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Analysis of the causal behavior in energy transfer between atoms
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A critical analysis of the problem of causality in the energy transfer between a pair of atoms is carried out.
One of the pair, the source, is initially excited and the other, the detector, is in its ground state. The probabili-
ties are calculated for the detector to be excited at a laterttiomeler different experimental conditions. In the
first, a precise specification is made of the state of the source and that of the radiation field at the observation
timet. In the second, the final state of the field is unspecified, whereas in the third, the state of neither the field
nor the source is specified at time These three cases correspond to predicting the outcomes of different
experimental measurements. It is shown that of the three cases, only the third exhibits exact causal behavior.
The other two are noncausal. The noncausal contributions to the probability arise from the correlation of
vacuum fluctuations at the two atoms at different times in the intervaltO Tie probabilities for these cases
can be significant for times slightly less thR#hc, whereR is the interatomic separation. Explicit expressions,
correct to fourth order in the transition moments, for the probabilities in the three cases are given. A proof of
strict causality to all orders is presented for the third case where the final measurement is solely made on the
detector. In Appendix A the related problem of the time dependence of the electric energy density associated
with the source is analyzed and shown to be cali§dl050-294{®7)03410-Q

PACS numbds): 03.65.Bz, 32.80-t, 42.50—p

[. INTRODUCTION ship on the specification of energy eigenstates at a given
time.
The energy transfer between a pair of atoms and the role Ferretti[11], Valentini [8], and Craig and Thirunama-

of causality is a long-standing problem in the quantumchandran10] pointed out that an examination of the prob-
theory of atom-radiation interaction. This was first studiedlem within a wider framework could restore causality. In the
using perturbation theory by Feriii] in connection with the  earlier works the time-dependent probability was calculated
propagation of light in vacuum. An earlier paper by Kikuchi for a complete specification of the final state. In addition to
[2], often referred to in this context, however, addresses thiéhe absorber being excited, the emitter was specified to be in
causality question in relation to the emission of radiationits ground state and the field was in the vacuum state at time
from a single atom by considering the time development of- Clearly, alternative questions that are closer to realistic

the field energy density in its neighborhood. In these an@*Perimental situations can be posed. For example, one
later paper§3—5], and in textbooks, e.g., Louisdl], vari- could ask for the inclusive probability of finding the absorber
excited, without making observations on either the emitter or

ous approximations were employed that led to causal beha , . . .

ior. They include the neglect of terms with nonresonant de—the field. In Sec. Il we frame t_hree questions involving

nominators in the probability amplitudes and the extensio harply defined conditions. The first of these relates to the

of the integrals that appear in these amplitudes to th%lstonc_ Ferm' pmb'e”.‘ and the last refers to the afqremen—
ioned inclusive question. The second concerns an interme-

n7e gatmgje;‘reqijhe ncdeirgatlg. tlt wasl pollnt'Fed ou_':hby tSPh'rOkovdiate situation with a less stringent specification compared to
[7] and by otherd8-10 that a calculation without these %he first. It is interesting to find in the literature statements

approximations gave a noncausal result for the probability of 4t mirror all these three cases. The question dealing with
energy transfer. In terms of the interatomic separa®othe  ihe Fermi problem is clearly stated by Louisgl]: “The
expected causal result would be that the probabft)  proplem is to find the probability that, at tinte the final
vanishes exactly fot<<R/c. Shirokov found that the non- state in which the emitter atom has decayed and the photon
causal component of the probability can be large in the inhas been absorbed by the receiver atom is giver|(tey
terval (R—\)/c<t<(R+\)/c, where \ is the reduced ceive) excited,(emittep ground;(radiation vacuun).” The
wavelength for a typical atomic transition. Rulji®] calcu-  second case where no specification is made of the final state
lated the probability amplitude to lowest order in the transi-of the radiation field has been enunciated by Shirdktis)|:

tion moments using time-dependent perturbation theory antiAt t=0 one atom is excited and the other atom is in the
extracted from it the noncausal term. The correspondinground state. Initially there are no photons. We compute the
probability for t<R/c was examined in the interval<0t probability of finding the second atom in the excited state at
<(R—N\)/c, outside the Shirokov domain, and found to betime t, the first atom being in the ground state.” The third
very small. In a later paper Craig and Thirunamachandrawcase in which the final specification is that for the receiver
[10] confirmed the probability to be noncausal and obtainedatom alone has been raised by Craig and Thirunamachandran
an explicit expression for it in terms of ci and si functions. [10]: “We should calculate the probability of the receiver
They suggested that the noncausal behavior may be due &tom being excited at timewithout making any reference to
the limits imposed by the time-energy uncertainty relation-the [final states of theemitter atom and the field.” This is
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also implicit in calculations that focus on the time evolution a formal proof, to all orders in the dipole moments, that the
of the occupation operator as in the work of Compagno angredicted probabilityP, (t) for case Il is exactly zero for
co-workerg 12] and Milonni, James, and Fedrh3]. Models  t<R/c. In Sec. V the explicit expressions for the probability
used in discussions of photodetect|dd] also ask questions in all three cases are found to fourth order. The probability
about the state of the detector alone; in this respect thef(t) for the first case is not causal, confirming the previous
resemble the third case. In this context it is of interest to not&alculations[7(a),9,10l. The probability P, (t) for case I
Ferretti's early remark$11] that the “troubles have their contains noncausal terms in addition to thos@jft). How-
origin in the fact that if a velocity is to be correctly and ever, for case lll, both of these noncausal terms are found to
rigorously defined we have to use information concerningcancel terms arising from interference of first- and third-
only objects that can be rigorously localized in space andrder probability amplitudes. This provides explicit confir-
time; in our case the information must only be related to thamation to fourth order of the general result given in Sec. IV.
of the detector. Instead, in Fermi’s case, other information is

required concerning the number of quanta, that is, the con- Il. STATEMENT OF THE PROBLEM
straint that in the final state that number is zero.” In a very
recent paper Kaup and Rupagdb] claim to have reexam- We consider the specific problem of excitation transfer

ined the Fermi problem and to have found no violation ofbetween two atomsS the source andD the detector. The
causality. However, their calculations were based on a modeltoms are taken to be fixed B and Ry, with S in the
described by an effective Hamiltonian and not on the reakxcited statdp) andD in its ground statdg) at the initial
physical system. In fact, their calculation has causality builtime t=0 and the Maxwell field is assumed to be in its
in by virtue of their extension to negative frequencies of theground state, namely, the vacuyrag. With the notation
relevant integrals. o . |ID,S;F) for a state of the composite system, the initial state
In the papers referred to above, the initial and final stategs |g, p;vac). The well-known question considered by Fermi
of atoms were taken to be bare states. Atterips),16] t0 s the following: Given that at=0, the state of the system
go further_ in terr_ns of dressed atoimenormalized st_ateare was|g,p;vac), what is the probability of finding the system
fraught with difficulty. The dressed states of a pair of atomsyjth detector atonD in the excited statéq), source aton$
by their very nature involve the interatomic separat®n in its ground statég) and the field in its vacuum state at a
Hence the initial specification is necessarily nonlocal and ifjgter timet? To answer this question experimentally one
is not possible to formulate sharp questions of causflify.  would require simultaneous measurements to be mad, on
For causal questions to be meaningful it is essential to havg and the field at. This of course is experimentally de-
local §pe0|f|cat|on of the |n|t|aI. state. For example, it is manding. Other questions of a similar nature may also be
meaningful to ask whether the time evolution of the electro-zsked. For example, given the same initial conditions, what
magnetic fields and their energy densities arising from g the probability of findingD in the excited statég) andS
single excited atom are causal. This in fact was the questiop, its ground statdg) at timet? Here the final state of the
first studied by Kikuchi2] in 1930 and the problem of de- fie|q is not specified. A question much more amenable to
tection did not arise. He used time-dependent states pegyperiment is the following: Given the same initial condi-
turbed to first order to obtain an expression for the electriGions what is the probability of finding the atoB in the
energy density quadratic in the transition moments. He found, citeq statdq) at timet? The relevant experiment to an-
the propagation to be causal after extending the relevant inger this question is less demanding since only a measure-
tegrals to negative frequencies. We show in Appendix A thajsent onp s needed at time. No final specification of the
to obtain a complete expression for the energy density COl5tates ofS and of the field is made.

rect to second order it is necessary to employ states perturbed |, secs. 111 and VV we consider these three cases and cal-

to second order in the moments. In this calculation the addig;|ate the probabilities of excitation transfer using the theory
tional terms provide the precise contribution needed to ex

. . i of nonrelativistic quantum electrodynamics. The first, case I,
tend the integrals to the negative-frequency domain. Thus thg {he original Fermi problem. Case Il deals with the inter-

time evolution of the electromagnetic energy densities ismediate question where the field is unspecifieti ad case

str|lctl3|/:cau§al. 11 of th . ¢ light. th Il with the one-center measurement question, namBly,
n mermrs treatment1] of the propaga‘uqn oflight, the 5 5ne is specified at time The initial state for each of the
dynamics of the detector atom was taken into account an ree cases is

the problem became one of energy transfer between atoms.
In the present work we study this problem with special ref-
erence to the three cases referred to above. In Sec. Il the
probabilities for the three cases are formally expressed and in , .
Sec. Il the methodology to find expressions for these prob N€ corresponding probabilitie3(t) are: case |,

abilities is outlined. The equations of motion for the creation ot HU A2

and annihilation operators for both photons and electrons are P()=|(f[eTo" e )17, 2.2
found from the quantum electrodynamical Hamiltonian for a

pair of atoms interacting with the radiation field. From thesewith |f) in our notation given by

coupled equations, the Heisenberg operator for the Maxwell

field &(F,t) is obtained as the sum of the source-free and )=

source-dependent fields, the latter being fully retarded. The
retarded nature of the source terms is used in Sec. IV to givease I,

li)=|g,p;vag. (2.

q,9;vag; 2.3
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Pu(t)=2>, [(F;g,qleoie THUA|j)|2, 2.4
F

where |F) is a complete set of field states including the

vacuum; and case llI,
Pu()=> > |(F;S,qleHot/ie= A2 (2.5
F S

where|S) is a complete set of atomic statesSif

IIl. METHODOLOGY

For the processes under discussion, the dynamics is gov-
erned by the multipolar Hamiltoniar(3.1) in second-

guantized form

H=Haomst Hrag™ Hint (3.1
where
Hatoms:; EElebE"‘; E,‘f‘b,":sbﬁ, (3.2
Ho= > hoa'a. (3.9
modes

In the electric-dipole approximation

Hin=—> A™(D)bIPb2-d(Rp)

m,n

=2, u"(S)bybR-d(Ry). (3.4

3397

The atomic label is implicit in Eq(3.7). The simple form of
Eq. (3.7), i.e., its linearity in theb's, is a direct consequence
of the use of the multipolar formalism.

We now express the amplitudes that appear in the prob-
abilities (2.2), (2.4), and (2.5 for the three cases in the
Heisenberg picture. For case |, where the final state is
|g,g;vac), the amplitude is

iH ot/

(vacg,q|eHo e H%| g n-vac)

_ <VaCEng(0)bg)(0)e—th/ﬁ|g'p;vac>eiE5t/ﬁeiE§t/ﬁ
:<Vacﬁe—th/ﬁbg(t)bg(t)lg,p;va(»eiE(?t/heiEgt/h,
(3.8
where the Heisenberg operators are given by
bn(t)=eth/hbn(0)e7th/h. (39)

The state|0_> in Eq. (3.9 refers to the no-particle fermion
state with the propertiels,|0)=0 andb/|0)=|n). The state
|0;vag is the vacuum state of the composite system satisfy-
ing

H avac> =0.

(3.10

Using the interaction representatioh,(t)=exd—iEt/
1] Bn(t) and Eq.(3.10, the amplitude(3.8) for case | be-
comes

(vac;dBS(1) B2 (1)g,p;vag). (3.1

Hence the probability of finding the detector in stiig, the
source aton® in state|g), and the field in its vacuum state at
timet is

In Egs.(3.2—(3.4) b andb' are the annihilation and creation —
operators for atomic states aadanda’ are the annihilation Pi(t)=[(vac;dB5(t) B3 (D)]g,pivadf. (3.1
and creation operators for photons. These obey the standard ) ) - o )
anticommutation-commutation relations. The displacemenf\n €valuation of this probability to fourth order is given in

vector field operatod(r) in Eq. (3.4) is given by the mode

expansion

d(n=i X,

modes

2mhek\Y2 . - L -
v (eadk"—ea’e k). (3.5

The equations of motion for the operat@saindb,, are

1 1/2

o1 . 2mhick
a= 7 [a,H]=—iwa+ —

V

f

. - e 1 [27hck)?
XY, p™(D)-ee K RopDpD 4 —
m,n f V

x> am™(s) ‘e 1k-ReplSpS (3.6
and

. 1 i i N N
bnzm[bn;H]z_%Enbn—’—%; an_d(R)bm'
3.7

Sec. V.
For case Il, where the field is unspecified, two-photon
amplitudes such as

(3.13

<kr,k;g7q|eiHOt/ﬁe7th/fi|g,p;vac>

=(vac,Qay(t) ao () B3V BE(Dg,pivag)  (3.14

contribute in addition to Eq(3.11). In Eq. (3.14 we have
used the interaction representation for the field operators
a(t) =exd —iwt]a(t). The probability thaD is in state|q)
andSin |g) at timet is

Pu(t) =2 (18210 BS (D[0;F )(F;0 B BE (D)),
(3.15

where the sum is over a complete set of field states. Closure
over field states gives

Pu(t)=(i| 5T (1) B (1) B3(1) BL(V)]i),

which is evaluated in Sec. V.

(3.1
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When the state oS is also unspecified at the time of For a single source, the Heisenberg operator for the displace-
measurementcase 1), the probability of finding the detec- ment fieldd(r,t) is
tor in state|q) is

d(r,Hy=dO(r,ty+d®(r,1), (3.24
_ | pDT St (01 .0l RS D4\ (i
Pu() ;F (i16q" (1 (DIOFXFI0185, (DA (VI Whereé(s)(F,t) is found from the mode expansidB.5) us-
=<i|ﬁDT(t),8D(t)|i> (3.17 ing Eq.(3.23 [18]. We have
i ! mn( 217th)

where we have used closure over the source states in addition  d{®(r, t)_ > I v
to those over the field. A typical amplitude contributing to ’
the probability(3.17) is Xeie—jeii.u‘—ni)e—iwt
<vac;Qak(t),8rS),(t)ﬂg(t)lg,p;vac}. (3.18 t -
xf dt’e'(remnt gL(t") By(t') +H.c.

0

The amplitudes and probabilities are calculated using pertur-

bation theory in Sec. V. The probabilities are evaluated to (3.2
the order of u?(S)u?(D) and theR-dependent terms ex- o _ .
tracted. The polarization sum and the angular integration over the

For the calculations in Secs. IV and V we need thedirection ofk give
Heisenberg equations for the and 8 operators. The equa-
tion of motion for the annihilation operatg, (t) for elec- (9> )
tron states is, from E¢3.7), di¥(r t)_ 2 u" (= V28 +ViV))

. i o .
Bult) =7 2 ™ AR, (3.19 « f at f dk(sin kI~ &)

Ir—R]
x[e iw(t—t) glo(t= t)]elwmn IBm(t ) Ba(t")

i toL L o
Be0=Bu(0)+ 1 3 [ dt i AR Bt e 0 (3.26
(3.20  for r#R. Thek integral in Eq.(3.26 is

from which

The total displacement vectoI fiett(r,t’) in the intfgrand J dk(sin le— §|)[e—iw(t—t’>_eiw<t—t’)]
of Eq. (3.20 is evaluated aRg for g;(t) and atRp for 0

Br(t). . . o
Similarly, for the & operators, we have from E¢3.6) :% f dk[ ekl —Rl— g~ iklr—Rljgike(t—t")
iJ-
2mhck) ~mn =—_iK-Reqi ot
a(t)— V| 2 ATS)eeT el = —im[8(F—R|—c(t—t'))— 8(F =R+ c(t—t"))].
s mhek) 12 (329
X @l @mnt + N
et Bt B3 Vv ) Hence, fort>|r—R|/c,
< Zmn D). e ik-Rogiot el omn(t=IF=Rl/c)
mZn,u (D) d(s)rt) E,U« n(— V25”+VV)W
Iwmnt D > > . i
X e B (1) B (D). (321 X Bt |F—Rlc)B(t—|F—Rllc). (3.28
The operator(t) is then a sum of the free field and atom- - o (972 o )
dependent terms Of course, fort<|r—R|/c, d;¥(r,t) is zero, reflecting the
causal character of the source field.
a(t)=a(0)+ a5 (t) + aPE(1), (3.22 For a many-atom system, such as the source plus detector
in the present problem, the Maxwell field is formally addi-
where the atom-dependeats have the form tive. Using Eq.(3.22), we can write
- of 2mhick| 12 d(r,t)y=dO(r t)+dS(r,t)+d°(r t 3.2
a(s)(t)— 2 an e ik R(WT) (r,1) (r,t) (r,t) (r,b), (3.29

with 55(F,t) and&D(F,t) given by Eq.(3.28. However, we
t . - - . .
x | dt’el@+emt’' gt ty. (3.2 emphasize that the atom-dependent terf(r ,t) is not iden-
Jo An()A(). (3.2 tical to its value in the absence of the detector. Similarly,
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d®(r,t) is not identical to the corresponding expression for Y1) = BH(1) Bn(t) + BL(1) Bn(1)
the isolated detector. This is a consequence of the fact that
the B operators in expressidi3.28 for the field do not refer
to the initial timet=0. At any time other than=0, the 8's
operate on the composite space of the field and both atoms.

It is of interest to note that the mixing of the source andwith
detector operators first occurs in the third term in a perturba- rs
tion expansion in dipole moments; the first- and second- Trmnuo
order terms are strictly additive. The first-order term is found__ ) . - -
by replacing theg's in Eq. (3.28 by their values at=0, and  mnu,(t) IS @€ number independent gi andR. Hence
this leads to the familiar result

L AR ¥ (DT (D), (4.4

mn,uv

> —

(t)=68.,650m,e ' “wt— 85688 5, €' “wt; (4.5

i [t .
Yl ) = Ymn(0) — % fodt,ﬂuv : d(Ryt,)Trrwfn,uv(t,)7rs(tl)-

di(rH=2 pM(S)(~ V23 +ViV)) (4.6
(08 (t—|F~Rd/c) We now show that fot<R/c, y,?].n'(t) is independent oR;
Xe m 1S(0)85(0) the causal nature of the probabiliBy, (t) follows as a spe-
IF—Rg| m " cial case.

The general operatoy,?m(t) for the detector is found by
iterating Eq.(4.6):
+2, u"(D)(= V20 +ViV))

Vol )= 90— 3 [ AL (D) dRp 1]
0

i)zft t/
[l
f) Jo 0

eiwl'fm(t—\r‘—é,)\/c)

XW 2(0)B7(0). (3.30
r— ’

b XTﬁn,uv(t )7rs(0)+

The additivity in second order follows by approximating the

B's in Eq. (3.29 to first order{19]. Higher-order approxima- X["(D)-d(Rp,t)[xY"? (D)-d(Rp,t")]
tions to the displacement vector field have contributions that L
are nonadditive in the sense that they are dependent on the xT[,fnyuv(t’)T:;u,v,(t”)yrD,S,(O)+~~ ) 4.7)

transition moments of both the source and the detector. Fi-
nally, it must be stressed that, despite the general nonadditiwgith the Nth term given by

nature of&(F 1), the fields are nevertheless strictly additive
for t<R/c=|RP—RY/c; that is, in this time intervadi®(r t)
depends only om(S) andd®(r,t) only on (D).

Nt ty IN-1 - 3 =
) flot [ate [ o) o
0 0 0

X[(D)-d(Rp t2)]++[1(D)-d(Rp ty)]
IV. PROOF OF STRICT CAUSALITY FOR CASE Ill TO 5
ALL ORDERS IN PERTURBATION THEORY XT(t)T(tz)  T(tn) ¥r s, (0D, (4.8

In this section we prove that () [Eq. (3.17] is causal  \yhere the indices labeling the states of the detector are im-
to all orders, i.e., th&-dependent part d?,(t) vanishes for  pjicit. In Eq. (4.9) the displacement vector field is the total
times less tharR/c, where R=Rp—Rg, the interatomic field evaluated at the detector. Fos®<R/c, t; is also less
separation. The probabilit; (t) can be expressed as the thanRr/c andd S(Ry,t;)=0, so that
expectation value of the projection operat)zﬁq(t) for the

detector being found in state), d(Rp ,t)=d@(Rp,t.)+d°(Rp ,t;). (4.9

Pu(t)=(vac;p,g| v54(t)|9,p;vac. (4. Now d°(Rp,t;) is independent ofu(S) and hence oR.
Therefore,a(ﬁD ,t;) is also independent d®. This implies
that afterN iterations(for arbitraryN) y44(t) has noR de-
pendence for &t<R/c and hence the causal nature of

Pu(1).

In terms of the fermion operatoyd, the projection operator
is

Yaq() = B By(1), (4.2)

V. CALCULATION OF THE PROBABILITIES UP TO

which is a diagonal term of the general operator FOURTH ORDER

ymn(t)zﬂ;(t),en(t). 4.3 For an examination of the fundamental causal properties
of the probabilities, it is sufficient to employ a two-level
To find an integral equation foy,,,(t) we first write down model for each atom. We denote the frequency difference
its equation of motion using the expressi21) for the  (E5—Ej)/% by »® and Eg —Eg)/% by . The generali-
B's, zation to multilevel atoms is straightforward and does not
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change the conclusions concerning causality reached in th{%.3) hasu;(D) as an explicit factorﬁg’(t’) can be replaced
section. by B5(0); also it is sufficient to findd(Rp ,t") up to first

order inu(S). Thus this approximation t¥ (t) leads to
A. Case |

For this case we calculate the probability of finding the ;,L—Mi(D)ftdt’eith,<g|diS(1)(§D p), (5.4

system in a pure state where deted@ois excited, the source 0

S has decayed to its ground state, and the field is the vacuum. . . o

Starting from the initial statég,p;vac), the probability of ~Where the matrix element in E¢5.4) is in the source-atom

finding the system in statig,g;vac) at timet is, from Eq.  space alone. Sina®"(Rp ,t') is zero fort’ <R/c, the am-

(3.12, plitude (5.4) vanishes fort<R/c. For t'>R/c, we have,
from Eq. (3.28),

P|(t):|<VaCE3§(t),35(t)|g,p;VaC>|2- (5.9 dis(l)(F't/):E Mjmn(s)(_vzé\ij"'vivj)

This probability is shown to be noncausal. Although nonzero g 103t ~|T-Rd/c)
for t<R/c, it is small except for times$ close toR/c and s =
wS~wP. Fort>R/c and wS~wP, the probability is domi- Ir=Rd
nated by its causal part. In the general case the leading CORyence, fort>RIc,

tribution to the probability amplitude is second order in the

dipole transition moments. Using E.20), with its second

i t ’ -wD ’
term denoted by3{¥(t), the amplitude may be written as Mc(t) =2 wi(D)ui(S) lecdt el

B31(0)83(0). (5.5

Ar pS S(s) 2 1 —iw3(t' —Ric)
M (t)=(vac;0[ B5(0) + B3> (1)] X(=V25;+ViV)) z e
X[BR(0)+ B2 (1)]]g,p;vac

T = w(Sy(D)el e
=(vac;05(0) 85 (1)|g, p;vac e

ne iwSRIC
+(vac;dB5° (1) 85 (1)|g,p;vag X[ (=V28;+V;V))
R
=M (t)+M 1), (5.2 Y
ei(w —w>)(t—R C)_l
o (5.6

where we have useﬂq(0)|g)=0. This partitioning corre-

sponds to causal and noncausal terms. Inserting the expligit the largeR limit, the probability arising from Eq(5.6) is
expression foBP®)(t), the first term of Eq(5.2) becomes - . :
p q , als. proportional to the inverse square of the separation. We note
that the time-dependent factor in E.6) is the familiar
. . expression that appears in first-order time-dependent pertur-
I_)Mi(D)j dt’ﬂg(t’) bation theory. For near resonanc€~ w®, the modulus
fi 0 squared leads to Fermi's res{].
Y The second ternM (t) of the amplitude(5.2) is now
Xdi(Rp,t")e' "'|g,p;vag, (5.3 evaluated. This is found to depend on the correlation func-
tion between the vacuum fluctuationsSaandD. In contrast
from which we find the lead term that depends on the prodto M((t), this is noncausal. Substituting for the source-
uct of the two transition momentg(S)u(D). Since Eq. dependenps operators inM,(t), we get

M(t)=(vac;dB5(0)

1 ! Siost [ " 1 i 0Pt S ’ S "
Mnc(t)=—pMi(D)uj(S)fodt'e ot fodt e (vadd{® (Rs,t")d{”(Rp ,t")|vag

1 5 F(Rt; w5 wP)
:_(%)Mi(D)Mj(S)(—V Si+ViV) — (5.7

whereF (R,t; S 0P) is defined by

i(wD—wS)t_ ei(w+wD)t_ e—i(w+ws)t+ 1]

F(R,t;ws,wD)=% focdk(sirkR) (5.9
0

(w+wP)(w+ )
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Thek integral can be expressed in terms of sine and cosine 1
integrals [10]; it does not vanish fort<R/c and hence P)~ g 2722 |M(D)|2|M(5)|2m
M,{t) is noncausal.

Before discussing the probabilities we consider the above X[1+coq wP+ wS)t]. (5.19

amplitudes in the far zone, namelR>\, where\ is the
reduced wavelength of a typical atomic transition. In particu-
lar we examine the behavior of the noncausal amplitude i
the interval R—\)/c<t<(R+\)/c. We make two ap-
proximations: first, the far-zone approximation, which results

For t>R/c, the causal termiM(t)|?> dominates(except in
the intervalR/c<t<(R+\)/c) and

in 1
, Pl(t)~|Mc(t)|2:h7 ©i(D) 11i(S) k(D) ()| (= V28
1 -~ 1d°F
Mad )~ 2 (D) i (S)(8; —RiRy) R AR’ (5.9 aivSRIc ~iwSRIC

+ViVJ-)T (—V254+V, V)

and second, the stationary phase approximation near the

point |ct—R|~0, which gives ol (@P—wS)(t—R/c) _ 1‘2
X WP—aS) E (5.1

1 A 1
Mpnd(t)~ 2afic #i(D)ui(S)(6;—RR)) R(R=ch)
. _ In physically realistic situations, energy transfer between
X (el "t gm0y, (5.10  neighboring atoms occurs whesP~ S, In such cases, the
probability (5.16 dominates because of the near-resonant

This noncausal amplitude is clearly large in the neighborgenominator. In the largg- limit, the probability (5.16) is
hood R~ct [7(b)]. We now compare this with the causal equivalent to the Fermi resylL].

amplitude(5.6). For R>\,

1 a1 oS B. Case Il
M(t)~ %2 #i(D)ui(S)(6j—RiRy) R m} For this case, the initial conditions are the same as before,
s Y Y namely, the detectoD is in its ground stateS, the source
X [ele (Re=t _gle™(Rle=D1gle™t - t>R/c atom is in the excited stal@), and the radiation field is the
vacuum. In contrast to case I, we now find the probability at
=0, t<Rlc. (5.1 timet thatD is excited andS in its ground state, with the

field unspecified. From Ed3.15
In the neighborhood oR~ct, M(t) is small; in fact, it is

identically zero forR>ct. For R<ct, -
Y Pu(t):; [(F;0185(1) 87 (D]g.p;vagl?.  (5.17)

Mc(t)| (ct=R)?
M (D] A2

(5.12

It is clear that up to fourth order in the transition moments,
the only field state$F) that can contribute are the vacuum
lvag and the two-photon staték,k’). The contribution in-
volving the vacuum is the same as that for case I. So

so that the noncausal contribution to the probabiyt) is
the dominant one for @t<(R+\)/c.

The time-dependent probabilif,(t) in terms of the two
amplitudes is

PA(D)=IM(1) + Mo D= [Mo() P+ [Mo()M e © PUO=PO+ 3 (k' 0B50BDIg pivagF
+ MM )]+ Mg 0)[2 (513 (13
Fort<R/c, We now calculate the amplitude up to orgetA) w(B) for

the term involving the two-photon states. This amplitude is

1
Pi(t)=Mnd 8)]°=75 (D) 41;(S) e D) uy(S) o
(k,k";0|B4(1) Bq (1)]g, p;vac

2 F(thawDywS) l t t D
X[ (=V 5ij+vivi) T :_ﬁMI(D)ﬂj(S)f dt/efiwst’f dt’el® t”<k'k/|
0 0
F(R 0P, 0® . .
X (—V26K.+Vkvl)(+“’). (5.1 X di®(Rs,t")d{”(Rp ,t")|vag). (5.19

As noted above, this is small except f&®/c>t>(R  The off-diagonal matrix element in E¢.19 is for the cor-
—\)/c. In this interval,P,(t) for a randomly oriented pair is relation function operator for the vacuum fluctuationsSat
found to be andD at different times. Hence the amplitu¢e 19 is non-



3402 E. A. POWER AND T. THHRUNAMACHANDRAN 56

causal. Using the mode expansion ) and performing Pu(t)=|(vac;d85(1) B2 (t)|g,p;vad)?
the time integrals, we obtain for the amplitude

i m%esz’k, 08503 (1)]g,p;vad

1 2mhck\ Y3 2ahck’ | 12
— 72 k(D)) — v -
. S D . 2
+ 2 [(k:0lBS(1BR(D]g,p;vad)
ei(m’—ws)t_l ei(m—wD)t_l modes

X 5

ejr—eie—ik-RSe—ik-RD

o' —w w+ P

= Pu(t)+m%(;esz;aﬂﬁ(t)BS(t)lg,p:vaC>|2-

+ke—k'|. (5.20 (5.24)

Using the decompositiofB3.20, the amplitude of the addi-

The R-dependent terms in the probability for the two-photontional term in Eq.(5.24) can be written as the sum of two
final state is found, in terms of the functiéhdefined in Eq.  Matrix elements

8. fobe (k;0185(0) 83 (1) g, p;vag +(k; 0| B3 (1)
X B2 (t)|g,p;vag). (5.29

The first term has a nonvanishing first-order contribution de-
pendent onu(D). Hence, to find the probability correct to
fourth order in the moments, it is necessary to evaluate the
amplitude to third order, namely, to ordg(D) x?(S). The
first-order term is immediate and is given by

1
72 (D) (S) (D) i (S)

(R,t;—ws,wD)

F
X[ (= V25, +V,V)) =

F(Rt;— 05 P)

X
R

(=V254+V, V) (5.21)

M@ (t)=(i/A) ui(D) f dt e (Kd9/(Rp ') vag
0

The noncausal part d®(t) is the sum of Eqs(5.14 and
(5.21). Both these terms are small except wheis close to — 4.(D)
ct. ThenP,(t) for a randomly oriented pair is = i vV

] D
2mhck\ Y2 - - glletenit_1q
e_e—|k~RD —_—5—

! w+tw

(5.2

2 1
Pu()~5—=72; |w(D)|?| w(S)|? RR=c0? There are no terms of order(D) u(S). The required third-
order term arises from both matrix elements of E525. It

X[1+cos wPt coswst]. (522 S

M@ =(k;0[85(0)(t) BE (1)

g,p;vac}+(k;a,8‘;’(2)(t)
For R>ct, the causal part dominates and is the same as that

for case |, namely, Eq5.16). x B (t)]g,pivag =M +MY. (5.27
As will be seen below, the contribution to the probability
C. Case Il from the interference betweed?) and M2 is causal and

For this case, again with the same initial state, we calcubetweenM® and M) is noncausal.
late the probability at time that the detector is excited with ~ We first obtain the noncausal contribution to the probabil-
no reference to the states of the emitting atom and the radidy and show that it cancels the noncausal term®ijpt).
tion field. This probability is causal and an explicit expres-We have
sion for it could be found up to fourth order in the moments — ]
using the approach discussed in Sec. IV. However, in this M2 () =(k:0| 85 (1) 83" (1)]g.pivac)
subsection we follow a procedure similar to the one used for i
cases | and Il. This enables us to identify the contributions =73 (D) i (S) i (S)
that cancel the noncausal terms found in the previous cases.

The probabilityP, (t) may be expressed as t — s [t oSt
Xf dt///elw t f dt/elw j dt/le—lw
0 0 0

Puh=3 3 [(F:0l8;. (083 (D]g.pivag)”,
p

< {kldO(R t” dOR Tt/ dOR " |vad),

(5.28

where the sums are over complete sets of states for the rashere we have used the soluti¢®.20 for the 3(t) op-
diation field and for aton®, ThusP,,(t) up to fourth order erators. The noncausal contribution to the probability at time
in the moments and in the two-level approximation is tis
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MBOMZ (0 +MOOM (1)

1 iwSRIc
Pm(t)zm|M(D)|2|M(S)|2[(_V25ij+VVJ') R }

1
== 72 #i(D) (S (D) ()

X J'tdt’ei“’st/ft/dt”e‘i“’st”J’tdt”’ei“’D""
0 0 0

t H nrr =>
X J’ dtmre—let <Vaddi(0)(RD ,t””)
0

—iwSRIc
R
sinz{[(wD— »S)/2](t— R/c)}
[(w°—w3)/2]?

X

(—V25;+ViV))

2
3 ) ) = o72r6 | #(D) | w(S)[H{3+ (kR)Z+ (kR)%}
X d{%(Rs,t")d{?(Rs,t ) d(Rp ,t")|vag +c.c.

5.29 Sir{[ (0P — w9)/2](t—Ric)}

[(a)D— cos)/Z]2

, t>RIc, (5.32

—,.S_, D H =
The evaluation of the fourth-order correlation function is Where ck=w®~w”. We reiterate thatP,,(1)=0 for t
straightforward. On inserting a complete set of field states™ Ric.

|F) we have
VI. SUMMARY

We have used the Heisenberg picture to calculate the ex-

> (vadd®(Rp ,t””)dfo)(lis,t”|F)(F|d}°)(lfis,t’) citation transfer probability between two atoms. Fermi’s

F early calculation was based on a complete specification of
R the final states of the atoms and the field. He employed an

xd(Rp ,t")|vag). (5.30  approximation that extended the integrals over frequency to
the negative domain. This led to a causal result. However, a

calculation without this approximation gives a noncausal

The only field states that can contribute are the vacuum angrobability, which has been confirmed with our method. In
the two-photon states. Whe#) is the vacuum, the corre- the present work we have used perturbation theory correct to
sponding contribution to E(5.29 is found to be the nega- fourth order in the transition moments to calculate the prob-
tive of Eq. (5.21); when|F) are two-photon states, the con- abilities for the outcomes in various experimental setups cor-

tribution is the negative of Eq5.14. Hence these cancel the responding to different specifications of the system at the
noncausal terms iR, (t) andP,, (t)=0 for t<R/c. time of measurement. These probabilities show in general

It remains to find an expression fé%, (t) whent>R/c. noncausal behavior. However, for the case where neither the

It has two contributions: the causal part Bf(t), which state of the source nor that of the field is specified, the
is the modulus squar.e of the probability’ amplitudefourth'order result is causal. This probability is a sum of

(5.6, and the causal part of the interference termthree types of terms, differing in the number of photons in

— — ~ the intermediate state.24). Each of these types has an
(1) (3) (1) (3)
MM +MI(OMT(t). The second of these is R-dependent part that is nonzero forxR/c. Nevertheless,

found in Appendix B. For the case of near _resonam?e their sum is zero, thus providing an explicit demonstration of

~ S, the lead term arising from interference is the causal behavior up to fourth order. We also have given a
formal proof showing that tall orders in the transition mo-
ments, the probability is strictly causal when the measure-

1 5 ) 5 o R/ ment is inclusive, i.e., the measurement is solely made on the
e |(D)[?| (9] (—VZ6;+V;V)) TR detector.
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sin(lwR/c )
X|(=V28;+V,V)) % (e iwPran_1) APPENDIX A

b s b s In this appendix we obtain the energy density of the elec-
X (el(@” oI _gll@" =R /C) L ¢ ¢ (5.3)  tromagnetic field in the neighborhood of an atom. In particu-

lar, the energy density is found at timie-0 given that at
=0 the atom is known to be in an excited state that has a
which is proportional to °— »%) ~1. On the other hand, the dipole-allowed transition to the ground state. As mentioned
term from the square of the amplitud®.6) that is propor- in the Introduction, the time development of the energy den-
tional to (w® — »5) ~? dominatesP, (t) for t>R/c. For ran-  sity exhibits causal behavior. In the Heisenberg picture the
domly oriented molecules, we find from E¢.16 demonstration of this causality is straightforward as the
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Heisenberg source fields are caug20]. A demonstration where
within the Schrdinger picture is less direct. We outline the

0 —
calculation of the energy densifgorrect to quadratic terms [wO(t)=e (A2)
in the transition momentswithin this picture and explicitly
show the causal behavior. Given that the initial stajeis WD)y =(—ilh) X, e (“aTNg:k)(K;g|
|p;vag, the state at time, correct to second order, is modes
[P (t))=e""Mi)=|wOt))+ v () + WP (1)), _ﬁ_a|p;vac>ftdt,ei<wwo>v, (A3)
(A1) 0
|
(W)= (—i/h)? X e rere ik K )K" K;pl - u-dlg;k)(Kig]
modes
- > t A ! ! ! H "
_M_d|p;vac>fodtrel(w +wg)t J;)t dtrrel(o)fwo)t ' (A4)
wherewp= wp— wq.
The change in the energy density at titnes
e (9) P (0) (e) P2 P2 (A) (0)
9] e (t) R (9] (t) (O] ¥t (A5)

with a similar expression for the change in magnetic energy density. In his calculation, KjRiicisied only the first term of
Eq. (A5). For a randomly oriented dipole source this term is

N

2

D dz(a) W4 J 2 1 (> : Ziket [ L yer ai(k—ko)ct
P ()| —=— P (1) =313 (=V 5i,-+ViVJ-)F Odk(smkr)e 0dte 0 (A6)
2 » i(k—ko)ct _ 1|2
_& 2 (—V26~+V-V-)EJ dk(sinkr)e‘ikc‘w (A7)
3 478 R k—Ko

The far-zone limit of Eq(A7) is essentially Kikuchi's resuliEq. (20) of Ref.[2]]. The integral in Eq(A7) does not vanish

for r>ct and hence this contribution to the energy density is not causal. However, he was able to obtain causal behavior by
extending the limits of the integral to include all negative frequencies. We show that this behavior easily follows f(&®)Eq.

by extending thek limits before doing the time integral. Using

f dk(sin kr)e~ketgi(k—ko)et’ — e ko[ 5(r—c(t—t'))— 8(r +c(t—t"))] (A8)

and noting that>t’ in the integrand in Eq(A6), we have

ik0r2
<qf<1>(t)| d(r) (w?/12m)| (= V28, +V,Vj) = for t>r/c

—w()= (A9)

0 for t<r/c.

Kikuchi justified the extension of the limits of theintegral on the basis that the integral is small for negativelowever, we
point out that the added terms, though small, are noncausal. As shown below, the approximation of extending the limits is not
needed in a complete calculation. The inclusion of the second and third terms 6ATignakes the total energy density
expressiorexactlycausal.

We now evaluate the second term in E45) using Eqs(A2) and(A4),
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Ly

d%(r )‘

) 1 - dZ(F) I,
V) ) =—o— > e ' ©KI vacp|—— p;k,K' ) (K’ k;p|— -d|g;K)(k;g]|

87 modes

t ’
—ﬁ~&|p;vac}f dtrei(k’+k0)ct’jt dt"el (k—ko)et” (A10)
0 0

u? ) ) sinkr
=—? dk dk (=V 5|1+ViVJ)T

X (_V 5I]+VIVJ) Sink’r e i(k+k’ )thtdt!ei(k'+ko)ct'Jtldtrrei(kfko)ct" (All)
0 0
2
L ves vy, f— V26, +V,V))" dk dk’
- 3 4 ( ij ) ( ij ]) —_—

ei(k+k’)ct_ 1 ei(k’+k0)ct_ 1
(k—ko)(k+k')  (k—ko) (K +ko)J

1 _ _ . ,
X5 (sirkr sink/r + sinkrsin k'r)e "1 (k*k )Ct[ (A12)

where, for convenience, we have introducedo be set equal to after the differentiations The third term in Eq(A5) is the
complex conjugate of EqA12). Hence the change in the total energy denéitg) can be written as

u?

T 73 VAV % (—V25”+Vivj)fXH f:dkf:dk’ %(sinkr SNk T+ SinkT sink’r)

1—e iK' —koet_ gi(k—ko)ct 4 gitk—K')ct 1 _ g=itktk et  g=ik—kg)ct_ g=i(k+k’)ct 1— @i (k+k et
(k— ko) (K'— ko) TR (k—Ko) (KT ko)(k—Ko) (KT K)(K—Kg)

el (k—ko)ct _ gi(k+k et

(K + ko) (K—Ko)

X

] : (A13)

We consider separately the integrals within the curly brackand for terms withe®i(«—k)ct gnge*itk+k’)ct
ets with different numerators: For terms with no time de-
pendence in the numerator 1 (= -
5 J’o dkjO dk’ (sinkr sink’r + sinkr sink’r)

1 (= o S
—f dkf dk’(sinkr sink’r +sinkr sink'r) o
2 Jo 0 gi(k=K")ct 1 1
k—k’ (k’—ko k—ko)

X
1 2
X +
(k—kg)(k'—kg)  (k+k")(k—kgp) e i(k=Kct 1 el (k—K'ct 1
1 (e (= T k) T Tk kg
=—f dkf dk’(sinkr sink’r +sinkr sink’r)
2Jo Jo 1 (= (o o
=—f dkf dk’ sinkr sink’r
1 1 2 0 —®
X - ’ 7
(K=K (k=ko) (K" =k)(k'—ko) kK et B
5 X K=K (K —kg) C.C.|+rer (A16)

PR xdkfwdk’ Sinkr sinkT
(k+k)(k—ko)} fo o ¢

thek’ integral depends on the sign of ct. Forr>ct, Eq.

B 1 1 (A16) becomes
+sinkr sink’r) K—ko | (k+K) + (k’—k)) (A14)
*  sinkr
thek’ integral is elementary and E¢A14) becomes Wfo dki— [ cokr+cogk—ko)Ct COKor J+r 1.
- (A17)
@ sink(r+r)
oD (A15)
0 k—kq Forr<ct, Eq. (A16) becomes
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©  Sirkr S
wJ dk sin (k—kg)ct]sinkgr +r«r. (Al8)
o k=ko
For terms withe /(K" ~ko)ct gndeitk—koct
1 (= o sink'r .
_ - ' —i(k' —kg)ct
[ 5 fo dkjo dk’sin kr K kg e
1 1 _
X +c.Cc.l+rer. (A19)

(k—ko)  (K+ko)

After interchangingk andk’, thek’ integral in Eq.(A19)
becomes

1 fw dK sink’r_fmdk SIKT ket
3] K ko Jo K k—ky e +c.c.
_ ©  sinkr _
+r<—>r=—7-rf dkk—k cog (k—kg)ct]coskor
0 0

Fror, (A20)

8

<qf(t)
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independent of the sign aof—ct.

We now show that the total energy density from the three
contributions vanishes fdr<r/c, which demonstrates strict
causal behavior. Of the three contributions, E@sl5) and
(A20) hold for all't, whereas the second contributioh16)
has different forms depending on whethetr/c or t>r/c.
Fort<r/c, the contribution(A17) is

—wf dk
0

sinkr coskor + sinkr coskor
k—Kq !

which is the negative of the sum of Eq#15) and (A20).
Thus, fort<r/c the change in energy density is strictly zero.

We conclude this appendix by obtaining an expression for
the electric energy density far>r/c. In contrast to the
above, the second contribution is now different and is given
by Eq.(A18); it does not cancel the other terms. Taking the
three contributiongA15), (A18), and (A20) together, we
find for the energy density

sink(r+r)

K—ko +7rfo dk cogk—kgp)ct

(A21)

d?(r) ? , 1, —1 (= sinkr _ e
W (t) =W(—V 6;+Viv)) F(_V 6 +Vivj) F—fo dkk_—ko{coskH—sw{(k—kO)ct]smkor

—cog (k—kg)ct]coKor }+ 11—,

2

1272 (7 i

2 rl 2 r4'
V25,V V) T (= V28,4V, V)'—

o sinkr _ __
x[j dkw{coskr—coikct—ko(ct—r)]+rHr}
— 00 - 0

k+ko

*  sinkr _ _
—J' dk {coskr—cos{kct+ko(ct—r)]+r<—>r}]
0

The first integral within the large curly brackets in E422)
is straightforward and isr cogky(r—r)]. So its contribution
to the energy density is time independent and is
2
z ) 1
122 (—V5; +ViVj)’F

—1 —
X(=V28;+VV))' —CogKo(r—r)]

MZ ikor |2
= 1272 (—=V25;+V,V)) - (A23)
which simplifies to
—z'uzké + —2—1 + —3 A24
6 kir? = kgr#) (A24)

The second integral in EA22) has both time-independent
and time-dependent contributions. The time-dependent con-

(A22)

T=r

tribution can be expressed as an integral over imaginary fre-
guencies as in Eq3.26 of Ref.[20]. It vanishes for times
larger than the Bohr period. Finally, the time-independent
part of the corresponding energy density to be added to Eq.
(A24) is that encountered in the Casimir-Polder potential. It
is

127°

= sifk(r+r)]
xfo dk—k_kO

(_Vzé“‘f‘V'V-)rE(—Vzé\-""V'V‘)r_l—
1] Ry ij ivVij r

2
M 1
=" 1oz TV

—u(r+r)

r=r

(A25)

—1 o0
X(_V25ij+vivj)rF_kOf du
0

u?+ks
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which after differentiation becomes

Msz . u6(_:‘—2ur
-y du——
67 0 u +k0
X 1 + 2 + > + 6 + 3 A26
u2r2 u3r3 u4r4 u5r5 u6r6 . ( )

For larger, Eq. (A26) falls off with the power lawr 7,

whereas Eq(A24) shows an inverse square law dependence
that arises from real photon emission. It is interesting to note

3407
Again, from Eq.(3.20
[ to g, -
Be ¥ (=5 (D) fodt'e""Dt B3 (0)dP(Ro ),
(B6)

where we have ignored terms that would contribute to order
| (D)3 to the probability. Hence

i t  Dus N
M) =5 (D) [ dve™™ (Ka(Ro t]vag.

that for an atom in its ground state, the electric energy den- (B7)

sity is solely given by Eq(A26), with k, taking a negative

sign.

APPENDIX B

The interference ternB1) is

1 t i Dim t i Dyr
?Ml(D)/‘L](D)J’ dt///e—lw t f dt/elw t
0 0

In this appendix we obtain the causal part of the interfer-

ence term that contributes to the probability for case Ill. It is

MOHMI () +MO M (D), (BL)
where

MO () =(k;085(0) 85 (H)]g,pivag (B2
and

MO (t)=(k;085(0) B2 (t)|g,pivag. (B3
From Eq.(3.20

i o, R
BI0= 5 (D) | are B0 Ry ).
(B4)
Hence
i o, .
M ()=~ m(D)det'e'wDt (K|d@(Rp ,t")|vad).
(BS)

Dtm

i t .
2 (D) (D) (9 e

> . n i Ser f " i Syt
><<k|dfo)(Rs,t”)|vac>[e_""St el @3t —RIc) _ gio%t" g -1t “ROj4cc.

x(vadd{”(Rp ,t")|k)(k|d{*(Rp ,t')|vag+c.c. (B8)
The Maxwell field operatod{®(Rp ,t') that is needed in Eq.

(B8) arises from the sourc® This is clearly causal. Fdf >
R/c, it is found from Eq.(3.28 to be

- 1
(pldF®(Ro 1)) = mi(B) (= V265+V;Vi)

X[(p| 1Y (1"~ Ric)[gye 1wV ~Ri©

+(0| (1 —Ric)[p)el e ~RO].

=i— (D) i (D) (S (S)(— V28, + V.V )RE(—VZJS-+V-V)R_1—dewsin(wR_/c)
h2 Mi Mj M\ S) ik iYKW R il ivi R Jo

t t r_
Xf dt,,,e—i(w%w)t’"f dt’jt R/Cdt/r[efinR/cei(wD+ws)t’efi(wsfw)t”_eia)SR/cei(waws)t’ei(ws+w)t”]+C_C_
0

Rg/c 0

(B9)
Substituting Eq(B9) into Eg. (B8) and using
. I ,—R/ R ”n
OB (¢ ~Rip) = (S [ et
0
xd{9(Rg,t"), (B10)
we get for the interference term
! 1 SiwPt’ 2 1 t'~Rlc ” 0, B m
R/Cdt e (=V 5jk+VJVk) ﬁ o dt <Vaddi (RD,t )|k>
(B11
(B12)

After performing the time integrals, we find the interference term to be
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— — 1 1 —1
MOOMB (1) +MBMP (1) =— — 1i(D) (D) pi(S) i (S) (— V285 + V; V)R = (—V28+V,V)R =
T
—i(wP+w)t_ 1 ei(a)D+w)t_ei(wD+w)Ro/c

X wdw Si wac —e_in/C
fo ) ) wP+w (05+ w)(wP+w)

i(wP -0t _ Li(wP-wdRy/c
iwSric © € : s S
—e (@5 o) (aP—a9) —(terms with > changed to—w>) | +c.c.,
o tow) (o —w

t>R/c. (B13)

ExpressiongB11)—(B13) are evaluated, after differentiations with respethandR_, by settinngR_z Ro.
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