1r↔ r̄ . ~A18!

For terms withe2 i (k82k0)ct andei (k2k0)ct

F2
1

2 E
0

`

dkE
0

`

dk8sin kr
sink8 r̄

k82k0
e2 i ~k82k0!ct

3S 1

~k2k0!
1

1

~k1k0! D1c.c.G1r↔ r̄ . ~A19!

After interchangingk and k8, the k8 integral in Eq.~A19!
becomes

F2
1

2 E
2`

`

dk8
sink8 r̄

k82k0
E

0

`

dk
sinkr

k2k0
e2 i ~k2k0!ct1c.c.G

1r↔ r̄ 52pE
0

`

dk
sinkr

k2k0
cos@~k2k0!ct#cosk0r̄

1r↔ r̄ , ~A20!
t
o

independent of the sign ofr 2ct.
We now show that the total energy density from the th

contributions vanishes fort,r /c, which demonstrates stric
causal behavior. Of the three contributions, Eqs.~A15! and
~A20! hold for all t, whereas the second contribution~A16!
has different forms depending on whethert,r /c or t.r /c.
For t,r /c, the contribution~A17! is

2pE
0

`

dk
sink~r 1 r̄ !

k2k0
1pE

0

`

dk cos~k2k0!ct

3
sinkr cosk0r̄ 1sinkr̄ cosk0r

k2k0
, ~A21!

which is the negative of the sum of Eqs.~A15! and ~A20!.
Thus, fort,r /c the change in energy density is strictly zer

We conclude this appendix by obtaining an expression
the electric energy density fort.r /c. In contrast to the
above, the second contribution is now different and is giv
by Eq. ~A18!; it does not cancel the other terms. Taking t
three contributions~A15!, ~A18!, and ~A20! together, we
find for the energy density
K C~ t !U d2~rW !

8p
UC~ t !L 5

m2

12p2 ~2¹2d i j 1¹ i¹ j !
r

1

r
~2¹2d i j 1¹ i¹ j !

r̄
1

r̄ E
0

`

dk
sinkr

k2k0
$coskr̄1sin@~k2k0!ct#sin k0r̄

2cos@~k2k0!ct#cosk0r̄ %1r↔ r̄ u r̄ 5r

5
m2

12p2 ~2¹2d i j 1¹ i¹ j !
r

1

r
~2¹2d i j 1¹ i¹ j !

r̄
1

r̄

3H E
2`

`

dk
sinkr

k2k0
$coskr̄2cos@kct2k0~ct2r !#1r↔ r̄ %

2E
0

`

dk
sinkr

k1k0
$coskr̄2cos@kct1k0~ct2r !#1r↔ r̄ %J U

r̄ 5r

. ~A22!
fre-

ent
Eq.
. It
The first integral within the large curly brackets in Eq.~A22!
is straightforward and isp cos@k0(r2r̄)#. So its contribution
to the energy density is time independent and is

m2

12p2 ~2¹2d i j 1¹ i¹ j !
r
1

r

3~2¹2d i j 1¹ i¹ j !
r̄

1

r̄
cos@k0~r 2 r̄ !#

5
m2

12p2 U~2¹2d i j 1¹ i¹ j !
eik0r

r U2

, ~A23!

which simplifies to

m2k0
4

6pr 2 S 11
1

k0
2r 2 1

3

k0
4r 4D . ~A24!

The second integral in Eq.~A22! has both time-independen
and time-dependent contributions. The time-dependent c
 n-

tribution can be expressed as an integral over imaginary
quencies as in Eq.~3.26! of Ref. @20#. It vanishes for times
larger than the Bohr period. Finally, the time-independ
part of the corresponding energy density to be added to
~A24! is that encountered in the Casimir-Polder potential
is

2
m2

12p2 ~2¹2d i j 1¹ i¹ j !
r

1

r
~2¹2d i j 1¹ i¹ j !

r̄
1

r̄

3E
0

`

dk
sin@k~r 1 r̄ !#

k2k0

52
m2

12p2 ~2¹2d i j 1¹ i¹ j !
r

1

r

3~2¹2d i j 1¹ i¹ j !
r̄

1

r̄
k0E

0

`

du
e2u~r 1 r̄ !

u21k0
2 U

r̄ 5r

,

~A25!
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which after differentiation becomes

2
m2k0

6p2 E
0

`

du
u6e22ur

u21k0
2

3F 1

u2r 2 1
2

u3r 3 1
5

u4r 4 1
6

u5r 5 1
3

u6r 6G . ~A26!

For large r , Eq. ~A26! falls off with the power lawr 27,
whereas Eq.~A24! shows an inverse square law depende
that arises from real photon emission. It is interesting to n
that for an atom in its ground state, the electric energy d
sity is solely given by Eq.~A26!, with k0 taking a negative
sign.

APPENDIX B

In this appendix we obtain the causal part of the interf
ence term that contributes to the probability for case III. It

M̄ ~1!~ t !Mc
~3!~ t !1M ~1!~ t !M̄ c

~3!~ t !, ~B1!

where

M ~1!~ t !5^k;0̄ubp
S~0!bq

D~1!~ t !ug,p;vac& ~B2!

and

Mc
~3!~ t !5^k;0̄ubp

S~0!bq
D~3!~ t !ug,p;vac&. ~B3!

From Eq.~3.20!

bq
D~1!~ t !5

i

\
m i~D !E

0

t

dt8eivDt8bg
D~0!di

~0!~RW D ,t8!.

~B4!

Hence

M ~1!~ t !5
i

\
m i~D !E

0

t

dt8eivDt8^kudi
~0!~RW D ,t8!uvac&.

~B5!
e
te
n-

-

Again, from Eq.~3.20!

bq
D~3!~ t !5

i

\
m i~D !E

0

t

dt8eivDt8bg
D~0!di

~2!~RW D ,t8!,

~B6!

where we have ignored terms that would contribute to or
um(D)u3 to the probability. Hence

Mc
~3!~ t !5

i

\
m i~D !E

0

t

dt8eivDt8^kudi
~2!~RW D ,t8!uvac&.

~B7!

The interference term~B1! is

1

\2 m i~D !m j~D !E
0

t

dt-e2 ivDt-E
0

t

dt8eivDt8

3^vacudi
~0!~RW D ,t-!uk&^kudj

~2!~RW D ,t8!uvac&1c.c. ~B8!

The Maxwell field operatordj
(2)(RW D ,t8) that is needed in Eq

~B8! arises from the sourceS. This is clearly causal. Fort8.
R/c, it is found from Eq.~3.28! to be

^pudj
S~2!~RW D ,t8!up&5mk~B!~2¹2d jk1¹ j¹k!

1

R

3@^pubg
†~1!~ t82R/c!u0̄&e2 ivS~ t82R/c!

1^0̄ubg
~1!~ t82R/c!up&eivS~ t82R/c!#.

~B9!

Substituting Eq.~B9! into Eq. ~B8! and using

^0̄ubg
~1!~ t82R/c!up&5

i

\
m l~S!E

0

t82R/c
dt9e2 ivSt9

3dl
~0!~RW S ,t9!, ~B10!

we get for the interference term
i

\3 m i~D !m j~D !mk~S!m l~S!E
0

t

dt-e2 ivDt-E
R/c

t

dt8eivDt8~2¹2d jk1¹ j¹k!
1

R E
0

t82R/c
dt9^vacudi

~0!~RW D ,t-!uk&

3^kudl
~0!~RW S ,t9!uvac&[e2 ivSt9eivS~ t82R/c!2eivSt9e2 ivS~ t82R/c!] 1c.c. ~B11!

5
i

p\2 m i~D !m j~D !mk~S!m l~S!~2¹2d jk1¹ j¹k!
R

1

R
~2¹2d i l 1¹ i¹ l !

R̄
1

R̄
E

0

`

dv sin~vR̄/c!

3E
0

t

dt-e2 i ~vD1v!t-E
R0 /c

t

dt8E
0

t82R/c
dt9@e2 ivSR/cei ~vD1vS!t8e2 i ~vS2v!t92eivSR/cei ~vD2vS!t8ei ~vS1v!t9#1c.c.

~B12!

After performing the time integrals, we find the interference term to be
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M̄ ~1!~ t !Mc
~3!~ t !1M ~1!~ t !M̄ c

~3!~ t !52
1

p\2
m i~D !m j~D !mk~S!m l~S!~2¹2d jk1¹ j¹k!

R
1

R
~2¹2d i l 1¹ i¹ l !

R̄
1

R̄

3E
0

`

dv sin~vR̄/c!
e2 i ~vD1v!t21

vD1v
Fe2 ivR/c

ei ~vD1v!t2ei ~vD1v!R0 /c

~vS1v!~vD1v!

2eivSR/c
ei ~vD2vS!t2ei ~vD2vS!R0 /c

~vS1v!~vD2vS!
2~ terms with vS changed to2vS!G1c.c.,

t.R/c. ~B13!

Expressions~B11!–~B13! are evaluated, after differentiations with respect toR and R̄, by settingR5R̄5R0 .
n
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