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In this paper we provide the greatest lower bound about the number of
(non–infinitesimal) limit cycles surrounding a unique singular point for a pla-
nar polynomial differential system of arbitrary degree.

We prove that for m and n odd the maximum number bm,n of isolated
zeros (taking into account their multiplicity) of the Abelian integral I(h) =∫
H(x,y)=h yQ̄(x, y)dx, where H(x, y) = 1

2y2 + 1
m+1xm+1, and Q̄ and arbitrary

polynomial of degree at most n− 1 is

(n + 1)(n + 3)
8

− 1 if n ≤ m,
(m + 1)(2n−m + 3)

8
− 1 if n ≥ m.

Moreover, there are perturbations of the Hamiltonian system ẋ = −∂H/∂y,
ẏ = ∂H/∂x, such that the indicated maximum number bm,n of continuous
families of limit cycles can be made to emerge from a corresponding number of
arbitrarily prescribed periodic orbits within the period annulus of the center.
Consequently,

bm,n ≤ N(m, n) ≤ Hmax{m,n} .

This result provides the greatest lower bound about the number of (non–
infinitesimal) limit cycles surrounding a unique singular point for a planar
polynomial differential system of arbitrary degree m = n.
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1. Introduction and the main result

We consider two–dimensional differential systems

ẋ = P (x, y) , ẏ = Q(x, y) , (1)

where P and Q are real polynomials in the variables x and y. In his address
to the International Congress of Mathematics in Paris in 1900, Hilbert raised
the question of the number of limit cycles of these differential systems. It
remains one of the most difficult open questions in the qualitative theory of
planar polynomial differential systems.

Let Hm be the maximum possible number of limit cycles of (1) when P
and Q are of degree at most m. The Hm are the Hilbert numbers, and it is still
an open problem whether Hm is finite, even for the simplest case of quadratic
polynomial differential systems (m = 2). Probably the best result in that
direction has been the proof of Dulac’s Conjecture by Il’yashenko [14] and
Ecalle [9] using different methods. This result states that a given polynomial
system cannot have infinitely many limit cycles. Note that this does not imply
that the Hm are finite.

On the other hand there has been some success in finding lower bounds
for Hm. Thus it is known that H2 ≥ 4 (see Shi [27]) and H3 ≥ 11 (see Li and
Li [16]). Several authors have established that Hm grows at least as fast as
m2 with m. Thus, Il’yashenko [13] proved that

Hm ≥ 1
2

(
m2 + m− 2

)
;

Basarab–Horwath and Lloyd [2] shown that

Hm ≥ 1
4
(m− 1)(m + 2) ;

Christopher and Lloyd [5] proved that

Hm ≥ 1
2
(m + 1)2 (log2(m + 1)− 3) + 3m.

In these last three results the limit cycles occur in several nests, i.e., they are
not surrounding a unique singular point.

Let H(x, y) be a real polynomial of degree m + 1, and let P (x, y) and
Q(x, y) be real polynomials of degree at most n. The problem of finding an
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upper bound N(m,n, H, P, Q) for the number of isolated zeros of the Abelian
integrals

I(h) =
∫

Γh

Q(x, y)dx− P (x, y)dy , (2)

where Γh varies in the compact components of H−1(h) is called the weakened
16th Hilbert problem. It was posed by Arnold in [1].

The weakened 16th Hilbert problem is closely related to the problem of
determinating an upper bound for the number of limit cycles of the perturbed
Hamiltonian system

ẋ = −∂H

∂y
+ εP (x, y) , ẏ =

∂H

∂x
+ εQ(x, y) , (3)

where 0 < ε << 1. The relationship between both problems comes from the
following two facts:

(i) If I(h∗) = 0 and I ′(h∗) 6= 0, then there exists a hyperbolic limit cycle
Lh∗ of system (3) such that Lh∗ → Γh∗ as ε → 0; and conversely, if there
exists a hyperbolic limit cycle Lh∗ of system (3) such that Lh∗ → Γh∗

as ε → 0, then I(h∗) = 0.

(ii) The total number of isolated zeros of (2) (taking into account their
multiplicity) is an upper bound for the number of limit cycles of system
(3) with ε > 0 tending to some periodic orbit Γh of system (3) with
ε = 0 when ε → 0.

Khovansky [15] and Varchenko [28] proved independently that N(m,n, H,
P, Q) is finite, but an explicit expression for N(m,n, H, P, Q) is unknown.
Many authors have contributed to estimate or to give upper bounds for the
numbers N(m,n,H, P,Q), usually they fix H and take arbitrary polynomials
P and Q with n fixed or not. In this last case the upper bounds that they
obtain are linear functions in n; see for instance Bogdanov [3] and [4], Petrov
[24] and [25], Cushman and Sanders [6], Dumortier, Roussarie and Sotomayor
[8], Drachman, van Gils and Zhang [7], Li and Rousseau [20], Gavrilov [10],
Gavrilov and Horozov [11], Horozov and Iliev [12], Li, Llibre and Zhang [17]
and [18], Li and Zhang [21], Novikov and Yakovenko [23], Zholadek [29], ...

Let N(m,n) be the supremum of N(m, n,H, P, Q) when H varies inside
the class of all polynomials of degree at most m + 1, and P and Q vary inside
the class of all polynomials of degree at most n.

This paper is concerned with the rate of growth of N(m,n), and since
N(m,n) ≤ Hmax{m,n} we also provide a lower bound of Hmax{m,n}. Our result
is the following.
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For m odd let
H(x, y) =

1
2
y2 +

1
m + 1

xm+1 , (4)

and let
P (x, y) ≡ 0 , Q(x, y) = yQ̄(x, y) , (5)

be polynomials with degree of Q̄ at most n−1. Then we consider the perturbed
Hamiltonian system

ẋ = −y , ẏ = xm + εyQ̄(x, y) . (6)

Theorem. For m and n odd the maximum number bm,n of isolated zeros
(taking into account their multiplicity) of the Abelian integral (2) with H, P
and Q given by (4) and (5) is

(n + 1)(n + 3)
8

− 1 if n ≤ m,
(m + 1)(2n−m + 3)

8
− 1 if n ≥ m.

Moreover, there are perturbations of system (6) such that the indicated maxi-
mum number bm,n of continuous families of limit cycles can be made to emerge
from a corresponding number of arbitrarily prescribed periodic orbits within
the period annulus of the center. Consequently,

bm,n ≤ N(m, n) ≤ Hmax{m,n} .

2. Proof of the theorem

The key point in the proof of this theorem is that, by using Green’s The-
orem, we will compute the Abelian integral through a double integral. These
double integrals for system (6) are very easy to compute in comparison with
the usual single Abelian integral. As far as we know this technique applied to
Abelian integrals was used by first time in [19]. The proof of the theorem is
given in the next section.

We write the function Q̄(x, y) of system (6) as follows

Q̄(x, y) =
∑

0≤i+j≤n−1

ai,jx
iyj ,

and a periodic orbit of the unperturbed system (6) for ε = 0 as

H(x, y) =
1
2
y2 +

1
m + 1

xm+1 = h .
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By using Green’s Theorem the Abelian integral (2) goes over to

I(h) =
∫ ∫

H(x,y)≤h

∂(yQ̄)
∂y

dxdy

=
∑

0≤i+j≤n−1

∫ ∫

H(x,y)≤h
(j + 1)ai,jx

iyjdxdy

=
∑

0≤2i+2j≤n−1

(2j + 1)a2i,2j

∫ ∫

H(x,y)≤h
x2iy2jdxdy

=
∑

0≤2i+2j≤n−1

2a2i,2j

∫ x̄

−x̄
x2i

(
2h− 2

m + 1
xm+1

)j+ 1
2

dx

=
∑

0≤2i+2j≤n−1

Cijh
αij

where

x̄ = [(m + 1)h]
1

m+1 ,

x = [(m + 1)h]
1

m+1 y ,

Cij = 2j+ 3
2 a2i,2j(m + 1)

2i+1
m+1

∫ 1

−1
y2i

(
1− ym+1

)j+ 1
2 dy ,

αij =
2i + 1
m + 1

+ j +
1
2

.

We note that the number of αij that appear as exponents in the powers
of h inside the last expression of the Abelian integral I(h) is equal to

(n + 1)(n + 3)
8

if n ≤ m, or to
(m + 1)(2n−m + 3)

8
if n ≥ m.

Therefore the Theorem follows.
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1992.

[10] Gavrilov, L., Abelian integrals related to Morse polynomials and perturba-
tions of plane Hamiltonian vector fields, preprint (1998).

[11] Gavrilov, L., Horozov, E., Limit cycles and zeros of abelian integrals
satisfying third order Picard–Fuchs equations, in Lect. Notes in Math. 1455,
Springer–Verlag, 1990, pp. 160 – 196.

[12] Horozov, E., Iliev, I.D., On the number of limit cycles in perturba-
tions of quadratic Hamiltonian systems, Proc. London Math. Soc. 69 (1994),
198 – 224.

[13] Il’yashenko, Yu.S., The origin of limit cycles under perturbations of the
equation dw/dz = −Rz/Rw where R(z, w) is a polynomial, Math. USSR–Sb.
7 (1969), 353 – 364.

[14] Il’yashenko, Yu.S., “Finiteness Theorems for Limit Cycles”, Translations
of Mathematical Monographs, Vol. 94, Amer. Math. Soc., Providence, RI,
1991.

[15] Khovansky, A.G., Real analytic manifolds with finiteness properties and
complex Abelian integrals, Funct. Anal. Appl. 18 (1984), 119 – 128.

[16] Jibin, L., Chunfu, L., Global bifurcations of planar disturbed Hamiltonian
systems and distributions of limit cycles of cubic systems, Acta Math. Sinica
28 (1985), 509 – 521.



polynomial systems 447

[17] Li, C., Llibre, J., Zhang, Z., Weak focus, limit cycles and bifurcations
for bounded quadratic systems, J. Differential Equations 115 (1995),
193 – 223.

[18] Li, C., Llibre, J., Zhang, Z., Abelian integrals of quadratic Hamiltonian
vector fields with an invariant straight line, Publicacions Matemàtiques 39
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