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Abstract

Background: Protein misfolding is usually deleterious for the cell, either as a consequence of the loss of protein function or
the buildup of insoluble and toxic aggregates. The aggregation behavior of a given polypeptide is strongly influenced by
the intrinsic properties encoded in its sequence. This has allowed the development of effective computational methods to
predict protein aggregation propensity.

Methodology/Principal Findings: Here, we use the AGGRESCAN algorithm to approximate the aggregation profile of an
experimental cytosolic Escherichia coli proteome. The analysis indicates that the aggregation propensity of bacterial
proteins is associated with their length, conformation, location, function, and abundance. The data are consistent with the
predictions of other algorithms on different theoretical proteomes.

Conclusions/Significance: Overall, the study suggests that the avoidance of protein aggregation in functional
environments acts as a strong evolutionary constraint on polypeptide sequences in both prokaryotic and eukaryotic
organisms.
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Introduction

In the cellular context, it is the native protein fold that

determines the biological function. Therefore, protein misfolding

is usually associated with the impairment of essential cellular

processes. In many cases, the assembly of misfolded polypeptides

into cytotoxic aggregates mediates this deleterious effect. Accord-

ingly, protein deposition is linked to the onset of more than 40

different human disorders [1]. In these diseases, proteins usually

self-assemble into highly ordered, b-sheet enriched, supramolec-

ular structures known as amyloid fibrils. However, the aggregation

into amyloid conformations is not restricted to disease-related

proteins but appears to be a generic property of polypeptides

[2,3,4]. Moreover, although traditionally thought to be restricted

to eukaryotic cells, recent studies provide compelling evidence for

the formation of toxic amyloid assemblies inside bacteria [5,6,7,8].

In this scenario, because all organisms face the important

challenges of protein misfolding and aggregation, the existence

of evolutionarily conserved strategies to avoid the deleterious

effects of undesired protein deposition is likely.

The main intrinsic properties that determine protein aggrega-

tion have been defined and different computational approxima-

tions [9,10,11,12,13,14,15,16,17,18,19,20] have exploited them to

predict with reasonable accuracy the regions of proteins with the

highest aggregation propensity, also called hot spots, as well as the

overall protein aggregation propensity. Most of these algorithms

only require the protein primary sequence as the input, allowing

their easy implementation for the large-scale analysis of protein

sets [1,21,22,23,24,25,26,27]. Rosseau and co-workers used the

TANGO algorithm to analyse the aggregation propensity of 28

complete proteomes, finding that polypeptides without a defined

structure, and therefore with a solvent-accessible sequence, are less

aggregation-prone than globular proteins [27]. The same group

demonstrated that in Escherichia coli (E. coli), there is a bias towards

the presence of residues with a low aggregation propensity flanking

aggregation-prone stretches and that chaperones seem to have

evolved to recognise these sequence features [27]. Tartaglia and

co-workers employed their algorithm to compare the deposition

tendency of different eukaryotic proteomes. They observed that

the proteins of higher eukaryotes, and specifically of those with a

longer lifespan, tend to be less aggregation-prone [24]. Moreover,

the study of the Saccharomyces cerevisiae proteome revealed that in

this organism, the protein aggregation propensity is associated to

both protein function and localisation [23]. More recently, Chiti

and co-workers used the Zyggregator program to analyse the

aggregation tendency of the human proteome, their results

recapitulated those of the above-discussed studies and additionally

showed that long human proteins posses less-intense aggregation

peaks than shorter ones [21].

Here, we have used AGGRESCAN, an algorithm previously

developed by our group [10,28], to analyse the aggregation

propensity of the experimentally determined cytosolic proteome of

the E. coli strain MC4100. This protein set comprises more than

1000 different proteins for which the individual abundance in the

cytoplasmic fraction could be experimentally measured [29]. The

results of our analyses provide new insights into the relationship

between the intrinsic deposition propensities, cellular protein

concentrations and protein expression regulation. In addition, the
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data recapitulate most of the previous observations on virtual

proteomes. The overall analysis suggests that natural selection

modulates proteins aggregation propensities according to their

cellular function, structure, concentration and localization.

Results and Discussion

Increasing evidence suggests that, in addition to protein

function, protein solubility acts as a strong evolutionary constrain,

so that any protein can remain functional in its native state under

physiological conditions at its specific cellular localisation [30].

Many of the data supporting this view come from the analysis of

the aggregation properties of theoretical proteomes derived from

the predicted ORFs in different genomes. Bacterial organisms

have long provided the bedrock on which to understand the

complexity of protein folding and aggregation in vivo [31]. In the

present work, we address the determinants underlying the

aggregation properties of the real set of proteins that are present

in the bacterial cytosol during exponential growth. Because these

polypeptides coexist in time and space and their specific activities

and relative abundance levels are the real effectors of cell function

under such conditions, one might expect, in principle, that the

evolutionary constrains modulating protein aggregation would

become more evident in this specific protein group that when

analyzing virtual proteomes, or even experimental transcriptomes,

both of which do not necessarily represent the final complement of

functional proteins present in a cell under particular, physiolog-

ically relevant, conditions. In addition, because the bacterial

cytosol is the major cell factory for recombinant protein

production, the information about the factors modulating protein

aggregation in this specific compartment could be of biotechno-

logical interest.

AGGRESCAN Parameters and the Protein Data Set
AGGRESCAN is based in the use of a scale of amino acid

aggregation propensities derived from experimental intracellular

aggregation assays in living cells in the presence of the intact

protein quality control machinery [25,32,33]. Because, E. coli was

used as a model system to derive such scale, one might expect that

the algorithm would provide accurate predictions for the

aggregation properties of natural bacterial proteins expressed in

the same cellular context, as those analyzed in the present work.

From the different outputs provided by the program, in the

present work we have selected the following parameters: the

number of hot spots in a sequence (NnHS), the total area of these

aggregation-prone regions (THSAr) and the global protein

aggregation propensity (Na4vSS). We choose this particular set

of values because, in AGGRESCAN, all of them are normalized

relative to the number of amino acids in the sequence, allowing the

direct comparison of proteins with different sizes (Figure 1).

The protein data set includes 1103 different proteins whose

presence could be experimentally detected in the purified bacterial

cytosol [29]. We curated the data by eliminating proteins that

PSORT [34,35] classified as belonging to other subcellular

compartments (190) and those for which experimental evidences

indicated that they were not or not mainly cytosolic (49). Similarly,

proteins assigned by PSORT to other compartments but

experimentally shown to be cytosolic (11), were included in the

analysis, resulting in an 875 cytosolic polypeptide set. It is worth to

mention, that 334 proteins in this set were classified by PSORT as

having an unknown location. Because they have been experimen-

tally identified in the cytosol we considered them to belong to this

cellular compartment. Importantly, removing them from the

cytosolic group does not change the results we obtained for this set

(data not shown) and, accordingly, the complete 875 polypeptide

set was used for all of the subsequent analyses, except for the

calculation of the aggregation propensities of bacterial compart-

ments, where the whole data set was employed. AGGRESCAN

was run and the above-mentioned values were calculated for each

protein in the set.

The Cytosolic Proteins Abundance Correlate with Their
Aggregation Propensity

Most protein aggregation processes follow a nucleation-

polymerization scheme, in which the formation of the initial

aggregation nuclei represents the rate-limiting step of the overall

process. Nucleation processes correspond to second-order reac-

tions and therefore the rate of protein aggregation is strongly

dependent on the initial protein concentration. Therefore, the

effective intracellular concentration becomes an important pa-

rameter when studying protein aggregation in vivo. The number of

mRNAs in the bacterial cytosol encoding a given protein can vary

from 1 to 100,000 [36]. Ishihama and co-workers developed the

exponentially modified Protein Abundance Index (emPAI) to

approximate the real concentration of a protein in a living cell.

This index associates the number of mass spectrometry-sequenced

peptides for each experimentally detected protein with its

concentration in a given preparation. Later on, they applied this

approach to successfully calculate the abundance of individual

proteins in the bacterial cytosolic fraction [29,37].

The aggregation properties of proteins appear to be associated

to the specific cellular compartment where they reside [30], which

makes sense because all the polypeptides in a given location feel

the same environmental conditions. This suggests that the

dynamic range of aggregation propensities in a given compart-

ment cannot be very large. Therefore, to analyze if there is any

relationship between the abundance and the aggregation of

cytosolic proteins, we compared the aggregation features of the

10% most abundant proteins with those of the 10% least abundant

ones according to their experimental emPAI values.

The normalized average number of aggregation-prone regions

(NnHS) is approximately three in both groups. However,

sequences devoid of any hot spot were observed only in the

high-abundant group and sequences with NnHS values #2 were

also more frequent in this subset (Figure 2A). Nevertheless, the

frequency of proteins with NnHS values $5 was also higher in this

group. The graphic of the THSAr closely resembles that of the

NnHS, indicating that no important differences exist in the area

associated with the aggregation-prone regions between the two

groups (Figure 2B). In contrast, the overall aggregation propensity

of low-abundant sequences is clearly much higher than that of

high-abundant (Figure 2C).

To study the degree of association between the abundance of

cytosolic proteins and their overall aggregation propensity, the

complete 875 cytosolic protein set was divided in 45 groups

according to their abundance. The average Na4vSS value of each

group was calculated and the two parameters were compared

(Figure 2D). A significant correlation was observed (R = 0.71),

indicating a relationship between the polypeptide solubility and

the abundance levels in the cytosol. This correlation suggests an

evolutionary selection of bacterial cytoplasmic proteins to

minimize their deposition at the concentrations required for their

proper biological functions. The higher solubility of high-

abundant proteins would work to prevent the aggregation of

these proteins even if they become concentrated at specific sub-

cytosolic locations. Moreover, because of their high concentra-

tions, their low deposition propensity would contribute signifi-

cantly to decrease the overall cytosol aggregation tendency and
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prevent the initiation of spontaneous, non-specific aggregation

processes that can deplete the cell of less represented and/or

functionally important proteins.

The Intrinsic Properties of High-Abundant Proteins
Decrease Their Aggregation Propensities

The results suggest that the high-abundant proteins would be

less aggregation-susceptible than low-abundant ones not because

they have fewer or weaker aggregation-prone regions, but

because these segments are located in a much more soluble

sequence context, which counteracts their self-assembly tenden-

cy. Therefore, we analysed whether the two groups of sequences

differed in their amino acid composition (Figure 3A). One of the

most striking differences between the compositions of the two

protein sets is a strong bias for a higher presence of Lys residues in

the high-abundant protein set. Also, Glu is more represented in

this set, but the difference compared to the low-abundant protein

set is lower than in the case of Lys. The other charged residues,

Arg and Asp, are found in similar amounts in both protein sets.

This causes the overall theoretical isoalectric point (pI) of high-

Figure 1. Example of AGGRESCAN output. The red line represents the aggregation profile of a putative protein with 35 amino acids. The blue
line indicates the hot spot threshold, according to the individual aggregation propensity of the 20 natural amino acids and their frequency in natural
proteins [28]. The green line corresponds to the average aggregation propensity of the putative protein. The aggregation-prone areas over the
threshold are filled in red (A and B). a4v is the aggregation propensity average over a sliding window of 5 to 11 residues [10]. The aggregation
propensity of each amino acid results from the depositional analysis of a set of amyloid polypeptides in the E. coli cytoplasm [25,28].
doi:10.1371/journal.pone.0009383.g001
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abundant proteins (8.48) to be higher than that of low-abundant

ones (6.71). The pH of the E. coli cytosol is thought to be around

7.5 [38]. Accordingly, the overall deviation from the physiolog-

ical pH is higher for the high-abundant protein set (+0.98 units)

than for the low-abundant group (20.79 units). We analysed the

individual contributions of polypeptides to these deviations by

measuring the percentage of proteins whose pI deviated two pH

units below or above the physiological pH. According to this

criterion, highly acidic and basic polypeptides constituted 27%

and 53% of high-abundant proteins, respectively; in contrast, to

20% and 10% in the low-abundant protein set. This means that,

as a general trend, low-abundant proteins have a pI closer to the

cytosolic pH than those high-abundant. To test whether there is

any relationship between the theoretical pI of a protein and its

predicted deposition propensity, we grouped the polypeptides in

the cytosolic fraction according to their pIs. Then the average

Na4vSS was calculated for each group and plotted against the pI.

The resulting graphic shows that proteins with a pI distant from

the bacterial cytosolic pH, either more acidic or more basic, have

lower aggregation propensities (Figure 3B), explaining why high-

abundant proteins tend to populate the extremes of the pI

distribution. Because the net charge of a protein at a given pH

depends on its pI, these results are in agreement with previous

observations indicating that, in vitro, the net charge of a protein

anti-correlates with its aggregation propensity [39,40,41].

The abundance of both acidic and basic proteins in the high-

abundant proteins can be attributed to the overrepresentation of

Glu and especially Lys residues and suggests that these excesses of

charged residues do not mutually compensate for each other in

this protein group. Importantly, Lys is by far the least frequently

buried residue among the 20 natural amino acids [42]. This is

because it needs two other residues to hydrogen bond to its side

chain nitrogen atom when it is located in the core of the protein.

Glu residues are also less frequently buried in the core than Asp

because they have a weaker tendency to bond to the local main

chain. This suggests that in high-abundant polypeptides, these

residues are preferentially located at the surface in the folded

conformation. Interestingly enough, it has been recently shown

that increasing the net charge in the surface of a globular protein is

a very effective strategy to prevent its aggregation, even in harsh

Figure 2. Relationship between the cytosolic proteins abundance and the AGGRESCAN aggregation parameters. Cumulative
distributions of the NnHS (A), THSAr (B) and Na4vSS (C) parameters in the 10% most abundant cytosolic proteins (black) and the 10% least abundant
ones (grey). D) Correlation between protein abundance, measured as LN(emPAI), and protein aggregation propensity, measured as Na4vSS, in the
complete cytosolic protein set. The 875 cytosolic proteins were divided in 45 groups according to their LN(emPAI) values. Each point in the graphic
represents the average value of the corresponding group. Standard errors for aggregation and abundance measurements are shown.
doi:10.1371/journal.pone.0009383.g002
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conditions [43,44]. It is likely that the E. coli cytosol would exploit

the same strategy to prevent the aggregation of highly abundant

polypeptides.

Apart from the charge, another property that strongly

influences the overall aggregation propensity of a protein

sequence is its hydrophobicity [2,25,45]. Interestingly, the

proportion of hydrophobic residues in these two groups is not

dramatically different: 41.6% and 42.4% for high-abundant

and low-abundant proteins, respectively. However, a bias

toward the presence of larger residues, like Trp or Tyr, in the

place of smaller residues, like Val, is observed in low-abundant

proteins (Figure 3A). This suggests that low-abundant polypep-

tides could be overall more hydrophobic. We used the grand

average of the hydropathicity (GRAVY) as measure of the

hydrophobicity of both protein sets [46]. The average GRAVY

scores are 20.24 and 20.36 for low- and high-abundant

proteins, respectively. Also, 38% of high-abundant polypeptides

have a GRAVY value below -0.5, in contrast with only 10% of

low-abundant ones. Both data indicate that high-abundant

proteins tend to be less hydrophobic than low-abundant. This is

likely because hydrophobicity is strongly associated with the

aggregation propensity, as shown when analyzing the correla-

tion between these two parameters in the complete cytosolic set

(R = 0.88) (Figure 3C). It is worth mentioning that Cys residues

are underrepresented in both cytosolic protein sets, but

especially in the high-abundant set, relative to the conjunct of

natural proteins. Reducing conditions prevail in the cytoplasm

and disulfide bonds do not normally form correctly in this

compartment, which can result in the accumulation of

misfolded and inactive proteins [47]. The low content of Cys

in bacterial cytosolic proteins is likely the result of a negative

selection to avoid these phenomena.

Figure 3. Relationship between the cytosolic proteins abundance and their intrinsic properties. A) Amino acid abundance in high-
abundant (pale grey) and low-abundant (dark grey) sequences relative to the expected frequencies in natural proteins as deduced from Swiss-
Prot [82]. B) Comparison between the proteins pI and Na4vSS values. C) Correlation between proteins hydropathicity (GRAVY) and Na4vSS
values.
doi:10.1371/journal.pone.0009383.g003

Protein Aggregation in E. coli

PLoS ONE | www.plosone.org 5 February 2010 | Volume 5 | Issue 2 | e9383



Gene Expression Levels and Cytosolic Proteins
Aggregation Propensities Are Anti-Correlated

The correlation between the effective protein concentration and

aggregation propensity suggests that this relationship is controlled

at the gene level, providing the cell with the versatility and

adaptability necessary to react to different environmental condi-

tions and/or cellular states. However, mRNA and protein

abundances do not necessarily exhibit a strong correlation [48].

We compared theoretical expression levels and aggregation

propensities to test if the observed correlation at the protein level

applies also for gene expression. The codon usage can be

employed to approximate the theoretical protein expression levels,

obtaining similar estimations to those derived from quantifying

mRNA abundance [49,50]. We used the codon adaptation index

as a measure of the codon usage. Low values are associated with

low expression levels and high values correspond to high

expression levels [29]. The comparison of the 10% of genes

encoding cytoplasmic proteins with the higher and lower values

shows that both sets present distinctive aggregation features. The

low expressed group presents higher Na4vSS values than the

highly expressed one (Figure 4A). In addition, when all the

cytoplasmic proteins are arranged into 20 groups according to

their codon adaptation indexes, a significant correlation between

this parameter and the protein aggregation propensity (R = 0.77) is

observed (Figure 4B).

These results are in agreement with those obtained using emPAI

as a measure of the experimental protein concentration, which

overall suggests that the relationship between the protein

concentration and aggregation propensity is controlled at the

gene expression level. Confirming this hypothesis, a relationship

between the mRNA expression levels and protein solubility in E.

coli has been recently described [51]. Beginning with the

AGGRESCAN scale, Tartaglia and co-workers also observed

that sequences with the highest mRNA expression levels are less

aggregation-prone and vice versa. Importantly, this anti-correlation

also applies for human proteins [30,52] suggesting, that, in

general, and across the different realms of life, the degree of

protein solubility is sharply adjusted to the gene expression levels

required for an optimal cell function. This implies that there is

little margin of response in front of changes that decrease intrinsic

solubility or increase expression levels [52], both effects resulting in

an increased aggregation probability.

Soluble Recombinant Proteins Resemble Cytosolic High-
Abundant Proteins

We have previously shown that recombinant soluble proteins

have, on average, lower aggregation propensities than those that

accumulate as insoluble deposits in the bacterial cytosol upon

heterologous overexpression [10]. Extending this observation,

Tartaglia and co-workers were able to theoretically forecast the

solubility of recombinant proteins in bacteria from their expected

expression levels [51]. These data converge to indicate that

successfully expressed recombinant proteins would resemble the

high-abundant more than the low-abundant proteins. The sum of

the squared differences between the amino acid composition of a

set of soluble recombinant proteins [10] and that of the high-

abundant and low-abundant groups is 79.5 and 114.9, respective-

ly, thus providing support for this hypothesis.

A Relationship between Protein Molecular Weight and
Aggregation Propensity

Chiti and co-workers have recently suggested that long human

protein sequences have been shaped by evolution in order to

reduce their intrinsic aggregation properties [21]. To study the

relationship between the protein size and deposition propensity in

bacterial cytosolic proteins, we grouped proteins into 50 sets

according to their molecular weights (MW) and the average

Na4vSS for each particular group was calculated. As shown in

Figure 5A, the nature of the relationship between the aggregation

propensity and protein length depends on the particular size of the

polypeptide. For small proteins, up to approximately 20 kDa in

size, the increase in MW is associated with a rapid increase in the

aggregation propensity (R = 0.92). Once this size limit is over-

passed, the correlation is inverted and further increases in size are

linked to a predicted slow, but progressive, increase in solubility

(R = 0.75). If we consider the shape of a protein close to a sphere,

then its surface area would be approximately proportional to the

two-thirds power law of its volume [53]. This implies that, for

globular proteins, the relative size of the core grows with protein

Figure 4. Comparison between cytosolic proteins theoretical
expression levels and their aggregation parameters. A) Cumu-
lative distributions of Na4vSS values in the 10% cytosolic proteins with
the highest (black) and lowest (grey) Codon Adaptation Index (CAI)
values. B) Correlation between the CAI and the Na4vSS values. Each
point represents the average value over all the sequences having a CAI
value comprised in an interval of 0.03.
doi:10.1371/journal.pone.0009383.g004
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size [54]. Because hydrophobic residues usually occupy the core of

the protein to avoid interaction with water molecules, it is deduced

that the proportion of hydrophobic residues, and therefore the

overall aggregation propensity, increases with the protein size.

Nevertheless, in real proteins, the correlation between the protein

size and the fraction of hydrophobic amino acids appears to apply

only for proteins until 170 residues [42], in agreement with the

observation that the aggregation propensity attains maximum

values in this size range. The protein aggregation propensity might

act as a determinant of protein size and could be the underlying

reason explaining why, above the ,20 kDa limit, the ratio

between hydrophobic and hydrophilic residues does not increase

significantly with size [55,56]. An important implication of the

volume/surface relationship in globular proteins, is that, if the

proportion of hydrophobic residues is approximately constant, the

number of polar residues buried inside the structure should

increase with protein size [55,57,58]. Because charged residues are

more hardly accommodated inside proteins than other polar

residues, long proteins tend to have fewer charges [59], which

together with their slow folding rates [60], would make these

proteins aggregation susceptible. According to our data, in E. coli

polypeptides, these effects are partially compensated by an overall

decreased sequence aggregation propensity. Importantly, above

the 20-kDa limit, the NnHS values steadily decrease with the

protein size indicating that in longer proteins (Figure 5B), the

aggregating regions tend to be more distant in the sequence.

Interestingly enough, the main bacterial chaperones, GroEL and

DnaK, interact poorly with proteins smaller than 20 kDa and

display a preference for larger substrates (Figure 5A) [61,62,63],

suggesting the presence of redundant mechanisms to reduce the

aggregation propensity of long bacterial proteins, as previously

described for the human proteome [21].

The Composition of Hot Spot and Gatekeeper Stretches
It has been suggested that evolution exploits negative design

principles to modulate protein deposition by placing residues that

counteract aggregation at the flanks of hot spots [21,27,64]. These

residues would act as gatekeepers [27] and reduce the protein

propensity to self-assemble into macromolecular aggregates. At the

same time, it appears that the cellular quality control has evolved

to recognize and block these sequence patterns [21,27]. Accord-

ingly, several disease-associated mutations have been linked to the

disruption of gatekeeper stretches [65]. To confirm these

observations, we proceeded to study whether, in bacterial cytosolic

proteins, aggregation-prone segments and their flanking sequence

stretches differ in composition (Figure 6A). The comparison of the

amino acid frequency in the these regions with their natural

abundance shows that hydrophobic and aggregation-promoting

residues (Val, Phe, Ile, Tyr Met and Leu) are overrepresented

inside HS and, on the contrary, that flanking regions are enriched

with polar and soluble residues (Arg, Asp, Glu, Asn Lys and Gln).

The rate between the frequency of each amino acid inside

aggregation-prone sequences and at the flanks evidenced that Phe

displays a high preference for being a component of aggregation-

prone regions (Figure 6B). In contrast, the charged Arg, Lys, Asp

and Glu residues display a high preference for being at the flanks

(Figure 6C). The gatekeeper action of these residues is exerted

through the repulsive effect of the charge (Arg, Lys, Asp and Glu)

and the increase in entropy penalties upon assembly (Arg and Lys).

Our data are in agreement with the distribution found using the

TANGO and Zygregator algorithms on the theoretical E. coli and

human proteomes [21,27], indicating that the protective action of

the flanking residues acts on the combination of proteins that are

being effectively expressed in the bacterial cytosol. As described

above, another important gatekeeper residue is Pro, which acts as

a beta-breaker. Because AGGRESCAN considers the presence of

a Pro residue in a sequence stretch incompatible with this

sequence being a hot spot, its frequency could not calculated.

The Relationship between the Aggregation Propensity
and Protein Function in Cytosolic Proteins

The set of genes in an operon share a common gene expression

regulation and are generally connected by their biological

function. As a result, proteins encoded by the same operon are

suggested to be present in similar amounts in the cell [29]. The

observed association between protein aggregation and abundance

would imply that polypeptides in the same operon should have

related aggregation propensities. In agreement with this hypoth-

esis, the standard deviation of the Na4vSS value between proteins

regulated by the same operon is lower in 78% of the cases (25 of

33) than the standard deviation in the complete set of proteins

(7,72 Na4vSS) that could be ascribed to a particular operon

Figure 5. Dependence of proteins length on their aggregation
properties and chaperone binding affinity. A) Dot plot distribu-
tion represents the relationship between the molecular weight and
Na4vSS. Columns show the size distribution of polypeptides that bind
to GroEL (grey) or DnaK (white) in E. coli according to the data in [61]. B)
Relationship between the molecular weight and the NnHS. Each point
corresponds to the average value over all the sequences having a
length comprised in an interval of 1.9 kDa.
doi:10.1371/journal.pone.0009383.g005
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Figure 6. Amino acid composition of cytosolic proteins hot spots and their flanks. A) Amino acid frequencies relative to their average
frequency in natural proteins as deduced from Swiss-Prot [82]. A relative frequency of 0 for a given residue at a given position means that the residue
occupies that position with a frequency identical to that in natural proteins. Residues enrichment in the hot spots (B) and at the flanks (C) relative to
their frequency in natural proteins. Values above or below 1.0 point denote increases or decreases in frequency, respectively.
doi:10.1371/journal.pone.0009383.g006
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(Figure 7). This suggests again a link between protein aggregation

propensities and the rates of transcriptional initiation.

The impact of protein aggregation on cellular function would be

ultimately associated to individual fitness. Therefore, it is

conceivable that evolution would select for an overall decreased

aggregation propensity in operons performing essential cellular

functions. To explore this possibility, the bacterial operons where

divided in two groups according to their Na4vSS values, those

with lower and higher aggregation propensity than the mean

propensity of the complete operon protein set (26.4 Na4vSS). The

essentiality of approximately half of the proteins in each subset has

been annotated via genetic footprinting or knockout experiments

[66,67]. Importantly, considering only the annotated polypeptides,

operons with low aggregation tendency regulate 85% of essential

proteins and 15% of nonessential ones. In contrast, operons with

high aggregation propensity encode a similar proportion of

essential and nonessential proteins, 48% and 52% respectively

(Table 1), suggesting that the sequences of essential bacterial

cytoplasmic proteins suffer a stronger selection against deposition

than those of nonessential ones, as previously proposed for

different eukaryotic organisms [68].

A deeper analysis of the two operon subsets reveals that operons

with associated low aggregation propensity control the expression

of 95% of the bacterial ribosomal proteins that could be ascribed

to a given operon (Table 1). This suggests, because of their crucial

function, ribosomal proteins might display differential aggregation

traits. The analysis of the 53 ribosomal proteins detected in the

cytosolic extract shows that these polypeptides display fewer

aggregating segments and lower Na4vSS values than the rest of

proteins in the bacterial cytoplasm (Figures 8A and 8B). Low

aggregation propensities have been also predicted for human

ribosomal proteins [21]. Tartaglia and Vendruscolo have recently

shown that human proteins in small cellular localisations tend to

have low aggregation propensities, being the polypeptides residing

at the ribosome the ones confined in the smallest volume and

having the highest associated average solubility [30]. The same

principle seems to apply for the bacterial ribosome proteins,

suggesting a common evolutionary pressure for highly soluble

ribosomal proteins.

Ribosomal proteins are commonly characterised by the

presence of unstructured sequence stretches. These regions act

as ‘‘structural mortar’’. They have evolved to bind the ribosomal

RNA and thereafter acquire a partial ordered structure that fills

the gaps of the ribosome structure [69]. These unstructured

regions might confer ribosomal proteins with a lower aggregation

propensity than the rest of the cytosolic domains, in line with the

idea that disordered sequences have been evolutionary selected to

avoid the presence of aggregation-prone residues as a strategy to

prevent the self-assembly of the fully solvent-exposed polypeptide

chain in the absence of a protective secondary structure [22]. To

confirm that this relationship applies for bacterial cytosolic

proteins, we identified those polypeptides classified as intrinsically

unstructured (IUP) according to the Disprot Database [70],

calculated their aggregation parameters and compared them with

the rest of cytosolic proteins (Figures 8C and 8D). As expected,

bacterial cytosolic IUPs present a significantly decreased aggrega-

tion propensity. The difference in the aggregation propensity

between the folded and disordered protein regions becomes even

clearer if we only consider the fully unstructured sequences in

IUPs and not the whole protein (Figures 8E and 8F). Very similar

results were obtained when we analyzed the 32 proteins in the

cytosolic fraction predicted by the FoldUnfold algorithm [19] to be

intrinsically unstructured (data not shown).

Computational analysis suggest that, on the average, proteins in

the bacterial cytosol are more aggregation prone than those in the

human cytosol [30], which is in agreement with the hypothesis

that organisms with simpler cellular organisation and shorter life

span have, as a trend, higher aggregation propensities [24].

Because, IUPs tend to be more soluble than their globular

counterparts, independently of the analyzed proteome, the higher

proportion of unstructured proteins in the proteomes of higher

organisms, and specifically in humans, might well account for

the lower aggregation propensities of their cytosolic protein

ensemble.

Bacterial Proteins in the Periplasm and Inner and Outer
Membranes Possess Characteristic Aggregation
Propensities

Eukaryotic cells consist of a complex collection of compart-

ments characterised by different environmental conditions and

molecular compositions [71,72]. It is suggested that proteins

located in a particular eukaryotic subcellular location have been

evolutionary selected to fold and avoid protein aggregation in this

environment [21,22,23,24]. Bacterial proteins are found in other

compartments apart from the cytosol, like the periplasm and the

inner and outer membranes. Presumably their aggregation

properties would be also adapted for their optimal function at

those subcellular locations. As described above, the original data

set used in the present work was enriched in cytoplasmic proteins

but contained also polypeptides assigned to other cellular places.

We took advantage of this protein diversity to analyse the

aggregation properties of proteins residing in different compart-

ments.

Cytoplasmic and periplasmic proteins exhibit a similar average

aggregation propensity although a sharper distribution of Na4vSS

values was observed in the periplasm, in which proteins with

extreme aggregation propensities were absent (Figure 9). The

number of aggregation-prone fragments and their associated areas

Figure 7. Proteins encoded by the same operon display related
aggregation propensities. Standard deviation of Na4vSS values in
the 25 analysed operons. The standard deviation in the complete
cytosolic set is 7.72 (dashed line). Low standard deviation within an
operon indicates that the aggregation propensity of its proteins is
similar.
doi:10.1371/journal.pone.0009383.g007
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are lower in periplasmic proteins, suggesting that despite having a

content of aggregation-prone residues similar to that of cytosolic

proteins, these residues are differently arranged in the sequence

(Figure 9). This is consistent with the observation that the average

number of alternating hydrophobic/hydrophilic stretches (.5

residues) is 30% higher in periplasmic proteins, which might

indicate a tendency to reduce the presence and impact of

contiguous aggregation-prone regions. In line with this hypothesis,

Chang and co-workers demonstrated experimentally that peri-

plasmic proteins are preferentially resistant against aggregation

under denaturing conditions and that this behaviour is not related

to a higher thermodynamic stability, but rather to sequence

characteristics [73]. This property can be evolutionary advanta-

geous in the periplasm that, in contrast to the cytosol, lacks a

sophisticated cellular system to control protein quality and avoid

aggregation [72] and is separated from the outside solution by a

highly permeable outer membrane that provides limited protec-

tion against environmental variations. In addition, taking into

Table 1. Different operons regulate proteins with different aggregation propensity and biological function.

LA operons namea Na4vSS nu proteins Ribosomal Essential Non-essential Unknown

yjeFE-amiB-mutL-miaA-hfq-hflXKC 215.63 3 0 1 2 0

hscBA-fdx 214.33 3 0 2 0 1

rpsMKD-rpoA-rplQ 214.32 5 4 3 0 2

cmk-rpsA-himD 213.20 3 1 0 0 2

rpsF-priB-rpsR-rplI 212.93 3 3 2 0 1

pheST-himA 212.50 3 0 0 0 3

rpsLG-fusA-tufA 211.70 3 2 2 0 1

rpsJ-rplCDWB-rpsS-rplV-rpsC-rplP-
rpmC-rpsQ

211.47 11 11 4 0 7

thrS-infC-rpmI-rplT 211.25 4 2 0 0 4

metY-yhbC-nusA-infB-rbfA-truB-rpsO-pnp 211.17 7 1 4 0 3

iscRSUA 29.78 4 0 2 1 1

rpsP-rimM-trmD-rplS 28.60 4 2 3 0 1

rplNXE-rpsNH-rplFR-rpsE-rpmD-rplO-
prlA-rpmJ

28.52 9 9 3 0 6

aroKB-damX-dam-rpe-gph-trpS 27.60 3 0 2 0 1

galETKM 27.47 3 0 0 2 1

Total 68 35 28 5 34

% 51.47 41.18 7.35 50.00

HA operons nameb Na4vSS nu proteins Ribosomal Essential Non-essential Unknown

ribF-ileS-lspA-slpA-lytB 25.97 3 0 1 1 1

rplJL-rpoBC 25.93 4 2 0 0 4

nuoABCEFGHIJKLMN 25.87 3 0 0 1 2

sdhCDAB-b0725-sucABCD 25.74 5 0 2 2 1

leuLABCD 25.55 4 0 0 0 4

entCEBA-ybdB 25.54 5 0 0 4 1

minced 24.50 3 0 2 0 1

fabHDG-acpP-fabF 24.38 4 0 4 0 0

gcvTHP 24.13 3 0 0 0 3

dhaKLM 24.03 3 0 1 0 2

ptsHI-crr 23.33 3 0 0 1 2

deoCABD 23.23 4 0 0 1 3

thiCEFGH 22.53 4 0 0 1 3

hisGDCBHAFI 21.87 3 0 0 0 3

mraZW-ftsLI-murEF-mraY-murD-ftsW-
murGC-ddlB-ftsQAZ

21.68 4 0 3 0 1

rfbBDACX 20.86 5 0 0 3 2

gatYZABCDR__2 5.90 4 0 1 1 2

Total 64 2 14 15 35

% 3.13 21.88 23.44 54.69

a Operons regulating proteins with aggregation propensity lower (LA) than the mean aggregation propensity of the complete operon protein set (26.4 Na4vSS).
b Operons regulating proteins with aggregation propensity higher (HA) than the mean aggregation propensity of the complete operon protein set (26.4 Na4vSS).
doi:10.1371/journal.pone.0009383.t001
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Figure 8. Disordered sequence stretches display reduced protein aggregation. Cumulative distributions of NnHS and Na4vSS values in
ribosomal proteins (A and B), intrinsically unstructured proteins (C and D) and disordered fragments in cytosolic proteins (E and F) are compared with
the distribution in the complete cytosolic set (grey).
doi:10.1371/journal.pone.0009383.g008
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Figure 9. Relationship between subcellular localisation and protein aggregation propensity. Cumulative distribution of NnHS (A), THSAr
(B) and Na4vSS (C) of proteins located in the cytoplasm (C, red), outer membrane (OM, dark green), periplasm (P, blue). D) Dot distribution of the
Na4vSS values of the proteins in the previous four protein sets as well as those located in the inner membrane (IM, pale green); the vertical lines
correspond to the Na4vSS mean in each protein set. Cumulative distribution of NnHS (E) and Na4vSS (F) in cytosolic and inner membrane proteins.
doi:10.1371/journal.pone.0009383.g009
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account that the volume of the periplasm (0,065 mm3) is ten fold

smaller than that of the cytoplasm (0,67 mm3), the results suggest

that the inverse correlation observed in human tissues between the

size of the cellular compartment and the aggregation propensity of

the proteins that reside in it [30], also applies in the less

compartmented bacterial background.

The gram-negative bacterial inner membrane is a semiperme-

able shield that preserves the cytoplasm environment. The

proteins associated with the this membrane are principally

composed of a-helices and could have a variable number of

transmembrane segments (TS) per protein [71]. These regions are

stable in the hydrophobic environment of this lipid bilayer due to a

primary sequence rich in apolar residues. In this sense, it is

necessary for a protein to have a stretch of 15–25 residues to

transverse the membrane bilayer. Consequently, the extraction

and analysis of these proteins in aqueous solvents frequently causes

aggregation problems [71]. In agreement with these data,

AGGRESCAN shows that inner membrane proteins possess the

highest aggregation propensities of all bacterial proteins

(Figure 9C). Surprisingly, inner membrane proteins contain a

number of hot spots similar to that in cytoplasmic proteins

(Figure 9D). However, in the inner membrane proteins, the area

associated to these hot spots is much larger, indicating that they

are significantly longer and/or contain more aggregation-prone

residues (Figure 9E). These results are consistent with the

observations obtained with TANGO, which also showed that

membrane-associated proteins do not contain a higher amount of

beta-aggregation nucleating regions than the proteins located in

the cytoplasm [22]. Interestingly, when the Na4vSS values of inner

membrane proteins were plotted as a dotted distribution, the

existence of two protein groups become evident: a first group with

an aggregation propensity similar to that of cytosolic proteins and

a second group with particularly high Na4vSS values (Figure 10).

We found that the main difference between these groups is the

number of TS. The TMHMM version 2.0 [74] program

calculated that 83% of the proteins in the first group contain

fewer than three TS whereas 89% of the second group has more

than three TS (Figure 9, Table 1). To decipher whether the

different aggregation propensities exhibited by these two protein

subsets was associated with particular biological functions

(Figure 11), we consulted the functional descriptions collected in

the Functional Catalogue Database (FunCatDB) [75] and in the

Protein Knowledgebase (UniProtKB) [76,77]. According to the

FunCatDB, proteins with high Na4vSS are preferably related to

‘‘transport facilitation’’ whereas functions like ‘‘cellular communi-

cation’’ or ‘‘protein fate’’ appear to be associated with membrane

proteins displaying lower aggregation propensities. In agreement

with these data, according to UniProtKB, membrane proteins with

a high aggregation propensity are preferentially involved in

‘‘electron transport’’ and ‘‘sugar transport’’ whereas proteins with

low Na4vSS are associated to processes like ‘‘protein binding’’ and

‘‘ATP binding’’. Because, according to our analysis, inner

membrane proteins with high aggregation propensities also

contain many TS, they must be totally inserted in the membrane,

limiting their actions to functions principally related to transport

and respiratory activities. In contrast, polypeptides with low

aggregation propensities are anchored in the membrane by only

one or two transmembrane helices, the rest of the protein being

available to assume different biological activities like signal

transduction [78].

Outer membrane proteins are thought to be located in a

hydrophobic environment, and consequently, they are expected

to have a high aggregation tendency. However, they exhibit a low

aggregation propensity according to all AGGRESCAN param-

eters (Figure 9). In fact, the outer membrane acts as a permeable

barrier to hydrophobic substances. In general, outer membrane

proteins display a beta barrel structure that encloses a

hydrophilic cavity covered by a hydrophobic outer layer. The

presence of an apolar hollow space is essential for their function

as porins. Interestingly, this particular assembly is achieved by

alternating hydrophobic and hydrophilic segments [79,80]. As a

Figure 10. The inner membrane contains proteins with
different number of transmembrane segments and associated
aggregation propensities. Diagram of the inner membrane protein
set showing the Na4vSS value and the number of transmembrane
segments.
doi:10.1371/journal.pone.0009383.g010
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Figure 11. Inner membrane proteins with differential aggregation propensities are involved in different biological functions.
Percentage of inner membrane proteins associated with the biological functions described in FunCat (A) and UniProtKB (B). The inner membrane
proteins were divided in two groups according to their Na4vSS value: Na4vSS ,6 (42 proteins; pale grey) or Na4vSS $6 (43 proteins; dark grey).
doi:10.1371/journal.pone.0009383.g011

Protein Aggregation in E. coli

PLoS ONE | www.plosone.org 14 February 2010 | Volume 5 | Issue 2 | e9383



result, outer membrane proteins display two times more

alternating hydrophobic/hydrophilic stretches (.5 residues)

than cytoplasmic proteins. The presence of these characteristic

polar regions reduces the protein hydropathy and overall

aggregation propensity but also limits the number and area

associated to aggregation-prone sequence stretches. These

properties could be important not only for their biological

function but also for their biogenesis. As recently reviewed by

Knowles and co-workers, the folding of proteins into the outer

membrane presents important challenges to Gram-negative

bacteria because they must migrate from the cytosol, through

the inner membrane and into the periplasm before they could be

recognized by the beta-barrel assembly machinery and inserted

into the outer membrane [81]. In most of these steps and

compartments, the protein is unfolded and accordingly sequenc-

es with reduced aggregation propensities would represent a

selective advantage.

In the present study, we have characterized the aggregation

properties of an experimentally determined bacterial proteome.

The data are consistent with previous observations obtained

through the analysis of theoretical proteomes using different

computational strategies. In particular, we could confirm that the

observed anti-correlation between mRNA levels and aggregations

propensities [30,51,52] is effectively translated to the protein level

in physiologically relevant environments. The data argue that

selective pressure against protein aggregation plays an important

role in shaping the protein sequence space. In this way, abundant

proteins have evolved specific sequence features aimed to increase

their solubility in the crowded bacterial cytosol. We could confirm

that nature uses negative design principles to avoid the self-

assembly of aggregation-prone regions in globular cytosolic

proteins as well as the strongly decreased aggregation propensity

of cytosolic IUPs, as previously proposed by Serrano and Chiti

groups by analyzing different virtual proteomes [21,22,27]. Our

data demonstrate that, as in humans [21], the evolution of long

bacterial protein sequences has been constrained to reduce their

aggregation propensity, suggesting a general rule that applies

independently of the organism complexity. Importantly, this

feature appears to have coevolved coordinately with the size

recognition preferences of the chaperone complement present in

each particular organism [21]. The analysis of the operons

aggregation propensity shows that, as previously shown in

eukaryotes [23,68], bacterial proteins executing important cellular

functions tend to be better adapted against aggregation than

nonessential ones, suggesting again a generic mechanism to

improve cellular fitness in normal physiological conditions but

specially in front of stress. Finally, we could confirm that, as in

humans [21,30] and yeast [23], in bacteria, proteins residing in

different compartments display specific aggregation features,

suggesting a preferential adaptation to each particular subcellular

environment, that as proposed by Tartaglia and Vendruscolo

might well be related to the volume of the considered

compartment [30].

Overall, our results confirm the general validity of bioinformatic

analyses to elucidate the mechanisms by which evolution tunes

protein aggregation properties. Together, the results of such

analyses argue that aggregation propensity acts as strong

constraint during evolution, shaping different polypeptide proper-

ties. Accordingly, redundant natural mechanisms to avoid protein

aggregation in biological contexts appear to exist. In turn, it is

likely that the analysis of the aggregation properties of natural

bacterial proteins would provide useful lessons to rationally

manipulate and control the production of recombinant proteins

in the bacterial cytosol.

Materials and Methods

Databases and Parameters Calculation
The amino acid sequences of bacterial proteins were obtained

from Swiss-Prot Protein knowledgebase [82]. The protein

subcellular location was obtained from PSORT database, version

2.0 [34,35].

The functions associated with the different sequences in the

study were identified using the hierarchically structured functional

catalogue (FunCat) [75] and the Protein Knowledgebase (Uni-

ProtKB) [76,77]. FunCat provides a set of functional categories,

from 25 catalogued, for each classified protein. The biological

processes associated with the different protein sets were assigned

according to the ontology information in the TrEMBL database at

the UniProtKB server. The essentiality of the bacterial proteins for

the cellular fitness was derived from the data reported in [66,67].

The Database of Protein Disorder (DisProt) (release 4.9) has

been used to identify disordered proteins or proteins containing

extensive unstructured sequence stretches [70]. DisProt contains

47 E. coli proteins experimentally shown to be intrinsically

disordered; 20 of them are included in the analysed protein set.

The RegulonDB data base has been used to obtain the known

E. coli operon structure set [83]. We only considered those operons

encoding for at least 3 of the cytosolic proteins in the set.

The average hydropathy score (GRAVY) was calculated using

the hydrophobicity values obtained from the Kyte-Doolittle scale

[46]. The GRAVY was described as (gn
i = 1Hi)/n where Hi is the

protein residue hydrophobicity at position i and n is the protein

length.

The number of transmembrane regions was calculated

employing TMHMM version 2.0 [74].

The Exponentially Modified Protein Abundance Index (emPAI)

of each protein was obtained from the data reported in [29]. The

cumulative distribution of the Na4vSS, NnHS and THSAr values

associated with the 87 cytosolic polypeptides displaying the highest

and lowest emPAI were plotted to analyse their aggregational

properties. To analyse the overall correlation between cytosolic

proteins abundance and their aggregation propensity we used the

logarithm of emPAI LN(emPAI), because, as Na4vSS, it displays

in a lineal distribution. The LN(emPAI) comprise values between

22.5 and 23; however there were only 4 proteins between 14 and

23 values and they were discarded for further analysis. The

remaining 871 proteins were divided in 45 grups at intervals of

LN(emPAI) of 0.37 and the average value of each group

calculated. In this way, the different length intervals have similar

weights in the correlation, independently of the number of

polypeptides present in each group.

The Codon Adaptation Index values were obtained from [29].

The cytosolic polypeptides possess values between 0.19 and 0.83.

They were distributed in 20 intervals according to their indexes.

Two of these intervals do not contain any protein or only one

polypeptide and were discarded to avoid the dispersion of the data

distribution. Subsequently the Na4vSS and codon adaptation

index average of the 18 remainder groups were calculated.

The pI of the different polypeptides were calculated using the

ProtParam tool of the ExPASy proteomics server of the Swiss

Institute of Bioinformatics [82].

Composition of Hot Spots and Flanquing Stretches
Flanquing regions were defined as the 5 residues at the N- and

C-sides of a given HS. The frequency of each natural amino acid

inside the hot spots and at their flanks was compared with their

average frequency in natural proteins as deduced from Swiss-Prot

[82]. The relative frequency of a given amino acid in hot spots
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(Frh) was calculated as: Frh = (Fh/Fn)21 where Ff is its frequency

inside the hot spots and Fn its frequency in nature accordingly to

Swiss-Prot data base [82]. Values above 1 or below 1 indicate

higher or lower frequency, respectively. The same procedure was

used to calculate the relative frequency of a given amino acid at

the flanks.
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