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POTENTIAL MAPS, HARDY SPACES, AND TENT

SPACES ON SPECIAL LIPSCHITZ DOMAINS

Martin Costabel, Alan McIntosh, and Robert J. Taggart

Abstract: Suppose that Ω is the open region in Rn above a Lipschitz graph and

let d denote the exterior derivative on Rn. We construct a convolution operator T
which preserves support in Ω, is smoothing of order 1 on the homogeneous function

spaces, and is a potential map in the sense that dT is the identity on spaces of exact

forms with support in Ω. Thus if f is exact and supported in Ω, then there is a
potential u, given by u = Tf , of optimal regularity and supported in Ω, such that

du = f . This has implications for the regularity in homogeneous function spaces of

the de Rham complex on Ω with or without boundary conditions. The operator T
is used to obtain an atomic characterisation of Hardy spaces Hp of exact forms with

support in Ω when n/(n + 1) < p ≤ 1. This is done via an atomic decomposition of

functions in the tent spaces T p(Rn × R+) with support in a tent T (Ω) as a sum of
atoms with support away from the boundary of Ω. This new decomposition of tent

spaces is useful, even for scalar valued functions.
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1. Introduction

The study of potential maps on domains Ω of Rn has a rich history.
Consider, for a moment, the following question. Suppose that a func-
tion f belongs to a Sobolev space Hm

0 (Ω) where m ≥ 0 and Ω is a
bounded strongly Lipschitz domain, and suppose that

∫
f = 0. Is there

a vector field u in (Hm+1
0 (Ω))n which satisfies div u = f? The answer is

yes, as was essentially proved by J. Nečas. Indeed, this follows by dual-
ity from [13, Chapter 3, Lemma 7.1]. An alternative proof was provided
by M. E. Bogovskĭı [1], [2], who, in particular, constructed an integral
operator T which maps boundedly from the Sobolev space Wm,p

0 (Ω) into

(Wm+1,p
0 (Ω))n in the case when m ≥ 0, 1 < p < ∞, and Ω is starlike

with respect to a ball. The potential u that solves the equation div u = f
is then given by u = Tf , provided that

∫
f = 0. Since T gives the poten-

tial u which solves the equation and preserves support, we say that T is
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a potential map for the domain Ω. Such a potential map is an important
tool in the theory of equations of hydrodynamics. See the monograph [7]
of G. P. Galdi and the papers mentioned below for further references to
the extensive literature.

Subsequently M. Mitrea [12] (in 3 dimensions) and D. Mitrea, M. Mi-
trea and S. Monniaux [11] adapted Bogovskĭı’s operator to construct
potential maps T` to solve the equation du = f , where d denotes the
exterior derivative operator and where f is an exact `-form with sup-
port in Ω and components in a suitable Besov or Triebel-Lizorkin space.
Using T`, they have thereby deduced sharp regularity estimates for im-
portant operators in the theory of hydrodynamics. As with Bogovskĭı’s
operator, the mapping properties of T` ensure that there is no loss of
regularity, and that support in Ω is preserved. In the case when n = 3,
the equation du = f is equivalent to solving one of the equations

gradu = f, curlu = f or div u = f,

where f is interpreted either as a scalar or vector field depending on the
value of `.

More recently, M. Costabel and A. McIntosh [6] showed that the op-
erators T` are pseudodifferential operators of order −1 and are therefore
bounded in all the spaces of `-forms with components in any one of the
Besov or Triebel-Lizorkin spaces. For a domain starlike with respect to
a ball, the special support properties of the operators imply regularity
for the de Rham complex with full Dirichlet boundary conditions. Sim-
ilar results hold for complexes without boundary conditions (using dual
Poincaré-type operators). For bounded strongly Lipschitz domains, the
same regularity results hold, and in addition the cohomology spaces can
always be represented by C∞ functions.

In the present paper, we turn our attention to unbounded special
Lipschitz domains, that is, to domains in Rn that lie above the graph of
a Lipschitz function, and consider the spaces Ḣs(Rn,Λ) of forms with
components in the homogeneous Sobolev space of degree s, where s ∈
R. We construct an operator T with the following properties. First,
T boundedly lifts forms in Ḣs(Rn,Λ) to forms in Ḣs+1(Rn,Λ). Second,
T preserves support in Ω. Third, if df = 0 then a solution u of the
equation du = f is given by u = Tf . Hence the equation du = f is
solved on Ω with optimal regularity, because if f ∈ Ḣs(Rn,Λ`), df = 0,

and the support of f is in Ω, then u ∈ Ḣs+1(Rn,Λ`−1), du = f , and the
support of u is in Ω.

Our potential map T is a convolution integral operator involving ker-
nels which are supported in a cone of Rn lying above its base at the
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origin. This support property is ideally suited to boundary problems on
a given special Lipschitz domain Ω, since such a cone (with appropri-
ately chosen aperture) is contained within Ω when translated by points
from Ω, and thus T preserves support in Ω. The bounded lifting prop-
erty of T is valid not only when T acts on Ḣs(Rn,Λ), but also when
T acts on the space of forms whose components belong to any homoge-
neous Besov or Triebel-Lizorkin function space. These properties of T
have immediate ramifications for the regularity of the de Rham complex
in such spaces on Ω.

Our formula for T is motivated by a reproducing formula of
D.-C. Chang, S. G. Krantz and E. M. Stein [3], which was also con-
structed to preserve support in a special Lipschitz domain.

In the second half of this paper, we apply this reproducing formula to
show that Hardy spaces Hp

d (Rn,Λ) of exact forms can be characterised
by exact atoms whenever n/(n + 1) < p ≤ 1. Using the same method,
we also show that the Hardy space Hp

z,d(Ω,Λ) of exact forms with sup-

port in the closure Ω of a special Lipschitz domain can be characterised
using exact atoms supported in Ω. These results generalise the classical
theorems of R. R. Coifman [4] and R. H. Latter [8] for Rn, and the
result of Chang, Krantz and Stein [3] for special Lipschitz domains, and
have already been proved by Z. Lou and A. McIntosh [10], [9] for exact
forms in the case when p = 1. In the three latter papers, the authors
follow the method of R. R. Coifman, Y. Meyer and E. M. Stein [5] to
show that each element u of the Hardy space can be written as a sum
of atoms by first mapping u into a ‘tent space’ via an operator Q, then
decomposing the image Qu as a sum of tent space atoms, before finally
mapping the decomposition back into the Hardy space. In the case that
u is supported in Ω, [3] and [9] then use reflection maps to express u as a
sum of atoms whose supports lie in Ω. In our proof, we remove the need
for reflection maps by proving a new result on the atomic decomposition
of tent spaces, namely that if a function in a tent space itself has support
in a tent Tβ(Ω), then the supports of the atoms in its decomposition can
be taken inside this tent, and away from the boundary of Ω.

This new result on tent spaces is quite powerful, even for scalar valued
functions, as its use, along with the use of our reproducing formula,
allows us to remain within the special Lipschitz domain the entire time.
For this reason, we state here a simplified version of Theorem 9.4. For
details, see Section 9. What is new is the requirement below that 5Bk ⊂
Ω.
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Theorem 1.1. Suppose that U belongs to the tent space T 1(Rn×R+),
with supp(U) in a tent T (Ω) over an open set Ω ⊂ Rn. Then U =∑
kλkAk, where

∑
|λk| . ‖U‖T 1 , supp(Ak) ⊂ Bk× (0, 6rk), for some

ball Bk with radius rk such that 5Bk⊂Ω, and vol(Bk)
∫∞

0
‖Ak(·, t)‖22 dtt =1.

The paper is organised as follows. In Section 2 we introduce notation
and define the various spaces that we use, while in Section 3 we state
reproducing formulae on special Lipschitz domains. In Section 4, the
potential map T is defined, its properties are stated (see Theorem 4.1),
and its utility for solving potential equations with boundary conditions
on special Lipschitz domains is illustrated. Sections 5 and 6 are devoted
to the proof of Theorem 4.1. Section 7 contains applications for potential
maps on spaces without boundary conditions, by considering operators
induced from T via quotient maps. In Sections 8 and 10, we apply the
earlier part of the paper to prove our atomic characterisation of Hardy
spaces of exact forms on Rn and on Ω. As noted already, Section 9 con-
cerns the atomic definition of tent spaces, and is essentially independent
of the rest of the paper.
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2. Notation and definitions

Suppose that σ > 0 and x is a point of Rn, where n ≥ 1, x = (x′, xn),

x′ = (x1, x2, . . . , xn−1) ∈ Rn−1 and xn ∈ R. Denote by Γσ(x) and Γ̃σ(x)
the cones of aperture σ and vertex x given by

Γσ(x) = {y ∈ Rn : σ(yn − xn) > |y′ − x′|}
and

Γ̃σ(x) = {y ∈ Rn : σ(xn − yn) > |y′ − x′|}.
The cone Γσ(x) lies above its vertex while Γ̃σ(x) lies beneath.



Potential Maps, Hardy Spaces, and Tent Spaces on Domains 299

A subset Ω of Rn is said to be a special Lipschitz domain if

Ω = {x ∈ Rn : xn > λ(x′)},

where the function λ : Rn−1 → R satisfies the Lipschitz condition

(2.1) |λ(x′)− λ(y′)| ≤ A|x′ − y′| ∀ x′, y′ ∈ Rn−1

for some positive number A. The region that lies strictly beneath the
graph of λ is denoted by Ω−. Thus Ω− = Rn \Ω. It follows immediately
from the Lipschitz condition that when 0 < σ ≤ A−1, the cone Γσ(x) is

contained entirely in Ω whenever x ∈ Ω, while Γ̃σ(x) lies entirely in Ω−

whenever x ∈ Ω−.
Given a ball B of Rn, let r(B) denote its radius and |B| its volume.

Whenever c > 0, let cB denote the ball with the same centre as B and
with radius cr(B). If r > 0 and z ∈ Rn then Br(z) denotes the ball B
of radius r and centre z.

Throughout, let C∞0 (Rn) denote the space of smooth functions with
compact support in Rn. The Schwartz class of rapidly decreasing C∞

functions on Rn is denoted by S(Rn). Given f in S(Rn), its Fourier

transform f̂ and inverse Fourier transform f̌ also belong to S(Rn). (We

use the convention f̂(ξ) = (2π)−n/2
∫
Rn e

−〈x,ξ〉f(x) dx.) Let Z(Rn)
denote the set of functions ϕ in S(Rn) possessing the property that
(∂αϕ̂)(0) = 0 for every multi-index α. Consider Z(Rn) as a topological
subspace of S(Rn) and let Z ′(Rn) denote the topological dual of Z(Rn).
It is well-known (see, for example, [16, Section 5.1.2]) that Z ′(Rn) can
be identified with the quotient space S ′(Rn)/P(Rn), where S ′(Rn) de-
notes the class of tempered distributions on Rn and P(Rn) denotes the
collection of all polynomials in Rn. In this paper we use only the weak
topology on Z ′(Rn). Hence we say that a sequence (un)∞n=1 ⊂ Z ′(Rn)
converges in Z ′(Rn) to an element u of Z ′(Rn) if for each ϕ in Z(Rn),
|un(ϕ) − u(ϕ)| → 0 as n → ∞. The space Z ′(Rn) is complete with
respect to this topology.

Many of the terms and definitions related to the space S ′(Rn) of
tempered distributions have analogous formulations in Z ′(Rn). The
Dirac delta distribution δ is defined as an element of Z ′(Rn) by the
formula δ(ϕ) = ϕ(0) whenever ϕ ∈ Z(Rn). Suppose that u ∈ Z ′(Rn).
If Ω is an open set of Rn then we say that the support of u is contained
in Ω, or that suppu ⊂ Ω, if u(ϕ) = 0 for all ϕ in Z(Rn) with support
in (Ω)c. If k ∈ S(Rn) then the convolution product k ∗ u is defined by

(k ∗ u)(ϕ) = u(k̃ ∗ ϕ) ∀ ϕ ∈ Z(Rn),
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where k̃(x) = k(−x) whenever x ∈ R. It is straightforward to show that

k̃ ∗ ϕ ∈ Z(Rn) and hence that k ∗ u ∈ Z ′(Rn). Moreover

(2.2) supp(k∗u)⊂supp k+suppu={x+y ∈ Rn : x∈supp k, y∈suppu}.

The homogeneous Besov spaces Ḃsp,q(Rn) and homogeneous Triebel-

Lizorkin spaces Ḟ sp,q(Rn) are subspaces of Z ′(Rn) defined in the fol-
lowing way. Fix a standard Littlewood-Paley dyadic system (θj)j∈Z of
C∞ functions on Rn with support in dyadic annuli centred at the ori-
gin (see [16, Chapter 5] for details). Given u in Z ′(Rn), define ∆ju by

∆ju(ϕ) = u((θjϕ̌)̂) = (2π)−n/2u(θ̂j ∗ ϕ) for all ϕ in Z(Rn). If s ∈ R,

p > 0 and q > 0 then Ḃsp,q(Rn) and Ḟ sp,q(Rn) are defined to be the spaces
of all u in Z ′(Rn) with finite norms given by

‖u‖Ḃsp,q(Rn) =

(∑
j∈Z

2jsq ‖∆ju‖qLp(Rn)

)1/q

and

‖u‖Ḟ sp,q(Rn) =

∥∥∥∥∥∥
(∑
j∈Z

2jsq|∆ju(·)|q
)1/q

∥∥∥∥∥∥
Lp(Rn)

.

By suitable modification, one may also define homogeneous spaces when
p =∞ or q =∞.

When s ∈ R, 0 < p < ∞ and 0 < q < ∞, then Z(Rn) is dense in

Ḃsp,q(Rn) and in Ḟ sp,q(Rn) (see [16, Section 5.1.5]).

Both these classes include the homogeneous Sobolev spaces Ḣs(Rn)

as a special case, namely Ḣs(Rn) = Ḃs2,2(Rn) = Ḟ s2,2(Rn) whenever
s ∈ R. Moreover the Hardy spaces Hp(Rn), which are defined as sub-
spaces of S ′(Rn), can be characterised by such norms because the natural
projection from S ′(Rn) to Z ′(Rn) induces an isomorphism from Hp(Rn)

to Ḟ 0
p,2(Rn) when 0 < p <∞ (see [16, Section 5.2.4]).

To simplify notation, given any real number s, let ˙A s(Rn) denote

any one of the spaces Ḃsp,q(Rn) (for fixed p and q satisfying 0 < p ≤ ∞,

0 < q ≤ ∞) or Ḟ sp,q(Rn) (for fixed p and q satisfying 0 < p < ∞, 0 <

q ≤ ∞). Given a special Lipschitz domain Ω of Rn, the spaces ˙A s
Ω

(Rn)

and ˙A s(Ω) are defined by

˙A s
Ω

(Rn) = {u ∈ ˙A s(Rn) : suppu ⊂ Ω} and

˙A s(Ω) = ˙A s(Rn)/ ˙A s
Ω−

(Rn).
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The quotient space ˙A s(Ω) can be interpreted both as a space of ‘distri-
butions’ on Rn restricted to Ω, and as a space of ‘distributions’ on Ω.
The subspace ˙A s

Ω
(Rn) is a space of ‘distributions’ on Rn.

If f ∈ S(Rn) and t > 0 then ft is given by the formula

ft(x) = t−nf(x/t) ∀ x ∈ Rn.

It is easy to verify that the following formulae hold whenever t > 0,
1 ≤ j ≤ n, and f and g belong to S(Rn):

(∂jf)t = t∂j(ft), (f ∗ g)t = ft ∗ gt, and (ft)̂(ξ) = f̂(tξ).

Denote the full exterior algebra on Rn by Λ := Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λn,
and the exterior product by ∧. The interior product (or contraction) of
a =

∑
j aj dxj ∈ Λ1 with u ∈ Λm is

a y u :=

m∑
k=1

(−1)k−1ajk dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxj` ∈ Λm−1

where the notation d̂xjk means that the corresponding factor is to be
omitted. (When u ∈ Λ0 then a y u = 0.) An identity that we shall need
is

(2.3) a y (b ∧ u) + b ∧ (a y u) = (a · b)u ∀ a, b ∈ Λ1 and u ∈ Λ.

The space of differential forms with components in ˙A s(Rn) is denoted

by ˙A s(Rn,Λ), and similarly for forms whose components lie in any of
the test classes, functional classes, subspaces or quotient spaces men-
tioned above. The space of forms in ˙A s(Rn,Λ) of order ` is denoted

by ˙A s(Rn,Λ`). The topologies of these spaces are inherited in the obvi-
ous way. The exterior derivative d for forms acting on Rn is defined by
du = Σnj=1ej ∧ ∂ju, where (ej)

n
j=1 denotes the standard basis for Rn. It

has the property d2 = 0. By convention, du = 0 whenever u is an n-form.
Note that d maps Z(Rn,Λ) continuously into itself and is a well-defined
map on Z ′(Rn,Λ). (This is because ∂j maps Z(Rn) continuously into
itself and hence by duality is a well-defined map on Z ′(Rn).) It also

maps boundedly from ˙A s(Rn,Λ) into ˙A s−1(Rn,Λ).
We defer definitions of Hardy spaces, tent spaces, and their atoms to

Sections 8 and 9, except to note that the tent space T 1(Rn×R+) already
used in Theorem 1.1 is the space of measurable functions U : Rn×R+ →

C with finite norm ‖U‖T 1 =
∫
Rn

(∫∫
|x−y|≤t |U(y, t)|2 dy dttn+1

)1/2

dx.
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3. Reproducing formulae on special Lipschitz domains

For the remainder of this paper, fix a Lipschitz constant A and a
constant σ such that A ≥ 0, σ > 0 and σA < 1. Suppose that Ω is
any special Lipschitz domain, defined by a function λ which satisfies the
Lipschitz condition (2.1).

Before defining our potential map T on Ω, we investigate reproducing
formulae for distributions with support in Ω, for which the functions in
the integrand have support in Ω.

To do this, fix a function θ in C∞0 (Rn) with
∫
Rn θ(x) dx = 1 and

(3.1) supp θ ⊂ {y ∈ Γσ(0) : 1 ≤ yn, |y| ≤ 2},

and define the vector-valued C∞0 function Θ with the same support by

(3.2) Θ(x) = θ(x)x ∀ x ∈ Rn.

Also, whenever 0 < a < b < ∞, define the C∞0 (Rn) function δa,b with

support in Γσ(0) by

(3.3) δa,b =

∫ b

a

(∇ ·Θ)t
dt

t
=

∫ b

a

∇ ·Θt dt.

Proposition 3.1. Whenever 0 < a < b <∞ we have the identity

δa,b = θa − θb.

Moreover, for each u ∈ Z ′(Rn,Λ), δa,b ∗ u→ u in Z ′(Rn,Λ) as a→ 0+

and b→∞. That is,

u =

∫ ∞
0

(∇ ·Θ)t ∗ u
dt

t
∀ u ∈ Z ′(Rn,Λ),

where the improper integral converges in Z ′(Rn,Λ). Finally, if supp(u) ⊂
Ω then supp(δa,b ∗ u) ⊂ Ω whenever 0 < a < b <∞.

Proof: To verify δa,b = θa − θb, it suffices to check that, for 0 < t <∞,

(3.4)
d

dt
θt = −1

t
(∇ ·Θ)t.
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A calculation using the product and chain rules shows that, for all x ∈
Rn,

d

dt
θt(x) =

d

dt

(
t−nθ

(
x
t

))
= t−n

d

dt

(
θ
(
x
t

))
− nt−n−1θ

(
x
t

)
= −1

t

( n∑
j=1

t−n(∂jθ)
(
x
t

)xj
t + nt−nθ

(
x
t

))

= −1

t

(
t−n

n∑
j=1

(∂jΘj)
(
x
t

))

= −1

t
(∇ ·Θ)t(x)

as claimed.
To prove that δa,b∗u→ u for all u ∈ Z ′(Rn), we show that (i) θt∗u→

u as t→ 0+, and (ii) θt ∗ u→ 0 as t→∞.

To prove (i), it suffices to show that θt ∗ ϕ → ϕ in Z(Rn) as t → 0+

whenever ϕ ∈ Z(Rn). Suppose that ε > 0, ϕ ∈ Z(Rn) and fix two
multi-indices α and β. We need to show that

sup
x∈Rn

∣∣xβ ∂α(θt ∗ ϕ− ϕ)(x)
∣∣ < ε

whenever t is sufficiently small. Since θ is compactly supported and ϕ
and all its derivatives have rapid decay, the supremum over the set {x ∈
Rn : |x| > R} can be made arbitrarily small by taking R sufficiently
large. Since θ has integral 1, the family (θt)0<t<1 is an approximate
identity, and hence the supremum over the ball {x ∈ Rn : |x| ≤ R} can
be made arbitrarily small by taking t sufficiently small. This completes
the proof of (i).

We now prove (ii). Suppose that ε > 0, ϕ ∈ Z(Rn), and fix two
multi-indices α and β. Since the Fourier transform is continuous in the
topology of S(Rn), its suffices to show that

sup
ξ∈Rn

∣∣∣ξα∂β(θ̂t ϕ̂)(ξ)
∣∣∣ < ε

whenever t is sufficiently large. This is not difficult to achieve using

the fact that θ̂t(ξ) = θ̂(tξ), along with the assumption that ϕ̂ and all
its derivatives are zero at 0 ∈ Rn, as well as the rapid decay of the

functions θ̂, ϕ̂ and their derivatives at ∞.
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Finally, note that if supp(u) ⊂ Ω then

supp(δa,b ∗ u) ⊂ Γσ(0) + Ω = Ω ∀ 0 < a < b.

This completes the proof.

Remark 3.2. For those spaces ˙A s(Rn) in which Z(Rn) is dense (i.e. those

spaces ˙A s of the form Ḃsp,q or Ḟ sp,q with 0 < p, q <∞), the convergence

δa,b ∗ u → u also holds in ˙A s
Ω

(Rn,Λ). To see this, use the convergence

result in Z(Rn,Λ), together with the uniform bound

‖δa,b ∗ u‖ ˙A s ≤ C‖u‖ ˙A s ∀ 0 < a < b <∞

where C = C( ˙A s).

Our construction of the potential map T (see the beginning of the
next section) was motivated by the reproducing formula used by Chang,
Krantz and Stein in obtaining an atomic decomposition of functions in
a Hardy space on a special Lipschitz domain. We indicate here the
connection between our Proposition 3.1 and their reproducing formula
[3, Lemma 3.4, Lemma 3.5].

Proposition 3.3. Suppose that φ ∈ C∞0 (Rn) with
∫
Rn φ(x) dx = 1 and

(3.5) suppφ ⊂ {y ∈ Γσ(0) : 1
2 ≤ yn, |y| ≤ 1},

and define the vector-valued C∞0 function Ψ with the same support by

(3.6) Ψ(x) = 2φ(x)x ∀ x ∈ Rn.

When 0 < a < b <∞, define the C∞0 (Rn) function δa,b by

δa,b =

n∑
j=1

∫ b

a

(∂jφ)t ∗ (Ψj)t
dt

t
.

Then, for each u ∈ Z ′(Rn,Λ), δa,b ∗ u→ u in Z ′(Rn,Λ) as a→ 0+ and

b → ∞. Moreover, if supp(u) ⊂ Ω then supp(δa,b ∗ u) ⊂ Ω whenever
0 < a < b <∞.

Proof: Suppose that φ satisfies the hypotheses of Proposition 3.3. So the
function θ defined by θ := φ∗φ satisfies the hypotheses of Proposition 3.1.
Consequently δa,b ∗ u→ u in Z ′(Rn,Λ) for all u ∈ Z ′(Rn,Λ), where

(3.7) δa,b =

∫ b

a

(∇ ·Θ)t
dt

t

and Θ(x) = θ(x)x. We shall show that φ ∗ Ψ = Θ, and hence that∑n
j=1 ∂jφ ∗Ψj = ∇ ·Θ, from which it follows by scaling and integrating

that δa,b = δa,b, thus proving the result.
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What needs to be shown is that (φ∗Ψ)(x) = (φ∗φ)(x)x for all x ∈ Rn.
Indeed,

(φ ∗Ψ)(x) =

∫
Rn

φ(x− y)2φ(y)y dy

=

∫
Rn
φ(x− y)φ(y)y dy +

∫
Rn
φ(y)φ(x− y)(x− y) dy

= (φ ∗ φ)(x)x,

thus proving the proposition.

Remark 3.4. To be useful as a reproducing formula, the function φ can
be chosen with some zero moments, in particular

(3.8)

∫
Rn

Ψ(x) dx = 2

∫
Rn
φ(x)x dx = 0.

Remark 3.5. For those spaces ˙A s(Rn) in which Z(Rn) is dense, the

convergence δa,b ∗ u→ u also holds in ˙A s
Ω

(Rn,Λ).

4. The potential map for special Lipschitz domains

We now define the potential map T . Whenever 0 < a < b, define the
Rn-valued kernel Ka,b on Rn by

(4.1) Ka,b(x) =

∫ b

a

Θt(x) dt ∀ x ∈ Rn,

where Θ was defined at the start of Section 3. For each u in Z ′(Rn,Λ),
define T a,bu and Tu by the formulae

(4.2) T a,bu = Ka,b ∗ yu and Tu = lim
a→0+

lim
b→∞

Ka,b ∗ yu,

where the limits are taken in Z ′(Rn,Λ). (If u is a 0-form then Tu = 0.)
It is clear that T a,bu ∈ Z ′(Rn,Λ). It will be proved in Sections 5 and 6
that the limit in (4.2) exists in Z ′(Rn,Λ), thus defining Tu ∈ Z ′(Rn,Λ).

Note that if u ∈ Z(Rn,Λ) then T a,bu ∈ Z(Rn,Λ) and T a,bu can be
expressed by the formula

T a,bu(x) =

∫ b

a

∫
Rn
θt(x− y)(x− y) y u(y) dy

dt

t
.

In this case we shall see that Tu ∈ Z(Rn,Λ) and that T a,bu → Tu in
Z(Rn,Λ).

We remark that in the case when n = 1, the domain Ω is a semi-open
interval (α,∞), A = 0 and Γσ = (0,∞). In this case, θ is a C∞0 (R)
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function with support in the interval [1, 2] such that
∫
θ(x) dx = 1. We

then obtain that

Tu(x) =

∫ x

−∞
e1 y u(y) dy

whenever u ∈ Z(R,Λ) and x ∈ R. This is clearly the potential map for
d = d

dxe1∧ which preserves support in (α,∞).
The following theorem is the main result of this section.

Theorem 4.1. Suppose that Ω is a special Lipschitz domain of Rn and
that s ∈ R. Then the operator T defined above has the following proper-
ties:

(i) the operator T maps from Z ′(Rn,Λ) to Z ′(Rn,Λ);

(ii) for each space ˙A s the operator T maps ˙A s(Rn,Λ) to ˙A s+1(Rn,Λ),

and there is a constant c = c( ˙A s) such that

‖Tu‖ ˙A s+1(Rn,Λ) ≤ c ‖u‖ ˙A s(Rn,Λ) ∀ u ∈ ˙A s(Rn,Λ);

(iii) dTu+ T du = u whenever u ∈ Z ′(Rn,Λ);

(iv) if u ∈ Z ′(Rn,Λ) and supp(u) ⊂ Ω then supp(Tu) ⊂ Ω; and

(v) the operator T maps ˙A s
Ω

(Rn,Λ) to ˙A s+1

Ω
(Rn,Λ), and for the same

constant c of part (ii),

‖Tu‖ ˙A s+1

Ω
(Rn,Λ) ≤ c ‖u‖ ˙A s

Ω
(Rn,Λ) ∀ u ∈ ˙A s

Ω
(Rn,Λ).

Note that part (v) is an immediate consequence of parts (ii) and (iv)

and the definition of ˙A s
Ω

(Rn,Λ). We defer the proof of parts (i) to (iv)
to Section 6.

Here we give an immediate application to the regularity of the exterior
derivative on special Lipschitz domains.

Corollary 4.2. Suppose that s ∈ R and that Ω is a special Lipschitz
domain of Rn. If u ∈ ˙A s

Ω
(Rn,Λ) and du = 0 then there exists v in

˙A s+1

Ω
(Rn,Λ) such that dv = u. Moreover, there is a constant c indepen-

dent of u such that

‖v‖ ˙A s+1

Ω
(Rn,Λ) ≤ c ‖u‖ ˙A s

Ω
(Rn,Λ) .

Consequently, the de Rham complex

0 −→ ˙A s
Ω

(Rn,Λ0)
d−→ ˙A s−1

Ω
(Rn,Λ1)

d−→ ˙A s−2

Ω
(Rn,Λ2)

d−→ · · ·

· · · d−→ ˙A s−n
Ω

(Rn,Λn) −→ 0
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is exact, and each space ˙A s
Ω

(Rn,Λk) has a direct sum decomposition

˙A s
Ω

(Rn,Λk) = d ˙A s+1

Ω
(Rn,Λk−1)⊕ Td ˙A s

Ω
(Rn,Λk)

with bounded projections dT and Td.

Proof of Corollary 4.2: If du = 0 then the anti-commutation relation
in part (iii) of the theorem becomes dTu = u. So set v = Tu. It is
straightforward to check that dT and Td are bounded projections and
that dT ˙A s

Ω
(Rn,Λk) = d ˙A s+1

Ω
(Rn,Λk−1).

The important observation is that the projections are the same for all
choices of the homogeneous Besov and Triebel-Lizorkin spaces ˙A s

Ω
(Rn,Λk),

and consequently the spaces d ˙A s
Ω

(Rn,Λk) of exact forms have the same

interpolation properties as do the spaces ˙A s
Ω

(Rn,Λk).
We remark that the operator T as well as the constants in the esti-

mates, depend on A and the choice of σ and Θ, but not on the precise
domain Ω.

Remark 4.3. In the course of the proof, we show that the limit in for-
mula (4.2) holds in Z(Rn,Λ) when u ∈ Z(Rn,Λ), and in Z ′(Rn,Λ) when

u ∈ Z ′(Rn,Λ). It can also be shown that, for those spaces ˙A s(Rn) in

which Z(Rn) is dense, the limit in formula (4.1) holds in ˙A s+1

Ω
(Rn,Λ)

when u ∈ ˙A s
Ω

(Rn,Λ). To see this, use the convergence result in Z(Rn,Λ),
together with the uniform bound

‖T a,bu‖ ˙A s+1 = ‖Ka,b ∗ u‖ ˙A s+1 ≤ C‖u‖ ˙A s ∀ 0 < a < b <∞

where C = C( ˙A s). See Remark 5.4.

When Θ = φ ∗Ψ as in Proposition 3.3, the operator T has the form

Tu = lim
a→0+

lim
b→∞

∫ b

a

Θt ∗ yu dt

= lim
a→0+

lim
b→∞

∫ b

a

φt ∗Ψt ∗ yu dt,

and, when du = 0,

(4.3) u = dTu = lim
a→0+

lim
b→∞

∫ b

a

(dφ)t ∗ ∧Ψt ∗ yu
dt

t
.

As before, convolution with φt and Ψt preserve support in the spe-
cial Lipschitz domain Ω, and T is a bounded operator from ˙A s

Ω
(Rn,Λ)

to ˙A s+1

Ω
(Rn,Λ) for every choice of ˙A s. Moreover, by Remarks 3.2
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and 4.3, for those spaces ˙A s(Rn) in which Z(Rn) is dense, the limits

exist in ˙A s+1

Ω
(Rn,Λ) or ˙A s

Ω
(Rn,Λ) when u ∈ ˙A s

Ω
(Rn,Λ).

5. Tools used in proving Theorem 4.1

In this section we state and prove some rudimentary results about
operators defined by Fourier multipliers. These will be used later in the
proof of Theorem 4.1. We start with an homogeneous analogue of the
Hörmander conditions.

Proposition 5.1. Suppose that m ∈ C∞(Rn \ {0}) and k ∈ R. Suppose
also that, for each multi-index α, there exist cα such that

(5.1) |∂αm(ξ)| ≤ cα|ξ|−|α|+k ∀ ξ ∈ Rn \ {0}.

Then the operator S, given by

Su(ϕ) = u
(
(mϕ̌)̂) ∀ u ∈ Z ′(Rn) ∀ ϕ ∈ Z(Rn),

is well-defined on Z ′(Rn) and maps each space ˙A s(Rn) into ˙A s−k(Rn)
with

‖Su‖ ˙A s−k(Rn) ≤ c ‖u‖ ˙A s(Rn) ∀ u ∈ ˙A s(Rn)

for some constant c (depending on k, cα and the space ˙A s).

Proof: Assume the hypotheses of the proposition. To show that S is
well-defined on Z ′(Rn), it suffices to verify that (mϕ̌)̂ ∈ Z(Rn) when-
ever ϕ ∈ Z(Rn). Since m has at most polynomial growth at infinity,
one need only show that limξ→0 ∂

α(mϕ̌)(ξ) = 0 for every multi-index α.
But this follows from (5.1) and the fact that ϕ̌(ξ) is O(|ξ|N ) for every
positive integer N .

To prove the bound, consider the Fourier multiplier mk given by
mk(ξ) = |ξ|−km(ξ). Clearly mk has derivatives of all orders away from 0,
and

sup
{
|ξ||α||∂αmk(ξ)| : ξ ∈ Rn \ {0}, |α| ≤ N

}
is bounded for each positive integer N . So the operator Qk, defined by

Qku(ϕ) = u
(
(mkϕ̌)̂) ∀ u ∈ Z ′(Rn) ∀ ϕ ∈ Z(Rn)

is well-defined on Z ′(Rn) and is bounded on ˙A s(Rn) by standard Fourier
multiplier theory (see, for example, [16, Theorem 5.2.2]).

To complete the proof, let ι denote the Rn-valued function on Rn
given by ι(ξ) = ξ and İk denote the lifting operator given by

İkv(ϕ) = v
(
(|ι|kϕ̌)̂) ∀ v ∈ Z ′(Rn) ∀ ϕ ∈ Z(Rn),



Potential Maps, Hardy Spaces, and Tent Spaces on Domains 309

which maps ˙A s(Rn) isomorphically onto ˙A s−k(Rn) (see [16, Theo-
rem 5.2.3]). Then

Su(ϕ) = u
(
(mϕ̌)̂) = u

(
(|ι|kmkϕ̌)̂) = İkQku(ϕ),

or in other words, S = İkQk. This completes the proof.

Every homogeneous functionm of degree k ∈ R (i.e., m(τξ) = τkm(ξ),
∀ ξ ∈ Rn\{0}, ∀ τ >0) satisfies the hypotheses (with cα=sup{|∂αm(ω)| :
|ω| = 1}), and therefore the conclusion, of the above proposition.

Let us turn our attention to bounds and convergence results for con-
volution operators.

Given a function ψ in C∞0 (Rn), define the truncated kernel ka,b by

ka,b(x) =

∫ b

a

ψt(x) dt ∀ x ∈ Rn

whenever 0 < a < b. Since ka,b ∈ C∞0 (Rn), the operator Sa,b, given by

Sa,bu = ka,b ∗ u ∀ u ∈ Z ′(Rn)

is well-defined on Z ′(Rn). Define the multiplier ma,b by

(5.2) ma,b = (2π)n/2k̂a,b,

so that Sa,b can also be represented by

Sa,bu(ϕ) = u(k̃a,b ∗ ϕ) = u
(
(ma,bϕ̌)̂) ∀ u ∈ Z ′(Rn) ∀ ϕ ∈ Z(Rn).

Note that each component of Ka,b ∗yu, where Ka,b is the kernel used
to define T a,b in Section 4, is of the form Sa,buI , where ψ(x) = θ(x)xj
and uI is a component of u corresponding to an index set I including j.

The following lemma will be used to show that the limit

lim
a→0+

lim
b→∞

Sa,bu,

taken in the topology of Z ′(Rn), is well-defined whenever u ∈ Z ′(Rn).

Lemma 5.2. Suppose that (ma,b)0<a<b is the net of Schwartz functions
defined by (5.2). Then the function m, given by

(5.3) m(ξ) = lim
a→0+

lim
b→∞

ma,b(ξ) ∀ ξ ∈ Rn \ {0},

is well-defined. Moreover, m ∈ C∞(Rn \{0}) and for any multi-index α,

(5.4) ∂αm(ξ) = lim
a→0+

lim
b→∞

∂αma,b(ξ) ∀ ξ ∈ Rn \ {0},

where the convergence is uniform on annuli centred at the origin. The
function m is homogeneous of degree −1 on Rn.
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For any multi-index α, there exists a constant cα such that, for all ξ ∈
Rn \ {0},

(5.5) |∂αma,b(ξ)| ≤ cα|ξ||α|−1 ∀ 0 < a < b <∞

and also |∂αm(ξ)| ≤ cα|ξ||α|−1.

Proof: Fix a multi-index α. To show that m is well-defined and its
derivatives are given by (5.4), it suffices to show that the net (∂αma,b)a,b
is uniformly Cauchy on the annulus {ξ ∈ Rn : r ≤ |ξ| ≤ R} for some
fixed numbers r and R satisfying 0 < r < R <∞. Henceforth, suppose
that r ≤ |ξ| ≤ R.

To begin, note that

ma,b(ξ) =

∫ b

a

ψ̂(tξ) dt

whenever 0 < a < b. Therefore∣∣(∂αma,b)(ξ)
∣∣ =

∣∣∣∣∫ b

a

t|α|(∂αψ̂)(tξ) dt

∣∣∣∣
≤ |ξ|−|α|

∫ b

a

|tξ||α||(∂αψ̂)(tξ)| dt

≤ cα|ξ|−|α|
∫ b

a

min
{

1
4 , |tξ|

−2
}
dt

(5.6)

for some constant cα, since ψ̂ ∈ S(Rn). Now∣∣(∂αmb,b0)(ξ)
∣∣ ≤ cα|ξ|−|α|−2

(
1

b
− 1

b0

)
<

cα
r|α|+2b

whenever b0 > b, while

|(∂αma0,a)(ξ)| ≤ cα|ξ|−|α|(a− a0) < cαr
−|α|a

whenever a0 < a. So if 0 < a0 < a < b < b0 then∣∣(∂αma0,b0)(ξ)− (∂αma,b)(ξ)
∣∣ < cα

(
r−|α|−2b−1 + r−|α|a

)
,

which can be made as small as we like by taking b sufficiently large and
a sufficiently close to 0.

It is straightforward to verify thatma,b(λξ) = λ−1mλa,λb(ξ) for all λ >
0 and ξ ∈ Rn. On taking limits in a and b, we deduce the fact that m is
homogeneous of degree −1.

Finally, we note that the bound (5.5) is an immediate consequence
of (5.6), and the bound on ∂αm follows by taking limits.
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Using Proposition 5.1 and Lemma 5.2, we now define the operator S
on Z ′(Rn) by

Su(ϕ) = u
(
(mϕ̌)̂) ∀ u ∈ Z ′(Rn) ∀ ϕ ∈ Z(Rn),

where m is the function given by (5.3). That is, S is the operator
on Z ′(Rn) defined by the homogeneous Fourier multiplier m.

Proposition 5.3. If u ∈ Z ′(Rn) then Sa,bu converges to Su in Z ′(Rn)
as a→ 0+ and as b→∞.

Proof: Suppose that ϕ ∈ Z(Rn) and u ∈ Z ′(Rn). Since

Sa,bu(ϕ) = u
(
(ma,bϕ̌)̂

)
∀ u ∈ Z ′(Rn) ∀ ϕ ∈ Z(Rn),

it suffices to show that ma,bϕ̌ → mϕ̌ in S(Rn) as a → 0+ and b → ∞.
For then (ma,bϕ̌)̂ → (mϕ̌)̂ in S(Rn) and hence in Z(Rn). It follows
that

(Sa,bu− Su)(ϕ) = u
((

(ma,b −m)ϕ̌
)̂)→ 0

as a→ 0+ and b→∞, which establishes the lemma.
Suppose that α and β are two multi-indices and ε > 0. We need to

show that there exist positive numbers a0 and b0 such that

sup
ξ∈Rn

∣∣ξα∂β((m−ma,b)ϕ̌
)
(ξ)
∣∣ < ε

whenever 0 < a < a0 < b0 < b. By expanding the left-hand side using
the multidimensional version of Leibniz’ rule, it suffices to show that
there are positive numbers a0 and b0 such that

(5.7) sup
ξ∈Rn

sup
|γ|≤|β|

|ξ||α|
∣∣∂γ(m−ma,b)(ξ)

∣∣∣∣∂β−γϕ̌(ξ)
∣∣ < ε

Cβ

whenever 0 < a < a0 < b0 < b, where the constant Cβ is the largest
coefficient appearing the formula for Leibniz’ rule.

By Lemma 5.2,

(5.8) |∂γ(m−ma,b)(ξ)| ≤ 2cγ |ξ|−|γ|−1 ∀ ξ ∈ Rn \ {0}

whenever 0 < a < b. Now choose R in (0,∞) so large that

(5.9) sup
|ξ|>R

sup
|γ|≤|β|

2cγ |ξ||α|−|γ|−1|∂β−γϕ̌(ξ)| < ε

3Cβ
.

This is possible since ∂β−γϕ̌ is rapidly decreasing at infinity. Now
choose r in (0,∞) so small that

(5.10) sup
0<|ξ|<r

sup
|γ|≤|β|

2cγ |ξ||α|−|γ|−1|∂β−γϕ̌(ξ)| < ε

3Cβ
.
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This is possible since ϕ̌ and all its partial derivatives are 0 at the origin.
By Lemma 5.2, there are positive numbers a0 and b0 such that

(5.11) sup
r≤|ξ|≤R

sup
|γ|≤|β|

∣∣ξα(∂γ(m−ma,b)
)
(ξ)
(
∂β−γϕ̌

)
(ξ)
∣∣ < ε

3Cβ

whenever 0 < a < a0 < b0 < b. By combining estimates (5.8), (5.9),
(5.10) and (5.11), it is easy to see that (5.7) holds whenever 0 < a <
a0 < b0 < b. This shows that ma,bϕ̌→ mϕ̌ in S(Rn) and completes the
proof.

Remark 5.4. It is a consequence of (5.5) and Proposition 5.1 (with k =

−1) that, in each space ˙A (Rn), there is a uniform bound

‖Sa,bu‖ ˙A s+1 = ‖ka,b ∗ u‖ ˙A s+1 ≤ C‖u‖ ˙A s ∀ 0 < a < b <∞

where C = C( ˙A s). Thus, for those spaces ˙A s(Rn) in which Z(Rn) is

dense, Sa,bu → Su in ˙A s+1(Rn) as a → 0+ and as b → ∞, whenever

u ∈ ˙A s(Rn).

6. Proof of the main theorem on potential maps

We now use the tools presented in Section 5 to prove Theorem 4.1.

6.1. Mapping properties of T . Each component of T is a limit
in Z ′(Rn) of convolution operators of the form Sa,b and therefore has the
same properties as S. In particular, Proposition 5.1 shows that T maps
from Z ′(Rn,Λ) into Z ′(Rn,Λ) and boundedly lifts ‘functions’ of degree s
in the homogeneous Besov and Triebel-Lizorkin spaces to ‘functions’ of
degree s+ 1. Thus we have proved parts (i) and (ii) of Theorem 4.1.

We also note that Remark 4.3 is a consequence of Remark 5.4.

6.2. Anticommutation relations. We now turn to the proof of The-
orem 4.1(iii). Suppose that 0 < a < b. Recall that the convolution
operator T a,b is defined on Z ′(Rn,Λ) by (4.2). Recall also that δa,b de-
notes the function in Z(Rn) given by

δa,b =

∫ b

a

(∇ ·Θ)t
dt

t
=

∫ b

a

∇ ·Θt dt.

Fix u in Z ′(Rn,Λ). If we can show that

(6.1) dT a,bu+ T a,bdu = δa,b ∗ u,
then, by taking limits as a → 0+ and b → ∞ in Z ′(Rn) and applying
Proposition 3.1 and Proposition 5.3, part (iii) of Theorem 4.1 will be
proved.
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Now

T a,bu =

∫ b

a

Θt ∗ yu dt,

so

dT a,bu =

n∑
j=1

ej ∧ ∂j
∫ b

a

Θt ∗ yu dt

=

n∑
j=1

∫ b

a

ej ∧ (∂jΘt ∗ yu) dt

and

T a,bdu =

∫ b

a

Θt ∗ y du dt

=

n∑
j=1

∫ b

a

∂jΘt ∗ y (ej ∧ u) dt.

Therefore, using the identity (2.3), we obtain

dT a,bu+ T a,bdu =

n∑
j=1

∫ b

a

∂jΘt · ej ∗ u dt

=

∫ b

a

∇ ·Θt ∗ u dt

= δa,b ∗ u

as claimed. Hence we have shown equation (6.1), thus completing the
proof of part (iii).

6.3. Support properties of T . To complete the proof of Theorem 4.1,
it remains to show part (iv). Suppose suppu ⊂ Ω. By (2.2) and (3.1),

supp(Θt ∗ yu) ⊂ supp Θt + suppu

⊂ Γσ(0) + Ω = Ω

whenever t ∈ (0,∞). Hence suppT a,bu ⊂ Ω whenever 0 < a < b. By
taking limits in Z ′(Rn) as a → 0+ and b → ∞, one concludes that
supp(Tu) ⊂ Ω.

This completes the proof of Theorem 4.1.
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7. Analogous results for complementary domains and
restriction spaces

Suppose that Ω is a special Lipschitz domain of Rn, and recall that
Ω− denotes the region strictly below the corresponding Lipschitz graph.
Define an operator T̃ by the formula

T̃ u = lim
a→0+

lim
b→∞

K̃a,b ∗ yu, ∀ u ∈ Z ′(Rn,Λ),

where both limits are taken in Z ′(Rn) and K̃a,b(x) = Ka,b(−x) for
all x in Rn. Here Ka,b is the truncated kernel given by (4.1). The

analytic properties of T̃ are clearly the same as those of T . However,
if suppu ⊂ Ω− then supp(T̃ u) ⊂ Ω−. Hence, in Theorem 4.1, one may

replace T by T̃ throughout, and Ω by Ω− in parts (iv) and (v), to obtain
an analogous result for the complementary Lipschitz domain Ω−.

We now draw some conclusions for the restriction space ˙A s(Ω,Λ).

Given u in ˙A s(Rn,Λ), let [u] denote the equivalence class with repre-
sentative u associated to the equivalence relation

v ∼ w ⇐⇒ v − w ∈ ˙A s
Ω−

(Rn,Λ).

By definition, [u] belongs to ˙A s(Ω,Λ) and conversely every element of
˙A s(Ω,Λ) is of this form. Define an operator R by

R[u] = [T̃ u] ∀ [u] ∈ ˙A s(Ω,Λ).

Since T̃ maps boundedly from ˙A s(Rn,Λ) to ˙A s+1(Rn,Λ) and from
˙A s
Ω−

(Rn,Λ) to ˙A s+1

Ω−
(Rn,Λ), the operator R is well-defined and maps

boundedly from ˙A s(Ω,Λ) to ˙A s+1(Ω,Λ).

Similarly, the exterior derivative d is defined as an operator on ˙As(Ω,Λ)
by

d[u] = [du] ∀ [u] ∈ ˙A s(Ω,Λ),

and maps boundedly from ˙A s(Ω,Λ) into ˙A s−1(Ω,Λ). We thus obtain
another variant of Theorem 4.1.

Proposition 7.1. Suppose that Ω is a special Lipschitz domain of Rn
and that s ∈ R. Then the operator R defined above has the following
properties:

(i) the operator R maps ˙A s(Ω,Λ) to ˙A s+1(Ω,Λ), and there is a con-
stant c such that

‖R[u]‖ ˙A s+1(Ω,Λ) ≤ c ‖[u]‖ ˙A s(Ω,Λ) ∀[u] ∈ ˙A s(Ω,Λ);

(ii) dR[u] +Rd[u] = [u] whenever [u] ∈ ˙A s(Ω,Λ).
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One immediately obtains a regularity result for the exterior derivative
on ˙A s(Ω,Λ).

Corollary 7.2. Suppose that s ∈ R and Ω is a special Lipschitz domain.
If [u] ∈ ˙A s(Ω,Λ) and d[u] = 0 then there exists [v] in ˙A s+1(Ω,Λ) and
a constant c independent of [u] such that d[v] = [u] and

‖[v]‖ ˙A s+1(Ω,Λ) ≤ c ‖[u]‖ ˙A s(Ω,Λ) .

Consequently, the de Rham complex

0 −→ ˙A s(Ω,Λ0)
d−→ ˙A s−1(Ω,Λ1)

d−→ ˙A s−2(Ω,Λ2)
d−→ · · ·

· · · d−→ ˙A s−n(Ω,Λn) −→ 0

is exact, and each space ˙A s(Ω,Λk) has a direct sum decomposition

˙A s(Ω,Λk) = d ˙A s+1(Ω,Λk−1)⊕Rd ˙A s(Ω,Λk)

with bounded projections dR and Rd.

8. Atomic decomposition of Hardy spaces of exact forms
on special Lipschitz domains

In this section we use the operator T of Theorem 4.1 and the repro-
ducing formulae above, including the zero moment condition (3.8), to
show that Hardy spaces of exact forms on special Lipschitz domains can
be characterised by atomic decompositions.

In the following definitions of these spaces and their corresponding
atoms, we at first allow Ω to be an arbitrary domain in Rn, where n ≥ 1.

Definition 8.1. Suppose that 1 ≤ ` ≤ n and n/(n + 1) < p ≤ 1. Let
Hp
d (Rn,Λ`) denote the Hardy space of all `-forms u in Hp(Rn,Λ) such

that u = dv for some (`− 1)-form v in S ′(Rn,Λ`−1). Given a domain Ω
in Rn, we say that u is in Hp

z,d(Ω,Λ
`) if u ∈ Hp

d (Rn,Λ`) and there exists v

in S ′(Rn,Λ`−1) such that u = dv and supp v ⊂ Ω.

Remark 8.2. Definition 8.1 was first introduced in the papers [10] and [9]
of Lou and McIntosh for the case when p = 1. When n/(n+ 1) < p ≤ 1,
the space Hp

d (Rn,Λn) is isomorphic to the classical Hardy space Hp(Rn),

while Hp
z,d(Ω,Λ

n) is isomorphic to the Hardy space Hp
z (Ω) of Chang,

Krantz and Stein [3].

Following [10] and [9], we introduce atoms of Hardy spaces of exact
forms.
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Definition 8.3. Suppose that 1 ≤ ` ≤ n and n/(n + 1) < p ≤ 1. We
say that a is an Hp

d (Rn,Λ`)-atom if for some ball B in Rn,

(a) there exists b in L2(Rn,Λ`−1) such that supp b ⊂ B and a = db,
and

(b) ‖a‖L2(Rn,Λ) ≤ |B|
1/2−1/p.

Note that if n/(n + 1) < p ≤ 1 and a is an Hp
d (Rn,Λ`)-atom, then

each component of a is a classical Hp(Rn)-atom.

Definition 8.4. Suppose that Ω is a domain of Rn, 1 ≤ ` ≤ n and
n/(n + 1) < p ≤ 1. We say that a is an Hp

z,d(Ω,Λ
`)-atom if for some

ball B in Rn,

(a) there exists b in L2(Rn,Λ`−1) such that supp b ⊂ B and a = db,

(b) ‖a‖L2(Rn,Λ) ≤ |B|
1/2−1/p, and

(c) 4B ⊂ Ω.

Note that, following [9], the supports of Hp
z,d(Ω,Λ

`)-atoms are away
from the boundary of Ω, which is stronger than the classical definition
of [3].

The following lemma gives an L2 estimate for the function b of Defi-
nitions 8.3 and 8.4.

Lemma 8.5. Suppose that 1 ≤ ` ≤ n, n/(n + 1) < p ≤ 1 and a
is an Hp

d (Rn,Λ`)-atom (respectively an Hp
z,d(Ω,Λ

`)-atom). Then the

L2(Rn,Λ`−1) form b of Definition 8.3 (respectively Definition 8.4) can
be chosen such that

‖b‖L2(Rn,Λ) ≤ cnr(B)|B|1/2−1/p

where the constant cn depends only on n.

Proof: Let B denote the collection of all balls in Rn and let L2
B

(Rn,Λk)

denote the space of k-forms with components in L2(Rn) and support in
the closure of a ball B. By applying the result of [12] or [6, Section 3]
to a unit ball and then scaling, one obtains the following. There exists
a constant cn and a family of operators {TB` : 1 ≤ ` ≤ n, B ∈ B} with
the following properties:

(i) if B ∈ B and 1 ≤ ` ≤ n then TB` maps from L2
B

(Rn,Λ`) to

L2
B

(Rn,Λ`−1) and∥∥TB` u∥∥L2(Rn,Λ)
≤ cnr(B) ‖u‖L2(Rn,Λ) ∀u ∈ L2

B
(Rn,Λ`);
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(ii) if B ∈ B and 1 ≤ ` < n then dTB` u + TB`+1 du = u for every

u ∈ L2
B

(Rn,Λ`); and

(iii) if B ∈ B then there exists an n-form ϑB of C∞0 (Rn,Λn) supported
in 1

2 B such that dTBn u = u− (
∫
u)ϑB for every u ∈ L2

B
(Rn,Λn).

We return now to the proof of the lemma. Suppose that a is an
Hp
d (Rn,Λ`)-atom, where 1 ≤ ` ≤ n − 1. Then there is a ball B and

a form b′ in L2(Rn,Λ`−1) such that supp b′ ⊂ B, a = db′ and ‖a‖2 ≤
|B|1/p−1/2. Set b = TB` a, noting that supp b ⊂ B. Moreover, by prop-
erty (ii),

a = dTB` a+ TB`+1da = db+ TB`+1d
2b′ = db

and

‖b‖L2(Rn,Λ) =
∥∥TB` a∥∥L2(Rn,Λ)

≤ cnr(B) ‖a‖L2(Rn,Λ) ≤ cnr(B)|B|1/2−1/p.

This proves the lemma when 1 ≤ ` ≤ n − 1. The case when ` = n may
be proved similarly, using property (iii) in place of property (ii).

Henceforth we suppose that Ω is a special Lipschitz domain with
Lipschitz constant A. Recall that Hp(Rn) ⊂ S ′(Rn), Ḟ 0

p,2(Rn) ⊂ Z ′(Rn)
and that the natural projection J from S ′(Rn) to Z ′(Rn) induces an

isomorphism from Hp(Rn) to Ḟ 0
p,2(Rn). In this way, the theory already

developed in this paper can be applied, because, when 0 < p ≤ 1,

JHp(Rn,Λ) = Ḟ 0
p,2(Rn,Λ);

JHp
d (Rn,Λ) = dḞ 1

p,2(Rn,Λ); and

JHp
z,d(Ω,Λ) = dḞ 1

p,2,Ω
(Rn,Λ)

with equivalence of norms. The second and third identities follow from
Theorem 4.1 and Corollary 4.2. In particular, it is a consequence of
Corollary 4.2 that dT , correctly interpreted, is the identity onHp

z,d(Ω,Λ).

Using the notation of Proposition 3.3, including the condition (3.8), we
obtain a Calderón-type reproducing formula on this space, namely

(8.1) Ju=dTJu=

∫ ∞
0

d(φt∗Ψt∗yJ u) dt=

∫ ∞
0

(dφ)t∗∧(Ψt∗yJ u)
dt

t
.

We note that this formula actually holds on the whole space Hp
d (Rn,Λ).

By Remark 3.2 and the fact that Z(Rn) is dense in Ḟ 0
p,2(Rn), the im-

plicit limits in these improper integrals exist in Hp(Rn,Λ) whenever
u ∈ Hp(Rn,Λ).

The next two theorems, which characterise the spaces Hp
d (Rn,Λ) and

Hp
z,d(Ω,Λ) in terms of atoms, are the two main results of this section.
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Theorem 8.6. Suppose that 1 ≤ ` ≤ n and n/(n + 1) < p ≤ 1. There
exist constants cp and c′p with the following properties.

(i) If (ak)∞k=0 is a sequence of Hp
d (Rn,Λ`)-atoms and (λk)∞k=0 belongs

to `p(C) then the series

∞∑
k=0

λkak

converges in Hp(Rn,Λ) to a form u in Hp
d (Rn,Λ`), and

(8.2) ‖u‖pHp(Rn,Λ) ≤ cp
∞∑
k=0

|λk|p.

(ii) Conversely, if u ∈ Hp
d (Rn,Λ`) then there is a sequence (ak)∞k=0 of

Hp
d (Rn,Λ`)-atoms and a sequence (λk)∞k=0 in `p(C) such that

u =

∞∑
k=0

λkak,

where the sum converges in Hp(Rn,Λ), and

(8.3)

∞∑
k=0

|λk|p ≤ c′p ‖u‖
p
Hp(Rn,Λ) .

Theorem 8.7. Suppose that 1 ≤ ` ≤ n, n/(n + 1) < p ≤ 1 and Ω is
a special Lipschitz domain in Rn. Then there exist constants cp and c′p
with the following properties.

(i) If (ak)∞k=0 is a sequence of Hp
z,d(Ω,Λ

`)-atoms and (λk)∞k=0 belongs

to `p(C) then the series

∞∑
k=0

λkak

converges in Hp(Rn,Λ) to a form u in Hp
z,d(Ω,Λ

`), and

‖u‖pHp(Rn,Λ) ≤ cp
∞∑
k=0

|λk|p.

(ii) Conversely, if u ∈ Hp
z,d(Ω,Λ

`) then there is a sequence (ak)∞k=0 of

Hp
z,d(Ω,Λ

`)-atoms and a sequence (λk)∞k=0 in `p(C) such that

u =

∞∑
k=0

λkak,
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where the sum converges in Hp(Rn,Λ), and
∞∑
k=0

|λk|p ≤ c′p ‖u‖
p
Hp(Rn,Λ) .

The results of the preceding theorems are generalisations to exact
forms of the classical atomic decompositions of [5] for Rn and [3] for
special Lipschitz domains Ω ⊂ Rn. The generalisation to exact forms
first appeared in [10] and [9] for the special case when p = 1. Apart
from expanding the range of p, our contribution is a new proof using
the reproducing formula (8.1), which is especially suited for application
to special Lipschitz domains due to the support properties of φ. Conse-
quently, our proof of Theorem 8.7 is shorter and more direct than the
one given in [9], since we avoid using reflection maps and obtain more
efficiently the desired support properties for Hp

z,d(Ω,Λ
`)-atoms. As a

by-product of our proof, we also obtain a special atomic decomposition
for tent space functions supported in tents over Ω (see Theorem 9.4).

Before we can prove these characterisations, it is necessary to present
a sequence of definitions and lemmata related to ‘tents’ over open sets,
‘tent spaces’ and tent space atoms. To help the reader contextualise
what follows, we first offer a brief outline of the proof of part (ii) of each
of the above theorems. Suppose that u ∈ Hp

d (Rn,Λ`). Following the
method developed in [5], we define an operator Q by

(Qu)(x, t) = Ψt ∗ yu(x) ∀ (x, t) ∈ Rn × R+ = Rn × (0,∞),

and show that Qu belongs to the tent space T p(Rn × R+,Λ`−1). Using
the classical atomic decomposition for tent space functions, one may
write Qu =

∑
k λkAk, where each Ak is a T p(Rn ×R+,Λ`−1)-atom and

the sequence (λk) belongs to `p. One then constructs a map π by

πU =

∫ ∞
0

(dφ)t ∗ ∧U(·, t)dt
t

so that, by the reproducing formula (8.1),

u = dTu = πQu =
∑
k

λkπAk

where each πAk is an Hp
d (Rn,Λ`)-atom, thus obtaining the atomic de-

composition for u.
The atomic decomposition for elements of Hp

z,d(Ω,Λ
`) will be proved

along the same lines with the following variations. If u ∈ Hp
z,d(Ω,Λ

`)
then Qu is in fact supported in a ‘tent’ over Ω. So the tent space decom-
position for Qu (presented in Theorem 9.4) gives tent space atoms Ak
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with good support properties with respect to the domain Ω. It follows
that u = πQu =

∑
k λkπAk, where each πAk can be written as a finite

sum of Hp
z,d(Ω,Λ

`)-atoms.

9. Atomic decomposition of tent spaces

The results in this section are independent of the previous sections,
and we believe they are of interest in their own right.

The tent spaces were first introduced in the article [5] of Coifman,
Meyer and Stein, and owe their name to the fact that, when 0 < p ≤ 1,
their functions can be decomposed as a sum of atoms supported in tents
over balls. Our aim is to show that if a function in such a tent space,
itself has support in a tent Tβ(Ω), then the supports of the atoms in its
decomposition can be taken inside this tent, and away from the boundary
of Ω.

We turn now to the relevant definitions. If β > 0 and x ∈ Rn, let
Γ′β(x) denote the cone in Rn × R+ with aperture β and vertex at x,
namely

Γ′β(x) = {(y, t) ∈ Rn × R+ : |y − x| < βt}.
If O is an open subset of Rn, then the tent Tβ(O) over O with aperture β
is defined by

Tβ(O) = {(y, t) ∈ Rn × R+ : d(y,Oc) ≥ βt}.

We follow the convention of writing Γ′(x) for Γ′1(x) and T (O) for T1(O).
Given any measurable function U on Rn×R+, we define the Lusin area
integral SU of U by the formula

(SU)(x) =

(∫∫
Γ′(x)

|U(y, t)|2 dy dt
tn+1

)1/2

.

Definition 9.1. Suppose that p > 0. The tent space T p(Rn × R+) is
defined to be the set of all measurable functions U on Rn×R+ such that
‖U‖T p(Rn×R+) is finite, where

‖U‖T p(Rn×R+) = ‖SU‖Lp(Rn) .

Definition 9.2. Suppose that p > 0. A measurable function A on Rn×
R+ is said to be a T p(Rn×R+)-atom if there exists a ball B in Rn such
that suppA ⊂ T (B) and∫∫

Rn×R+

|A(y, t)|2 dy dt
t
≤ |B|1−2/p.
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If 0 < p ≤ 1 then it is relatively straightforward to show that every
T p(Rn×R+)-atom A belongs to T p(Rn×R+) and that ‖A‖T p(Rn×R+) ≤
1. Consequently, if (λk)k∈N∈`p(C) and (Ak)k∈N is a sequence of T p(Rn×
R+)-atoms then

∑
k∈N λkAk belongs to T p(Rn×R+). That the following

converse is true is a deeper result due to Coifman, Meyer and Stein [5].

Theorem 9.3. Suppose that 0 < p ≤ 1. There exists a constant C
(depending only on n and p) with the following property: for all U
in T p(Rn × R+), there exists a sequence (λk)k∈N in `p(C) and a se-
quence (Ak)k∈N of T p(Rn × R+)-atoms such that

U =
∑
k∈N

λkAk

and ∑
k∈N
|λk|p ≤ C ‖U‖pT p(Rn×R+) .

We introduce the following variant of the above theorem, where the
tent space atoms are supported in Carleson boxes with good support
properties with respect to an underlying domain Ω.

Theorem 9.4. Suppose that 0 < p ≤ 1 and β > 0. There exist positive
constants C ′ (depending only on n, p and β) and cβ (depending only
on β), where 0 < cβ < 1, satisfying the following property. If U ∈
T p(Rn×R+) and suppU ⊂ Tβ(Ω) for some proper open subset Ω of Rn,
then there exists a sequence (λk)k∈N in `p(C) and a sequence (Ak)k∈N of
T p(Rn×R+)-atoms, supported in corresponding tents (T (Bk))k∈N, such
that

(i) U =
∑
k∈N

λkAk,

(ii)
∑
k∈N
|λk|p ≤ C ′ ‖U‖pT p(Rn×R+),

(iii) suppAk ⊂ cβBk × (0, 6β−1cβ r(Bk)) and 5cβBk ⊂ Ω whenever
k ∈ N.

Proof: The proof is an adaptation of the proof of [14, Theorem 1.1],
which in turn is based on the original ideas presented in [5]. Fix any
number ν in the interval (0, 1). For any k in Z, let Ok denote the open
subset of Rn given by

Ok = {x ∈ Rn : SU(x) > 2k}.
It can be shown that

(9.1) suppU ⊂
⋃
k∈Z

Tν(O∗k),
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where each open set O∗k is constructed using a corresponding set of
global γ-density (see [14, pp. 128–130] for details). For each integer k,
the Whitney lemma (see, e.g., [14, Lemma 2.2]) applied to the open
set O∗k∩Ω gives a denumerable index set Ik, a sequence of balls (Bkj )j∈Ik

having radii (rkj )j∈Ik and centres (xkj )j∈Ik , and a sequence (ϕkj )j∈Ik of
nonnegative functions on Rn with the following properties:

O∗k ∩ Ω =
⋃
j∈Ik

Bkj , d(xkj , (O
∗
k ∩ Ω)c) = 10rkj ,

suppϕkj ⊂ 2Bkj ,
∑
j∈Ik

ϕkj = 1O∗k∩Ω,

and

(9.2) 1
4B

k
i ∩ 1

4B
k
j = ∅ if i 6= j.

It can be shown that O∗k+1 ⊂ O∗k for all k (see [14, pp. 128, 130]).

Therefore, for each (x, t) in Rn × R+,(
1Tν(O∗k) − 1Tν(O∗k+1)

)
(x, t)1Ω(x)

=
∑
j∈Ik

ϕkj (x)
(
1Tν(O∗k) − 1Tν(O∗k+1)

)
(x, t)1Ω(x)

and hence

U(x, t) =
∑
k∈Z

∑
j∈Ik

U(x, t)ϕkj (x)
(
1Tν(O∗k) − 1Tν(O∗k+1)

)
(x, t)

by (9.1). Define, for all integers k and all j in Ik,

µkj =

∫ ∞
0

∫
Rn
|U(y, t)|2ϕkj (y)2

(
1Tν(O∗k) − 1Tν(O∗k+1)

)
(y, t) dy

dt

t
,

Akj (y, t) = U(y, t)ϕkj (y)
(
1Tν(O∗k) − 1Tν(O∗k+1)

)
(y, t)|Bkj |1/2−1/p(µkj )−1/2

(unless µkj = 0, in which case we define Akj = 0) and

λkj = |Bkj |1/p−1/2(µkj )1/2.

Then

U =
∑
k∈Z

∑
j∈Ik

λkjA
k
j .

We claim that, up to a multiplicative constant, each Akj is a T p(Rn×
R+)-atom with the desired properties.
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First we show that suppAkj ⊂ T (B̃kj ), where B̃kj = CBkj and C =

2 + 12/min{β, ν}. Let (y, t) ∈ suppAkj , so that in particular (y, t) ∈
Tν(O∗k) ∩ Tβ(Ω) and y ∈ suppϕkj ; that is,

d(y, (O∗k)c) ≥ νt, d(y,Ωc) ≥ βt and |y − xkj | < 2rkj .

We aim to show that d(y, (CBkj )c) ≥ t for then suppAkj ⊂ T (B̃kj ). Sup-

pose that z ∈ (CBkj )c. Then

(9.3) |y − z| ≥ |z − xkj | − |y − xkj | ≥ (C − 2)rkj =
12rkj

min{β, ν}
.

Also, d(xkj , (O
∗
k ∩ Ω)c) = 10rkj . Suppose that ε > 0. There exists u in

(O∗k ∩ Ω)c such that |xkj − u| < 10rkj + ε. So

min{β, ν}t ≤ |y − u| ≤ |y − xkj |+ |xkj − u| < 12rkj + ε.

Since this is true for every positive ε, it follows that min{β, ν}t ≤ 12rkj .

Combining this with (9.3) gives |y − z| ≥ t, and hence d(y, (CBkj )c) ≥ t
as required.

Second, the definition of Akj implies that∫∫
|Akj (y, t)|2 dy dt

t
= |Bkj |1−2/p = Cn(2/p−1)|B̃kj |1−2/p,

and so up to the multiplicative constant Cn(2/p−1), each Akj is a T p(Rn×
R+)-atom.

Third, we prove that the Akj satisfy support properties as in part (iii)

of the theorem. Now each Akj is supported in Tβ(Ω)∩(2Bkj ×R+), where

5(2Bkj ) ⊂ Ω. So if (y, t) ∈ Tβ(Ω) ∩ (2Bkj × R+) then

βt ≤ d(y,Ωc) ≤ d(y, xkj ) + d(xkj ,Ω
c) < 2rkj + 10rkj

and hence 0 < t < 12β−1rkj . This shows that suppAkj ⊂ 2Bkj ×
(0, 12β−1rkj ). Defining the constant cβ by cβ = 2/C, it is now easy
to see that

suppAkj ⊂ T (B̃kj ), suppAkj ⊂ cβB̃kj × (0, 6β−1cβ r(B̃
k
j ))

and 5cβB̃kj ⊂ Ω.

It remains to show that there exists a constant C ′, independent of Ω
and U , such that ∑

k∈Z

∑
j∈Ik
|λkj |p ≤ C ′ ‖U‖T p(Rn×R+) .
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The proof, which uses (9.2), proceeds exactly as in [14, pp. 132–133]

and will not be reproduced here. Finally, relabel the balls (B̃kj ) as (Bk),

(Cn(1/p−1/2)λkj ) as (λk) and the functions (Cn(1/2−1/p)Akj ) as (Ak). This
completes the proof of the theorem.

Remark 9.5. A comparison of this proof with the proof of [14, Theo-
rem 1.1] shows that Theorem 9.4 also holds when the underlying space Rn
is replaced by any space X of homogeneous type that satisfies the as-
sumptions of [15, §1.1.3].

Remark 9.6. Theorem 1.1 follows from the special case of Theorem 9.4

when p = 1 and β = 1, with (cβBk), (c
n/2
β λk) and (c

−n/2
β Ak) renamed

as (Bk), (λk) and (Ak).

10. Proofs of atomic decomposition of Hardy spaces

Our aim now is to use the reproducing formula (6.1) and the tent space
decomposition in the previous section, to prove Theorems 8.6 and 8.7.

Recall that A and σ are fixed positive numbers such that σA < 1. In
order to apply the previous theorem, we need the following.

Lemma 10.1. Suppose that a > 0, Ω is a special Lipschitz domain
with Lipschitz constant A and that ψ is a C∞(Rn) function supported

in {y ∈ Γσ(0) : yn ≥ a}. Suppose also that u ∈ S ′(Rn) and suppu ⊂ Ω.
Define Qu by

Qu(x, t) = (ψt ∗ u)(x) ∀ (x, t) ∈ Rn × R+.

Then Qu is supported in Tβ(Ω) where

(10.1) β =
a(1− σA)√

1 +A2
.

Proof: What needs to be shown is that, under the stated hypotheses,
dist(supp(ψt ∗ u),Ωc) ≥ βt. By (2.2), supp(ψt ∗ u) ⊂ Ω + {y ∈ Γσ(0) :

yn ≥ at}, so we need to show that if x ∈ Ω, y ∈ Γσ(0), yn ≥ at and
z ∈ Ωc, then |x + y − z| ≥ βt. Let w = z − x, and note that by the
assumption on Ω, wn ≤ A|w′|.

So the result is proved once we show that |y − w| ≥ βt whenever
−∞ < wn ≤ A|w′|, |y′| ≤ σyn and yn ≥ at. We split into two cases.
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Case (i): wn ≤ σAyn. Then

|y − w| ≥ yn − wn ≥ (1− σA)yn ≥ (1− σA)at > βt

by (10.1).

Case (ii): wn > σAyn. Then |w′| ≥ 1
Awn > σyn ≥ |y′|. So

|y − w|2 = (yn − wn)2 + |y′ − w′|2

> (yn − wn)2 + (|w′| − |y′|)2

> (yn − wn)2 + ( 1
Awn − σyn)2

= 1+A2

A2 w2
n −

2(σ+A)
A ynwn + (1 + σ2)y2

n

≥
(
β
a

)2

y2
n

≥ β2t2,

where we have minimised over wn as usual way for quadratic expres-
sions.

We are now in a position to prove Theorems 8.6 and 8.7.

Proof: Suppose throughout that n/(n+ 1) < p ≤ 1.
First we prove part (i) of Theorem 8.6. Suppose that (ak)∞k=0 is a

sequence of Hp
d (Rn,Λ)-atoms, (λk)∞k=0 belongs to `p(C) and ak = dbk.

Since each component of ak is a classical Hp(Rn)-atom, the classical
theory implies that there exist a constant cp and u in Hp(Rn,Λ) such
that (8.2) holds and

(10.2) u =

∞∑
k=0

λkak =

∞∑
k=0

λkdbk,

where the sum converges in Hp(Rn,Λ).
Recall that J denotes the natural projection from S ′(Rn) to Z ′(Rn).

By (10.2),

M∑
k=0

λkJ ak = d

( M∑
k=0

λkJ bk

)
→J u in Ḟ 0

p,2(Rn,Λ) as M →∞,

and it follows from the continuity of d and Theorem 4.1 that J u ∈
dḞ 1

p,2(Rn,Λ) = JHp
d (Rn,Λ). Hence u ∈ Hp

d (Rn,Λ). This completes
the proof of Theorem 8.6(i).
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Part (i) of Theorem 8.7 is proved along the same lines, noting that

dḞ 1
p,2,Ω

(Rn,Λ) = JHp
d (Ω,Λ).

We now prove the converse statements in each of Theorems 8.6 and 8.7.
Let φ denote the C∞0 (Rn) function of Proposition 3.3, chosen such that

(10.3)

∫
Rn

Ψ(x) dx = 0

where Ψ(x) = 2φ(x)x. We remark also that
∫
Rn φ(x) dx = 1, and

(10.4)

∫
Rn

(dφ)(x) dx = 0

where dφ = Σnj=1∂jφ ej ,
Given u in S ′(Rn,Λ), define Qu by

(Qu)(x, t) = Ψt ∗ yu(x)

whenever (x, t) ∈ Rn × R+. By the moment condition (10.3), it is well-
known (see, for example, [3, p. 308]) that Q is bounded from Hp(Rn,Λ)
to T p(Rn × R+,Λ). Given U in T 2(Rn × R+,Λ) with compact support
in Rn × R+, define πU by the formula

πU =

∫ ∞
0

(dφ)t ∗ ∧U(·, t)dt
t
.

Again, by the moment condition (10.4), it is well known (see [5, Theo-
rem 6]) that the operator π extends to a bounded linear operator from
T 2(Rn × R+,Λ) to L2(Rn,Λ) and from T p(Rn × R+,Λ) to Hp(Rn,Λ).

We focus now on the proof of Theorem 8.6(ii). Suppose that u ∈
Hp
d (Rn,Λ`), where 1 ≤ ` ≤ n and n ≥ 1. Then Qu belongs to the

tent space T p(Rn × R+,Λ`−1) and by Theorem 9.3, Qu has the atomic
decomposition

Qu =
∑
k∈Z

λkAk,

where each Ak is a T p(Rn×R+,Λ`−1)-atom supported in a tent T (Bk),
the sum converges in T p(Rn × R+,Λ) and∑

k

|λk|p < c′′p ‖Qu‖
p
T p(Rn×R+,Λ) ≤ c

′
p‖u‖Hp(Rn,Λ).
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Define ak by ak = πAk, so that

ak(x) =

∫ ∞
0

∫
Rn

(dφ)t(x− y) ∧Ak(y, t) dy
dt

t

= d

∫ ∞
0

∫
Rn
φt(x− y)Ak(y, t) dy dt

= dbk(x),

where

bk =

∫ ∞
0

φt ∗Ak(·, t) dt.

We claim that each ak is an Hp
d (Rn,Λ`)-atom, up to a multiplicative

constant independent of k. First,

‖ak‖L2(Rn,Λ) = ‖πAk‖L2(Rn,Λ) ≤ C ‖Ak‖T 2(Rn×R+,Λ) ≤ C|Bk|
1/2−1/p,

where the constant C is independent of k. Second, we show that bk ∈
L2(Rn,Λ). Suppose that Bk = Brk(zk). Successive applications of the
triangle, Cauchy-Schwarz and Young’s inequalities yield

‖bk‖2L2(Rn,Λ) ≤ rk
∫ rk

0

‖φt ∗Ak(·, t)‖2L2(Rn,Λ) dt

≤ rk
∫ rk

0

‖φt‖2L1(Rn) ‖Ak(·, t)‖2L2(Rn,Λ) dt

= C2
1rk

∫ rk

0

t

∫
Rn
|Ak(y, t)|2 dy dt

t

≤ C2
1r

2
k |Bk|1−2/p,

where C1 = ‖φ‖1, and the final estimate follows from the fact that Ak is
a T p(Rn × R+,Λ`)-atom. Third, we note that supp ak ⊂ Bk. Indeed,
by (2.2) and (3.5),

supp ak = supp(πAk) ⊂
⋃

0≤t≤rk

{
suppφt +

(
1− t

rk

)
Bk

}

⊂
⋃

0≤t≤rk

{tB1(0) + (rk − t)B1(zk)}

= Brk(zk)

= Bk.



328 M. Costabel, A. McIntosh, R. J. Taggart

Hence, up to a multiplicative constant, each ak is an Hp
d (Rn,Λ`)-atom

as claimed.
It remains to be shown that u =

∑
k λkak, where the sum converges in

the topology of Hp(Rn,Λ). Since
∑
k λkAk converges in T p(Rn×R+,Λ)

and π is bounded from T p(Rn × R+,Λ) to Hp(Rn,Λ), it follows that
πQu =

∑
k λkak, where the sum converges in the topology of Hp(Rn,Λ).

But note by the definitions of Q and π that J πQu = dTJ u, where
T is the operator given by (4.3). Recall from (8.1) that dT is the identity

on dḞ 1
p,2(Rn,Λ). Since J u ∈ dḞ 1

p,2(Rn,Λ), we have that

J u = dTJ u = J πQu = J
∑
k

λkak

and hence that u =
∑
k λkak as required. This, together with the bound

already proved on
∑
|λk|p, completes the proof of Theorem 8.6(ii).

We turn now to prove Theorem 8.7(ii). Suppose that u ∈ Hp
z,d(Ω,Λ

`).

Using the same argument as above, u = πQu =
∑
k λkπAk where the

sum converges in Hp, πAk = dbk, suppAk ⊂ T (Bk) and {λk} ∈ `p.
In this case, each πAk is not (even up to a multiplicative constant)
necessarily an Hp

z,d(Ω,Λ
`)-atom because it may not satisfy the required

support properties. We will instead show that each πAk can be written
as a finite sum of Hp

z,d(Ω,Λ
`)-atoms.

Since suppu ⊂ Ω, we conclude by Lemma 10.1 that suppQu ⊂
Tβ(Ω), where β is given by (10.1) with a = 1/2. Theorem 9.4 gives
the additional information that Ak can be chosen so that supp(Ak) ⊂
cBk × (0, 6β−1crk), and 5cBk ⊂ Ω, where c is independent of k. Hence
dist(cBk,Ω

c) ≥ 4crk. By (2.2) and (3.5),

supp ak = supp(πAk)

⊂
⋃

0<t≤6β−1crk

(
supp(dφ)t + cBk

)
⊂ cBk + {y ∈ Γσ(0) : yn ≤ 6β−1crk} =: Gk.

Note that Gk is a compact subset of Ω and that dist(Gk,Ω
c) ≥ 4crk.

This is because, if x ∈ cBk, y ∈ Γσ(0) and w ∈ Ωc, then w − y ∈ Ωc, so
|(x+ y)− w| = |x− (w − y)| ≥ 4crk. So we may cover Gk with finitely

many balls { 1
2B

j
k}Mj=1 of radius crk/2 and centres zjk, where zjk ∈ Gk and

where (by scale and translation invariance) the integer M is independent

of k. Let {ηjk}Mj=1 denote a smooth subordinate partition of unity with
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the properties that 0 ≤ ηjk ≤ 1, supp ηjk ⊂ B
j
k,

M∑
j=1

ηjk(x) = 1 ∀ x ∈ Gk

and ‖∇ηjk‖L∞(Rn) ≤ c′r−1
k for some constant c′ independent of j and k.

For each k and j, define the function ajk and scalar µjk by

ajk = (µjk)−1d(ηjkbk) and µjk = |Bjk|
1/p−1/2‖d(ηjkbk)‖L2(Rn,Λ).

Now each ajk is an Hp
z,d(Ω,Λ

`)-atom because ηjkbk ∈ L2(Rn,Λ`−1),

supp ajk ⊂ B
j
k where 4Bjk ⊂ Ω, and ‖ajk‖L2(Rn,Λ) ≤ |Bjk|1/2−1/p.

Note now that

u =

∞∑
k=0

λkπAk =

∞∑
k=0

M∑
j=1

λkµ
j
ka
j
k,

where the sum converges in Hp and
∑
k |λk|p < ∞. To complete the

proof of the theorem, it suffices to show that supk,j µ
j
k ≤ C ′ for some

constant C ′. This bound follows readily from the estimate

‖d(ηjkbk)‖L2(Rn,Λ) =
∥∥∥(dηjk) ∧ bk + ηjk dbk

∥∥∥
L2(Rn,Λ)

≤‖∇ηjk‖L∞(Rn)‖bk‖L2(Rn,Λ)+‖η
j
k‖L∞(Rn)‖πAk‖L2(Rn,Λ)

≤c′r−1
k rk|Bk|1/2−1/p + C|Bk|1/2−1/p

≤(c′ + C)|Bk|1/2−1/p.

Thus we have completed the proof of Theorem 8.7.
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