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Abstract

Background: Pattern Recognition techniques can provide invaluable insights in the field of neuro-oncology. This is because
the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic
format. Magnetic Resonance (MR), in the modalities of spectroscopy (MRS) and spectroscopic imaging (MRSI), has been
widely applied to this purpose. The heterogeneity of the tissue in the brain volumes analyzed by MR remains a challenge in
terms of pathological area delimitation.

Methodology/Principal Findings: A pre-clinical study was carried out using seven brain tumor-bearing mice. Imaging and
spectroscopy information was acquired from the brain tissue. A methodology is proposed to extract tissue type-specific
sources from these signals by applying Convex Non-negative Matrix Factorization (Convex-NMF). Its suitability for the
delimitation of pathological brain area from MRSI is experimentally confirmed by comparing the images obtained with its
application to selected target regions, and to the gold standard of registered histopathology data. The former showed good
accuracy for the solid tumor region (proliferation index (PI).30%). The latter yielded (i) high sensitivity and specificity in
most cases, (ii) acquisition conditions for safe thresholds in tumor and non-tumor regions (PI.30% for solid tumoral region;
#5% for non-tumor), and (iii) fairly good results when borderline pixels were considered.

Conclusions/Significance: The unsupervised nature of Convex-NMF, which does not use prior information regarding the
tumor area for its delimitation, places this approach one step ahead of classical label-requiring supervised methods for
discrimination between tissue types, minimizing the negative effect of using mislabeled voxels. Convex-NMF also relaxes
the non-negativity constraints on the observed data, which allows for a natural representation of the MRSI signal. This
should help radiologists to accurately tackle one of the main sources of uncertainty in the clinical management of brain
tumors, which is the difficulty of appropriately delimiting the pathological area.
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Introduction

Nuclear magnetic resonance (MR) is a key technique for the

non-invasive analysis of brain tumors in the field of neuro-

oncology. The spectroscopic variant of MR, Magnetic Resonance

Spectroscopy (MRS), provides radiologists with a precise meta-

bolic signature of the target tissue, allowing the identification of a

wide array of molecules that may be present in tissues, even at low

concentration (mM range).

Magnetic Resonance Spectroscopic Imaging (MRSI) combines

both spectroscopic and imaging acquisition modalities to produce

spatially localized spectra, and thus delivers information about the

spatial localization of molecules. This modality has been success-

fully applied to monitoring the metabolic heterogeneity of human

brain tumors [1–4].

The rich information contained in MR signals makes them

ideally suited to the application of pattern recognition (PR)

techniques [5,6]. Over the last two decades, these techniques have

been successfully applied to the problem of knowledge extraction

from human brain tumor data, for diagnosis and prognosis of

different pathologies, mostly using single-voxel proton MRS (SV
1H-MRS) [7–12].
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Even when substantial advances have been achieved in the

application of PR to the problems of brain tumor type and grade

discrimination, a ‘‘gray zone’’ of uncertainty in tissue character-

ization still remains, where spectra of different tissue types mix. To

address this limitation, methods that provide accurate discrimina-

tion of tissue types from the MR spectra, with support from MR

images, would be required, ideally without the need for prior

information regarding tumor type and grade. This, from the PR

viewpoint, is an unsupervised modeling task.

As an example of the need for such methods, for instance for the

problem of discriminating normal from abnormal tissue, figure 1

illustrates that no single metabolite image produces, by itself, a

consistent segmentation. This figure compiles six 10610 color-

coded maps displaying the spatial accumulation of the main

metabolites detected by MRSI in a mouse model of brain tumor

(choline, N-acetyl aspartate (NAA), lactate, lipids, creatine, and

alanine), superimposed over the T2 weighted (T2-W) MR image

[13]. More sophisticated approaches for metabolite imaging have

been proposed, for example using selected metabolite concentra-

tion estimates and exploiting spatial information to improve tissue

heterogeneity definition [14], but, as in figure 1, fully consistent

segmentation using a single metabolite concentration does not

seem evident and varies in quality with tumor type in the three

patients investigated.

In the past, the problem has been mostly undertaken from a

supervised point of view, through the so-called nosologic imaging

approach, in which an image obtained with PR is color-coded

according to its histopathological class [3,15] or according to an

index of ‘‘metabolic abnormality’’ above a certain threshold, e.g.

the choline-containing compound - NAA index (CNI) [4,16].

In the current study, we approach this problem using signal

source extraction techniques. By considering spectra from a grid of

voxels (a small cubic based volume element (voxel) for the region

to be sampled with MRS) in a region of the brain (also known as

volume of interest, VOI), we aim to separate the constituent source

signals on the assumption that they are mixed linearly in each

single-voxel spectral measurement. This is a fair assumption, given

that in vivo spectroscopy signals are the result of overlapping peaks,

caused by broad resonances [17] as opposed to narrow peaks that

are characteristic of high-resolution spectra of compounds in

solution. Through source extraction, if there were different

constituent tissue types present in these heterogeneous areas of

the brain they might be separately identified and quantified. As a

result, the level of tissue type (class) assignment for the sources of

each voxel spectrum could also be quantified. This provides us

with an unsupervised class assignment alternative to the standard

supervised classification of a complete spectrum.

Importantly, this methodology does not involve combining

spectra from different subjects, thus focusing on intra-subject

variation without contamination from inter-subject overlaps.

We propose the use of an unsupervised method for matrix

factorization, specifically the convex [18] variant of Non-negative

Matrix Factorization (NMF, [19,20]), for the extraction of the

sources underlying the MRS signal, the identification of tumor

type-specific sources, and the generation of image maps providing

an adequate delimitation of the pathological area.

Different variants of NMF have previously been applied in the

context of neuro-oncology to distinguish normal from abnormal

masses, such as the one proposed by Lee and Seung [20], used in

[21], and the constraint NMF (cNMF) technique used in [22] and

[23]. Unlike the Convex-NMF technique [18] used in our study,

both variants require the source and mixing matrices to be non-

negative. This is an important advantage of Convex-NMF, given

that the analyzed MRSI data can take negative values. Previous

attempts of using NMF on similar data have resorted to either

extra-long echo time (TE) spectra at 280 ms [23], or magnitude

spectra [21], both of which render only positive peaks.

In [21], authors decomposed the observed spectra of multiple

voxels into what they called abundance distributions and

constituent spectra. The accuracy of the estimated abundances

was validated on phantom data, i.e. synthetic samples of known

composition, while the extracted spectra were validated with their

correlation with MRS data from 20 patients, on the choline and

NAA peak areas. In [22], synthetic and real MRS data were used

to calculate the error between the extracted sources and the

observed spectra; and in [23], in vivo MRS and MRI data were

used to evaluate the results.

For the current paper, a pre-clinical study was carried out using

brain tumor-bearing mice. In vivo MRI and MRS were acquired

from the brain and tumor tissue, along with ex vivo postmortem

histology slides of the same animals. This enabled us not only to

evaluate the correlation of the sources obtained with the observed

spectra, but also to evaluate how accurate the calculated maps

were in delineating the tumor region, with respect to a true

biological correlate acquired ex vivo, upon sacrifice of the animal.

This ex vivo – in vivo correlation is virtually impossible to achieve

with human brain tumors.

In summary, the aims of the experiments carried out for this

study were to: 1) Explore the comparative ability of NMF methods

to extract the constituent sources of MRSI data; 2) Generate tissue

labels in a fully unsupervised mode; and 3) Investigate the

possibility of creating an accurate delimitation of the tumor area,

after identifying the sources that describe the tumor tissue. This

technique is unsupervised in the sense that labels (tumor or normal

tissue) are not required to create a model of the analyzed MRSI

data, i.e. to find the MRS sources. This is important since routine

histopathological assignment of the class and grade of specific

tumors has been shown not to be fully reproducible [24–26] and

may introduce unwanted variation in the supervised analysis.

Materials and Methods

Ethics Statement
All studies were approved by the local ethics committee (Comissió

d’Ètica en l’Experimentació Animal i Humana (CEEAH). Available:

http://www.recerca.uab.es/ceeah. Accessed 17 May 2012.),

according to the regional and state legislation (protocol DARP-

3255/CEEAH-530). Mice were obtained from Charles River

Laboratories (France) and housed at the animal facility of the

Universitat Autònoma de Barcelona (Servei d’Estabulari) [27].

Materials: Description of the Data
Glioblastoma multiforme (GBM) is a malignant intra-cranial

tumor, of high incidence and very poor prognosis in humans.

Seven GL261 GBM-bearing mice [27] were scanned at 7 Tesla by

PRESS-MRSI, using two different echo times: short, 12 ms (STE);

and long, 136 ms (LTE). Compared to LTE, STE spectra typically

show more complex patterns, including signals from metabolites

with short and long T2 relaxation times. In LTE spectra, signals

with short T2 will be lost, such as most lipids and macromolecules,

remaining visible only spins with longer T2, i.e. small metabolites.

Thus, the lactate methyl signals resonating close to the lipid methyl

groups become more visible in LTE spectra. In addition, due to J-

coupling effects, the methyl protons of alanine and lactate will

appear inverted in LTE spectra, that is, they will undergo a 180

degree phase shift compared to other visible metabolites [15].

Six of these mice, namely C69, C71, C32, C179, C233, and

C234, were described in [27]. A seventh mouse, namely C278,
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was used in this work to increase the number of experiments. This

animal was handled (tumor induction) and scanned exactly as

reported for the other six. The PRESS MRSI data grid was

formed by an array (10610 voxels) with an in-plane resolution of

0.5560.55 mm and a 1 mm slice thickness in the 3rd dimension

[27]. This volume of interest was manually positioned approxi-

mately in the center of the brain, based on the reference image, in

a way that it would include most of the tumor mass and also part

of the normal/peritumoral brain parenchyma.

Sources extracted as described later on in this section were used to

create maps delimiting the tumor region. These maps were compared

to the gold standard, which, in this study, is Ki67 stained sections of

the post-mortem, paraffin-embedded mice brains as in [28].

Ki67 immunostaining allows the spatial determination of the

proliferating population of cells in an individual tumor [29]. The

proliferation index (PI), also called mitotic index, was calculated

for each tumor by, first, immunohistochemical technique on

paraffin-embedded slices with the Ki-67 antibody (BD Biosciences

Pharmingen 550609) and, second, subsequently counting the

number of positive cells per field at 406magnification. This was

achieved with the Definiens Developer XD 1.2 software (Definiens

website. Available: http://www.definiens.com. Accessed 17 May

2012.) ‘‘Image Registration: MRI & Tissue Slide’’ package, which

correlates the MRI with the corresponding Ki-67 immunostained

slice through an affine transformation. The Ki67 immunostained

slice that best matched the MRI slice was chosen by the

pathologist (co-author, M. Pumarola) following anatomical

criteria. In this particular murine model, and according to the

pathologist, PI.30% would correspond to a safe threshold for the

solid tumoral region, whereas a PI#5% would correspond to

definitely non-tumor (excluding reactive gliosis and other phe-

nomena), in agreement with similar studies (PI,12% for control)

[30]. In humans, the PI values for glioblastomas vary considerably,

reflecting, to some extent, tumor heterogeneity [29,31].

An additional way of validating the obtained sources makes use

of the labeling procedure described in [32], to compare the sources

obtained with the mean spectra of tumor and non-tumor regions,

similarly to the Ki-67 threshold validation described above. In

[32], subsets of tumoral and non-tumoral regions were labeled, for

each of the investigated mice, according to the following criteria:

first, the spectra should not correspond to voxels at the edge of the

PRESS-VOI, where signal to noise ratio (SNR) tends to be lower;

and second, as in [33], they had not been collected over, or close

to, the tumor borderline, to avoid as much as possible voxel

‘bleeding’ between tumor/non-tumor regions.

Non-negative Matrix Factorization for Source Extraction
In NMF methods [19,20], the data matrix V (of dimensions

d|n, where d is the data dimensionality and n is the number of

observations), is approximately factorized into two non-negative

matrices, the matrix of sources or data basis W (of dimensions

d|k, where k is the number of sources, and kvd) and the mixing

matrix H (of dimensions k|n, each of whose columns provides

the encoding of a data point: the spectrum of a voxel in this study).

The product of these two matrices provides a good approximation

to the original data matrix, in the form:

V&WH ð1Þ

In this study, the following NMF methods, which cover a wide

palette of algorithmic alternatives, were considered:

N Euclidean distance update algorithm (herein referred to as euc)

[20]. The objective function is optimized with multiplicative

update rules for W and H:

W/W
VHT

WHHT
; H/H

W T V

W T WH

Monotonic convergence of the algorithm can be proven [20].

These update equations preserve the nonnegativity of Wand H,

and constrain the columns of W to sum to unity.

N Alternating least squares (als) [19]. This technique alternately

fixes one matrix and updates the other.

W/ arg minW§0 f (W ,H); H/ arg minH§0 f (W ,H);

where Wand H are updated as follows:

W/((HHT ){1HV T )T ; H/(W T W ){1W T V

setting all negative elements in Wand H to zero.

N Alternating non-negative least squares using projected gradi-

ents (alspg) [34]. The equations for Wand H in the alternating

least squares method above are solved here using projected

gradients. For H this entails:

N H/P½H{a+f (H)�; where a is the step size; and P½:� is a

bounding function that ensures that the solution remains

within the boundaries of feasibility. The gradient function is

computed as +f (H)~W T (WH{V ). The same approach is

used to calculate W .

N Alternating least squares with Optimal Brain Surgeon (OBS)

[35] (alsobs) [36]. Similar to alternating least squares, this

algorithm alternately solves the least squares equations for

Wand H. The negative elements in Wand H are set to zero

and the rest are adjusted using the OBS method, through

second-order derivatives. The update rules for Wand H are:

W/((HHT ){1HVT )TzdW , and H/(W T W ){1W T VzdH ;

where dW and dH act as regularization terms and are responsible

for eliminating the less important elements of Wand H ,

respectively (the original OBS was used as a weight pruning

mechanism in artificial neural networks), thus re-adjusting the

Figure 1. Peak maps of principal metabolites for mouse C69, harboring a glioblastoma. It was scanned at 7 Tesla by PRESS-MRSI with
136 ms echo-time. MRSI data were acquired with Bruker ParaVision 4.0, and Fourier interpolated to 32632 voxels, with a final PRESS MRSI data grid of
10610 voxels. Line broadening adjustments and zero order phase correction were carried out. Then, the data were fed into a home-built module for
MRSI post-processing, where the 4.5–0 ppm region of each spectrum was individually normalized to Unit Length (UL2). Each map shows the peak
height in absolute values of the studied metabolite in each voxel. The white dotted lines highlight the tumoral mass according to T2-W MR images.
The scales reflected in the colors coding are in arbitrary units.
doi:10.1371/journal.pone.0047824.g001
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remaining elements optimally. More implementation details can

be found in [37].

N Convex-NMF [18]. To achieve interpretability, this method

imposes a constraint that the vectors (columns) defining W
must lie within the column space of V , i.e. W~VA (where A
is an auxiliary adaptive weight matrix that fully determines

W ), so that V&VAH. Unlike the previous ones, this NMF

variant applies to both nonnegative and mixed-sign data

matrices. It allows also the sources in W to be of mixed-sign,

while the mixing coefficients in H are nonnegative. The factors

H and A are updated as follows:

HT/HT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(VT V)zAzHT AT (VT V ){A

(VT V){AzHT AT (VT V )zA

s
,

A/A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(VT V )zHTz(VT V ){AHHT

(VT V ){HTz(VT V )zAHHT

s

where (:)z is the positive part of the matrix, where all negative

values become zeros; and (:){ is the negative part of the matrix,

where all positive values become zeros.

N We reckon Convex-NMF to be especially well suited to the

analysis of MRS data for the following two reasons:

N Firstly, and as just mentioned, because it relaxes the constraints

of non-negativity both in the matrix of observed data and in

the extracted sources. The analyzed MR spectra include

negative peaks, so that we would expect the extracted sources

to contain negative values as well. The absolute values of the

spectra were used when applying NMF methods other than

Convex-NMF. As a result, negative peaks such as the inverted

lactate peak are not lost (as they would be if the signal was

truncated). In any case, Convex-NMF does not require any ad

hoc distortion of the observed signal.

N Secondly, because, by restricting W to convex combinations of

the columns of V we can, in fact, understand each of the basis

or sources as weighted sums of data points (given that

W~VA). This is a unique feature of Convex-NMF that

brings about an interesting result: sources can, to some extent,

be considered as cluster centroids or, more abstractly, as

representatives or prototypes of the groupings in which the observed

data are naturally structured. As shown in [18], the results of

Convex-NMF, if seen as an unsupervised clustering procedure,

often agree with those provided by the well-known K-means

algorithm [38]. In fact, it is proved in [18] that Convex-NMF

is a relaxation of the K-means algorithm. Interestingly,

Convex-NMF is bound to generate sparse mixing matrices

H (with many elements taking values close to zero), which are

practical as cluster indicators. As a result of all this, the sources

obtained by Convex-NMF are likely to be interpretable and

similar to data group centroids.

Experiments with the different NMF methods were carried out

to identify which of them yielded better results in terms of the

correlation between the sources and the average spectra of the

tumor and non-tumor areas of each mouse. These average spectra

for each mouse were taken from the subsets of voxels labeled as

tumor and non-tumor, as described in the previous section.

NMF Initialization
NMF methods unavoidably converge to local minima. As a

result, the extracted NMF bases might be different for different

initializations. In this study, six initialization methods were

investigated, covering a wide array of approaches: from random

initialization, to prototype-based clustering methods such as K-

means and Fuzzy C-Means (FCM), which provide a data density-

based sample of initial data locations; and to feature extraction

techniques such as Principal Component Analysis (PCA), Inde-

pendent Component Analysis (ICA) and NMF itself, which

initialize the algorithm according to the basic eigenstructure of

the data.

All the NMF algorithms, for all initializations, were allowed to

achieve convergence. Convergence was qualified as the lack of

variation in the reconstruction error, from one iteration to the

next, over a common set small threshold of value 1025.

Voxel Labeling using the Mixing Matrix and the Sources
As explained in the introduction, NMF in this study is used as

an unsupervised method in the sense that the labels of MRSI

voxels are not used to create the data model. The obvious

advantage of this approach lies in the fact that the labeling

procedure becomes independent of the availability of labeled

MRSI datasets. Two further advantages come with this indepen-

dence: First, the generalization capabilities of the obtained model

will not be compromised by the bias introduced by the finite size of

the labeled sample. Second, the negative effect of mislabeled cases

on the generalization capabilities of the model will be prevented.

In order to represent the data using the source signals obtained

through the chosen NMF method, we propose to infer the labels of

each voxel only on the basis of the mixing matrix and the

calculated source signals. The contribution of each source is

estimated by calculating the scalar product between the original

voxel spectrum and the reconstructed component of the voxel

spectrum that is obtained from one individual source and the

corresponding mixing matrix element (i.e. loading) for that voxel.

The contribution C of source k (from K sources) to voxel i (from

N voxels) is then given by:

Ci,k~VT
i WkHk,i, i~1:::N, k~1:::K ð2Þ

The predicted label can then be inferred from the values in C as

follows: for each voxel i, the label li is provided by the source k
that has the highest value of contribution for that voxel, that is

li~ arg maxfkg (Ci,k).

Experimental Settings
For each mouse, the data matrix V is built with the available

MRSI spectra. Its dimension is 6926100 (corresponding to 692

frequencies in the spectral interval of interest, between 0 and

4.5 ppm, and 100 voxels). All the investigated variants of the NMF

method, with all considered initialization strategies, were used to

calculate the underlying source signals. The interpretation of each

source was made by reference to the average spectra of the

corresponding mouse brain regions, as previously mentioned. The

method was set up to calculate two source signals, under the

hypothesis that one of them will represent the tumor, while the

other will represent the non-tumor region. This is intended to

capture the separation between the two main tissue types.

After calculating the source signals and the mixing matrix,

binary (tumor vs. non-tumor) labels for each voxel were then

generated in a fully unsupervised mode. The correlations between

Convex-NMF for Brain Tumor Delimitation
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the spectra in each voxel and each source were calculated, and the

label was assigned according to the source that yielded the highest

correlation. If the correlation between the spectrum of a voxel and

both sources was below a threshold of 50%, then we labeled this

voxel as ‘undecided’ (thus effectively abstaining from labeling the

voxel). Assigning a color for each source, and black for the

‘undecided’ voxels, we created color maps with the labels, that we

call ‘‘source-based labels maps’’.

As an alternative form of representation, we used the

contribution values of only the tumor source to each voxel, from

Eq.2, obtained as described in the previous section. Color maps

were created using these values, with hues of red representing the

highest contribution values, which correspond to voxels labeled as

tumor, and hues of blue representing the lowest contributions,

which correspond to non-tumor. The darkest hue of red

corresponds to the highest absolute contribution of the tumor

source and darkest blue corresponds to the lowest one. We call

these maps ‘‘source contributions maps’’.

Results

A. Source Signals
For illustration, tables 1 and 2 show the correlations obtained

between the sources (obtained with the five NMF methods

previously described, each with the six different initialization

strategies proposed) and the corresponding average spectra of

tumor and non-tumor areas, at LTE and STE, respectively, for

one of the seven mice, namely C69. The correlation values

obtained for the remaining six mice are compiled in tables S1 and

S2. Mouse C278 practically does not contain non-tumor area that

fulfils the selection criteria outlined in the Material and Methods

section. Thus, only a fraction of the voxels was labeled as tumor

whereas the rest were labeled as ‘‘other’’. Therefore, for this mouse

in particular, we only made the comparison between the average

spectrum of the tumor area and the tumoral source in tables S1

and S2.

Convex-NMF yields, overall and consistently, the best correla-

tion results. The results are also fairly insensitive to the

initialization strategy. The source signals calculated in the

experiments carried out with all mice at LTE and STE, using

Convex-NMF with K-means initialization, are displayed in

figures 2 and 3, respectively. In K-means clustering, H was

initialized as H (0)~Pz0:2E, where E is a matrix of all its

elements equal to one, and P~(pi; :::pn) was filled with the cluster

indicators, which are based on the cluster indices of each point,

such that Pik~f0; 1g, where the ones indicate cluster member-

ship. A was initialized as A(0)~(Pz0:2E)D{1, where D is a

diagonal matrix with each element being the number of points in

each cluster [18].

In order to visualize the similarities and differences of the

calculated sources with respect to the average spectra of areas

labeled by the expert as tumor and non-tumor, we superimposed

the calculated sources to the average spectra, and to the set of all

labeled spectra, as shown in figures 2 and 3. The sources on the

left hand side column have a clear pathological profile, as

expressed by the presence of high choline, lactate and mobile lipid

peaks and low or no NAA [27,39]. Instead, the sources on the

right hand side column mostly represent non-tumor tissue. These

results are consistent with some of the Convex-NMF properties

described in previous sections: as stated there, the sources obtained

by this method are likely to be interpretable and similar to data

group centroids, given that each source is a weighted sum of

spectra, and given the relation between Convex-NMF and the K-

means clustering algorithm.

Figure 4 shows detailed correlation (top row) and Root Mean

Squared Error (RMSE, bottom row) results for all the analyzed

mice at both echo times, where sources were obtained using

Convex-NMF with K-means initialization. These results include

both tumor (darker bars) and non-tumor tissue (lighter bars).

There is some controversy regarding the uniqueness of the

solutions obtained by NMF methods. In order to clarify this for

our results, we took one of the studied mice, namely C69 at LTE,

and compared the sources obtained starting from 50 random

initializations with values in the interval (0,1). Allowing for trivial

permutations in the order in which the sources were obtained by

the Convex-NMF algorithm, the results were consistently 0.99 or

better correlated with the sources. According to this, Convex-

NMF is converging to very similar solutions, which from the

standpoint of the current study could be considered as they are all

one and the same solution.

Secondly, we perturbed the mixing matrix obtained for this class

pair, by multiplication with a random matrix with positive

elements in the range (0,1). This was used to re-initialize the

Convex-NMF algorithm, which converged back to the original

solutions, with a very small difference (0.041560.02 root mean

squared error between the original and the new values). The

results of this second test reinforce our previous statement

regarding the uniqueness of the solutions obtained by Convex-

NMF for the type of data under analysis.

Table 1. Correlations between the sources and the average
spectra for mouse C69 at LTE.

Mouse C69

init euc als alspg alsobs convex

Random .976/.940 .977/.938 .975/.928 .976/.939 .991/.986

K-means .975/.941 .977/.938 .976/.939 .976/.939 .987/.993

FCM .975/.940 .977/.938 .976/.939 .976/.939 .987/.993

PCA .934/.879 .977/.938 .976/.938 .976/.939 .982/.988

ICA .969/.800 .977/.938 .976/.938 .976/.939 .986/.992

NMF .976/.938 .977/.938 .976/.939 .976/.939 .986/.992

Table cells should be read as the correlations between the sources and the
average spectra (see figures 2 and 3) of the tumor/non-tumor areas. The results
of the best performing method, for each initialization condition, are highlighted
in bold.
doi:10.1371/journal.pone.0047824.t001

Table 2. Correlations between the sources and the average
spectra for mouse C69 at STE.

Mouse C69

init euc als alspg alsobs convex

Random .957/.989 .967/.991 .902/.990 .967/.991 .981/.983

K-means .968/.990 .967/.991 .968/.991 .968/.991 .985/.992

FCM .965/.990 .967/.991 .968/.991 .968/.991 .986/.997

PCA .915/.811 .967/.991 .969/.991 .968/.991 .983/.996

ICA .809/.990 .967/.991 .962/.991 .967/.991 .983/.997

NMF .968/.991 .967/.991 .968/.991 .968/.991 .984/.998

Table cells should be read as in table 1.
doi:10.1371/journal.pone.0047824.t002

Convex-NMF for Brain Tumor Delimitation

PLOS ONE | www.plosone.org 6 October 2012 | Volume 7 | Issue 10 | e47824



B. Voxel Labeling and Tumor Delimitation
Figure 5 shows the T2-W image for one of the studied mice

(C69), together with the respective histology superimposed, using

monoclonal antibody against Ki67, and Ki67 PI maps for voxels

with PI#5% and PI.30%. The yellow squares delimit the VOI

region. The VOI of the same mouse is further detailed in figure 6,

enlarged and overlaid with the 10610 MRSI spectral matrix at

Figure 2. Sources obtained for the seven mice at LTE. The
calculated sources are shown in black color, the average spectra in red,
and all the labeled spectra in gray. The sources in the left column
represent the tumor, and the ones in the right column mainly represent
non-tumoral tissue. Frequencies in the horizontal axis are measured in
ppm.
doi:10.1371/journal.pone.0047824.g002

Figure 3. Sources obtained for the seven mice at STE. The
calculated sources are shown in black color, the average spectra in red,
and all the labeled spectra in gray. The sources in the left column
represent the tumor, and the ones in the right column mainly represent
non-tumoral tissue. Frequencies in the horizontal axis are measured in
ppm.
doi:10.1371/journal.pone.0047824.g003
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LTE. The areas delimited by red and blue lines correspond to

characteristic tumor and non-tumor labels, respectively, labeled as

in [32]. These labels will be referred to, later on in the study, as

‘‘supervised’’. The yellow dotted line in figure 6 delineates the

‘‘radiological anomaly region’’ as judged from the mass shown in

the T2-W image.

The source-based labels maps generated for mouse C69 at LTE

and STE are shown in figure 7. In this figure we superimposed

these maps to T2-W images, to verify the correspondence between

the tumor areas described by the sources and the T2-W image.

There is a single black voxel in figure 7 (source-based labels map

generated for C69 at LTE). This voxel is labeled as ‘undecided’,

indicating that the correlations of the sources with the original

spectrum of this voxel (same position in figure 6: poor SNR), are

under the 50% threshold.

We illustrate the tumor delimitation capabilities of the method

proposed in this paper in figure 8. This figure shows the source

contributions maps generated for the VOI regions of mouse C69

at LTE and STE. The first row shows the 10610 grid of voxels,

with the corresponding color according to the values of C
calculated from Eq.2 for the source representing the tumor in each

voxel. As in figure 7, this is then superimposed over the T2-W

image to verify the high correspondence between the area of the

tumor in both images (the source contributions map and the T2-

W). The maps displayed in the bottom row are created with a

linear interpolation of the maps in the top row, also superimposed

over the corresponding T2-W image.

Figure 9 summarizes the information for the remaining 6 mice

(C71, C32, C179, C233, C234, and C278). The first four rows

contain the known information about these mice, used here to

assess the accuracy of the obtained results, which are compiled in

the last four rows. An additional color, magenta, is used in order to

represent the area that is not normal brain, but neither is being

represented by the main tumoral source (mouse C278, rows 6 and

8).

To determine the extent to which the source-based labels maps

were related to the Ki67 maps, we calculated the accuracy of the

former as compared to Ki67 PI maps for the tumor region (results

for all mice, at LTE and STE, are compiled in table 3). For this, as

described in methods, we considered PI.30% to be a safe

threshold for the solid tumor region, and PI#5% as the threshold

for non-tumor, our ‘‘gold standards’’ according to the opinion of

the expert pathologist. We also calculated the accuracy of the

obtained source-based labels maps in relation to the supervised

tumor and non-tumor labels, described in [32] and shown in

figure 6 for mouse C69. Table 4 contains the results.

Table 5 compiles the sensitivity (true positive rate,

TP=(TPzFN), where true positive (TP) cases are tumor voxels

correctly labeled as tumors, and false negative (FN ) cases are non-

tumor voxels labeled as tumors) and specificity true negative rate,

TN=(TNzFP), where true negative (TN) cases are non-tumor

voxels correctly identified as non-tumors, and false positive (FP)

cases are tumor voxels labeled as non-tumors) of the obtained

source-based labels maps.

In most cases the tumor sources overlapped relatively well the

PI.30% (table 5 and figures 7, and 9), but there were some

exceptions. In mouse C69, there was a spread of the tumor source

outside the mass as seen on MRI towards the caudal part of the

brain. In mouse C179 the source spread towards the smaller mass,

which had been labeled as less than 30% PI by the Definiens

coregistration.

In both cases, an additional manual sampling and count of

0.1 mm2 squares along the vertical and horizontal axes of the

tumor (figures 10 and 11) revealed that:

In mouse C69 the tumor was well delimited, lacking surround-

ing infiltrative areas. However, the bottom (caudal) edge of the

tumor, presented an area with a PI of 13% due to proliferating

glial cells in the Cornu Ammonis (CA) of the hippocampus. Despite

this, the top (rostral), right and left immediately adjacent to the

tumor areas had a PI of 0, 5.4, and 3.3% respectively, consistent

with a well delimited tumor mass and the ,5% threshold for non-

tumor set before. These results may explain the spread of the

source of the tumoral area observed outside the caudal T2-W

anomaly region (figure 7). Additionally, the mean of samplings

performed inside the tumor mass yielded a PI of 73.9% and

cellularity of 3647 cells/mm2 (2251 proliferating cells/mm2),

consistent with a similar study (ca. 2000 proliferating cells/mm2),

reported in [40].

Figure 4. Correlations and errors. Correlations (top row) and errors (bottom row) between the source signals and the average spectra of the
labeled areas (as measured by RMSE). Dark gray bars: tumors; light gray bars: non-tumor tissue.
doi:10.1371/journal.pone.0047824.g004
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Regarding mouse C179 in which two masses are evident on

the MRI (figure 9) both T2-W and source based maps

recognize tumor better than our self-imposed ‘‘gold standard’’

(PI.30%). In this respect, figure 11 shows a transition area of

proliferating cells, between the big and the small mass. The two

samplings in the transition area showed PI values of 24.5 and

21.5% and the third sampling, already in the smaller mass, had

a PI of 40%. These values are consistent with the .30% PI for

solid tumor and above the 5% PI for normal brain, and agree

both with the T2-W and the source maps at both echo times. A

Figure 5. Histology information of mouse C69. T2-W image (top left); Ki67 immunostained digitized slide (top right); Ki67 map with PI#5%
(bottom left); and Ki67 map with PI.30% (bottom right), of mouse C69, bearing a GL261 GBM tumor. The last two maps are superimposed on the
corresponding reference T2-W image. Color columns at the bottom show PI scale.
doi:10.1371/journal.pone.0047824.g005
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possible explanation for this disagreement between the values

provided by the automated coregistration method and the MRI

and the MRSI can be that an affine was applied instead of an

elastic transformation.

It should also be kept in mind that the size of the MRSI coded

pixels (0.5560.55 mm in plane resolution and 1 mm slice

thickness in the 3rd dimension) [27] leads to partial volume effects,

causing most borderline pixels to contain PI contributions from

both tumor and non-tumor regions and artificially increasing (or

decreasing) the average PI. These may explain as well why,

particularly in mice C32 and C234, the source maps are smaller

than the T2-W image (figure 12). Histopathology slides for these

two mice were also manually checked and for example, in mouse

C32, the PI for the periphery was comprised in the 58.5–76.9%

range.

No accuracy/sensitivity/specificity calculation has been per-

formed for the borderline pixels or for Ki67 regions between 5 and

30% Ki67 because of the confluence of several problems. Namely,

1) restricted MRSI resolution (0.5560.5561 mm) compared with

the MRI resolution (0.1560.1561 mm), 2) imperfect registration

of in vivo and ex vivo histopathology data, and 3) self-imposed

restriction of the number of sources to be used to two in this initial

discrimination study of tumor and non-tumor regions. Still, we

have attempted an approximation to a full account of the acquired

VOI with respect to its tumor/non-tumor recognition, and for this

the gold standard threshold for tumor has been maintained at

.30% while all regions with PI below 30% have been combined

into the ‘‘non-tumor’’ label. This has produced the results shown

in figure 12 and table 6.

An interesting result is that comparison with Ki67 maps

yields in all cases lower sensitivity and specificity (table 6) than

comparison with the supervised labels (table 5). This also

happens when correlation is calculated (table 3 vs. table 4). This

is probably caused by the already mentioned effect of taking all

voxels (including borderline pixels) in the calculation when

analyzing images, while the supervised labeled images do not

Figure 6. VOI region of mouse C69. T2-W image enlarged and overlaid with the MRSI matrix at LTE; spectra shown in white. The red and blue
contours delineate, in turn, characteristic tumor and non-tumor areas used for calculating the average spectra to which the unsupervised sources
were compared. The yellow dotted line outlines the tumor as judged from the ‘‘anomaly region’’ on the reference T2-W image. Bottom spectra 1 and
2 arise, enlarged, from the voxels labeled in the top image.
doi:10.1371/journal.pone.0047824.g006

Convex-NMF for Brain Tumor Delimitation

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e47824



take into account borderline pixels between tumor and non-

tumor tissue, as well as the specific coregistration algorithm

used.

The borderline regions of the tumors according to the T2-W

image are heterogeneous and contain regions of anomaly which

the source maps incorporate into either tumor (mostly in mice

C69, C179 and C278) or non-tumor regions (mostly in mice C32,

C233 and C234), depending of the mouse analyzed, thus

providing a different delimitation of the abnormal mass which

may be relevant for its evaluation and follow-up.

Discussion

A. Source Signals
The results reported in tables 1, 2, S1 and S2 indicate that NMF

methods are capable of extracting tissue type-specific (tumor or

non-tumor) sources. In terms of correlation, Convex-NMF

outperforms the other methods tested, with small differences for

different initialization strategies. The higher correlations provided

by Convex-NMF are very noticeable for non-tumor tissue,

especially at LTE, for most mice. In some cases, the initialization

results yielded by PCA and ICA are very good, e.g. C71 (at LTE

and STE) and C32 (at LTE), but very poor in others, e.g. C179 (at

LTE), becoming much worse than random. K-means and FCM

initializations yielded very similar results, except in some cases in

which FCM performed worse, e.g. C179 (at LTE and STE). The

combination of Convex-NMF and K-means initialization was the

most stable of all, providing very good correlation results.

In a previous study [41], where we assessed the abilities of two

variants of ICA [42,43], namely JADE [44] and FastICA [45], to

identify the constituent tissue types in single-voxel MRS, ICA

showed no advantages over NMF methods.

With respect to the acquisition conditions, both TE sources

seem to perform similarly in average (tables 3, 4, 5, 6) for

delineating tumor and normal tissue, with quantitative variations

depending on the specific mouse studied (table 6 and figure 12),

but see next section for further comments on this.

The results in figures 2 and 3 support our initial assumption that

the two main sources obtained by Convex-NMF correspond to

tumor and non-tumor tissues.

GBM are highly malignant, WHO grade IV tumors [46],

usually showing a strong mobile lipid MRS signal (at ca. 1.3ppm),

most evident at STE [47] (see figure 3, left column). Normal brain

tissue is usually characterized by a clear NAA peak at 2.02ppm

with similar height to creatine (3.03ppm) and choline-containing

compound (3.21 ppm) peaks in mice models [39]. In the tumor

area, the creatine peak height decreases, while the total choline

peak increases. Lactate (1.3ppm) resonances appear inverted at

LTE (see figure 2, left column) but overlap lipid signals at STE (see

figure 3, left column).

B. Voxel Labeling and Tumor Delimitation
The red area obtained for both source-based labels maps in

figure 7 corresponds to the tumoral area previously delimited and

to the true proliferative tumor area, as shown by the Ki67 images

(figure 5). This similarity has been achieved using our proposed

method to generate source-based labels maps in a fully unsuper-

vised way. Previous approaches for brain tumor segmentation

based on MRS labeling, such as [48], are all supervised. This

unsupervised approach would allow us to provide a labeling

prediction independent of the availability of a labeled data set.

The source-based labels maps have been the type of maps

chosen for detailed quantitative evaluation of the outcome of the

proposed approach (tables 3, 4, 5, 6 and figure 12). Still, the use of

the source contributions maps (figures 8, 9) may have advantages

in future studies to better sample tissue transition zones or when

more than two sources need to be considered.

While most of the existing unsupervised strategies are based on

MRI, the area of metabolic abnormality for human brain tumors

is usually larger than the area delimited by conventional MRI

Figure 7. Source-based labels maps generated for mouse C69. The maps obtained at LTE (left) and STE (right) are superimposed to the T2-W
reference image. The red color identifies tumor (T), blue identifies non-tumor (N), and black represents ‘undecided’. The color intensities shown in the
scale bar on the right hand side correspond to the magnitude of the correlation values between the spectra of the voxels and their representing
source. The yellow dotted lines outline the tumor region, as judged from the T2-W image, similar to figure 6.
doi:10.1371/journal.pone.0047824.g007
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[49]. This may lead, e.g., to inaccuracies in the evaluation of

therapy response volumes.

Previous work [23] applying NMF to MRSI data of patholog-

ical states, either on acute or chronic phases, yielded a recovered

abnormal image beyond the regions of abnormal signal intensity

on T2-W Fluid Attenuated Inversion Recovery (FLAIR) images

(T2-W with flowing liquid attenuation) [50], whose match was

evaluated only visually. While correctly mapping the abnormal-

ities, our approach provides a good delineation of the abnormal

area and quantitative estimates of the prediction accuracy. In

addition, since we applied Convex-NMF to a preclinical model

rather than to human patients, there is an authentic biological

correlate of the true proliferative tumor area, as shown by the

histopathology co-localized images (figures 5, 9 and 12). Our

results match well the tumoral area (figure 12 and table 6), with the

limitations already pointed out in the results section and discussed

below.

Despite a particular mouse (C179), the remaining six mice

studied showed a clearly circumscribed tumoral mass, essentially

with minor or no infiltration outside the tumor. Mouse C69,

already discussed, had a tumoral source that extended over MRI-

normal areas of the brain in its caudal part (figure 10), which

corresponded to PI = 13%. In fact, Ki67 positive cells detected

outside the tumor mass in this caudal part were not tumoral, but

glial cells (morphologically identified by the pathologist). In this

respect, it has been described that proliferative reactive astrocytes

(astrogliosis) are attracted to brain tumors [51]. Anatomically, this

was observed in the hippocampus region, which is also known to

contain proliferating neural stem cells (NSC) [52]. Indeed,

increased proliferation of NSC and tropism towards GL261

GBM has been demonstrated [53]. A combination of these facts

Figure 8. Source contributions maps representing the tumor area of mouse C69. They codify the C values of Eq.2 scaled between 0 and
100. The maps obtained at LTE (left column) and STE (right column) are superimposed over the T2-W reference image. The red color identifies the
tumor, while blue identifies non-tumoral tissue. The yellow dotted lines outline the tumor region, as judged from the T2-W image, similar to figure 6.
Top row: 10610 grid of voxels. Bottom row: the same map interpolated. Color columns on the right hand side of the maps indicate C scale in
percentage.
doi:10.1371/journal.pone.0047824.g008
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may explain that source analysis recognized this as abnormal

region (tumor plus astrogliosis).

Concerning the non-tumor area of mouse C179, data shown in

figures 9, 11 and 12, and in tables 3 and 4, suggest that the sub-

optimal agreement of source-derived maps (especially at STE) and

Figure 9. Summary of the results for mice C71, C32, C179, C233, C234, and C278. T2-W images (first row), Ki67 slides (second row), Ki67
maps with PI#5% (third row), Ki67 maps with PI.30% (fourth row), source contributions maps (interpolated) of the tumoral source calculated at LTE
(fifth row), and STE (seventh row), source-based labels maps calculated at LTE (sixth row) and STE (eighth row). Color columns of rows 3 and 4 as in
figure 5. Color columns of rows 5 and 7 as in figure 8. Color columns of rows 6 and 8 similar to figure 7, adding a new color (magenta) to represent
the region below the main tumor source 50% threshold (O, ‘‘other’’) in mouse C278. Please note that C278 does not contain non-tumoral tissue
voxels that fulfill the labeling criteria for source calculation according to [32,33].
doi:10.1371/journal.pone.0047824.g009
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Ki67 maps may have its origin in the existence of two masses,

instead of just one. This will produce a higher percentage of

borderline voxels and, accordingly, a higher partial volume effect.

Furthermore, in this particular instance, both T2-W and source

based maps recognize tumor better than our self-imposed ‘‘gold

standard’’ (PI.30%). This may be caused in this case by labeling

‘‘dilution’’ when considering the decreased MRSI-like resolution

used in the Ki67 grid. In this respect, figure 11, shows a borderline

area for the C179 small mass which did already provide a manual

PI count (40%) clearly above the tumor ‘‘threshold’’, also in

agreement with the T2-W and source map result.

Furthermore, in mouse C278 the source for tumor delimits a

clearly smaller area than the abnormal brain mass. This was

because in this case lacking a proper normal brain area two

sources were sought and the results on tables 3, 4, 5, 6, are

calculated only according to one of the sources (the most

correlated with tumor). In this case, the appropriate could have

been to combine the regions produced by the two sources, but

we decided to only keep the most correlated one, as for the other

six mice, for calculations. Finally, when comparing the T2-W

images with the Ki67 maps and the source-based labels maps

with the Ki67 maps (table 6 and figure 12), sensitivity was higher

for T2-W than for the source maps (particularly due to mice

C32, C233, C234 and C278 for the above-discussed reasons). In

contrast, specificity was similar for the T2-W area and the

source-based labels maps. In mouse C179 the metabolic

abnormality area is clearly underestimated by the Ki67 map,

which has already been discussed, and it is for this reason that

specificity is so low.

When borderline pixels are considered we must recognize that

there are some mismatches, both for the T2-W images and for the

maps of the sources with respect to the ‘‘gold standard’’ PI map

from histopathology. In some cases the source-based map covers a

smaller region than the ‘‘gold standard’’ while in other cases it

covers a larger area. The MRI-based T2-W image provides an

overall similar rendering to the source map when recognizing non-

tumor (specificity average values 0.78 vs. 0.77 and 0.78) while

being slightly better when categorizing tumor (sensitivity average

values 0.99 vs. 0.84 and 0.83). Still, these mismatches have to be

taken with due perspective. In short, the metabolomic map

provided by the sources may be seeing in some cases different

information than the other T2-W in vivo map. The major reason

for this slight underestimation of the abnormal region in some

cases, specifically C32 and C234 al LTE, may be the restricted

resolution of MRSI as compared to MRI data. On the other hand,

recognition of metabolomic abnormality seems better using

sources for C69, C179 and C278, but for different reasons in

each case (caudal tail non-tumoral cells proliferation, PI close to

threshold, VOI too small for the tumor size).

A possible criticism to our approach is the limitation of the

automated Ki67 maps, and the need to perform additional manual

counts to counter-check for discrepant PI values with respect to the

sources obtained. However, coregistration of whole mouse brain

with MRI/MRSI is not a straightforward task, first of all because

the minor deformation suffered by the sample upon dehydration

and the paraffin embedding processes and second for the lack of

available software. Possible future improvements in the coregistra-

tion could imply using elastic transformations, but at the time

Table 3. Relationship between the Ki67 maps and the
source-based labels maps.

LTE STE

Mouse T N T N

C69 100(41/41) 93.3(28/30) 97.6(40/41) 86.7(26/30)

C71 91.9(57/62) 91.7(22/24) 83.9(52/62) 91.7(22/24)

C32 66.7(38/57) 100(10/10) 84.2(48/57) 100(10/10)

C179 100(33/33) 66.7(16/24) 66.7(22/33) 37.5(9/24)

C233 86.7(52/60) 100(16/16) 91.7(55/60) 100(16/16)

C234 69.8(44/63) 100(10/10) 87.3(55/63) 100(10/10)

C278 71.1(54/76) – 71.1(54/76) –

Mean 83.7 92.0 83.2 86.0

T stands for the accuracy between a PI.30% and the tumor area delineated by
the source-based labels maps; while N stands for the accuracy between a
PI#5% and the corresponding non-tumor area. The numbers in parentheses
correspond to the number of correctly labeled voxels from the total. The last
row contains the mean values for each column.
doi:10.1371/journal.pone.0047824.t003

Table 4. Relationship between the supervised labels and the
source-based labels maps.

LTE STE

Mouse T N T N

C69 100(17/17) 100(14/14) 100(17/17) 100(14/14)

C71 100(26/26) 100(7/7) 100(26/26) 100(7/7)

C32 91.7(22/24) 100(10/10) 100(24/24) 100(10/10)

C179 100(9/9) 100(9/9) 88.9(8/9) 66.7(6/9)

C233 100(29/29) 100(12/12) 100(29/29) 100(12/12)

C234 84.4(27/32) 100(5/5) 100(32/32) 100(5/5)

C278 87.5(35/40) – 92.5(37/40) –

Mean 94.8 100 97.3 94.5

T stands for the accuracy between the supervised tumor labels (as in figure 6)
and the tumor area delineated by the source-based labels maps; while N stands
for the accuracy between the non-tumor labels and the corresponding non-
tumor area. The numbers in parentheses correspond to the number of correctly
labeled voxels from the total. The last row contains the mean values for each
column.
doi:10.1371/journal.pone.0047824.t004

Table 5. Sensitivity and specificity for the source-based labels
maps.

LTE STE

Mouse Ki67 Supervised Ki67 Supervised

C69 1.00/0.93 1.00/1.00 0.98/0.87 1.00/1.00

C71 0.92/0.92 1.00/1.00 0.84/0.92 1.00/1.00

C32 0.67/0.46 0.92/1.00 0.84/1.00 1.00/1.00

C179 1.00/0.50 1.00/1.00 0.67/0.38 0.89/0.86

C233 0.87/0.48 1.00/1.00 0.92/1.00 1.00/1.00

C234 0.70/0.47 0.84/1.00 0.87/1.00 1.00/1.00

C278 0.71/2 0.88/2 0.71/2 0.93/2

Mean 0.84/0.63 0.95/1.0 0.83/0.86 0.97/0.98

Sensitivity and specificity (sensitivity/specificity) calculated for the source-based
labels maps with respect to the Ki67 maps (columns named as Ki67, computed
as in table 3), and the supervised labels provided (columns named as
‘Supervised’, computed as in table 4), for each mouse, at LTE and STE. The last
row contains the mean values for each column.
doi:10.1371/journal.pone.0047824.t005
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when we started this study, we could not foresee this problem

which we overcome resorting to manual cell counts based in

anatomical references. Note as well that our histology sections

were 3 mm thick while the MRSI VOI slice width was 1 mm, and

the diameter of a tumor cell is around 10–20 mm, hence another

complicating factor. The specific histology slide was chosen by the

pathologist based again on pure anatomical criteria.

Other, perhaps simpler, approaches would also be feasible for

brain tumors, such as the CNI index (essentially a choline/NAA

ratio normalized to the normal contralateral brain ratio). In [16],

cancer was predicted with 86% specificity and 90% sensitivity

using a CNI threshold of 2.5, but, due to technical and ethical

limitations, only selected target regions obtained by image-guided

surgery could be evaluated by comparison with the histopathology

gold standard - this was not the case in our preclinical study. In

our case specificity, when considering selected target regions

(supervised labels), was 100% for LTE maps; sensitivity was 100%

for 4/7 mice and between 84–92% in the remaining 3/7 mice

Figure 10. Ki67 preparation from mouse C69. On the left hand side, 0.1 mm2 manual sampling areas (colored rectangles) for positive Ki67 cells’
evaluation (brown spots): black squares, sampling inside the tumor mass; blue squares, samplings adjacent to tumor mass; red squares, Cornu
Ammonis samplings adjacent to tumor mass, shown enlarged on the right. On the right hand side, rectangles from top to bottom: PI was 57, 13 and
13.3%; the first square was inside the tumor mass, the second one was adjacent to it, and the third one was outside the tumor. Cellularity was 5100,
1200 and 750 cells/mm2, respectively. Non-proliferating nuclei were stained in blue and proliferating nuclei in brown. The small insert in the right
image (blue square) shows the location of the enlarged image with respect to the whole brain. The white bar at the bottom-right shows scale.
doi:10.1371/journal.pone.0047824.g010

Figure 11. Ki67 preparation from mouse C179. The connecting region between the two tumor masses is shown enlarged, displaying three
0.1 mm2 areas manually sampled. From top (smaller mass) to bottom (main mass), PI: 40%, 21.5%, 24.5%, and 62.7%. White bar at bottom-left corner
shows the scale. The insert at the bottom left corner shows the location of the enlarged image (blue rectangle) with respect to the whole brain.
doi:10.1371/journal.pone.0047824.g011
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(table 5). It may also be worthwhile to point out here that the CNI

index may also show miss-registration with respect to the

abnormal mass region according to MRI. Thus, work by Nelson

et al. [54] did show a much smaller ‘‘metabolic lesion’’ (with a CNI

threshold of 3) area than the overall T2-W ‘‘anomaly region’’ area

in a Glioblastoma patient. Finally, the hyperpolarized lactate/

pyruvate ratio may also provide a handle for tumor/brain

discrimination, both in developing tumor and upon therapy

response [55,56], although the low lactate signal detectable in

normal brain tissue and MRSI resolution issues may also cause

difficulties in defining the border between normal and abnormal

tissue.

Conclusions
The clinical management of human brain tumors is an

important and delicate challenge for radiologists, who have to

make their decisions on the basis of indirect evidence gathered

through non-invasive techniques.

One of the main sources of uncertainty in this context arises

from the difficulty of appropriately delimiting the pathological

area of the brain. In this study, we have provided evidence

supporting that a robust delimitation can be achieved through the

application of blind source extraction techniques to 1H-MRS

multi-voxel data. More specifically, we have proposed and tested a

fully unsupervised methodology that uses Convex-NMF source

extraction to consistently delimitate the tumor region. This

method is successfully benchmarked against alternative NMF

methodologies. The accuracy of tissue delineation was quantified

by comparison with the gold standard of tissue assignment, by

direct histopathological measurements in the tumoral region.
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