## organic compounds

Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 4-(Dimethylamino)phenyl ethynyl telluride

Joan Farran, Angel Alvarez-Larena, Joan F. Piniella and Mario V. Capparelli*<br>Unitat de Cristal-lografia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain<br>Correspondence e-mail: mariocapparelli@cantv.net

Received 25 February 2009; accepted 13 March 2009
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$;
$R$ factor $=0.034 ; w R$ factor $=0.087 ;$ data-to-parameter ratio $=21.8$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NTe}$, is the first organyl ethynyl telluride, $R-\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$, to be structurally characterized. In the L-shaped molecule, the aryl moiety, viz. $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Te}$, is almost perpendicular to the $\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ fragment. The $\mathrm{Te}-\mathrm{Csp}^{2}$ bond $[2.115$ (3) $\AA$ ] is significantly longer than the $\mathrm{Te}-\mathrm{Csp}$ bond $[2.041$ (4) $\AA$ ]. The $\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}$ group is approximately linear $\left[\mathrm{Te}-\mathrm{C}-\mathrm{C}=178.5(4)^{\circ}\right.$ and $\mathrm{C} \equiv \mathrm{C}=$ 1.161 (5) $\AA$ ], while the coordination at the Te atom is angular $\left[\mathrm{C}-\mathrm{Te}-\mathrm{C}=95.92(14)^{\circ}\right]$. In the crystal structure, there are $\mathrm{Csp}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds which are perpendicular to the $\mathrm{CNMe}_{2}$ group; the N atom displays some degree of pyramidalization. Centrosymmetrically related pairs of molecules are linked by $\mathrm{Te} \cdots \pi$ (aryl) interactions, with $\mathrm{Te} \cdots C g=$ 3.683 (4) $\AA$ and $\mathrm{Csp}-\mathrm{Te} \cdots C g=159.1(2)^{\circ}(C g$ is the centroid of the benzene ring). These interactions lead to the formation of zigzag ribbons which run along $c$ and are approximately parallel to (110).

## Related literature

For general background, see: Dabdoub et al. (1998); Gillespie \& Hargittai (1991); Kauffmann \& Ahlers (1983); Murai et al. (1994); Petragnani (1994); Potapov \& Trofimov (2005); Schulz Lang et al. (2006); Yoshimatsu (2005); Zukerman-Schpector \& Haiduc (2001). For related structures, see: Farran et al. (2002). For details of the synthesis, see: Brandsma (1988); Petragnani et al. (1975).


## Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NTe}$
$\gamma=83.444(2)^{\circ}$
$M_{r}=272.80$
Triclinic, $P \overline{1}$
$a=7.8857$ (7) A
$b=8.3851$ (8) $\AA$
$c=9.3364$ (9) $\AA$
$\alpha=65.788(2)^{\circ}$
$\beta=66.922(1)^{\circ}$
$V=517.18(8) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=2.82 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.36 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection
Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.403, T_{\text {max }}=0.754$
3574 measured reflections 2401 independent reflections 2080 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
110 parameters
$w R\left(F^{2}\right)=0.087$
H -atom parameters constrained
$S=1.04$
2401 reflections
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$ | 0.93 | 2.48 | $3.379(6)$ | 163 |

Symmetry code: (i) $x, y, z-1$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors gratefully acknowledge the financial support of the European Union (project No. CI1*.0574.ES). JF thanks the Generalitat de Catalunya for an FI grant and MVC thanks the Ministerio de Educación y Cultura of Spain for a sabbatical grant (project No. SAB95-0281). The sample studied was kindly provided by Professor L. Torres-Castellanos. The X-ray measurements were carried out at the Servei de Difracció de Raigs X (UAB).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2241).

## References

Brandsma, L. (1988). Preparative Acetylenic Chemistry, p. 27. Amsterdam: Elsevier.
Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dabdoub, M. J., Begnini, M. L. \& Guerrero, P. G. Jr (1998). Tetrahedron, 54, 2371-2400.
Farran, J., Torres-Castellanos, L., Alvarez-Larena, A., Piniella, J. F. \& Capparelli, M. V. (2002). J. Organomet. Chem. 654, 91-99.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

## organic compounds

Gillespie, R. J. \& Hargittai, I. (1991). In The VSEPR Model of Molecular Geometry. Boston: Allyn \& Bacon.
Kauffmann, T. \& Ahlers, H. (1983). Chem. Ber. 116, 1001-1008.
Murai, T., Shimizu, A., Tatematsu, S., Ono, K., Kanda, T. \& Kato, S. (1994). Heteroat. Chem. 5, 31-35.
Petragnani, N. (1994). In Tellurium in Organic Synthesis. London: Academic Press.
Petragnani, N., Torres, L. \& Wynne, K. J. (1975). J. Organomet. Chem. 92, 185189.

Potapov, V. A. \& Trofimov, B. A. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 957-1005. Stuttgart: Georg Thieme.

Schulz Lang, E., Manzoni de Oliveira, G. \& Casagrande, G. A. (2006). J. Organomet. Chem. 691, 59-64.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yoshimatsu, M. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 563-569. Stuttgart: Georg Thieme.
Zukerman-Schpector, J. \& Haiduc, I. (2001). Phosphorus Sulfur Silicon Relat. Elem. 171, 73-112.

## supplementary materials

## 4-(Dimethylamino)phenyl ethynyl telluride

J. Farran, A. Alvarez-Larena, J. F. Piniella and M. V. Capparelli

## Comment

Although organotellurium compounds have attracted considerable interest as reagents and intermediates in organic synthesis (Petragnani, 1994), only a limited number of compounds with mono- and ditelluroethyne cores, $\mathrm{R}-\mathrm{Te}-\mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{R}-\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Te}-R^{\prime}$, have been reported, in spite of the potential reactivity of the acetylene unit towards addition reactions. We recently reported the syntheses and crystal structures of several symmetrical ( $R=R^{\prime}$ ) bis(aryltelluro)ethynes, $\mathrm{Ar}-\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Te}-\mathrm{Ar}$ (Farran et al., 2002). On the other hand, only five $\mathrm{R}-\mathrm{Te}-\mathrm{C} \equiv \mathrm{CH}$ derivatives have been prepared so far, with $R=\mathrm{Me}, \mathrm{Et},{ }^{\mathrm{i}} \mathrm{Pr}$, n-Bu and Ph (Kauffmann \& Ahlers, 1983; Dabdoub et al., 1998; Potapov \& Trofimov, 2005; Yoshimatsu, 2005), and none has been structurally characterized (in addition, molecular orbital calculations for $R=\mathrm{HC} \equiv \mathrm{C}$ were carried out by Murai et al., 1994). Here we describe the crystal structure of the title compound ( $R=p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ ), the first of an organyl ethynyl telluride to be reported.

The structure analysis showed that the crystal contains discrete $L$-shaped molecules of the title compound (Figure 1), in which the aryl moiety, $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Te}$, is almost perpendicular to the $\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ fragment (cf. $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ angle, Table 1), but bent $c a 13^{\circ}$ towards the $\mathrm{C} 12-\mathrm{C} 13$ side of the ring ( $c f . \mathrm{C}-\mathrm{Te}-\mathrm{C}-\mathrm{C}$ angles, Table 1), probably to optimize the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction (see below).

As expected, the $\mathrm{Te}-\mathrm{C}\left(s p^{2}\right)$ bond is significantly longer than the $\mathrm{Te}-\mathrm{C}(s p)$ one. The $\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}$ moiety is approximately linear, while the coordination at the Te atom is angular, as predicted by the valence-shell electron-pair repulsion (VSEPR) model for an $\mathrm{AX}_{2} \mathrm{E}_{2}$ molecule (Gillespie \& Hargittai, 1991). The values of these geometric parameters (Table 1) are similar to the ranges observed in several bis(arytelluro)ethynes, $\mathrm{Ar}-\mathrm{Te}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Te}-\mathrm{Ar}$ (Farran et al., 2002), viz. $\mathrm{Te}-\mathrm{C}\left(s p^{2}\right)$, 2.103 (5)-2.142 (6) $\AA$; $\mathrm{Te}-\mathrm{C}(s p), 2.021$ (6)-2.058 (6) $\AA ; \mathrm{C} \equiv \mathrm{C}, 1.166$ (12)-1.203 (11) $\AA$ and $\mathrm{C}-\mathrm{Te}-\mathrm{C}, 94.2(3)-97.2(2)^{\circ}$, which are substantially smaller than the tetrahedral value $\left(109.5^{\circ}\right)$ due to the repulsion of the lone pairs of electrons on the bonded ones.

In the crystal structure the molecules are linked by $\mathrm{C}(s p)-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) which are perpendicular to the $\mathrm{CNMe}_{2}$ group. The N atom displays some degree of pyramidalization: it is 0.123 (5) $\AA$ out of the plane of the three C atoms, towards the H atom. There are also $\mathrm{Te} \cdots \pi($ aryl) interactions, similar to those described by Zukerman-Schpector \& Haiduc (2001) or Schulz Lang et al. (2006) for Te(IV) compounds, in which centrosymmetrically related pairs of molecules are at $\mathrm{Te} \cdots C g 3.683$ (4) $\AA$ and $\mathrm{C}(s p) — \mathrm{Te} \cdots C g 159.1(2)^{\circ}(C g=$ centroid of the phenyl ring at $1-x,-y, 1-z)$. These interactions lead to the formation of zigzag ribbons, made of pairs of chains, which run along c and are approximately parallel to (110) (Figure 2).

## Experimental

Ethynyl magnesium bromide, $\mathrm{HC} \equiv \mathrm{CMgBr}$, was prepared according to published procedures (Brandsma, 1988). The corresponding diaryl ditelluride, $\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Te}\right)_{2}$, was synthesized as reported elsewhere (Petragnani et al., 1975). A dark solution

## supplementary materials

of the diaryl ditelluride ( $2.0 \mathrm{mmol}, 0.94 \mathrm{~g}$ ) in 40 ml of THF was treated dropwise with bromine ( $2.0 \mathrm{mmol}, 0.32 \mathrm{~g}, 0.10 \mathrm{ml}$ ) in 10 ml of benzene, at $0^{\circ} \mathrm{C}$, in $\mathrm{N}_{2}$ atmosphere, while efficient cooling was applied. The Grignard reagent was then added dropwise. Gradual disappearance of the dark color of the solution was observed until it finally became almost colorless when about $10 \%$ excess of the reagent was added. After stirring for 30 min at room temperature, the solution was diluted with 50 ml of low boiling point petroleum ether, treated with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and washed with brine. The organic layer was dried over magnesium sulfate and the solvents were evaporated. The residue was purified by flash chromatography (silica gel/hexane). Yield $51 \%$. Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution. The specimen used for data collection was air-protected with a thin coat of Loctite epoxy adhesive.

## Refinement

Hydrogen atoms were placed in calculated positions using a riding atom model with fixed $\mathrm{C}-\mathrm{H}$ distances [0.93 $\AA$ for $\mathrm{C}(s p)$ and $\mathrm{C}\left(s p^{2}\right), 0.96 \AA$ for $\left.\mathrm{C}\left(s p^{3}\right)\right]$ and $U_{\text {iso }}=\mathrm{p} U_{\mathrm{eq}}($ parent atom $)\left[\mathrm{p}=1.2\right.$ for $\mathrm{C}(s p)$ and $\mathrm{C}\left(s p^{2}\right), 1.5$ for $\left.\mathrm{C}\left(s p^{3}\right)\right]$.

## Figures



## 4-(Dimethylamino)phenyl ethynyl telluride

## Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NTe}$

$$
Z=2
$$

$M_{r}=272.80$
Triclinic, $P \mathrm{~T}$
$F_{000}=260$

Hall symbol: -P 1
$a=7.8857$ (7) $\AA$
$D_{\mathrm{x}}=1.752 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1735 reflections
$b=8.3851$ ( 8 ) $\AA$
$c=9.3364(9) \AA$
$\alpha=65.788$ (2) ${ }^{\circ}$
$\beta=66.922(1)^{\circ}$
$\theta=2.7-25.6^{\circ}$
$\mu=2.82 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$\gamma=83.444(2)^{\circ}$
$V=517.18(8) \AA^{3}$
Plate, pale brown
$0.36 \times 0.30 \times 0.10 \mathrm{~mm}$

## Data collection

Brruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 8.13 pixels $\mathrm{mm}^{-1}$
$T=294 \mathrm{~K}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.403, T_{\max }=0.754$

2401 independent reflections
2080 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=28.9^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 12$

3574 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.087$
$S=1.04$
2401 reflections
110 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0487 P)^{2}+0.1129 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\max }=0.75 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.35$ e $\AA^{-3}$
Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Te1 | $0.45985(3)$ | $0.02042(3)$ | $0.26991(3)$ | $0.06634(13)$ |
| C1 | $0.3522(5)$ | $0.1483(5)$ | $0.0886(5)$ | $0.0612(8)$ |
| C2 | $0.2942(7)$ | $0.2203(6)$ | $-0.0170(6)$ | $0.0747(11)$ |
| H2 | 0.2478 | 0.2779 | -0.1016 | $0.090^{*}$ |
| C11 | $0.3173(5)$ | $0.1554(5)$ | $0.4271(4)$ | $0.0532(7)$ |
| C12 | $0.3748(5)$ | $0.3243(5)$ | $0.3871(5)$ | $0.0608(9)$ |
| H12 | 0.4778 | 0.3792 | 0.2894 | $0.073^{*}$ |
| C13 | $0.2819(5)$ | $0.4118(5)$ | $0.4899(5)$ | $0.0595(8)$ |
| H13 | 0.3219 | 0.5256 | 0.4592 | $0.071^{*}$ |


| C14 | $0.1272(5)$ | $0.3316(4)$ | $0.6407(4)$ | $0.0515(7)$ |
| :--- | :--- | :--- | :--- | :--- |
| C15 | $0.0702(5)$ | $0.1609(5)$ | $0.6793(5)$ | $0.0568(8)$ |
| H15 | -0.0321 | 0.1042 | 0.7771 | $0.068^{*}$ |
| C16 | $0.1641(5)$ | $0.0766(4)$ | $0.5739(5)$ | $0.0566(8)$ |
| H16 | 0.1236 | -0.0362 | 0.6022 | $0.068^{*}$ |
| N1 | $0.0368(5)$ | $0.4146(5)$ | $0.7474(4)$ | $0.0639(8)$ |
| C17 | $0.0794(7)$ | $0.5988(5)$ | $0.6960(6)$ | $0.0714(11)$ |
| H171 | 0.0033 | 0.6351 | 0.7852 | $0.107^{*}$ |
| H172 | 0.0561 | 0.6671 | 0.5949 | $0.107^{*}$ |
| H173 | 0.2071 | 0.6158 | 0.6739 | $0.107^{*}$ |
| C18 | $-0.1341(7)$ | $0.3391(7)$ | $0.8888(6)$ | $0.0834(13)$ |
| H181 | -0.1834 | 0.4182 | 0.9439 | $0.125^{*}$ |
| H182 | -0.1121 | 0.2302 | 0.9681 | $0.125^{*}$ |
| H183 | -0.2209 | 0.3184 | 0.8485 | $0.125^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Te1 | $0.0694(2)$ | $0.0780(2)$ | $0.06248(18)$ | $0.02561(14)$ | $-0.03447(14)$ | $-0.03496(14)$ |
| C1 | $0.061(2)$ | $0.067(2)$ | $0.060(2)$ | $0.0095(17)$ | $-0.0267(17)$ | $-0.0276(17)$ |
| C2 | $0.085(3)$ | $0.081(3)$ | $0.069(2)$ | $0.023(2)$ | $-0.041(2)$ | $-0.033(2)$ |
| C11 | $0.0526(18)$ | $0.061(2)$ | $0.0527(18)$ | $0.0111(15)$ | $-0.0256(15)$ | $-0.0263(15)$ |
| C12 | $0.0518(18)$ | $0.067(2)$ | $0.056(2)$ | $-0.0026(16)$ | $-0.0174(16)$ | $-0.0194(17)$ |
| C13 | $0.060(2)$ | $0.0532(19)$ | $0.064(2)$ | $-0.0041(16)$ | $-0.0241(17)$ | $-0.0194(16)$ |
| C14 | $0.0541(18)$ | $0.0528(18)$ | $0.0510(17)$ | $0.0093(14)$ | $-0.0274(15)$ | $-0.0186(14)$ |
| C15 | $0.0558(19)$ | $0.0539(19)$ | $0.0522(18)$ | $-0.0010(15)$ | $-0.0163(15)$ | $-0.0163(15)$ |
| C16 | $0.064(2)$ | $0.0460(17)$ | $0.061(2)$ | $0.0023(15)$ | $-0.0293(17)$ | $-0.0174(15)$ |
| N1 | $0.070(2)$ | $0.0569(17)$ | $0.0628(19)$ | $0.0078(14)$ | $-0.0228(16)$ | $-0.0254(14)$ |
| C17 | $0.088(3)$ | $0.062(2)$ | $0.085(3)$ | $0.019(2)$ | $-0.048(2)$ | $-0.039(2)$ |
| C18 | $0.076(3)$ | $0.095(3)$ | $0.073(3)$ | $0.013(2)$ | $-0.015(2)$ | $-0.043(2)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Te} 1-\mathrm{C} 1$ | $2.041(4)$ |
| :--- | :--- |
| $\mathrm{Te} 1-\mathrm{C} 11$ | $2.115(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.161(5)$ |
| $\mathrm{C} 2-\mathrm{H} 2$ | 0.9300 |
| $\mathrm{C} 11-\mathrm{C} 16$ | $1.384(5)$ |
| $\mathrm{C} 11-\mathrm{C} 12$ | $1.390(5)$ |
| $\mathrm{C} 12-\mathrm{C} 13$ | $1.378(5)$ |
| $\mathrm{C} 12-\mathrm{H} 12$ | 0.9300 |
| $\mathrm{C} 13-\mathrm{C} 14$ | $1.410(5)$ |
| $\mathrm{C} 13-\mathrm{H} 13$ | 0.9300 |
| $\mathrm{C} 14-\mathrm{N} 1$ | $1.372(5)$ |
| $\mathrm{C} 14-\mathrm{C} 15$ | $1.407(5)$ |
| $\mathrm{C} 1-\mathrm{Te} 1-\mathrm{C} 11$ | $95.92(14)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Te} 1$ | $178.5(4)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 180.0 |


| $\mathrm{C} 15-\mathrm{C} 16$ | $1.376(5)$ |
| :--- | :--- |
| $\mathrm{C} 15-\mathrm{H} 15$ | 0.9300 |
| $\mathrm{C} 16-\mathrm{H} 16$ | 0.9300 |
| $\mathrm{~N} 1-\mathrm{C} 18$ | $1.440(6)$ |
| $\mathrm{N} 1-\mathrm{C} 17$ | $1.454(6)$ |
| $\mathrm{C} 17-\mathrm{H} 171$ | 0.9600 |
| $\mathrm{C} 17-\mathrm{H} 172$ | 0.9600 |
| $\mathrm{C} 17-\mathrm{H} 173$ | 0.9600 |
| $\mathrm{C} 18-\mathrm{H} 181$ | 0.9600 |
| $\mathrm{C} 18-\mathrm{H} 182$ | 0.9600 |
| $\mathrm{C} 18-\mathrm{H} 183$ | 0.9600 |
|  |  |
| $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$ | $121.8(3)$ |
| $\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$ | 119.1 |
| $\mathrm{C} 11-\mathrm{C} 16-\mathrm{H} 16$ | 119.1 |

## sup-4

supplementary materials

| $\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12$ | $118.1(3)$ |
| :--- | :--- |
| $\mathrm{C} 16-\mathrm{C} 11-\mathrm{Te} 1$ | $120.6(3)$ |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{Te} 1$ | $121.3(3)$ |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$ | $121.2(3)$ |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$ | 119.4 |
| $\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$ | 119.4 |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ | $121.0(3)$ |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$ | 119.5 |
| $\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$ | 119.5 |
| $\mathrm{~N} 1-\mathrm{C} 14-\mathrm{C} 15$ | $121.0(3)$ |
| $\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 13$ | $121.8(3)$ |
| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ | $117.2(3)$ |
| $\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 14$ | $120.8(3)$ |
| $\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$ | 119.6 |
| $\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$ | 119.6 |
| $\mathrm{C} 1-\mathrm{Te} 1-\mathrm{C} 11-\mathrm{C} 16$ | $102.7(3)$ |
| $\mathrm{C} 1-\mathrm{Te} 1-\mathrm{C} 11-\mathrm{C} 12$ | $-77.8(3)$ |
| $\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ | $-0.4(6)$ |
| $\mathrm{Te} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ | $-179.9(3)$ |
| $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ | $1.2(6)$ |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 1$ | $177.8(4)$ |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ | $-1.3(5)$ |
| $\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $-178.4(3)$ |
|  |  |


| $\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 18$ | $120.5(3)$ |
| :--- | :--- |
| $\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 17$ | $120.7(4)$ |
| $\mathrm{C} 18-\mathrm{N} 1-\mathrm{C} 17$ | $116.6(4)$ |
| $\mathrm{N} 1-\mathrm{C} 17-\mathrm{H} 171$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 17-\mathrm{H} 172$ | 109.5 |
| $\mathrm{H} 171-\mathrm{C} 17-\mathrm{H} 172$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 17-\mathrm{H} 173$ | 109.5 |
| $\mathrm{H} 171-\mathrm{C} 17-\mathrm{H} 173$ | 109.5 |
| $\mathrm{H} 172-\mathrm{C} 17-\mathrm{H} 173$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 18-\mathrm{H} 181$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 18-\mathrm{H} 182$ | 109.5 |
| $\mathrm{H} 181-\mathrm{C} 18-\mathrm{H} 182$ | 109.5 |
| $\mathrm{~N} 1-\mathrm{C} 18-\mathrm{H} 183$ | 109.5 |
| $\mathrm{H} 181-\mathrm{C} 18-\mathrm{H} 183$ | 109.5 |
| $\mathrm{H} 182-\mathrm{C} 18-\mathrm{H} 183$ | 109.5 |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $0.7(5)$ |
| $\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$ | $0.1(6)$ |
| $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$ | $-0.3(5)$ |
| $\mathrm{T} 1-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$ | $179.3(3)$ |
| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 18$ | $-8.9(6)$ |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 18$ | $172.1(4)$ |
| $\mathrm{C} 15-\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 17$ | $-171.4(4)$ |
| $\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 17$ | $9.6(6)$ |
|  |  |

Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{i}}$ | 0.93 | 2.48 | $3.379(6)$ | 163 |

Symmetry codes: (i) $x, y, z-1$.

## supplementary materials

Fig. 1


Fig. 2


