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Short communication
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In the present communication one-step anodization is used to prepare large arrays of self-assembled Ti(Nb,Sn)
oxide nanotubes on Ti–Nb–Sn alloy. Tuneable nanoscale geometries (unimodal vs. bimodal size distributionwith
variable length/diameter ratios) can be controllably achieved by varying the anodization conditions, which are
highly desirable for enhanced functionalities in widespread applications.

© 2013 Published by Elsevier B.V.
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Bulk TiO2 is a non-toxic, environmentally friendly and corrosion
resistant material. The key functional features are mainly given by its
exceptional biocompatibility and the almost unique ionic and elec-
tronic properties of this oxide. TiO2 is a wide band gap semiconductor
(Eg ≈ 3 eV) with suitable band-edge positions that enable its use in
solar cells, photocatalysis, electrochromic applications, biomedical
coatings, sensors or smart-surface coatings [1]. To improve TiO2 prop-
erties, investigations in this field have been directed towards the de-
velopment of 1D TiO2 nanostructures with the aim of increasing the
specific surface area (which is crucial for any catalytic reaction) as
well as modulating its electronics [1]. Hitherto, the introduction of
secondary electronically active species into the lattice of nanostruc-
tured TiO2 has been pursued in order to broaden its range of applica-
tions. Among them, niobium and tin species emerge as suitable
candidates to dope TiO2 in order to boost its physiochemical properties.

In the present work, the feasibility of fabricating self-organized
nanotubes (NTs) by anodization on Ti–21Nb–11Sn (wt.%) alloy is in-
vestigated. Applied voltages have been varied between 5 and 50 V,
whereas anodization time has been kept at 1 h. The growth parame-
ters that lead to NTs with controlled diameters and thickness are
discussed. It is interesting to mention that the composition of the
alloy anodized in this study could possibly provide a material with
good biocompatibility, high strength and low Young's modulus, thus
sevier B.V.

dic formation of self-organize
ns (2013), http://dx.doi.org/
minimizing the so-called stress shielding effects [2]. Moreover, since
Sn and Nb are less expensive than Ti, the base Ti–Nb–Sn material is
inherently less costly than high-purity Ti. To the best of our knowl-
edge, while the growth of an anodic oxide at the surface of Ti–Nb–
Sn alloy has already been described [3], the formation of NT arrays
has not yet been reported. Furthermore, bearing in mind the syner-
gies achieved upon combining Nb2O5 or SnO2 with TiO2 NTs, the
here-synthesized Ti(Nb,Sn) oxide NTs on the Ti–Nb–Sn alloy will like-
ly enhance the functionality of this material for a wide range of
applications.
79

80

81
2. Experimental details

Rods of 4 mm of Ti–21Nb–11Sn alloy (wt.%) were prepared
by levitation melting and subsequent injection into Cu mold. Self-
organized nanotube oxide layers were grown by electrochemical an-
odization in 0.31 M NaF + ethylene glycol/water (50:50) electrolyte
solution at voltages ranging from 5 to 50 V. Prior to anodization disks
of 0.5 mm thick were cut from the rod and ground wet with 1200 grid
SiC paper. After anodization, the samples were rinsed for 5 min with
ethanol and distilled water in ultrasonic bath and dried at room tem-
perature. To structurally characterize the as-anodized samples Scan-
ning Electron Microscopy (SEM, Zeiss Merlin and Fei Inspect S50),
and Transmission Electron Microscopy (TEM, JEOL-2011 200 kV) ob-
servations were carried out. X-ray photoelectron spectroscopy (XPS)
analyses were conducted on a PHI equipment 5500 Multi Technique
using the Al Kα radiation (1486.6 eV).
d Ti(Nb,Sn) oxide nanotube arrays with tuneable aspect ratio and size
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Fig. 1. (a) Current density–anodization time (j–t) curve for the Ti–21Nb–11Sn alloy anodized at 20 V (Inset: j–t curve anodized at 5, 10, 20, 35 and 50 V). (b–d) top view SEM
images of Ti–21Nb–11Sn alloy anodized at (b) 10 V, (c) 20 V and (d) 25 V. Insets in (b) and (d) show cross-section-views, while inset in (c) is a bottom view.
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3. Results and discussion

Fig. 1a displays the current density–time (j–t) curve recorded
during anodization at an applied voltage of 20 V. The curve shows
the typical shape for a self-organization process; that is, after an initial
exponential decay ascribed to the formation of a compact oxide layer,
the current increases until it reaches a maximum value. At this point,
the surface is locally activated and pores start growing randomly.
Due to the pore growth, the active area increases also resulting in an
increase in j. Hereafter, since the pores start interfering with each
other, the current density decreases until it reaches a steady-state
value (around 13 mA/cm2) and a self-ordered structure continues
growing with time [1,4]. Inset of Fig. 1a displays the j–t curves applied
at 5, 10, 20, 35 and 50 V. From these curves, larger current decays are
U
N
C
O

R

Fig. 2. (a) Dependence of diameter and nanotube length on applied potential, (b–c) TEM
(the inset shows corresponding SAED pattern), (c) cross-section image.

Please cite this article as: J. Fornell, et al., Anodic formation of self-organize
distribution, Electrochemistry Communications (2013), http://dx.doi.org/
E
Dobserved as larger potentials are applied. As a result, thicker oxide

layers grow at higher applied voltages resulting in larger NT. The curves
recorded at 5 and 10 V reach the steady-state valuemuch sooner (after
5 min of anodization) than the others suggesting that, under these
conditions, a uniform and continuous nanotubular growth should take
place. This observation is in agreement with SEM images of the sample
produced at 10 V (Fig. 1b). When the applied voltage is 5 V, however,
the nanotube morphology is not well-defined. On the other hand,
for an applied voltage larger than 30 V, internal stresses result in NT de-
tachment from the surface during the cleaning process following
anodization.

Fig. 1b–d shows SEM images of the structures formed upon an-
odization of Ti–Nb–Sn alloy at 10, 20 and 25 V. After 1 h of anodization
at 10 V, unimodal size distribution is observed (Fig. 1b) whereas
microphotographs of nanotubes formed on Ti–21Nb–11Sn alloy, (b) top view image

d Ti(Nb,Sn) oxide nanotube arrays with tuneable aspect ratio and size
10.1016/j.elecom.2013.04.023
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Table 1t1:1

t1:2 Elemental composition of the nanotube oxide layer formed at an applied potential of
t1:3 20 V, determined by XPS, at three different penetration depths (after sputtering with
t1:4 Ar ions for 1, 30 and 60 min).

t1:5 Element (at.%) Ti Nb Sn O F

t1:6 Sputtering time 1 min 22.9 6.2 1.4 62.2 7.3
t1:7 30 min 26.3 8.4 1.6 57.3 6.4
t1:8 60 min 27.6 8.9 2 55.3 6.2

3J. Fornell et al. / Electrochemistry Communications xxx (2013) xxx–xxx
bimodal size distribution is detected at larger applied potentials
(Fig. 1c and d) where the big NTs are surrounded by the small ones.
This bimodal size distribution is even more evident from the bottom
view depicted in the inset of Fig. 1c. Here, arrangements consisting
of rounded grains of about 120 nm and 48 nm in diameter are seen.
The dependence of both the NT diameter and length against the anod-
ization potential is plotted in Fig. 2a. It is interesting to notice that
from the test carried out at 10 V, an approximately 500 nm-thick
layer of unimodal-sized NTs with a diameter around 20 nm is formed
(Fig. 1b). However, inner NT diameters as well as NT length tend to in-
crease with the applied voltage until reaching a 1.7 μm-thick layer of
bimodal-sized NTs with diameter sizes around 110 nm and 40 nm
for the big and small NTs, respectively, when the applied potential is
30 V. At the intermediate applied potentials, self-organized NT layers
were formed consisting of arrays with two distinctly different tube
diameters, e.g. of about 67 nm and 30 nm for the alloy anodized at
20 V. Such bimodal size distribution may be attributed to two factors:
i) alloy composition (i.e., alloying elements (Nb and Sn) influence the
alloy's microstructure and consequently NT growth) and ii) geometry
U
N
C
O

R
R
E
C
T

Fig. 3. Ti 2p, Nb 3d and Sn 3d core-level XPS spectra of the nanotube oxide layer formed at
after air-annealing at 923 K for 60 min.
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stabilization effects under certain anodization conditions. On the
one hand, Ti–21Nb–11Sn is a two-phase material (β andω phases co-
exist) that can hinder the growth of uniformly sized NTs. On the other
hand, it has been reported that some binary TiX (X = Nb, Zr) alloys
show self-organization on two-size scales [5,6], so that the growth
factor of the big diameter NTs typically corresponds to that of Ti
(ƒg,TiO2

≈ 2.5 nm/V) while that of the small diameter NTs is smaller
and, as a consequence, they grow recessed. In our case, ƒg would be
around 1.6 nm/V for the big NTs and 0.55 nm/V for the small ones.

Fig. 2 shows top view (Fig. 2b) and cross-section (Fig. 2c) TEM
images of the structures formed by anodization of the Ti–21Nb–11Sn
alloy at 20 V. The TEM images confirm that hollow NT structures with
a bimodal size distribution are obtained. Namely, large-diameter NTs
with 23 nm-thick walls (big NT) can be observed along with NTs of
smaller diameter with 11 nm-thick walls (small NT). No significant dif-
ferences in composition were observed depending on the NT diameter,
at least within the accuracy of the EDX technique. From the Selected
Area Electron Diffraction (SAED) pattern (inset of Fig. 2b) the amor-
phous character of the as-grown NTs is evidenced. In order to evaluate
the chemical composition along the tubes, XPS analyses were carried
out on the sample produced at an applied voltage of 20 V at three pen-
etration depths. i.e. after sputtering the NT layer with Ar ions for 1, 30
and 60 min. Assuming an etching rate of 5–10 nm min−1, this would
give a penetration of 5–10 nm, 150–300 nm and 300–600 nm, respec-
tively [7]. In all cases, the survey spectra indicate the presence of Ti, Nb,
Sn, O and F elements, the latter coming from the electrolyte. Quantita-
tive evaluation of the results is shown in Table 1. After sputtering
for 60 min an increase of the content of valve elements is detected
while the O content slightly decreases, as the measurement is likely
E
D

an anodizing voltage of 20 V after sputtering with Ar ions for (a) 1 min and (b) 1 min

d Ti(Nb,Sn) oxide nanotube arrays with tuneable aspect ratio and size
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performed near the substrate. Ti (arising from TiO2) is the most abun-
dant element, in agreement with the bulk alloy composition. A detail
of the Ti 2p, Nb 3d and Sn 3d regions at t = 1 min is shown in Fig. 3.
Multipeak fitting was carried out assuming a Gaussian distribution.
The peaks located at 464.6 eV (Ti 2p1/2) and 458.7 eV (Ti 2p3/2) are as-
sociated with Ti4+ valence state [8–10]. Discrepancies between the ex-
perimental data and the fitting are probably attributed to the existence
of oxygen vacancies. The binding energies of 210.0 eV (Nb 3d3/2) and
207.2 eV (Nb 3d5/2) belong to Nb5+ [11,12]. Deeper inside (t =
60 min), the zero-valent state of Nb emerges and a decrease of the
peaks related to Nb2O5 is observed (not shown). Likewise, in the case
of Sn, themain peaks at 486.9 eV and 495.4 eVmatch the Sn2+ valence
state [11], whereas deeper inside of the nanotubes the main contribu-
tion comes from zero-valent state of Sn.

According to the XPS data, the formation of the composite NTs
would mainly proceed via the following reactions:

2Ti þ 2H2O→TiO2 þ 4Hþ þ 4e– ð1Þ

TiO2 þ 4Hþ þ 6F–→½TiF6�2– þ 2H2O ð2Þ

for Ti;

Nb þ 5H2O→Nb2O5 þ 10Hþ þ 10e– ð3Þ

Nb2O5 þ 10Hþ þ 12F–→2½NbF6�– þ 5H2O ð4Þ

for Nb;

Sn þ 2H2O→SnO2 þ 4Hþ þ 4e– ð5Þ

SnO2 þ 4Hþ þ 6F–→½SnF6�2– þ 2H2O ð6Þ

for Sn.
According to several authors TiO2 anatase could be obtained from

the amorphous oxides directly by thermal annealing in air [13,14]. It
is interesting to note that TiO2 anatase nanotubes are believed to pos-
sess the highest biocompatibility among other titanium oxides and
phases [15]. In our case, after annealing at 923 K for 60 min, α and
β-Ti phases (arising from the substrate) and anatase and rutile phases
coming from TiO2 were identified. Detailed XPS analyses of the NT
layer indicate that the main compounds resulting from the annealing
process are TiO2, Nb2O5 and SnO2 (Fig. 3c). Niobium and tin oxide
films have been previously evaluated in terms of cell growth and wet-
tability with good results [16,17].
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4. Conclusions

In summary, the formation of large arrays of self-ordered titanium–

niobium–tin mixed oxide nanotubes by a simple step electrochemical
self-assembly process is reported. By varying the applied voltage during
anodization, the size distribution of the NTs evolves from unimodal to
bimodal. Both the length and the inner diameter of the NTs tend to
progressively increase with the applied voltage. The precise control of
the alloy surface morphology (i.e., NT arrangement geometry) may
facilitate and enhance the use of this material in widespread technolog-
ical applications, including biomedical, photocatalysis, opto-electronic
and electrochromic devices or sensors.
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