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Emmanuel PAUL, Université Paul Sabatier
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Introduction

The objects studied in this thesis are the germs of singular holomorphic foliations
in (C2, 0). It is divided into three parts. The first part is devoted to preliminaries
concerning singular foliations. In the second part, we study formal normal forms of
topologically quasi-homogeneous foliations. In the last part, we solve the problem
of classification for a class of non-dicritical foliations by introducing a new invariant
called “set of sliding”. Moreover, we investigate the finite determinacy property of
some classes of foliations by showing that this new invariant is finitely determined.

Position of the problem
For a germ of holomorphic singular foliation in (C2, 0), there are three main analytic
invariants which are

• The separatrices,

• The corresponding holonomies,

• The Camacho-Sad indices at the singularities corresponding to strict transform
of separatrices after desingularization.

Are they a complete set of invariants for the analytic type of a foliation? This
question was proposed by Thom at seminar of the IHES in the years 74-75 [14, 9, 17].
The affirmative answer holds for a class of non-degenerated reduced foliations [13].
However, Moussu in [14] gave a counterexample for this conjecture. He considered
two foliations defined by

ω1 = d(y2 + x3),
ω2 = d(y2 + x3) + x(2ydx− 3xdy).

These two foliations share the same Camacho-Sad index, which is equal to −1
6 , the

same separatrix, which is {y2 + x3 = 0} and the same corresponding holonomy,
which is the identity map. However, these two foliations are not conjugated because
the foliation defined by ω2 does not admit a holomorphic first integral. Moussu
in this paper also suggested to replace the holonomy by the vanishing holonomy
representation, namely the holonomy representation of the invariant components of
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8 Introduction

the exceptional divisor. The vanishing holonomy representation gives us not only
the information about the holonomies corresponding to each separatrix but also
the information about their relations. He proved that the analytic type of a cuspidal
type singular point is totally determined by its separatrix and its vanishing holonomy
representation. Note that the Camacho-Sad index of the cuspidal singular point is
always equal to −1

6 . This result is generalized to the quasi-homogeneous foliation by
Genzmer [6]. However, by computing the dimension of the equisingular unfolding
moduli space [11, 12], Mattei proved the following result:

Theorem (Mattei [11]). Let F be a non-dicritical foliation without saddle-node
singularity after desingularization. Suppose that F is defined by a 1-form ω =
a(x, y)dx + b(x, y)dy and denote by f(x, y) an equation of its separatrices. Then
the following properties are equivalent:

1. F is a quasi-homogeneous foliation.

2. f belongs to the ideal (a, b) ⊂ C{x, y}.

3. f belongs to its jacobian ideal, (f ′x, f ′y) ⊂ C{x, y}.

4. There exist coordinates z, w such that f is written as a quasi-homogeneous
polynomial function with (k, `) weight and there exist holomorphic functions
g, h with g(0) 6= 0 such that

gω = df + h(`zdw − kwdz).

5. F satisfies the following equivalence: any equisingular unfolding of F is an-
alytically trivial if and only if the underlying deformation of separatrices is
analytically trivial.

Roughly speaking, the moduli space of equisingular unfoldings is the space of all
foliations having the same transversal structure up to analytic conjugation. In parti-
cular, two foliations linked by an equisingular unfolding have their vanishing holo-
nomy representations conjugated. Thus, the statement 5 above implies that the
quasi-homogeneous case is the most general case in which the triple of invariants
is complete for the analytic classification problem. There must be other invariants
for the non quasi-homogeneous foliations. This conclusion is confirmed by Genzmer
and Paul in [8], [7]. In their work, they construct some normal forms for topologi-
cally homogeneous and quasi-homogeneous foliations admitting first integrals. The
number of free coefficients in their normal forms is equal to the dimension of Mat-
tei’s moduli space which is strictly bigger than the number of free coefficients in
the normal forms of the separatrices. For the topologically homogeneous foliations
in general (with or without first integrals), Ortiz-Bobadilla, Rosales-González, and
Voronin in [9] provided also a formal normal form under some generic condition:
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Theorem ([9]). Let ω = ωn + ωn+1 + . . . which defines a topologically homoge-
neous foliation. Under some generic conditions of ωn, ω is strictly formally orbitally
equivalent to a unique germ ωh,b of the form

ωh,s = ωn + dh+ s(ydx− xdy),

where h(x, y) = ∑
hijx

iyj, 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1, i + j ≥ n + 2, and
s(x, y) = ∑n−2

i=0 si(x)yixn−i is a polynomial in the variable y of degree less or equal
to n− 2 whose coefficients si are formal series in the variable x.

Here, strict conjugation means up to a diffeomorphism tangent to identity. These
normal forms have a form similar to those introduced in the quasi-homogeneous case
[11] (statement 4 above). The number of free coefficients of the polynomial h which
is called the hamiltonian part is consistent with the dimension of Mattei’s mod-
uli space. Moreover, in [9] the authors also proved under a generic condition that
two topologically homogeneous foliations are strictly conjugated if they have their
vanishing holonomy representation strictly conjugated and the same hamiltonian
part after normalization. The dimension of Mattei’s moduli space and the works in
[11, 12, 8, 7, 9] also gave us a must-have property of the missing invariant (at least
under some assumptions): finite determinacy.

The aims of this thesis are:

• To generalize the theorem of [9] in the topologically quasi-homogeneous case.
Through the number of free coefficients in the hamiltonian part, to confirm
again the existence of an invariant beside the three mentioned above.

• To find the missing invariant and show that it has the finite determinacy
property.

Thesis structure and main results
Beside Chapter 0 of preliminaries concerning singular foliations in (C2, 0), this thesis
is divided into two parts.

Formal normal forms of topologically quasi-homogeneous fo-
liations
The whole Chapter 1 is devoted to investigate some formal normal forms for topo-
logically quasi-homogeneous foliations, which is a generalization of the result in [9].
A foliation F is called topologically quasi-homogeneous with axis branches if it is
a generalized curve whose separatrices are topologically conjugated with the zero
locus of xy∏n

i=1(yk − cix
`). The axis branches correspond to the invariant curves

which are topologically conjugated to {x = 0} and {y = 0}.
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Theorem A. Let ω be a 1-form which defines a topologically quasi-homogeneous
foliation. Under some generic condition, ω is strictly formally orbitally equivalent to
a unique form ωh,s

ωh,s = ωd + dh+ s(kydx− `xdy)

where

ωd = c0xy
n∏
i=1

(yk − cix`)
(

n∑
i=1

λi
d(yk − cix`)
yk − cix`

+ (`λ0 + `− u)dx
x

+ (kλ∞ + v)dy
y

)
,

h(x, y) = xy
∑

ki+`j≥k`n+1
0≤i≤`n−1
0≤j≤kn−1

hijx
iyj, s(x, y) =

kn−1∑
j=0

sj(x)x`n+1+] 1−`j
k

]yj,

si(x) are formal series in the variable x,
]

1−`j
k

]
stands for strict integer part of 1−`j

k
.

The proof uses a classical method for constructing the normal forms: eliminating
the terms degree by degree. First of all, we show that after a conjugacy by a diffeo-
morphism, a topologically quasi-homogeneous foliation with axis branches has the
same process of desingularization as the polynomial xy∏n

i=1(yk − cix`). By that, we
can assume that ω can be extended into (k, `) quasi-homogeneous terms

ω = ωd + ωd+1 + ωd+2 + · · · ,

where d = k`n+ k+ ` which is the quasi-homogeneous degree of xy∏n
i=1(yk − cix`).

After that, we prove that ω can be decomposed as

ω = ωd + d (xyh) + s(kydx− `xdy),

where h, s are two holomorphic functions. Now, by some changes of the coordinates
and multiplication by units, we will eliminate the undesirable terms of h degree by
degree. The last step consists in choosing the diffeomorphisms and the units that
does not modify h to normalize s. The number of free coefficients of h, as we will
see, is consistent with the dimension of Mattei’s moduli space.

Sliding invariants and classification of singular foliations
In Chapter 2, we introduce a new invariant called set of slidings and solve the prob-
lem of the strict classification for the class of non-dicritical foliations.

Let us first consider the case F is a nondegenerate reduced foliation with two sep-
aratrices S1, S2 and L is a regular foliation such that its separatrix is transverse to
the two separatrices of F . Then the tangent curve of F and L, denoted by T (F ,L),
is smooth and transverse to S1, S2 and L. The sliding of F and L on S1, denoted



11

Figure 1: Sliding of F and L

gS1(F ,L), (resp. on S2, denoted gS2(F ,L)) is the projection of the holonomy of F
on T (F ,L) following the leaves of L to S1 (resp. S2)(figure 1).

In the case F is a non-dicritical foliation whose all singularities are not saddle-node
after desingularization by the map σ, we will show that there exists a σ-absolutely di-
critical foliation L0 such that after pull-back by σ, at each singularity of F̃ = σ∗F ,
the separatrix of L̃0 = σ∗L0 is transverse to F̃ . Then the slidings of F and L0,
denoted by S(F ,L0), is the set of all gp,D(F̃ , L̃0) where p runs on the set of singular-
ities of F̃ and D runs on the set of irreducible components of the divisor D = σ−1(0).

Now, denote by R(L0) the set of all σ-absolutely dicritical foliations L such that L̃
and L̃0 have the same Dulac maps at any corner of D, and at each singularity p of
F̃ , the invariant curves of L̃ and L̃0 through p are tangent (figure 2). We define the
set of slidings of F relative to the direction L0 by

S0(F) = ∪L∈R(L0)S(F ,L).

Figure 2: Element L of R(L0)
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Theorem B. Let F and F ′ be two non-dicritical foliations. Suppose that they have
the same desingularization map and the same set of singularities. Moreover, at each
singularity the separatrices of F̃ and F̃ ′ are tangent and their Camacho-Sad indices
are not rational (figure 3). Then the three following statements are equivalent:

(i) F and F ′ are strictly analytically conjugated.

(ii) Their vanishing holonomy representations are strictly analytically conjugated,
CS(F̃) = CS(F̃ ′) and S0(F) = S0(F ′).

(iii) Their vanishing holonomy representations are strictly analytically conjugated,
CS(F̃) = CS(F̃ ′) and S0(F) ∩ S0(F ′) 6= ∅.

Here CS(F̃) = CS(F̃ ′) means the Camacho-Sad indices of F̃ and F̃ ′ are equal at
each singularity.

We sketch the idea of the proof. Thanks to the equality of the slidings, we prove
that there exists a strict local conjugation of F̃ and F̃ ′ in a neighborhood of each
singularity which respects the two absolutely dicritical foliation and fixes the points
of the divisor. Then, we use the non-rational property of the Camacho-Sad indices to
prove that these local conjugations can be glued together to become a global strict
conjugation.

Figure 3: Strict transforms F̃ and F̃ ′

The finite determinacy property of the sliding invariants is given in the following
theorem:

Theorem C. Let F be a non-dicritical foliation without saddle-node singularities
after desingularization. There exists a natural N such that if there is a non-dicritical
foliation F ′ satisfying the following conditions:

(i) F and F ′ have the same set of singularities after desingularization and at a
neighborhood of each singularity, F̃ and F̃ ′ are locally strictly analytically
conjugated,

(ii) There exist L,L′ in R(L0) such that JN(S(F ,L)) = JN(S(F ′,L′)),
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then there exists L′′ such that L′′ is strictly conjugated with L and S(F ,L′′) =
S(F ′,L′).

Here JN(S(F ,L)) = JN(S(F ′,L′)) means JN(gD,p(F̃ , L̃)) = JN(gD,p(F̃ ′, L̃′)) for all
gD,p(F̃ , L̃) in S(F ,L), gD,p(F̃ ′, L̃′) in S(F ′,L′), where JN(gD,p(F̃ , L̃)) stands for the
regular part of degree N in the Taylor expansion of gD,p(F̃ , L̃). Although we need
to choose a coordinate system for the Taylor expansion, writing JN(S(F ,L)) =
JN(S(F ′,L′)) does not depend on the coordinates.

To prove this result, we will control the terms of high order of each local sliding
gD,p(F̃ , L̃) by a local function defined in a neighborhood of each singularity. If the
orders are big enough, we show that these local functions are induced by a global
function from which we build conjugation of the slidings.

The two theorems in this Chapter also give the following two corollaries:

Corollary D. Let F be a non-dicritical foliation satisfying that after desingular-
ization, the Camacho-Sad index of F̃ at each singularity is not rational. Suppose
that F is defined by a 1-form ω. Then there exists a natural N such that if F ′ is
defined by a 1-form ω′ satisfying that JNω = JNω′ and the vanishing holonomy
representations of F and F ′ are strictly analytically conjugated, then F and F ′ are
strictly analytically conjugated.

Corollary E. Let L be a σ-absolutely dicritical foliation defined by 1-form ω. There
exists a natural N such that if L′ is a σ-absolutely dicritical foliation defined by ω′
satisfying JNω = JNω′ and the Dulac maps of L̃ and L̃′ are the same then L and
L′ are strictly analytically conjugated.
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Chapter 0

Preliminaries of singular foliations
in dimension two

0.1 Singular foliations, separatrices and holonomies
A germ of singular foliation F in (C2, 0) is defined by the local integral curves of a
germ of vector field

(0.1.1) X = b(x, y) ∂
∂x
− a(x, y) ∂

∂y
,

where a and b are germs of holomorphic functions vanishing at the origin. The
singularity of F is the zero locus of X which corresponds to common zero locus of
a and b. When gcd(a, b) is not a unity, we can associate F a foliation defined by

b(x, y)
gcd(a, b)

∂

∂x
− a(x, y)

gcd(a, b)
∂

∂y

that has an isolated singularity 0. From now on we can suppose that the singularity
of F is isolated. It means that we require a and b have no common factor in C{x, y}.

We can also consider the foliation F is generated by the kernel of holomorphic 1-form
that can be seen as “dual” to the vector field (0.1.1)

(0.1.2) ω = a(x, y)dx+ b(x, y)dy.

Two vector fields, or two 1-forms, that differ by multiplication by a unity define the
same foliation.

A separatrix of a foliation F is an analytic irreducible curve S passing through the
singularity p and invariant by F . It means that vector X is tangent to S or the pull
back of ω to S is identically zero. An important theorem of Camacho and Sad [3]
says that any germ of foliation in dimension two has at least one separatrix. The

15



16 Chapter 0. Preliminaries of singular foliations in dimension two

foliation is called dicritical if it has an infinite number of separatrices. Otherwise, it
is called non-dicritical. The notion separatrix also make locally sense at p when F
is regular: F has exactly one separatrix which is the smooth invariant curve passing
through p.
Suppose that F is defined in a small neighborhood U of the isolated singularity p.
Let S be a separatrix of F and denote S∗ = S \ {p}. Then the curve S∗, that is
isomorphic to the punctured disk D∗, is a leaf of the regular foliation F defined in
U \ {p}. Therefore we can define the holonomy of the separatrix S as the holonomy
of F along an oriented loop γ ∈ S∗ generating π1(S∗) = Z.

The separatrices and their corresponding holonomies are two analytical invariants
of foliation.

0.2 Reduced foliations

A germ of singular foliation F defined by a vector field X in (0.1.1) is called reduced
if the linear part of X has at least one non-zero eigenvalue, say λ2 and the quotient
of two eigenvalues λ = λ1

λ2
is not a positive rational number.

Remark that λ is unchanged by multiplication of a unit. It is an important invariant
of F called the Camacho-Sad index. F is called nondegenerate if both λ1 and λ2 are
not zero, i.e. λ 6= 0. Otherwise, we say that F has a saddle-node singularity or F is
a saddle-node foliation. We distinguish several cases depending on λ:

0.2.1 Poincaré domain: λ 6∈ R≤0 ∪Q>0

According to a classical result of Poincaré, F is linearizable: there exist some coor-
dinates (z, w) such that the foliation is defined by the linear 1-form λwdz + zdw.
There are exactly two separatrices: {z = 0} and {w = 0}. The holonomy of each
separatrix is conjugated to the diffeomorphism h(x) = exp(2πiλ±1)x and the expo-
nent of λ depends on which of the separatrices has been chosen. It is easy to see
that, in this case, the Camacho-Sad index determines uniquely the foliation up to
biholomorphism.

0.2.2 Siegel domain: λ ∈ R<0

In this case, the foliation F is not always linearizable. However, as in previous
case, F has also exactly two separatrices. The holonomy is now written h(x) =
exp(2πiλ±1)x+ . . . and not always linearizable. Thus, the equality of the Camacho-
Sad indices is not sufficient to imply the conjugation of holonomies. However, both
index and holonomy determine uniquely the analytic class of the singularity.
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Theorem 0.2.1 ([13]). Let F and F ′ be two foliations having the same Camacho-
Sad index λ ∈ R>0. Then they are analytically conjugated if and only if their
holonomies are analytically conjugated.

Although F is not always linearizable, ω still admits the Poincaré-Dulac formal
normal form: there exists a formal transformation of coordinates that puts ω in
some normal form. A 1-form is said to be in Poincaré-Dulac normal form if ω does
not contain any terms xα1yβ1dx or xα2yβ2dy, where

λ(β1 − 1)− α1 = 0, λβ2 − (α2 − 1) = 0,

in its Taylor expansion. In particular, if λ 6∈ Q then ω is always formally linearizable.

0.2.3 Saddle-node: λ = 0
According to Dulac, in suitable coordinates F is expressed by the vector field

(0.2.1)
(
z(1 + νwk) + wF (z, w)

) ∂

∂z
+ wk+1 ∂

∂w

where k ∈ N>0, ν ∈ C and F is a holomorphic function vanishing at (0, 0) up to
order k. The couple (k, ν) is a formal invariant of F . More precisely, there exists a
formal transformation of coordinates that puts all vector fields in (0.2.1) in Dulac
normal form: it means that we can eliminate F (z, w) in (0.2.1) by a suitable formal
transformation of coordinates. The curve {w = 0} is a separatrix, called the strong
separatrix. Its holonomy has the form h(x) = x + xk+1 + o(k + 1). A result of
[10] affirms that this holonomy determines uniquely the germ of foliation up to
biholomorphism. Beside the strong separatrix, there exists a second one, called the
weak one, that can in general be non analytic. It is formally conjugated to a smooth
curve transverse to the strong one (the curve {z = 0} in Dulac normal form). When
it is convergent, its holonomy has the form h(x) = e2πiνx+o(1) but gives a relatively
small amount of information about the full structure of the foliation.

0.3 Blowing-up and resolution
A Blowing-up is a type of geometric transformation which replaces a subspace of
a given space with all the directions pointing out of that subspace. In particular,
the blowing-up of a point in a plane replaces the point with the projectivized tan-
gent space at that point. Repeatedly blowing up the singular points of a curve will
eventually resolve the singularities of curves. This is also true for the resolution of
foliations. We now explain the desingularization process of foliations in the plane.

Definition 0.3.1. Let F be a germ of foliation and S be a germ of curve. The
couple (F , S) is called reduced if it satisfies one of following conditions
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1. F is singular, reduced and S is an invariant curve of F .

2. F is regular and S is an invariant curve of F .

3. F is regular, S is not invariant and all the leaves of F are transverse to S.

A process of blowing-ups at the origin of C2 is a commutative diagram

Mh σh

−→ · · · −→Mj σj

−→Mj−1 −→ · · · σ1
−→M0 = C2⋃ ⋃ ⋃ ⋃

Dh −→ · · · −→ Dj −→ Dj−1 −→ · · · −→ D0 = {0}⋃ ⋃ ⋃ ⋃
Sh −→ · · · −→ Sj −→ Sj−1 −→ · · · −→ S0 = {0}

where Mj is a complex manifold of dimension 2;

Dj := (σ1 ◦ · · · ◦ σj)−1(0)

called the jth exceptional divisor of the blowing-up; σj+1 is the standard blowing-up
at the center Sj. The natural h is called the height of the process. Let us denote

σj = σ1 ◦ · · · ◦ σj.

Theorem 0.3.2 (Seidenberg’s desingularization of foliations [13, 16]). Let F be a
germ of foliation in (C2, 0). There is a process of blowing-ups of height h such that

1. For all j = 0, . . . , h, Sj is the set of non-reduced singularities of (σ∗jF ,Dj).

2. Sh = ∅.

Given a germ of foliation F , let h be the smallest number satisfying the theorem
above and denote by M the manifold Mh. The map σ = σ1 ◦ · · ·σh is called the
desingularization map of F , D = σ−1(0) is called the exceptional divisor. The divi-
sor D is a union of irreducible components which is homeomorphic to CP1. A point
which is the intersection of two irreducible components of D is called a corner. Note
that, after a blowing-up, a reduced singularity gives rise to two reduced singulari-
ties. Therefore, we can say the reduced singularities are the simplest singularities of
foliations from the desingularization point of view. The condition (3) in Definition
0.3.1 avoids the situation when the foliation is regular at a point in the divisor and
the invariant curve through this point is tangent to the divisor.

The pull-back of F by the desingularization map is called the strict transform of
F and denoted by F̃ = σ∗F . If all the singularities of strict transform F̃ are not
saddle-node, we say that F is a generalized curve. Note that a generalized curve
is not necessary non-dicritical. Since the separatrices of a singular foliations is a



0.4. Vanishing holonomy representations 19

union of its singular invariant curves, they admits also a desingularization process.
In the case of a generalized curve, the desingularization process of the foliation and
of its separatrices are equal [2]: this also explains the terminology generalized curve.
Moreover, in the case F is non-dicritical generalized curve, if we denote by ν(F)
the multiplicity of F and ν(f) the multiplicity of its separatrices then we have the
relation [2]:

ν(F) + 1 = ν(f).

Suppose that σ : (M,D)→ (C2, 0) is the desingularization map of the foliation F .
The dual tree A∗(F) of F is a graph which is defined as following: set of vertices
is the set of all irreducible components of the divisor D; two vertices D and D′ are
connected by a edge if D∩D′ 6= ∅; the vertices are weighted by their auto-intersection
number D.D; each vertex D which is corresponding to a component non-dicritical
is attached with the arrows which corresponding to the non-corner singularities on
D; each vertex which is corresponding to a dicritical component is attached with a
double arrow. The dual tree is a topological invariant of foliation.

0.4 Vanishing holonomy representations

After desingularization by σ, denote by Sing(F̃) the set of all singularities of the
strict transform σ∗F = F̃ . Let D be a non-dicritical irreducible component of the
exceptional divisor D, then D∗ = D \ Sing(F̃) is a leaf of F̃ . Let m be a regular
point in D∗ and Σ be a small analytic section through m transverse to F̃ . For any
loop γ in D∗ based on m there is a germ of a holomorphic return map

hγ : (Σ,m)→ (Σ,m)

which only depends on the homotopy class of γ in the fundamental group π1(D∗,m).
The map

h : π1(D∗,m)→ Diff(Σ,m)

is called the vanishing holonomy representation of F on D. Suppose that F ′ is a
foliation that also admits σ as its desingularization map. Assume that Sing(F̃ ′) =
Sing(F̃) where Sing(F̃ ′) is the set of singularities of the strict transform F̃ ′. Denote
by h′ the vanishing holonomy representation of F ′ on D. We say that the vanishing
holonomy representation of F and F ′ on D are conjugated if there exists φ ∈
Diff(Σ,m) such that

φ ◦ hγ = h′γ ◦ φ.

The vanishing holonomy representation of F and F ′ are called conjugated if they
are conjugated on every non-dicritical irreducible components of D.

Comparing to holonomy, vanishing holonomy representation contains more informa-
tion of foliations. To see that, let us consider the non-dicritical foliation F whose
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Figure 1: Holonomy vs vanishing holonomy representation

separatrices are two cuspidal curves S1, S2 (figure 1). Let Σ1, Σ2 be two transversal
sections of S1, S2 respectively and h1, h2 be the corresponding holonomies. After
desingularization, denote by h the vanishing holonomy representation. Consider at
the singularity p1 = S̃1 ∩ D. If p1 is saddle-node, the holonomy h1 is corresponding
to the weak separatrix, which contains a relative small amount of information con-
cerning the structure of the foliation in a neighborhood of p1. In contrast, h contains
the holonomy of strong separatrix. In the case p1 is nondegenerate, h1 and h have
the same role in the local picture of F̃ around p1. Nevertheless, h also contains the
information about the relation of the holonomy around p1 with the holonomies of
other singularities.

0.5 Equisingular unfolding
Equisingular unfolding is a method of deforming of foliations without changing their
vanishing holonomy representations.

Definition 0.5.1. An unfolding of F with parameters in (Cp, 0) is a germ of foliation
G of (C2+p, 0) of codimension one such that

1. The leaves of G \ Sing(G) are transverse to the vertical foliation given by the
fibers of the projection on the space of parameters π : (C2+p, 0)→ (Cp, 0).

2. If ν0 stands for the embedding ν0 : (C2, 0) → (C2+p, 0), ν0(x) = (x, 0) then
ν∗0G = F .

An unfolding induced in a natural way a deformation in the standard sense: indeed,
one can set Ft = ν∗t G where νt : (C2, 0)→ (C2+p, 0), νt(x) = (x, t). The transversality
conditions ensures that Ft is actually a foliation. The family Ft is an analytical
deformation of F0 = F .

Definition 0.5.2. An equisingular unfolding G of F with parameters in (Cp, 0) is
said equisingular if there exists a manifold A of dimension 2 + p which is a neigh-
borhood of a compact divisor D such that
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Figure 2: Equisingular unfolding

1. There is a holomorphic map Π : (A,D) → (Cp, 0) which is a surjective sub-
mersion over (Cp, 0) whose fibers are transverse to D and that is a surjective
submersion on any irreducible component of D.

2. There is a holomorphic map E : (A,D)→ (C2+p, 0) such that

(a) π ◦ E = Π where π : (C2+p, 0)→ (Cp, 0) defined by π(x, t) = t

(b) The leaves of E∗G are transverse to the fiber of Π
(c) For any t ∈ Cp, E|Π−1(t) is the process of reduction of singularities of Ft

Roughly speaking, an equisingular unfolding of F is a deformation Ft of F such
that there is a “big” desingularization for all Ft.

0.5.1 Cohomology interpretation of unfolding
Suppose that

σ : (M,D)→ (C2, 0)
is the desingularization map of a foliation F . Consider the sheaf of non-abelian group
Gp as follows: the base space is the divisor D. For each z ∈ D, the fibers Gp,z is the
set of germs of automorphisms φ of (M × Cp, (z, 0)) satisfying

• φ(x, t) = (φ̄(x, t), t), φ(x, 0) = (x, 0)

• In a neighborhood of (z, 0) we have φ∗(F × Cp) = F × Cp.

The last condition implies that for x ∈ M sufficient near z, the image of map
t 7→ φ̄(x, t) contains in the leaf of F through x.
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Since all equisingular unfoldings of a reduced foliation are trivial [11], there exists a
natural way to construct the a cocycle in Z1(D, Gp) from an equisingular unfoldings
G of F as follows: let G̃ = E∗G be the desingularization of G. There exists a covering
of D by the set of connected open set (Uα) and the local trivializations

φα : (G̃, Uα)→ (F̃ × Cp, Uα × 0).

Then the maps φαβ = φα ◦ φ−1
β satisfy the cocycle condition. This corresponding is

a bijective from the moduli space of equisingular unfolding of base space (Cp, 0) to
the cohomology group H1(D, Gp) [11].

0.5.2 Infinitesimal equisingular unfolding
Consider the sheaf ΘF of all the germs of vector fields on M tangent to the strict
transform F̃ . Each equisingular unfolding Gp of the base (Cp, 0) is corresponding to
[φαβ(x, t)] = [(φ̄αβ(x, t), t)] ∈ H1(D, Gp). This induces a C-linear map∂Gp

∂t

∣∣∣∣∣
t=0

 : T0Cp → H1(D,ΘF)

p∑
i=1

ai
∂

∂ti
7→

 p∑
i=1

ai
∂φ̄αβ
∂ti t=0

.(0.5.1)

Each element H1(D,ΘF) can be interpreted as a speed of an equisingular unfolding
of F at the moments t = 0. Moreover, H1(D,ΘF) is a vector space of dimension

δ(F) :=
∑
p

(νp − 1)(νp − 2)
2 ,

where p runs on the set ⊔i=0,...,hDi of all ith exceptional divisor (including the origin
0 = D0) and νp is the multiplicity at p ∈ Di of σi∗F .

Theorem 0.5.3. [11] Each foliation F admits a equisingular unfolding GU , of base
(Cδ(F), 0), which is universal in the following sense: every equisingular unfolding G
of some base (Cp, 0) is analytically conjugated to a unfolding of type λ∗(GU), where
λ : Cp → Cδ(F). Moreover, GU is unique up to a diffeomorphism and the linear map
(0.5.1) is an isomorphism.

H1(D,ΘF) can be seen as the “tangent space” of the universal equisingular unfolding
moduli space of F and it is called the infinitesimal equisingular unfolding. The
number δ(F) is the dimension of Mattei’s moduli space.



Chapter 1

Formal normal forms of
topologically quasi-homogeneous
foliations

In this chapter, we give a formal normal form for quasi-homogeneous foliations with
axis branches under some generic conditions. One of required conditions is that all
the Camacho-Sad indices after desingularization are not rational. This implies that
the foliations have to admit the two invariant curves that are corresponding with
{x = 0} and {y = 0}. That is also the reason why we just consider the topologically
quasi-homogeneous foliations which have the axis branches.

This chapter is divided into two sections. In the first section we recall the notation
topologically quasi-homogeneous foliations and give some their properties. The re-
sults of this section work for both topologically quasi-homogeneous with and without
axis branches. The formal normal form is given in the second section. In this section
we restrict our attention only with the topologically quasi-homogeneous foliations
with axis branches.

1.1 Topologically quasi-homogeneous foliations

1.1.1 Definitions

A germ of holomorphic function f : (C2, 0) → (C, 0) is quasi-homogeneous if f
belongs to the jacobian ideal J(f) = (∂f

∂x
, ∂f
∂y

). If f is quasi-homogeneous, there exist
coordinates (x, y) and positive coprime integers k, ` such that R(f) = d · f , where
R = kx ∂

∂x
+ `y ∂

∂y
is the quasi-radial vector field and d is the quasi-homogeneous

degree of f [15]. In these coordinates, f can be written, up to a multiple of a

23
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constant, as
f = xn0yn∞

n∏
i=1

(yk − fix`)ni ,

where the multiplicities satisfy n0 ≥ 0, n∞ ≥ 0, ni > 0 and the coefficients fi are non
vanishing such that fi 6= fj. A germ of holomorphic function f is called topologically
quasi-homogeneous if its zero level set is topologically conjugated to the zero level
set of a quasi-homogeneous function. We also say that a germ of non-dicritical holo-
morphic foliations F is topologically quasi-homogeneous if after desingularization by
successive blowing-ups, none of singularities of strict transform F̃ are saddle-node
and the separatrices of F is the zero level set of a topologically quasi-homogeneous
function. The separatrices of F that are conjugated to these curves {yk − cix` = 0}
are called the cuspidal branches. The one (if exists) that is conjugated to {xn0 = 0}
or {yn∞ = 0} is called the y-axis branch or x-axis branch respectively. We call F
topologically quasi-homogeneous with axis branches if it admits both x-axis and y-
axis branches. A 1-form ω is called topologically quasi-homogeneous if it defines a
topologically quasi-homogeneous foliation.

1.1.2 Desingularization process of quasi-homogeneous func-
tions

In what follows, we fix a reduced quasi-homogeneous function f which is given by

(1.1.1) f = xε0yε∞
n∏
i=1

(yk − fix`).

Let us recall the algorithm of desingularization of f and its atlas of charts. On the
blowing-up of (C2, 0) endowed with the chart (x, y), we will use the standard charts
(x, ȳ), (x̄, y) together with the transition functions x̄ = ȳ−1, y = xȳ. The center of
the first chart (x, ȳ) is denoted by 0 and the center of the second one is denoted by
∞ (figure 1.1). We denote by

σ = σ1 ◦ . . . ◦ σp : (M,D)→ (C2, 0)

the desingularization map of f obtained by composition of the blowing-up’s σi, 1 ≤
i ≤ p, and D = σ−1(0) the exceptional divisor. Let us sketch some properties of σ. In
the desingularization process, we only have to use blowing-up of 0 or ∞. Therefore,
the tree of exceptional divisor is a totally ordered sequence of N components covered
by N+1 charts and the map σ is monomial in each chart. Before the last blowing-up,
all cuspidal branches share the same infinitesimal point. After the last blowing-up,
they appear on the same component of D called the principal component. If ε0 6= 0
or ε∞ 6= 0, the corresponding strict branches appear on the end components. Let us
number the components of D and their charts in such a way that D1 corresponds
to the strict branches which appears if ε∞ 6= 0. Then, we obtain N + 1 chart
(xi, yi), i = 0, . . . , N , such that each component Di, i = 1 . . . N is covered by domains
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Figure 1.1: Blowing-up at origin of (C2, 0)

Vi−1 and Vi of the charts (xi−1, yi−1) around (Di, 0) and (Di,∞) (figure 1.2). The
change of charts is given by

xi = y−1
i−1, yi = xi−1y

ei
i−1

where −ei is the self intersection number of the component Di. We denote by c the
index corresponding to the principal component. Then, the desingularization map
σ is given in the chart (xc, yc) by ([7]):

(x, y) = (xk−vc ykc , x
`−u
c y`c),

where u, v two non-negative integers such that

(1.1.2) ku− `v = 1 and u ≤ `, v ≤ k.

Figure 1.2: Desingularization of f

1.1.3 Infinitesimal equisingular unfolding of quasi-homogeneous
foliations

Let F be a germ of quasi-homogeneous foliations which is defined by a 1-form ω.
Let S be its separatrices which are defined by

f = xε0yε∞
n∏
i=1

(yk − fix`).

Recall that (see [11, 12])
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1. The moduli space of infinitesimal equisingular unfoldings of F is the first
cohomology group H1(D,ΘF), where ΘF is the sheaf on D of germs of vector
fields tangent to strict transform F̃ .

2. Denote by ΘS the sheaf on D of germs of vector fields tangent to σ−1(S) =
S̃ ∪ D, where S̃ is the strict transform of the separatrices of F . The first
cohomology group H1(D,ΘS) is the moduli space of infinitesimal equisingular
unfoldings of the separatrices S.

3. Denote by (f ◦σ) the ideal of the sheaf OD of all germs of holomorphic function
on D generated by the global section f ◦σ. Then we have the followings exact
sequence

(1.1.3) 0→ ΘF i−→ ΘS
ω̃−→ (f ◦ σ)→ 0

where i is the inclusion and ω̃ is defined by ω̃(X) = σ∗ω(X). The inclusion i
induces an isomorphism between H1(D,ΘF) and H1(D,ΘS).

Let us denote by F0 the foliation defined by df . The inclusion i0 induces an iso-
morphism between H1(D,ΘF0) and H1(D,ΘS). Therefore, the two first cohomology
groups H1(D,F) and H1(D,F0) are isomorphic. This isomorphism can be explicitly
described as the following proposition

Proposition 1.1.1. There is a canonical isomorphism Λ between H1(D,F0) and
H1(D,F) satisfying the following commutative diagram:

H1(D,ΘF0) H1(D,ΘF)

H1(D,ΘS)
i0

Λ

i

Proof. Let U0 be a open set in M which covers ∪ci=1Di minus a small disk around
Dc ∩ Dc+1 in Dc, and U∞ an open set covering ∪Ni=cDi minus a small disk around
Dc−1 ∩Dc in Dc. Let U be the covering of D by these two open sets U0 and U∞. By
[7], we have

H1(D,ΘF) = H1(U ,ΘF), H1(D,ΘF0) = H1(U ,ΘF0) and H1(D,ΘS) = H1(U ,ΘS).

Hence, we only need to describe the isomorphism betweenH1(U ,ΘF0) andH1(U ,ΘF).
Let X0,∞ be an element of Z1(U ,ΘF0). Then

g0,∞ := ω̃(X0,∞) ∈ Z1(U , (f ◦ σ)).

Since H1(U , (f ◦ σ)) = H1(U ,OD) = 0, there exist gi ∈ Γ(Ui, (f ◦ σ)) for i = 0,∞,
such that

g0,∞ = g0 − g∞.
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The exact sequence (1.1.3) implies the following long exact sequence

(1.1.4) 0→ Γ(Ui,ΘF)→ Γ(Ui,ΘS) ω̃−→ Γ(Ui, (f ◦ σ))→ H1(Ui,ΘF), i = 0,∞.

By [7], we have
H1(U0,ΘF) = H1(U∞,ΘF) = 0.

Therefore, there exist Xi ∈ Γ(Ui,ΘS), (i = 0,∞), such that ω̃(Xi) = gi. We have
X0,∞ +X∞ −X0 belongs to Z1(U ,ΘFF ) because

ω̃(X0,∞ +X∞ −X0) = g0,∞ + g∞ − g0 = 0.

Let us consider Λ defined by

Λ : H1(U ,ΘF0) −→ H1(U ,ΘF)
[X0,∞] 7−→ [X0,∞ +X∞ −X0].

Since the equality [X0,∞] = [X0,∞ + X∞ − X0] holds in the cohomology group
H1(U ,ΘS), the proof is reduced to show that Λ is well defined. Indeed, if g′i ∈
Γ(Ui, (f ◦σ)), X ′i ∈ Γ(Ui,ΘS), (i = 0,∞), satisfying g0,∞ = g′0− g′∞ and ω̃(X ′i) = g′i,
then we have

g0 − g′0 U0∩U∞ = g∞ − g′∞ U0∩U∞ .

Therefore, there exists a global section g ∈ Γ(D, (f ◦ σ)) such that

g|U0 = g0 − g′0 and g|U∞ = g∞ − g′∞.

By (1.1.3), we have the following exact sequence

0→ Γ(D,ΘF)→ Γ(D,ΘS) ω̃−→ Γ(D, (f ◦ σ))→ H1(D,ΘF)→ H1(D,ΘS).

Since the spaces H1(D,ΘF) and H1(D,ΘS) are isomorphic, we must have

Im(ω̃) = ω̃(Γ(D,ΘS)) = Γ(D, (f ◦ σ)).

Therefore, there exists X ∈ Γ(D,ΘS) such that ω̃(X) = g. Let Yi be defined by

Yi = X ′i −Xi +X, i = 0,∞.

Since ω̃(Yi) = g′i − gi + g = 0, we obtain Yi ∈ Γ(Ui,ΘF). Moreover, since

(X0,∞ +X∞ −X0)− (X0,∞ +X ′∞ −X ′0) = Y0 − Y∞,

we have the equality

[X0,∞ +X∞ −X0] = [X0,∞ +X ′∞ −X ′0] ∈ H1(D,ΘF).

Hence, Λ is well defined.
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Exemple 1.1.2. Now we will describe the isomorphism Λ when F admits a first
integral which is

xn0yn∞
n∏
i=1

(yk − fix`)ni .

Recall that (see [7]):

1. The universal equisingular unfolding of F is given by

N (m)
c = xn0yn∞

n∏
i=1

(yk − ci0x` +
∑
j∈Ti

cijp
k`+j)ni ,

where (m) = (m0,m∞,m1, . . . ,mn); c = (cij) i=1,...,n
j∈{0}∪Ti

, Ti is a finite subset of

N≥1; pk`+j is the unique monomial xαjyβj such that kαj + `βj = k` + j and
βj ≤ k; ci0 ∈ (C, fi), cij ∈ (C, 0). For the sake of simplicity, in the computation
to come, we denote by c0 = (c0

ij) where c0
i0 = fi and c0

ij = 0 for all i = 1, . . . , n
and j ∈ Ti. Then

N
(m)
c0 = xn0yn∞

n∏
i=1

(yk − fix`)ni .

2. Suppose that there exist holomorphic functions α(m)
0ij (xc−1, yc−1), β(m)

0ij (xc−1, yc−1),
α

(m)
∞ij(xc, yc) and β

(m)
∞ij(xc, yc), i = 1, . . . n, j ∈ {0} ∪ Ti, such that

∂Ñ (m)
c

∂cij c=c0
= α

(m)
0ij ·

∂Ñ (m)
c

∂xc−1 c=c0
+ β

(m)
0ij ·

∂Ñ (m)
c

∂yc−1 c=c0
,(1.1.5)

∂Ñ (m)
c

∂cij c=c0
= α

(m)
∞ij ·

∂Ñ (m)
c

∂xc c=c0
+ β

(m)
∞ij ·

∂Ñ (m)
c

∂yc c=c0
,(1.1.6)

where Ñ (m)
c = σ∗N (m)

c = N (m)
c ◦ σ. We define

X
(m)
0ij = α

(m)
0ij

∂

∂xc−1

+ β
(m)
0ij

∂

∂yc−1

, X
(m)
∞ij = α

(m)
∞ij

∂

∂xc

+ β
(m)
∞ij

∂

∂yc

,

and
X

(m)
ij = X

(m)
0ij −X

(m)
∞ij.

Then, B(m) = {[X(m)
ij ]} i=1,...,n

j∈{0}∪Ti

is a basis of H1(U ,ΘF), and [X(m)
ij ] does not

depend on choosing α(m)
0ij , α(m)

∞ij, β
(m)
0ij , β(m)

∞ij in (1.1.5) and (1.1.6) .

Denote by (ε) = (ε0, ε∞, 1, . . . , 1), we obtain similarly a basis B(ε) = {[X(ε)
ij ]} i=1,...,n

j∈{0}∪Ti

of H1(U ,ΘF0).

Proposition 1.1.3. The presentation matrix of Λ in these bases is the unit matrix.
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Proof. Let us first compute B(m). Blowing-up the deformations yields

Ñ (m)
c = x

m0k+m∞`+|m|k`
c−1 y

m0v+m∞u+|m|`v
c−1

n∏
i=1

yc−1 − ci0 +
∑
j∈Ti

cijx
j
c−1y

γj

c−1

mi

,

where |m| = ∑n
i=1mi; γj = vαj + uβj − `v with pk`+j = xαjyβj and (u, v) is defined

as in (1.1.2). We have

∂Ñ (m)
c

∂xc−1 c=c0
= m0k +m∞`+ |m|k`

xc−1
· Ñ (m)

c0 ,

∂Ñ (m)
c

∂yc−1 c=c0
=
(
m0v +m∞u+ |m|`v

yc−1
+

n∑
i=1

mi

yc−1 − fi

)
· Ñ (m)

c0 ,

∂Ñ (m)
c

∂ci0 c=c0
= −mi

yc−1 − fi
· Ñ (m)

c0 ,

∂Ñ (m)
c

∂cij c=c0
= mix

j
c−1y

γj

c−1
yc−1 − fi

· Ñ (m)
c0 = −xjc−1y

βj

c−1 ·
∂Ñ (m)

c

∂ci0 c=c0
, j ∈ Ti.

Then, for j = 0, (1.1.5) is equivalent to

−mi

yc−1 − fi
= m0k +m∞`+ |m|k`

xc−1
·α0i0+

(
m0v +m∞u+ |m|`v

yc−1
+

n∑
i=1

mi

yc−1 − fi

)
·β0i0.

Denote
P (yc−1) = y

m0v+m∞u+|m|`v
c−1

n∏
i=1

(yc−1 − fi)mi .

Consider the unique solution (U0, V0) of the following Bézout identity in C[yc−1]:

U0P + V0P
′ =P ∧ P ′ = y

m0v+m∞u+|m|`v−1
c−1

n∏
i=1

(yc−1 − fi)mi−1,(1.1.7)

deg(U0) < n, deg(V0) < n+ 1.

Let us denote
R(yc−1) = P

P ∧ P ′
= yc−1

n∏
i=1

(yc−1 − fi).

We obtain a holomorphic solution of (1.1.5) by setting

α
(m)
0i0 = −mixc−1RU0

(m0v +m∞u+ |m|`v)(yc−1 − fi)
and β

(m)
0i0 = −miRV0

yc−1 − fi
.

Doing a similar computation in the coordinates (xc, yc), we have

Ñ (m)
c = xm0(k−v)+m∞(`−u)+|m|(k`−ku)

c ym0k+m∞`+|m|k`
c

×
n∏
i=1

1− ci0xc +
∑
j∈Ti

cijx
ηj
c y

j
c

mi

,
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where ηj = (k − v)αj + (`− u)βj − k`+ ku. As before, we denote

Q(xc) = xm0(k−v)+m∞(`−u)+|m|(k`−ku)
c

n∏
i=1

(1− fixc)mi and S(xc) = xc
n∏
i=1

(1− fixc).

Let (U∞, V∞) be the unique solution of the following Bézout identity in C[yc−1]:

U∞Q+ V∞Q
′ =Q ∧Q′ = xm0(k−v)+m∞(`−u)+|m|(k`−ku)−1

c

n∏
i=1

(1− fixc)mi−1,(1.1.8)

deg(U∞) < n, deg(V∞) < n+ 1.

Similarly, we obtains a holomorphic solution of (1.1.6) by setting

α
(m)
∞i0 = −mixcSV∞

1− fixc
and β

(m)
∞i0 = −mixcycSU∞

(m0k +m∞`+ |m|k`)(1− fixc)
.

Therefore, X(m)
i0 is given by

X
(m)
i0 = −mixc−1RU0

(m0v +m∞u+ |m|`v)(yc−1 − fi)
∂

∂xc−1

+ −miRV0

yc−1 − fi
∂

∂yc−1

+ mixcSV∞
1− fixc

∂

∂xc

+ mixcycSU∞
(m0k +m∞`+ |m|k`)(1− fixc)

∂

∂yc

.

Now, replace (m) by (ε), we obtain

X
(ε)
i0 = −xc−1RŪ0

(ε0v + ε∞u+ |ε|`v)(yc−1 − fi)
∂

∂xc−1

+ −RV̄0

yc−1 − fi
∂

∂yc−1

+ xcSV̄∞
1− fixc

∂

∂xc

+ xcycSŪ∞
(ε0k + ε∞`+ |ε|k`)(1− fixc)

∂

∂yc

,

where

P̄ (yc−1) = y
ε0v+ε∞u+|ε|`v
c−1

n∏
i=1

(yc−1 − fi),

Q̄(xc) = xε0(k−v)+ε∞(`−u)+|ε|(k`−ku)
c

n∏
i=1

(1− fixc)mi ,

and (Ū0, V̄0), (U∞, V∞) are the unique solutions of the following Bézout identity:

Ū0P̄ + V̄0P
′ = P̄ ∧ P̄ ′, Ū∞Q̄+ V̄∞Q̄

′ = Q̄ ∧ Q̄′,
deg(Ū0), deg(Ū∞) < n, deg(V̄0), deg(V̄∞) < n+ 1.

Let us consider X0i0 = X
(m)
0i0 − X

(ε)
0i0 and X∞i0 = X

(m)
∞i0 − X

(ε)
∞i0. We will show now

that
X0i0 ∈ Γ(U0,ΘS), and X∞i0 ∈ Γ(U∞,ΘS).
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This will leads to [X(m)
i0 − X(ε)

i0 ] = 0 in H1(U ,ΘS). Consequently, the isomorphism
Λ sends X(ε)

i0 to X(m)
i0 .

Indeed, by (1.1.7) we get

V0(fi) = P ∧ P ′

P ′
(fi) = 1

R
(
m0v+m∞u+|m|`v

yc−1
+∑n

i=1
mi

yc−1−fi

)(fi)

= 1
mifi

∏
j=1,...,n
j 6=i

(fi − fj)
.

Since miV0(fi) does not depend on (m), we have (V̄0−miV0)(fi) = 0. Therefore, we
can write X0i0 as

X0i0 = xc−1R

yc−1 − fi

(
Ū0

ε0v + ε∞u+ |ε|`v −
miU0

m0v +m∞u+ |m|`v

)
∂

∂xc−1

+ R(V̄0 −miV0)
yc−1 − fi

∂

∂yc−1

= xc−1Û0
∂

∂xc−1

+RV̂0
∂

∂yc−1

,

where Û0 and V̂0 are in C[yc−1]. It is obvious that X0i0 is tangent to the divisor
{xc−1 = 0} and the separatrices {yc−1 = fi}, i = 1, . . . , n.
Without loss of generality, we can suppose that k > `. Then, the desingularization
map σ is given in the charts (x0, y0) and (xN , yN) by

(x, y) = (x0, x0y0) = (xNy
[ k

`
[+1

N , yN),

where [k
`
[ stands for the usual integer part of k

`
. Therefore, the changes of coordinates

are written as follows

(x0, y0) = (xkc−1y
v
c−1, x

`−k
c−1y

u−v
c−1 ),

(xc−1, yc−1) = (xu−v0 y−v0 , xk−`0 yk0),

(xc, yc) =
(
x`Ny

([ k
`

[+1)`−k
N , xu−`N y

k−v−([ k
`

[+1)(`−u)
N

)
,

(xN , yN) = (xk−v−( k
`

+1)(`−u)
c y

k−([ k
`

[+1)`
c , x`−uc y`c).

This leads to
∂

∂xc−1

= k

xc−1
x0

∂

∂x0

+ k − `
xc−1

y0
∂

∂y0

,

∂

∂yc−1

= v

yc−1
x0

∂

∂x0

+ u− v
yc−1

y0
∂

∂y0

,

∂

∂xc

=
k − v −

(
[k
`
[+1

)
(`− u)

xc
xN

∂

∂xN

+ `− u
xc

yN
∂

∂yN

,

∂

∂yc

=
k −

(
[k
`
[+1

)
`

yc
xN

∂

∂xN

+ `

yc
yN

∂

∂yN

.
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Hence, in the coordinates (x0, y0), we have

X0i0 =
(
kÛ0 + vR̂V̂0

)
◦(xk−`0 yk0) ·x0

∂

∂x0

+
(
(k − `)Û0 + (u− v)R̂V̂0

)
◦(xk−`0 yk0) ·y0

∂

∂y0

,

where R̂ = R
yc−1
∈ C[yc−1]. Therefore, X0i0 extends to a holomorphic vector field in

a neighborhood of (x0 = 0, y0 = 0). By [7], X0i0 can be extended to a holomorphic
vector field in U0. Moreover, it is obvious that X0i0 is tangent to {x0 = 0} and
{y0 = 0}. Consequently, X0i0 ∈ Γ(U0,ΘS).

We perform a similar computation for X∞i0. We have

V∞

(
1
fi

)
= −fn−1

i

mi
∏
j=1,...,n
j 6=i

(fi − fj)
,

which implies that (miV∞ − V̄∞)
(

1
fi

)
= 0. Hence, X∞i0 is written as

X∞i0 =xcS(miV∞ − V̄∞)
1− fixc

∂

∂xc

+ xcycS

1− fixc

(
miU∞

m0k +m∞`+ |m|k` −
Ū∞

ε0k + ε∞`+ |ε|k`

)
∂

∂yc

= xc

(
SV̂∞

∂

∂xc

+ ycÛ∞
∂

∂yc

)
,

where Û∞ and V̂∞ are in C[xc]. We denote

X̂∞i0 = SV̂∞
∂

∂xc

+ ycÛ∞
∂

∂yc

.

It is obvious that X̂∞i0 is tangent to the divisor {yc = 0} and the separatrices
{xc = 1

fi
}, i = 1, . . . , n. Moreover, in the coordinates (xN , yN), we have

X̂∞i0 =
((
k − v −

(
[k
`

[+1
)
(`− u)

)
ŜV̂∞ +

(
k −

(
[k
`

[+1
)
`
)
Û∞

)
◦
(
x`Ny

([ k
`

[+1)`−k
N

)

× xN
∂

∂xN

+
(
(`− u)ŜV̂∞ + `Û∞

)
◦
(
x`Ny

([ k
`

[+1)`−k
N

)
· yN

∂

∂yN

,

where Ŝ = S
xc
∈ C[xc]. This implies X̂∞i0 ∈ Γ(U∞,ΘS). Since the function xc =

x`Ny
( k

`
[+1)`−k

N is holomorphic on U∞, X∞i0 = xcX̂∞i0 ∈ Γ(U∞,ΘS).

Now, we will prove that Λ sends X(ε)
ij to X(m)

ij for all j ∈ Ti. As before, it reduces to
show that X0ij = X

(m)
0ij −X

(ε)
0ij ∈ Γ(U0,ΘS) and X∞ij = X

(m)
∞ij −X

(ε)
∞ij ∈ Γ(U∞,ΘS).



1.1. Topologically quasi-homogeneous foliations 33

Since

∂Ñ (m)
c

∂cij c=c0
= −xjc−1y

γj

c−1 ·
∂Ñ (m)

c

∂ci0 c=c0
,

∂Ñ (ε)
c

∂cij c=c0
= −xjc−1y

γj

c−1 ·
∂Ñ (ε)

c

∂ci0 c=c0
,

∂Ñ (m)
c

∂cij c=c0
= −xηj−1

c yjc ·
∂Ñ (m)

c

∂ci0 c=c0
,

∂Ñ (ε)
c

∂cij c=c0
= −xηj−1

c yjc ·
∂Ñ (ε)

c

∂ci0 c=c0
,

X0ij and X∞ are obtained by setting

X0ij = −xjc−1y
γj

c−1X0i0, X∞ij = −xηj
c y

j
cX̂∞i0.

Therefore, we only need to show that xjc−1y
γj

c−1 (resp. xηj
c yjc) can be extended to a

holomorphic function on U0 (resp. U∞). Let us first write xjc−1y
γj

c−1 in the coordinates
(x0, y0):

xjc−1y
γj

c−1 = x
γj(k−`)+j(u−v)
0 y

γjk−jv
0 .

By substituting αj = k`+j−`βj

k
into the formula of γj, we get

γj = v
k`+ j − `βj

k
+ uβj − `v = βj + vj

k
.

This implies that

γjk − jv = βj > 0,

γj(k − `) + j(u− v) = βj(k − `) + j

k
> 0.

By [7], xjc−1y
γj

c−1 extends to a holomorphic function on the whole U0. Similarly, we
have

xηj
c y

j
c = x

ηj`+j(u−`)
N y

ηj(([ k
`

[+1)`−k)+j(k−v−([ k
`

[+1)(`−u))
N .

By substituting βj = k`+j−kαj

`
into the formula of ηj, we get

ηj = (`− u)j + αj
`

.

This leads to

ηj`+ j(u− `) = αj > 0,

ηj

(
([k
`

[+1)`− k
)

+ j

(
k − v − ([k

`
[+1)(`− u)

)
= αj

(
[k
`

[+1− k

`

)
+ j

`
> 0.

Hence, xηj
c yjc extends to a holomorphic function on U∞.
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1.1.4 Desingularization of topologically quasi-homogeneous
functions

If two germs of holomorphic functions are topologically conjugated, they admit the
same dual tree of desingularization. In particular, their desingularization maps have
the same number of blowing-ups but they are not necessarily equal. The following
lemma shows that in the case topologically quasi-homogeneous, they share the same
desingularization map after a local change of coordinates.

Lemma 1.1.4. If a reduced function f ′ is topologically conjugated to f , which is
given as (1.1.1), then there exists a local change of coordinates φ such that f ′ ◦φ has
the same desingularization map as f . Moreover, φ can be chosen such that xε0yε∞

divides f ′ ◦ φ.

Proof. Without loss of generality, we can assume that k ≥ ` and denote by m the
integer part of k

`
. Denote by

σ′ = σ′1 ◦ . . . ◦ σ′h : (M′,D′)→ (C2, 0)

the desingularization maps of f ′,

σi = σ1 ◦ . . . ◦ σi and σ′i = σ′1 ◦ . . . ◦ σ′i, for i = 1, . . . , h,

the composition of i first blowing-ups of the desingularization maps of f and f ′

respectively. It is easy to see that if σm+1 = σ′m+1 then σ = σ′.

Let us first consider the case ε∞ = 0. If ε0 = 1, we will show that any diffeomorphism
φ that sends {x = 0} to the y-axis branch Ly of f ′ is the desired diffeomorphism.
Indeed, the center of the blowing-up σ′i, with 2 ≤ i ≤ m + 1, is the intersection
point of the transform (σ′i−1)∗(Ly) and the divisor (σ′i−1)−1(0). Hence, after the lo-
cal change of coordinate φ, the m+ 1 first blowing-ups of the desingularization map
of f ′ ◦φ and f are the same. Consequently, f ′ ◦φ and f have the same desingulariza-
tion map. In the case ε0 = 0, after m first blowing-ups, all the strict transforms of
cuspidal branches of f ′ share the same intersection point z with divisor (σ′m)−1(0).
We take a smooth curve L̃ transverse to the divisor at z and denote by L the image
by σm of L̃. Then L is a germ of smooth curve of (C2, 0). With the same reason
as above, any diffeomorphism that sends {x = 0} to L is the desired diffeomorphism.

Now, we consider the case ε∞ = 1. Using the same argument as above, if ε0 = 1
then φ is a diffeomorphism that sends x-axis branch Lx and y-axis branch Ly to
{y = 0} and {x = 0} respectively. In the case ε0 = 0, we define L as above then
the desired diffeomorphism is the one that sends Lx and L to {y = 0} and {x = 0}
respectively.
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bbbbbbb

D1D2Dc−1DcDc+1DN DN−1

Figure 1.3: Dual tree of topological quasi-homogeneous functions

1.1.5 The criteria of topologically quasi-homogeneous folia-
tion

Notation 1.1.5. Let us denote by Q(f) the set of all germs of topologically quasi-
homogeneous 1-forms in (C2, 0) whose separatrices are topologically conjugated to
f satisfy that they admits σ : (M,D) → (C2, 0) as the desingularization map and
xε0yε∞ as invariant curves.
By the lemma 1.1.4, instead of considering the class of all topologically quasi-
homogeneous 1-forms we can restrict our attention to the subset Q(f). We will
denote by O(k, `, d) the set of germs of holomorphic functions q satisfying

q = qd + qd+1 + qd+2 . . . = qd + h.o.t.

where qd 6≡ 0, qm is (k, `)-quasi-homogeneous polynomial of degree m and “h.o.t.”
stands for higher order term. In what follows, denote by

d = nk`+ kε0 + `ε∞

the quasi-homogeneous degree of f .
Lemma 1.1.6. If a germ of 1-form ω = adx+ bdy is an element of Q(f) then

(i) yε∞ divides a, xε0 divides b.

(ii) Let q := kxa+ `yb, p := (k−v)xa+(`−u)yb, where u, v satisfy (1.1.2). Then,
q, p are in O(k, `, d) and

(1.1.9) qd = c0x
ε0yε∞

n∏
i=1

(yk − cix`), c0 6= 0,

such that all the complex numbers ci, i ∈ {1, . . . n} are non-zero, different from
each other. Moreover, gcd

(
qd

xε
0y

ε
∞
, pd

xε
0y

ε
∞

)
= 1.

Proof. It is obvious that (i) is always satisfied. To prove (ii) by induction on the
number of blowing-ups, we will replace the notation Q(f) by Q(k, `, n, ε0, ε∞). For
k = ` = 1, in the blowing-up coordinates (x̄, y), the pullback of ω is given by

σ∗ω(x̄, y) = ya(x̄y, y)dx̄+ (x̄a(x̄y, y) + b(x̄y, y))dy

= 1
x̄
p(x̄y, y)dx̄+ 1

y
q(x̄y, y)dy

= yd−1
((

y

x̄
pd(x̄, 1) + y2(. . .)

)
dx̄+ (qd(x̄, 1) + y(. . .)) dy

)
.
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Because after desingularization all the singularities are not saddle-node, the roots
of qd(x̄, 1) are distinct and none of them are a root of qd(x̄, 1) . Therefore, we have

qd(x, y) = c0x
ε0yε∞

n∏
i=1

(y − cix) and gcd
(

qd
xε0y

ε
∞
,
pd

xε0y
ε
∞

)
= 1.

In general, we can assume without loss of generality that k > `. Let σ1 be the
standard blowing-up at the origin. By [2], the multiplicity of σ∗1ω equals to the
multiplicity of f ◦ σ1 minus 1. Hence, there exists a 1-form ω′(x̄, y) such that σ∗1ω
can be written as follows

σ∗1ω(x̄, y) = ya(x̄y, y)dx̄+ (x̄a(x̄y, y) + b(x̄y, y))dy = yε0+ε∞+n`−1ω′(x̄, y).

If ω is in Q(k, `, n, ε0, ε∞) then ω′ is in Q(k − `, `, n, ε0, 1). Using the induction
hypothesis for ω′, we obtain

(k − `)x̄(ya(x̄y, y)) + `y(x̄a(x̄y, y) + b(x̄y, y))

= yε0+ε∞+n`−1(c′0x̄ε0y
n∏
i=1

(yk−` − c′ix̄`)) + h.o.t.(1.1.10)

where the numbers c′i, i = 1, . . . , n, are non-zero, different from each other. Replace
x̄y by x, (1.1.10) is equivalent to

kxa(x, y) + `yb(x, y) = c′0x
ε0yε∞

n∏
i=1

(yk − c′ixl) + h.o.t.

Moreover, we have

yε0+ε∞+n`−1p′(x̄, y) = (k − `− v + u)x̄(ya(x̄y, y)) + (`− u)y(x̄a(x̄y, y) + b(x̄y, y))
= (k − v)x̄ya(x̄y, y) + (`− u)yb(x̄y, y).

Replace x̄y by x and use the induction hypothesis for p′ and q′, we obtains

gcd
(

qd
xε0y

ε
∞
,
pd

xε0y
ε
∞

)
= 1.

Remark 1.1.7. The conditions (i) and (ii) in Lemma 1.1.6 are not sufficient for
characterize the elements of Q(f). In fact, a 1-form ω satisfies these conditions if
and only if the foliation F defined by ω satisfies:

(i) {xε0yε∞ = 0} is an invariant curve of F ,

(ii) Let σ be the desingularization map of f . After pullback by σ, except the
corners, the strict transform σ∗(F) has n singularities on principal component
Dc. Moreover at each singularity σ∗(F) is defined by a 1-form whose linear
part is

λydx+ xdy, where λ 6= 0.
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There exists a dicritical 1-form satisfying these two conditions above. Therefore,
for obtaining ω ∈ Q(f) we need the non-dicritical condition: all the Camacho-Sad
indices of all singularities of σ∗(F) are not in Q>0.

Remark 1.1.8. An element ω ∈ Q(f) can be written as

(1.1.11) ω = ωd + ωd+1 + ωd+2 + . . .

where ωm = am−kdx+bm−`dy, am−k, bm−` are (k, `)-quasi-homogeneous polynomials
of degrees m− k, m− ` respectively and ωd 6≡ 0.

1.1.6 Logarithmic representation of the initial part
Let ω be a element of Q(f). With the notation as in Lemma 1.1.6, the points
zi = ( 1

ci
, 0) (1 ≤ i ≤ n) in the coordinates (xc, yc) stand for the intersections of strict

transforms of separatrices of ω with the principal component of the divisor. Denote
by λi the Camacho-Sad indices of strict transform foliation F̃ = σ∗F defined by
σ∗ω = âdx+ b̂dy and the principal component Dc. It means that

λi = izi
(F̃ ,Dc) = −Reszi

∂

∂y

(
â

b̂

)
(x, 0).

We also denote by λ0 and λ∞ the indices of F̃ and Dc at z0 = (xc = 0, yc = 0) and
z∞ = (xc =∞, yc = 0) respectively. Then, by [3] we have the relation:

(1.1.12)
n∑
i=1

λi + λ0 + λ∞ = −1,

and the projective holonomy hi of F̃ at the point zi satisfying

h′i(0) = exp(2πiλi).

Actually, (λi) only depend on the quasi-homogeneous part ωd. Moreover, ωd is com-
pletely determined by (λi) and (ci) as in the following lemma:

Lemma 1.1.9. With the notation as above, we have

ωd = −qd
(

n∑
i=1

λi
d(yk − cix`)
yk − cix`

+ ε0(`(λ0 + 1)− u)dx
x

+ ε∞(kλ∞ + v)dy
y

)
,

where
n∑
i=1

λi + ε0(λ0 + l − u
l

) + ε∞(λ∞ + v

k
) + 1

k`
= 0.
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Proof. When ε0 = 0 (resp. ε∞ = 0), the value of λ0 (resp. λ∞) is totally de-
termined by the couple (k, `). Therefore, we can compute the value of λ0 (resp.
λ∞) when ε0 = 0 (resp. ε∞ = 0) by considering the 1-form d(yk − x`). Since
(x, y) = (xk−vc ykc , x

`−u
c y`c) = (xkc−1y

v
c−1, x

`
c−1y

u
c−1), we have

σ∗d(yk − x`) = xk`−ku−1
c yk`−1

c

(
yc
(
k`− ku− (k`− ku+ 1)xc

)
dxc + k`xc(1− xc)dyc

)
,

σ∗d(yk − x`) = xk`−1
c−1 y

`v−1
c−1

(
k`yc−1(yc−1 − 1)dxc−1 + `vxc−1(yc−1 − 1)dyc−1

)
.

It implies that

(1.1.13) λ0 = −v
k

when ε0 = 0 and λ∞ = −`− u
`

when ε∞ = 0.

Now, in the coordinates (xc, yc), we get

σ∗ωd = 1
xc
pd(xk−vc ykc , x

`−u
c y`c)dxc + 1

yc
qd(xk−vc ykc , x

`−u
c y`c)dyc,

where pd = (k−v)xad−k +(`−u)ybd−`, qd = kxad−k + `ybd−`. By Lemma 1.1.6, σ∗ωd
can be written as

σ∗ωd = xe−1
c yd−1

c (ycp̄(xc)dxc + c0xc
n∏
i=1

(1− cixc)dyc),

where p̄ is a polynomial of degree n satisfying p̄(x`c) = 1
xε0 p(xc, 1) and e = nk(` −

u) + ε0(k − v) + ε∞(`− u). The definition of λi leads to

p̄( 1
ci

) = c0λi
n∏
j=1
j 6=i

(
1− cj

ci

)
, i = 1, . . . , n,

p̄(0) = −c0λ0.

Thanks to the formula of Lagrange polynomial, p̄ is given by

p̄(xc) = c0

 n∑
i=1

λicixc
∏
j=1
j 6=i

(1− cjxc)− λ0

n∏
j=1

(1− cjxc)

 .
It implies that

pd(x, y) = c0x
ε0yε∞

 n∑
i=1

λicix
`
∏
j=1
j 6=i

(yk − cjx`)− λ0

n∏
j=1

(yk − cjx`)


= qd

(
n∑
i=1

λicix
`

yk − cix`
− λ0

)
.
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Consequently, we have

ad−k(x, y) = `pd − (`− u)qd
x

= qd
x

(
n∑
i=1

λi
`cix

`

yk − cix`
+ (u− `(λ0 + 1))

)
,

bd−l(x, y) = (k − v)qd − kpd
y

= −qd
y

(
n∑
i=1

λi
kyk

yk − cix`
+ (v + kλ∞)

)
.

Because (1.1.13), we can replace λ0 by ε0λ0+(u
`
−1)(1−ε0) and λ∞ by ε∞λ∞− v

k
(1−

ε∞). Then u− `(λ0 + 1) becomes ε0(u− `(λ0 + 1)), v + kλ∞ becomes ε∞(v + kλ∞)
and the relation (1.1.12) becomes

n∑
i=1

λi + ε0(λ0 + l − u
l

) + ε∞(λ∞ + v

k
) + 1

k`
= 0.

1.1.7 Decomposition of topologically quasi-homogeneous fo-
liations

Lemma 1.1.10. Let ω be a germ of 1-form in (C2, 0). Then there exist unique
holomorphic functions h and s such that
(1.1.14) ω = dh+ s(`ydx− kxdy).
Proof. Suppose that ω = adx+ bdy. Let R = kx ∂

∂x
+ `ykx ∂

∂y
the quasi-radial vector

field. Denote by q = ω(R) = kxa+ `yb. Suppose that there exist h and s satisfying
(1.1.14). We have

q = ω(R) = R(h).
It implies that

(1.1.15) h =
∞∑
i=0

qi
i
.

where q = q0+q1+q2+. . . is the decomposition of q into the (k, `) quasi-homogeneous
polynomials. This proves the uniqueness part.

Now assume that h is defined as (1.1.15). Decompose a, b, h into the (k, `) quasi-
homogeneous polynomials, we have

ai+` − ∂xhi+k+` = ai+` −
∂x(kxai+` + `ybi+k)

i+ k + `

= (i+ `)ai+` − (kx∂xai+` + `y∂xbi+k)
i+ k + `

= `y(∂yai+` + ∂xbi+k)
i+ k + `

,

bi+k − ∂yhi+k+` = bi+k −
∂y(kxai+` + `ybi+k)

i+ k + `

= (i+ k)bi+k − (kx∂xai+` + `y∂xbi+k)
i+ k + `

= −kx(∂yai+` + ∂xbi+k)
i+ k + `

.
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This implies the existence of s, which is defined by

si = ∂yai+` + ∂xbi+k
i+ k + `

.

Using Lemma 1.1.10 for the elements in Q(f) we obtains:
Corollary 1.1.11. For each ω ∈ Q(f), there exist unique holomorphic functions h
and s such that

(1.1.16) ω = ωd + dh+ s(`ydx− kxdy)

where ωR is the quasi-radial form lydx− kxdy. Moreover, we have

(1.1.17) h(x, y) =
∞∑
i=1

kxad+i−k + lybd+i−`

d+ i
, s(x, y) =

∞∑
i=1

∂yad+i−k − ∂xbd+i−`

d+ i
.

1.2 Formal normal forms of topologically quasi-
homogeneous foliations

In this section, we only consider the case ε0 = ε∞ = 1. Then f = xy
∏n
i=1(yk − fix`)

is a homogeneous polynomial of degree d = k`n+ k + `.

The process of normalization is follows: let ω be a topologically quasi-homogeneous
1-form. By Lemma 1.1.4, we can assume that ω is an element of Q(f). Decompose ω
as in (1.1.16). Then the process is divided into two steps. Firstly, we apply consecu-
tively the diffeomorphisms and the unit multiplications to simplify the hamiltonian
part h degree by degree. After that, by using the diffeomorphisms and the unit func-
tions that do not change the term h we will normalize the function s.

Let us denote by

Qd(f) = {ωd = ad−kdx+ bd−`dy : ωd ∈ Q(f)}

the set of initial parts of elements of Q(f). For each ωd ∈ Qd(f), we also denote by
Q(ωd) the subset of Q(f) containing the 1-forms admitting ωd as their initial part:

Q(ωd) = {ω′ ∈ Q(f) : ω′ = ωd + ω′d+1 + ω′d+2 . . .}.

Now, let ω(x, y) = a(x, y)dx + b(x, y)dy ∈ Q(f). For each integer m ≥ 1, we con-
sider a local change of coordinates φ(x, y) = (x+ α(x, y), y + β(x, y)) and a unity
function u(x, y) = 1+δ(x, y) where α, β, δ are (k, `)-quasi-homogeneous polynomials
of degrees m + k,m + `,m respectively. The local change of coordinates φ and the
multiplication by u take the form ω into the form

ω̃ = u.φ∗ω = ãdx+ b̃dy.
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Lemma 1.2.1. Denote by ∆q = q̃ − q, ∆a = ã− a, ∆b = b̃− b we have ∆qd+m′ =
∆ad+m′−k = ∆bd+m′−` = 0 for all m′ < m and

(1.2.1) ∆qd+m = AU +BV

(1.2.2) ∆bd+m−` = W + 1
d+m

(mbd−`δ − qd∂yδ) ,

where A = mad−k + ∂xqd, B = mbd−` + ∂yqd, U = α + k
d+mxδ, V = β + l

d+myδ and
W = ∂y(ad−kU + bd−`V )− (∂yad−k − ∂xbd−`)U .

Proof. We have

φ∗ω = ((1 + ∂xα) · a ◦ φ+ ∂xβ · b ◦ φ) dx+ (∂yα · a ◦ φ+ (1 + ∂yβ) · b ◦ φ) dy.

It implies that

q̃ = u ((kx+ kx · ∂xα + `y · ∂yα)a ◦ φ+ (`y + kx · ∂xβ + `y · ∂yβ)b ◦ β)
= u ((kx+ (k +m)α)a ◦ φ+ (`y + (`+m)β)b ◦ φ) .

We also have

a ◦ φ− a =
∑

ki+`j≥d−k
aij(x+ α)i(y + β)j −

∑
ki+`j≥d−k

aijx
iyj

=
∑

ki+`j≥d−k
aijix

i−1αyj +
∑

ki+`j≥d−k
aijx

ijyj−1β + h.o.t.

= α∂xa+ β∂ya+ h.o.t.,(1.2.3)
b ◦ φ− b =

∑
ki+`j≥d−`

bij(x+ α)i(y + β)j −
∑

ki+`j≥d−`
bijx

iyj

=
∑

ki+`j≥d−`
bijix

i−1αyj +
∑

ki+`j≥d−`
bijx

ijyj−1β + h.o.t.

= α∂xb+ β∂yb+ h.o.t..(1.2.4)

It follows that ∆qd+m′ = 0 for all 0 ≤ m′ < m and

∆qd+m = kx(α∂xa+ β∂ya) + `y(α∂xb+ β∂yb) + (k +m)αa+ (`+m)βb+ δqd

= ((k +m)a+ kx∂xa+ `y∂xb)α + ((`+m)b+ kx∂ya+ `y∂yb)β + δqd

= (mad−k + ∂xqd)α + (mbd−` + ∂yqd) β + δqd.

Therefore, we obtain (1.2.1) by substituting

qd = k

d+m
(mad−k + ∂xqd) + `

d+m
(mbd−` + ∂yqd).

Using again (1.2.3) and (1.2.4), we obtain that ∆bd−l+m′ = 0 for all 0 ≤ m′ < m
and

(1.2.5) ∆bd−l+m = α∂xbd−` + β∂ybd−` + ∂yαad−k + ∂yβbd−` + δbd−`.
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Substituting α = U − k
d+mxδ and β = V − `

d+myδ into (1.2.5), we get

∆bd−l+m = ∂xbd−`U + ∂ybd−`V + ad−k∂yU + bd−`∂yV + 1
d+m

(mbd−`δ − qd∂yδ) .

This equality implies (1.2.2) by using the fact that

∂xbd−`U + ∂ybd−`V + ad−k∂yU + bd−`∂yV = ∂y(ad−kU + bd−`V )− (∂yad−k− ∂xbd−`)U.

Denote by [a[ the usual integer part a: [a[ ≤ a < [a[+1, and ]a] the strict integer
part of a defined by ]a] < a ≤ ]a] + 1. Then the number of integer points in a closed
interval [a, b] is given by [b[−]a].

Lemma 1.2.2. Let em be the cardinality of the set {(i, j) ∈ N2 : ki+`j = m}. Then
em = [mu

`
[−]mv

k
].

Proof. Denote by e′m = [mu
`

[−]mv
k

] the number of integer points in the closed interval
[mu
`
, mv
k

]. For each integer c in [mu
`
, mv
k

]. Let us denote i = mu − c`, j = ck −mv,
then

ki+ `j = kmu− ck`+ ck`− `mv = m(ku− `v) = m.

Consequently, e′m ≤ em. Now, if there exist two positive integers i, j such that
ki+ `j = m then

mu = kui+ `uj = (`v + 1)i+ `uj = `(vi+ uj) + i,

mv = kvi+ `vj = kvi+ (ku− 1)j = k(vi+ uj)− j.

Therefore, we have

vi+ uj = mu− i
`

= mv + j

k
∈ [mu

`
,
mv

k
].

It implies that em ≤ e′m. Thus, em = [mu
`

[−]mv
k

].

Lemma 1.2.3. If λi 6∈ Q for i = 0, 1, . . . , n − 1, n,∞ then gcd(A,B) = 1 for all
m ∈ N.

Proof. By Lemma 1.1.9,

A = mad−k + ∂xqd = qd

(
n∑
i=1

(mλi − 1) `cix
`−1

yk − cix`
+ 1
x

(u− `(λ0 + 1) + 1)
)
,

B = mbd−` + ∂yqd = qd

(
n∑
i=1

(1−mλi)
kyk−1

yk − cix`
+ 1
y

(1− (v + kλ∞))
)
.

Suppose that g = gcd(A,B). Since λi 6∈ Q, we have gcd(A, x) = 1, gcd(B, y) = 1
and gcd(A, yk − cix`) = 1 for all i = 1, . . . , n. Therefore gcd(g, qd) = 1. Moreover,
we also have g|qd since kxA+ `yB = (d+m)qd. It implies that gcd(A,B) = 1.
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The following lemma will be used to normalize the hamiltonian part:

Notation 1.2.4. We say that a 1-form ωd ∈ Qd(f) satisfies the generic condition
if λi 6∈ Q for all i = 0, 1, . . . , n − 1, n,∞ and the coefficients of A and B satisfy
the condition of non-vanishing determinant of the matrix Mm in (1.2.7) for m =
1, . . . , k`n− 1.

Lemma 1.2.5. Let ωd ∈ Qd(f) satisfy the generic condition and ω ∈ Q(ωd). Using
the same notation as in Lemma 1.2.1, for each m ≥ 1 there exist a diffeomorphism
φ(x, y) = (x+xα, y+yβ) and a unity u = 1+δ where α, β, δ are quasi-homogeneous
polynomials of degree m such that q̃d+m = qd+m + AU + BV = xyq̃′d+m satisfies the
conditions

• degxq̃′d+m ≤ `n− 1 and degy q̃
′
d+m ≤ kn− 1 if 1 ≤ m ≤ k`n− 1,

• q̃d+m = 0 if m ≥ k`n.

Proof. Denote by QP (m) the set of all (k, `)-quasi-homogeneous polynomials of
degrees m. Then QP (m) is a vector space of dimension em. For simplicity of notation,
we denote Ā = A

y
, B̄ = B

x
, Ū = U

x
, V̄ = V

y
. By Lemma 1.2.1, we have

q̃d+m

xy
= qd+m

xy
+ ĀŪ + B̄V̄ .

Consider the linear map

Ψm : QP (m)×QP (m)→ QP (k`n+m)

(Ū , V̄ ) 7→ ĀŪ + B̄V̄ .

Case m ≥ k`n. By Lemma 1.2.3, Ā and B̄ are coprime. It implies that

(1.2.6) KerΨm = {(ZB̄,−ZĀ), Z ∈ QP (m− k`n)}.

We obtain the surjectivity of Ψm due to the following equality of dimensions of
vector spaces

dimImΨm = dimQP (m)×QPm− dimKerΨm

= em + em − em+k`n = em−k`n

= dimQP (k`n+m).

Consequently, there exists φ such that q̃d+m = AU +BV + qd+m = 0.

Case 1 ≤ m ≤ k`n− 1. In this case, KerΨm = {0}. Denote by NQP (k`n + m) the
subspace of QP (k`n+m) generalized by all the monomials g(x, y) satisfying

degxg ≤ `n− 1, degyg ≤ kn− 1.
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We also denote by NQP⊥(k`n + m) the subspace of QP (k`n + m) generalized by
all the monomials g(x, y) such that

degxg ≥ `n or degyg ≥ kn.

Denote by prm the standard projection

prm : QP (k`n+m)→ NQP⊥(k`n+m).

The proof is reduced to show that in a generic condition for all q ∈ QP (k`n + m)
there exists ĀŪ + B̄V̄ ∈ ImΨm such that

q + ĀŪ + B̄V̄ ∈ NQP (k`n+m).

Since
dimNQP⊥(k`n+m) = 2em = dimQP (m)×QP (m),

this is equivalent to prove that in a generic condition prm ◦Ψm is bijective.

Because Ā, B̄ ∈ QP (k`n), we can write Ā = ∑n
i=0Aix

`(n−i)yki, B̄ = ∑n
i=0Bix

`iyk(n−i).
Then the matrix representation Mm of the linear map prm ◦Ψm is given by
(1.2.7)

Mm =



A0 0 . . . 0 0 Bn 0 . . . 0 0
A1 A0 . . . 0 0 Bn−1 Bn . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

Aem−2 Aem−3 . . . A0 0 Bn−em+2 Bn−em+3 . . . Bn 0
Aem−1 Aem−2 . . . A1 A0 Bn−em+1 Bn−em+2 . . . Bn−1 Bn

An An−1 . . . An−em+2 An−em+1 B0 B1 . . . Bem−2 Bem−1
0 An . . . An−em+3 An−em+2 0 B0 . . . Bem−3 Bem−2
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . An An−1 0 0 . . . B0 B1
0 0 . . . 0 An 0 0 . . . 0 B0


The determinant detMm is a polynomial in Ai and Bj. Since ∂2emdetMm

(∂A0)em (∂B0)em =
(em!)2 6= 0, such polynomial is not identically zero. Therefore, the condition detMm 6=
0 is satisfied for generic ωd ∈ Qd(f).

The following lemma will be used to normalize the radial part:

Lemma 1.2.6. If ωd ∈ Qd(f) satisfies λi 6∈ Q for all i = 0, 1, . . . , n − 1, n,∞,
then there exist φ(x, y) = (x + xα, y + yβ) and u(x, y) = 1 + δ(x, y) where α, β
and δ are quasi-homogeneous polynomials of degree m such that ∆qd+m = 0 and
b̃d+m−` = bd+m−` + ∆bd+m−` satisfies the following condition

degy b̃d+m−` ≤ kn− 1.

Proof. Suppose that φ(x, y) = (x+ xα, y + yβ) and u(x, y) = 1 + δ(x, y) where α, β
and δ are quasi-homogeneous polynomials of degree m such that ∆qd+m = 0. By the
proof of Lemma 1.2.5, we have (Ū , V̄ ) ∈ KerΨm. It implies that (Ū , V̄ ) = (ZB̄,−ZĀ)
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where Z = 0 if m ≤ k`n and Z ∈ QP (m−k`n) if m > k`n. Therefore, W in Lemma
1.2.1 can be written as follows:

W = ∂y(ad−kxZB̄ − bd−`yZĀ)− (∂yad−k − ∂xbd−`)xZB̄
= ∂y(Z(ad−kB − bd−`A))− (∂yad−k − ∂xbd−`)ZB.

We denote C = ∂yad−k − ∂xbd−`. Then

ad−kB − bd−`A = ad−k(mbd−k + ∂yqd)− bd−`(mad−k + ∂xqd)
= ad−k∂yqd − bd−`∂xqd

= (qd − `ybd−`)∂yqd − kxbd−`∂xqd
kx

= qd∂yqd − bd−`(`y∂yqd + kx∂xqd)
kx

= qd∂yqd − dbd−`qd
kx

= qd(∂yqd − dbd−`)
kx

= qd(kx∂yad−k + `y∂ybd−` − (d− `)bd−`)
kx

= qd(kx∂yad−k − kx∂ybd−`)
kx

= qd(∂yad−k − ∂ybd−`)
= qdC.

Therefore, ∆bd+m−l can be written as

∆bd+m−l = ∂y(ZqdC)− CZB + mbd−`δ − qd∂yδ
d+m

= (∂yqd −B)ZC + qd(∂y(ZC)) + mbd−`δ − qd∂yδ
d+m

= mbd−`

(
δ

d+m
− ZC

)
− qd∂y

(
δ

d+m
− ZC

)
.

Consider the linear map

Φm : QP (m)→ QP (k`n+m)

T 7→ m
bd−`
x
T − qd

x
∂yT.

We claim that Φm is injective. Indeed, assume that there exists T ∈ KerΦm and
T 6= 0. Decompose T = r

(
qd

x

)γ
where γ ∈ N and r does not divide qd

x
. It follows

from T ∈ KerΦm that

(1.2.8) r(mbd−` − γ∂yqd) = qd∂yr.
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By Lemma 1.1.9,

mbd−` − γ∂yqd = −qd
(

n∑
i=1

(mλi + γ) kyk−1

yk − cixl
+ m(kλ∞ + v) + γ)

y

)
.

If λi 6∈ Q for all i = 1, . . . , n,∞ then 1
x
(mbd−`−γ∂yqd) and qd

x
are coprime. It implies

that r (mbd−`−γ∂yqd)
x

does not divide qd

x
and this is contradictory to (1.2.8).

Denote by NQPy(k`n+m) the subspace of QP (k`n+m) generalized by the mono-
mials g(x, y) such that

degyg ≤ kn− 1.
Then for all g ∈ NQPy(k`n+m) we have

(1.2.9) x[ m
k

[+1|g(x, y).

Denote by NQP⊥y (k`n+m) the subspace of QP (k`n+m) generalized by the mono-
mials g(x, y) such that

degyg ≥ kn.

We also denote by prym the standard projection

prym : QP (k`n+m)→ NQP⊥y (k`n+m).

The proof is done if we can show that prym ◦ Φm is bijective from QP (m) to
NQP⊥y (k`n + m). It reduces to show that prym ◦ Φm is injective due to the fol-
lowing equality

dimNQP⊥y (k`n+m) = em = dimQP (m).
We claim that this is equivalent to prove that

(1.2.10) ImΦm ∩NPQy(k`n+m) = {0}.

Indeed, if (1.2.10) is true, suppose that g ∈ Ker(prym◦Φm). Then Φm(g) ∈ NPQy(k`n+
m) which implies that Φm(g) = 0. It follows by the injectivity of Φm that g = 0.

Now, let us prove (1.2.10). Assume that there exists a non-zero element T of QP (m)
such that

Φm(T ) ∈ NPQy(k`n+m).
Decompose T = xθT̄ where x and T̄ are coprime. Because T ∈ QP (m), we have
θ ≤ [m

k
[. By (1.2.9), x is a divisor of m bd−`

x
T̄ − qd

x
∂yT̄ . By Lemma 1.1.9, we have

(1.2.11) m
bd−`
x

(0, y)T̄ (0, y)− qd
x

(0, y)∂yT̄ (0, y) =

c0y
nk
(
m(v − k(1 + λ0))T̄ (0, y)− y∂yT̄ (0, y)

)
It is a contradiction because condition λ0 6∈ Q forces that the right hand side of
(1.2.11) is different from 0 for all non-zero polynomial T̄ (0, y).
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Theorem A. For generic ωd ∈ Qd(f), each germ ω ∈ Q(wd) is strictly formally
orbitally equivalent to a unique form ωh,s

ωh,s = ωd + dh+ s(`ydx− kxdy),

where

h(x, y) = xy
∑

ki+`j≥k`n+1
0≤i≤`n−1
0≤j≤kn−1

hijx
iyj, s(x, y) =

kn−1∑
j=0

sj(x)x`n+1+] 1−`j
k

]yj,

si(x) are formal series on x.

Proof. By Corollary 1.1.11, we can decompose

ω = ωd + dh+ s(`ydx− kxdy),

where hi+k+` = qi+k+`

i+k+` = xy
q′i

i+k+` , q
′ = q

xy
and s is given as in (1.1.17). Let us rewrite

s(x, y) as follows

si = ∂yai+` + ∂xbi+k
i+ k + `

= 1
i+ k + `

(
∂y(qi+k+` − `ybi+k)

kx
− ∂xbi+k

)

= ∂yqi+k+`

(i+ k + `)kx −
`bi+k + `y∂ybi+k + kx∂xbi+k

(i+ k + `)kx

= ∂yqi+k+`

(i+ k + `)kx −
bi+k
kx

.

By Lemma 1.2.5 and 1.2.6, we can eliminate all the monomials xiyj, i ≥ `n, j ≥ kn
in the components of q′ and all the monomials xiyj, j ≥ kn in the components of b.
This implies that we can normalize h and s such that

h(x, y) = xy
∑

ki+`j≥k`n+1
0≤i≤`n−1
0≤j≤kn−1

hijx
iyj, s(x, y) =

kn−1∑
j=0

s′j(x)yj,

where s′j(x) are formal series of x. Because s(x, y) only contains the monomials of
degree at least k`n + 1, for each j = 0, . . . , kn − 1 s′j(x) divides xij where ij is the
minimal integer such that kij + `j ≥ k`n + 1 and. Moreover, kij + `j ≥ k`n + 1 if
and only if ij ≥ `n+ 1 +

]
1−`j
k

]
. Therefore, we have

s′j(x) = sj(x)x`n+1+] 1−`j
k

],

where s′j(x) are formal series of x. The uniqueness part is straightforward by the
uniqueness in Lemma 1.2.5 and 1.2.6.
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Remark 1.2.7. Since every formal diffeomorphism φ can be decomposed as φ =
φ′ ◦ φ0 where φ0 is a linear transformation and φ′ is tangent to identity, the formal
normal form for the case in which we do not require the strict condition can be easily
obtained. The slightly difference is in the initial part. For the strict case we have n
free coefficients corresponding to the coordinates of the non-corner singularities in
the principal component of the divisor, but for the general case we can normalize
one of them and let the others free.

Exemple 1.2.8. For n = 2, k = 3, ` = 2, the strict formal normal form is given by

ωd + dh+ s(`ydx− kxdy),

where

ωd =c0xy(y3 − c1x
2)(y3 − c2x

2)

×
(
λ1
d(y3 − c1x

2)
y3 − c1x2 + λ2

d(y3 − c2x
2)

y3 − c2x2 + (2λ0 + 1)dx
x

+ (3λ∞ + 1)dy
y

)
,

h(x, y) = xy(h3,2x
3y2 +h1,5xy

5 +h2,5x
2y4 +h3,3x

3y3 +h2,5x
2y5 +h3,4x

3y4 +h3,5x
3y5),

s(x, y) = s0(x)x5 + s1(x)x4y + s2(x)x3y2 + s3(x)x3y3 + s4(x)x2y4 + s5(x)xy5.

In the formula of ωd we have two free coefficients c1, c2 corresponding to the position
of two singularities of the cuspidal branches. The formal normal form (non-strict) is
given by

ω̄d + dh′ + s′(`ydx− kxdy),

where h′ and s′ have the same form as h and s respectively, but we can normalize
one singularity, which has the coordinates (xc, yc) = (1, 0). Thus, ω̄d has only one
free coefficient c:

ω̄d =xy(y3 − x2)(y3 − cx2)

×
(
λ1
d(y3 − x2)
y3 − x2 + λ2

d(y3 − cx2)
y3 − cx2 + (2λ0 + 1)dx

x
+ (3λ∞ + 1)dy

y

)
.

Remark 1.2.9. The number of free coefficients of h in the normal form is consistent
with the dimension of Mattei’s moduli space. Indeed, for m = 1, . . . , k`n−1 we have

#{(i, j) ∈ N2|ki+ `j = k`n+m, i ≤ `n− 1, j ≤ kn− 1} = ek`n+m − 2em
= n− em

Therefore, the number of free coefficients of h is given by

δ′(ω) =
k`n−1∑
m=1

(n− em) = n(k`n− 1)−
k`n−1∑
m=1

em.
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By [8], the dimension of Mattei’s moduli space is given by

δ(ω) =
k`n−1∑
m=0

(
]`− u
`

(m− k`n)]− [k − v
k

(m− k`n[
)

=
k`n−1∑
m=0

(
n+]− mu

`
]− [−mv

k
[
)
.

We will show that for any real number a, [a[+] − a] = −1. Indeed, since [a[≤ a <
[a[+1, ]− a] < −a ≤]− a] + 1, we have

[a[+]− a] < 0 < [a[+]− a] + 2.

Therefore, [a[+]− a] = −1. It follows that

δ(ω) =
k`n−1∑
m=0

(
n−]mu

`
] + [mv

k
[
)

= n2k`−
k`n−1∑
m=0

em.

The difference of δ(ω) and δ′(ω) is given by

δ(ω)− δ′(ω) = n− e0 = n− 1.

The existence of this difference comes from the fact that we just consider the strict
conjugation. The number n− 1 corresponds to the number of free coefficients of the
position of non-corner singularities in the non-strict formal normal form.
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Chapter 2

Sliding invariants and strict
classification of holomorphic
foliations

In this chapter, by adding a new invariant called the set of slidings, we solve the prob-
lem of the strict classification for the non-dicritical foliations whose Camacho-Sad
indices are not rational. Here, the strict classification means up to diffeomorphisms
tangent to identity.

2.1 Absolutely dicritical foliations
In this section, we will prove that for each non-dicritical foliation there exists an
absolutely dicritical foliation which is transverse to its separatrices. This existence
is the key point to define our new invariant.

Let us first recall the notation of absolutely dicritical foliations. Let σ be a compo-
sition of a finite number of blowing-ups at points:
(2.1.1) σ : (M,D)→ (C2, 0).
A germ of singular holomorphic foliation L is said σ-absolutely dicritical if the strict
transform L̃ = σ∗(L) is a regular foliation and the exceptional divisor D = σ−1(0)
is completely transverse to L̃. In particular, when σ is the standard blowing-up at
the origin, we called L a radial foliation. At each corner p = Di ∩ Dj of D, the
diffeomorphism from (Di, p) to (Dj, p) that follows the leaves of L̃ is called the
Dulac map of L̃ at p. The existence of such foliations for any given σ is proved in
[4]. In fact, in [4] the authors showed that if in each smooth component of D we take
any two smooth curves transverse to D then there is always an absolutely dicritical
foliation admitting them as their integral curves. We will denote by Sep(F̃) t L̃ if
at any point p ∈ Sing(F̃) the separatrices of F̃ through p are transverse to L̃ (figure
2.1).
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Figure 2.1: Sep(F̃) t L̃

Lemma 2.1.1. Let F be a non-dicritical foliation and σ be its desingularization
map. Then there exists a σ-absolutely dicritical foliation L satisfying Sep(F̃) t L̃
Proof. Denote by L1, . . . , Lk the strict transforms of the separatrices of F . On each
component D of D which does not contain any singularity of F̃ except the corners,
we take a smooth curve Lk+j transverse to D. Then we have the set of curves
{L1, . . . , Lk, . . . , Ln} such that each component of D is transverse to at least one
curve Li. We denote pi = Li ∩ D. By [4], for each i there exists a σ-absolutely
dicritical foliation Li defined by a 1-form ωi verifying that Li is transverse to L̃i at a
neighborhood of pi. Choose a local chart (xi, yi) at pi such that D = {xi = 0}, Li =
{yi = 0} and

σ∗ωi(xi, yi) = xmi
i d(xi + yi) + h.o.t..

Write down ωi in the local chart (xj, yj)

(2.1.2) σ∗ωi(xj, yj) = x
mj

j d(aijxj + bijyj) + h.o.t..

Let us define aii = bii = 1. For each j = 1, . . . , n, consider two subsets Aj, Bj of Cn

given by

Aj = {(c1, . . . , cn) ∈ Cn|
n∑
i=1

ciaij 6= 0}, Bj = {(c1, . . . , cn) ∈ Cn|
n∑
i=1

cibij 6= 0}.

Because ajj = bjj = 1 6= 0, Aj and Bj are dense open subsets of Cn. Therefore,
A1∩ . . .∩An∩B1∩ . . .∩Bn 6= ∅. This implies that there exists a vector (c1, . . . , cn) ∈
Cn such that for j = 1, . . . , n,

aj =
n∑
i=1

ciaij 6= 0 and bj =
n∑
i=1

cibij 6= 0.

Denote by ω0 = ∑
ciωi. Then, in the local chart (xj, yj), we have

σ∗ω0(xj, yj) = x
mj

j d(ajxj + bjyj) + h.o.t., where aj 6= 0, bj 6= 0.

Because ω0 and ωi, i = 1, . . . , n, have the same multiplicity on each component of
D, they have the same vanishing order. Denote by L the foliation defined by ω0.
Since each component of D contains at least one point pi and the strict transform L̃
of L is transverse to D in each neighborhood of each pi, L̃ is generically transverse
to D. By [4], L is an absolutely dicritical foliation which satisfies Sep(F̃) t L̃.
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2.2 Definition of the slidings of foliations
As mentioned in the previous section, a sliding of a foliation F is defined through
an absolutely dicritical foliation L satisfying Sep(F̃) t L̃. If F is a nondegener-
ate reduced foliation, the desingularization map σ is the identity map. Hence, this
absolutely dicritical foliation becomes a regular foliation transverse to the two sep-
aratrices of F .

2.2.1 Nondegenerate reduced case
Let F be a germ of nondegenerate reduced foliation in (C2, 0). By [13], there exists
a coordinate system in which F is defined by

(2.2.1) λy(1 + A(x, y))dx+ xdy, λ /∈ Q≤0,

where A(0, 0) = 0. Let L be a germ regular foliation whose invariant curve through
the origin (we call it the separatrix of L) is transverse to the two separatrices of F ,
which are denoted by S1 and S2. Then we have the following lemma:

Lemma 2.2.1. The tangent curve of F and L, denoted T (F ,L), is a smooth curve
transverse to the two separatrices of F . Moreover, if the separatrix of L is tangent
to {x+ cy = 0} then T (F ,L) is tangent to {x− cλy = 0}.

Proof. Suppose that L is defined by the level sets of x+cy+`(x, y), where ` ∈ (x, y)2.
Then T (F ,L) is zero locus of the following function:

1
dx ∧ dy

d(x+ cy + `(x, y)) ∧ (λy(1 + A(x, y))dx+ xdy) = x− cλy + h.o.t.

which is transverse to two separatrices of F .

Figure 2.2: Holonomy on the tangent curve T (F ,L)
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Figure 2.3: Sliding of F and L

After a standard blowing-up σ1 at the origin, the strict transform T̃ (F ,L) of T (F ,L)
is transverse to F̃ and cut D1 = σ−1

1 (0) at p. We denote by D∗1 = D1 \ Sing(σ∗1(F))
and h̃ : π1(D∗1, p) → Diff(T̃ (F ,L), p) the vanishing holonomy representation of F .
We choose a generator γ for π1(D∗1, p) ∼= Z. Then σ1 induces

hγ = σ1 ◦ h̃(γ) ◦ σ−1
1 ∈ Diff(T (F ,L), 0).

We call hγ the holonomy on the tangent curve T (F ,L) (figure 2.2). Denote by πS1

and πS2 the projection by the leaves of L from T (F ,L) to S1 and S2 respectively.

Definition 2.2.2. The sliding of a reduced foliation F and a regular foliation L on
S1 (resp., S2) is the diffeomorphism

gS1(F ,L) = πS1∗(hγ) = πS1 ◦ hγ ◦ π−1
S1(

resp., gS2(F ,L) = πS2∗(hγ) = πS2 ◦ hγ ◦ π−1
S2

)
.

Let d : S1 → S2 be the Dulac map of L (Section 2.1). Since d = πS2 ◦ π−1
S1 , it is

obvious that the sliding gS2(F ,L) is totally determined by gS1(F ,L) and the Dulac
map by the following relation

(2.2.2) gS2(F ,L) = d∗ (gS1(F ,L)) = d ◦ gS1(F ,L) ◦ d−1.
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Figure 2.4: Element L of R(L0)

2.2.2 General case
Now, let F be a non-dicritical foliation such that after desingularization by the map
σ all singularities of σ∗(F) = F̃ are nondegenerate. By Lemma 2.1.1 there exists a
σ-absolutely dicritical foliation L0 such that Sep(F̃) t L̃0.

Notation 2.2.3. We denote by R(L0) the set of all σ-absolutely dicritical foliations
L satisfying the following two properties:

• L̃ and L̃0 have the same Dulac maps at any corner of D.

• At each singularity p of F̃ , the invariant curves of L̃ and L̃0 through p are
tangent (figure 2.4).

Let L be in R(L0) and D be an irreducible component of D. Suppose that p1, . . . , pm
are the singularities of F̃ on D. Then, we denote

SD(F̃ , L̃) = {gD,p1(F̃ , L̃), . . . , gD,pm(F̃ , L̃)},

where gD,pi
(F̃ , L̃) is the sliding of F̃ and L̃ in a neighborhood of pi.

Definition 2.2.4. The sliding of F and L is

S(F ,L) = ∪D∈Comp(D)SD(F̃ , L̃),

where Comp(D) is the set of all irreducible components of D. The set of slidings of
F relative to the direction L0 is the set

S0(F) = ∪L∈R(L0)S(F ,L).

Remark 2.2.5. For each singularity p of F̃ that is a corner, i.e., p = Di ∩ Dj,
there are two slidings gDi,p(F̃ , L̃) and gDj ,p(F̃ , L̃). However, by (2.2.2), gDj ,p(F̃ , L̃)
is completely determined by gDi,p(F̃ , L̃) and the Dulac map of L̃ at p.

Although S(F ,L) is the set of local diffeomorphisms, it also contains some additional
information through the global foliation L.
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2.3 Local conjugacy of the pair (F ,L)

Let F , F ′ be two germs of nondegenerate reduced foliations in (C2, 0). Denote by
S1, S2 and S ′1, S ′2 the separatrices of F and F ′ respectively. Let L and L′ be two
germs of regular foliations such that their separatrices L and L′ are transverse to
the two separatrices of F and F ′ respectively. Suppose that Φ is a diffeomorphism
conjugating (F ,L) and (F ′,L′), then the restriction of Φ on the tangent curves
commutes with the holonomies on T (F ,L) and T (F ′,L′) of F and F ′. The converse
is also true:

Proposition 2.3.1. Suppose that F and F ′ have the same Camacho-Sad index. If
φ : T (F ,L) → T (F ′,L′) is a diffeomorphism commuting with the holonomies of F
and F ′ then φ extends to a diffeomorphism Φ of (C2, 0) sending (F ,L) to (F ′,L′).
Moreover, if we require that Φ sends S1 (resp. S2) to S ′1 (resp. S ′2) then this extension
is unique.

Proof. By Lemma 2.1.1, the curves S1, S2, L, T (F ,L) (resp., S ′1, S ′2, L′, T (F ′,L′))
are four transverse smooth curves. It is well known that there exist two radial fo-
liations R and R′ such that S1, S2, L, T (F ,L) and S ′1, S ′2, L′, T (F ′,L′) are the
invariant curves of R and R′ respectively. We denote by σ1 the standard blowing-up
at the origin

σ1 : (C̃2,CP1)→ (C2, 0).

After pulling back by σ1 , denote by p1, p2, pL, pT (resp., p′1, p′2, p′L, p′T ) the inter-
sections of strict transforms S̃1, S̃2, L̃, T̃ (F ,L) (resp., S̃ ′1, S̃ ′2, L̃′, T̃ (F ′,L′)) with
CP1. Take φ1 in Aut(CP1) that sends p1, p2, pL to p′1, p′2, p′L respectively. By Lemma
2.1.1, the direction of T (F ,L) (resp., T (F ′,L′)) is completely determined by the
Camacho-Sad index and the direction of L (resp., L′). Therefore, φ1(pT ) = p′T .

Now, we will show that φ extends to a diffeomorphism Φ1 of (C2, 0) sending (F ,R)
to (F ′,R′) by using the path lifting method after a blowing-up as in [13]. Indeed,
take a point z that doesn’t belong to S̃1 ∪ S̃2. Denote by z0 the intersection of the
leaf of R̃ through z with CP1. Let γ be a path in CP1 \ {p1, p2} that joins z0 to
pT . Then the lifting of γ by the foliation F̃ joins z to a point w in T̃ (F ,L). The
point φ(w) goes back by the lifting of the path φ1(γ−1) to the point z̄. By [13], the
map Φ̃1 which is defined by Φ̃1(z) = z̄ can extend to a diffeomorphism of (C̃2,CP1).
Therefore, Φ1 is the push forward of Φ̃1 by σ1.

Now, denote by L0 = Φ−1
1∗ (L′). Because Φ−1

1 sends L′ and T (F ′,L′) to L and T (F ,L)
respectively, L is also the separatrix of L0 and T (F ,L0) = T (F ,L). For simplicity
of notation, we denote by T the tangent curve T (F ,L0). The proof is reduced to
show that there exists a diffeomorphism fixing points in T sending (F ,L) to (F ,L0).
Choose a system of coordinates (x, y) such that L0 is defined by f0 = x + y and F
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is defined by a 1-form

ω(x, y) = λy(1 + A(x, y))dx+ xdy, λ 6∈ Q≤0.

Then T is defined by

τ(x, y) = x− λy(1 + A(x, y)) = 0.

We claim that there exist a natural n ≥ 2 and a holomorphic function h such that
L is defined by

f(x, y) = (1 + τn(x, y)h(x, y)) (x+ y).
Indeed, assume that L is defined by

f̄(x, y) = u(x, y)(x+ y),

where u is invertible. Rewrite the equation of T as

x− τ̄(y) = 0,

where τ̄(y) = λy+ . . .. Because λ 6= −1, the maps u(τ̄(y), y).(τ̄(y) + y) and τ̄(y) + y
are diffeomorphic. Hence there exists a diffeomorphism g ∈ C{y} such that

g
(
u(τ̄(y), y).(τ̄(y) + y)

)
= τ̄(y) + y.

This equality is equivalent to

(2.3.1)
(
g ◦ f̄ − (x+ y)

)
|τ=0

= 0.

Therefore, there exist a natural n ≥ 1 and a function h satisfying h|τ=0 6≡ 0 such
that

g ◦ f̄(x, y) = (1 + τn(x, y)h(x, y)) (x+ y).
Because g is a diffeomorphism, L is also defined by f = g ◦ f̄ . Let us prove n ≥ 2.
We have

df ∧ ω = τ(x, y)(. . .) + n(x+ y)h(x, y)τn−1dτ ∧ ω
= τ(x, y)(. . .) + n(x+ y)h(x, y)τn−1(x+ λ2y + . . .)dx ∧ dy.

Because T is defined by τ(x, y) = 0, we have

n(x+ y)h(x, y)τn−1(x+ λ2y + . . .) τ=0 ≡ 0

The fact λ 6= 0,−1 forces to x + λ2y 6= x − λy and x + y 6= x − λy. This implies
τn−1

τ=0 ≡ 0. Consequently, n ≥ 2.
Now, let

X = x
∂

∂x
− λy(1 + A(x, y)) ∂

∂y
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tangent to F . We next claim that there exists α ∈ C{x, y} such that the diffeomor-
phism exp[τn−1α]X satisfies

(2.3.2) (x+ y) ◦ exp[τn−1α]X(x, y) =
∑
i≥0

τ i(n−1)αi

i! adiX(x+ y) = f(x, y),

where adX is the adjoint representation. Indeed, since

∑
i≥0

τ i(n−1)αi

i! adiX(x+ y) = x+ y + τnα + n

2 τ
2n−2α2X(τ) + τ 2n−1(. . .),

(2.3.2) becomes

α + n

2 τ
n−2α2X(τ) + τn−1(. . .) = (x+ y)h(x, y).

Hence, the existence of α comes from the implicit function theorem. Thus, the dif-
feomorphism we need is exp[τn−1α]X(x, y).

Now, we will prove the uniqueness of Φ. In fact, we only need to show that if there
exists a diffeomorphism Ψ that sends (F ,L0) to itself, preserves the two separatrices
of F and fixes the points of T then Ψ = Id. Since Ψ|T = Id, Ψ sends every leaf of F
into itself. By [1], there exists β ∈ C{x, y} such that

Ψ = exp[β]X.

Because L0 is defined by the function x+ y and Ψ fixes points in T , we get

(2.3.3) (x+ y) ◦ exp[β]X = x+ y.

Decompose β into the homogeneous terms

β = β0 + β1 + β2 + . . . = β0 + β̄,

where β̄ = β1 +β2 + . . .. Since adiX(x) = x and adiX(y) = (−λ)iy+ ci for all i, where
ci ∈ (x, y)2, we have

(x+ y) ◦ exp[β]X =
∞∑
i=0

βi0
i! adiX(x) +

∞∑
i=0

βi0
i! adiX(y)

=
∞∑
i=0

βi0
i! x+

∞∑
i=0

βi0
i! ((−λ)iy) + h.o.t.

= exp(β0)x+ exp(−λβ0)y + h.o.t..

This follows by (2.3.3) that

exp(β0) = exp(−λβ0) = 1.
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Hence, we have the equalities

x ◦ exp[β0]X =
∞∑
i=0

βi0
i! x = exp(β0)x = x,(2.3.4)

y ◦ exp[β0]X =
∞∑
i=0

βi0
i!
(
(−λ)iy + ci

)
= exp(−λβ0)y + c = y + c,(2.3.5)

where c ∈ (x, y)2. We claim that

(2.3.6) exp[β]X = exp[β0]X ◦ exp[β̄]X.

Indeed, for any h ∈ C{x, y} we have

h ◦ exp[β0]X ◦ exp[β̄]X =
( ∞∑
i=0

βi0
i! adiX(h)

)
◦ exp[β̄]X =

∞∑
j=0

β̄j

j! adjX
( ∞∑
i=0

βi0
i! adiX(h)

)

=
∞∑
k=0

∑
i+j=k

β̄jβi0
j!i! adkX(h) =

∞∑
k=0

(β̄ + β0)k
k! adkX(h) = h ◦ exp[β]X.

Now, let us write adiX(y + c) = (−λ)iy + di where di ∈ (x, y)2. By (2.3.4), (2.3.5)
and (2.3.6) we get

(x+ y) ◦ exp[β]X = x ◦ exp[β0]X ◦ exp[β̄]X + y ◦ exp[β0]X ◦ exp[β̄]X
= x ◦ exp[β̄]X + (y + c) ◦ exp[β̄]X

=
∞∑
i=0

β̄i

i! adiX(x) +
∞∑
i=0

β̄i

i! adiX(y + c)

=
∞∑
i=0

β̄i

i! x+
∞∑
i=0

β̄i

i! ((−λ)iy + di)

= exp(β̄)x+ exp(−λβ̄)y +
∞∑
i=0

β̄i

i! di

= x
∞∏
i=1

exp(βi) + y
∞∏
i=1

exp(−λβi) +
∞∑
i=0

β̄i

i! di.(2.3.7)

We will prove β̄ = 0 by induction. From (2.3.7), we have

(x+ y) ◦ exp[β]X = x(1 + β1) + y(1− λβ1) + h.o.t.

Hence, (2.3.3) forces β1 = 0. Suppose that β1 = . . . = βk−1 = 0, we have

(x+ y) ◦ exp[β]X = x(1 + βk) + y(1− λβk) + h.o.t..

Then (2.3.3) again leads to βk = 0 and consequently β = β0. This implies that

Ψ = exp[β0]X = (x, y + c).

Finally, (2.3.3) again gives c = 0 which implies Ψ = Id.
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Corollary 2.3.2. Suppose that F and F ′ are two nondegenerate reduced foliations
that are analytically conjugated. Let L and L′ be two regular foliations that are
transverse to the two separatrices of F and F ′ respectively. Then there exists a
diffeomorphism that sends (F ,L) to (F ′,L′).

Proof. Let Ψ be the conjugacy of F and F ′. Let us denote T ′ = Ψ(T (F ,L)). Then
the restriction Ψ|T (F ,L) commutes with the holonomies of F on T (F ,L) and F ′ on T ′.
Moreover, by the holonomy transport, the holonomies of F ′ on T ′ and on T (F ′,L′)
are conjugated. Hence, the holonomies of F on T (F ,L) and F ′ on T (F ′,L′) are
conjugated. By Proposition 2.3.1 there exists a diffeomorphism that sends (F ,L) to
(F ′,L′)

By projecting on S1 and S2 the holonomies defined on T (F ,L) and T (F ′,L′) re-
spectively, we can obtain

Corollary 2.3.3. If Φ is a diffeomorphism conjugating (F ,L) and (F ′,L′), then

Φ|S1 ◦ gS1(F ,L) = gS′1(F ′,L′) ◦ Φ|S1 .

Reciprocally, if F and F ′ have the same Camacho-Sad index and φ : S1 → S ′1 is a
diffeomorphism satisfying

φ ◦ gS1(F ,L) = gS′1(F ′,L′) ◦ φ

then φ uniquely extends to a diffeomorphism Φ of (C2, 0) sending (F ,L) to (F ′,L′).

Proof. Because Φ conjugates (F ,L) and (F ′,L′), the restriction Φ|T (F ,L) commutes
with the holonomies hγ and h′γ of F and F ′. Denote by πS1 (resp., πS′1) the projection
by the leaves of L (resp., L′) from T (F ,L) (resp., T (F ′,L′)) to S1 (resp., S ′1). Since
Φ sends (F ,L) to (F ′,L′), we have

πS′1 ◦ Φ|T (F ,L) = Φ|S1 ◦ πS1 .

Therefore

Φ|S1 ◦ gS1(F ,L) = Φ|S1 ◦ πS1 ◦ hγ ◦ π−1
S1 = πS′1 ◦ Φ|T (F ,L) ◦ hγ ◦ π−1

S1

= πS′1 ◦ h
′
γ ◦ Φ|T (F ,L) ◦ π−1

S1 = gS′1(F ′,L′) ◦ πS′1 ◦ Φ|T (F ,L) ◦ π−1
S1

= gS′1(F ′,L′) ◦ Φ|S1 .

Reciprocally, suppose φ : S1 → S ′1 is a diffeomorphism commuting with the slidings
of F and F ′. We denote ψ = π−1

S′1
◦ φ ◦ πS1 then

ψ ◦ hγ = π−1
S′1
◦ φ ◦ πS1 ◦ hγ = π−1

S′1
◦ φ ◦ gS1(F ,L) ◦ πS1

= π−1
S′1
◦ gS′1(F ′,L′) ◦ φ ◦ πS1 = h′γ ◦ π−1

S′1
◦ φ ◦ πS1 = h′γ ◦ ψ.

By Proposition 2.3.1, ψ uniquely extends to a diffeomorphism Φ that sends (F ,L)
to (F ′,L′).
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Remark 2.3.4. This corollary implies that S0(F) is an invariant of F : if F and F ′
are conjugated by Φ then S(F ,L) and S(F ′,Φ∗L) are conjugated:

S(F ,L) = Φ̃|D ◦ S(F ′,Φ∗L) ◦ Φ̃−1
|D ,

where D is the divisor of F after desingularization. In many cases, the restriction
Φ̃D = Id (e.g. F and F ′ have the same divisor and does not admit a dead com-
ponent (see the proof of Theorem B)). Then we will have S(F ,L) = S(F ′,Φ∗L).
Consequently, S0(F) = S0(F ′).

If in Corollary 2.3.3 we have S1 = S ′1 and gS1(F ,L) = gS′1(F ′,L′) then there exists a
diffeomorphism sending (F ,L) to (F ′,L′) and fixing points in S1. Hence, the sliding
invariant gives an obstruction for the construction of local conjugacy of two foliations
that fixes the points of the exceptional divisor. This is the reason why we named it
“sliding”.

2.4 Strict classification of foliations
In this section we will prove that the set of slidings is the missing invariant in the
problem of classification for the class of non-dicritical foliations whose Camacho-Sad
indices after desingularization are not rational.

Notation 2.4.1. We denote by A the set of all non-dicritical foliations F defined on
(C2, 0) such that the Camacho-Sad index of strict transform F̃ at each singularity
is not rational.

In this thesis an irreducible component of D is called a dead component if in this
component there is a unique singularity of F̃ that is a corner. By [3], the Chern
class of an irreducible component of the divisor is equal to the sum of Camacho-Sad
indices of the singularities in this component. Consequently, if D admits a dead
component then the Camacho-sad index of the unique singularity of F̃ on this com-
ponent is an integer, which is given by this component’s Chern class. Therefore,
every element in A after desingularization admits no dead component in its excep-
tional divisor. Moreover, it is obvious that if F is in A then after desingularization
all the singularities of F̃ are nondegenerate.

Let F ,F ′ be two foliations of A. We say that their strict separatrices are tangent,
denoted Sep(F̃)//Sep(F̃ ′), if they have the same desingularization map and the same
set of singularities. Moreover, at each singularity which is not a corner of the divisor
the separatrices of F̃ and F̃ ′ are tangent (figure 2.5). If Sep(F̃)//Sep(F̃ ′) and L0 is an
absolutely dicritical foliation satisfying Sep(F̃) t L̃0 then Sep(F̃ ′) t L̃0. Therefore,
we can define sets of slidings of both F and F ′ relative to the direction L0. We also
denote by CS(F̃) the set of Camacho-Sad indices of F̃ at all singularities, and denote
CS(F̃) = CS(F̃ ′) if at each singularity, F̃ and F̃ ′ have the same Camacho-Sad index.
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Figure 2.5: Strict transforms F̃ and F̃ ′

Theorem B. Let F and F ′ be two foliations of A such that Sep(F̃)//Sep(F̃ ′).
Suppose that L0 is an absolutely dicritical foliation satisfying Sep(F̃) t L̃0. Let
R(L0) be as in Notation 2.2.3 and S0(F), S0(F ′) the corresponding set of slidings.
Then the three following statements are equivalent:

(i) F and F ′ are strictly analytically conjugated.

(ii) Their vanishing holonomy representations are strictly analytically conjugated,
CS(F̃) = CS(F̃ ′) and S0(F) = S0(F ′).

(iii) Their vanishing holonomy representations are strictly analytically conjugated,
CS(F̃) = CS(F̃ ′) and S0(F) ∩ S0(F ′) 6= ∅.

Here, a strict conjugacy means a conjugacy tangent to identity.

Proof. The direction ((ii)⇒(iii)) is obvious.

((i)⇒(ii)) Since the Camacho-sad index is an analytic invariant, it is obvious
that CS(F̃) = CS(F̃ ′).
Let Φ be the strict conjugacy and Φ̃ : (M,D)→ (M,D) be its lifting by σ. Suppose
that a non-corner point m of D is a fixed point of Φ̃. Then the linear map DΦ̃(m)
has two eigenvalues. One corresponds to the direction of the divisor. We will denote
by v(Φ̃)(m) the other eigenvalue and define v(Φ̃)(m) = 1 for each corner m.

Lemma 2.4.2. Φ̃|D = Id, therefore, v(Φ̃) is a function defined on D, and moreover
v(Φ̃) ≡ 1.

Proof. Denote by σ1 the standard blowing-up at the origin of (C2, 0)

σ1 : (M1, D1)→ (C2, 0).

On D1, we use the two standard chart (x, ȳ) and (x̄, y) together with the transition
functions x̄ = ȳ−1, y = xȳ. Suppose that

Φ(x, y) = (x+ α(x, y), y + β(x, y)), α, β ∈ (x, y)2.
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Figure 2.6: Lifting of conjugation map by σ1

Then in the coordinate system (x, ȳ) we have

Φ1(x, ȳ) = σ∗1Φ(x, ȳ) =
(
x+ α(x, xȳ), xȳ + β(x, xȳ)

x+ α(x, xȳ)

)
= (x(1 + . . .), ȳ + x(β0 + . . .)),

where β0 = ∂2β
∂x2 (0, 0). Therefore Φ1 : (M1,D1) → (M1, D1) fixes points in D1 and

v(Φ1) ≡ 1. Let p be a non-reduced singularity of σ∗1F on D1. We will show that
DΦ1(p) = Id and apply the inductive hypothesis for Φ1 in a neighborhood of p.
Indeed, let σ2 be the blowing-up at p and D2 = σ−1

2 (p). Denote by Sp and S ′p all
invariant curves of σ∗1F and σ∗1F ′ through p. Because every element in M after
desingularization admits no dead component in its exceptional divisor, D2 is not
a dead component. Therefore there is at least one irreducible component `p of Sp
that are not tangent to D1 (figure 2.6). Because Φ1∗(Sp) = S ′p and Sep(F̃)//Sep(F̃ ′),
Dφ1(p) has an eigenvector different from the direction of D1, which is corresponding
to the direction of `p. Hence, DΦ1(p) has two eigenvectors. Since both of their
eigenvalues are 1, we have DΦ1(p) = Id.

Now let L ∈ R0 and denote by L′ = Φ∗(L). Since Φ̃|D = Id, the strict transforms
L̃ and L̃′ have the same Dulac maps. Moreover, because Sep(F̃)//Sep(F̃ ′), at each
singularity p of F̃ , DΦ̃(p) has two eigenvectors. As v(Φ̃) ≡ 1 and Φ̃|D = Id we have
DΦ̃(p) = Id. Therefore the invariant curves of L̃ and L̃′ through p are tangent. This
gives L′ = Φ∗(L) ∈ R(L0). Because Φ̃ fixes points in D, by Corollary 2.3.3 the iden-
tity map commutes with the slides of F and F ′. This leads to S(F ,L) = S(F ′,L′).
Consequently, S0(F) = S0(F ′). Moreover, the vanishing holonomy representation of
F and F ′ are conjugated by Φ̃. Since v(Φ̃) ≡ 1 this conjugacy is strict.

((iii)⇒(i)) Suppose that L, L′ ∈ R0 satisfy S(F ,L) = S(F ′,L′). By Corollary
2.3.3, at each singularity pi, i ∈ {1, . . . , k}, of F̃ there exists a neighborhood Ui of
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pi and a local conjugacy

Φi : (F̃ , L̃)|Ui
→ (F̃ ′, L̃′)|Ui

such that Φi|D∩Ui
= Id. Let U0 be a neighborhood of D \ ∪ki=1Ui such that U0 does

not contain any singularity of F̃ . Note that U0 is not connected and the restriction
of F̃ and F̃ ′ on U0 are regular. The strict conjugacy of the vanishing holonomy
representations can be extended by path lifting method to the conjugacy

Φ0 : (F̃ , L̃)|U0 → (F̃ ′, L̃′)|U0 ,

satisfying that the second eigenvalue function v(Φ0) is identically 1. We will show
that on each intersection Vi = Ui ∩ U0, Φi and Φ0 coincide. Denote by

Ψi = Φ−1
i|Vi
◦ Φ0|Vi

: (F̃ , L̃)|Vi
→ (F̃ , L̃)|Vi

.

We claim that v(Ψi) ≡ 1 on D ∩ Vi. Let p, q in Vi ∩ D. Denote by lp and lq the in-
variant curves of L̃ through p and q respectively. As the two maps Ψi|lp and Ψi|lq are
conjugated by the holonomy transport, we have v(Ψi)(p) = v(Ψi)(q). Consequently,
v(Ψi) is constant on Vi. Since v(Φ0) ≡ 1, it follows that v(Φi) is constant on Vi ∩D.
Therefore, v(Φi) is constant on Ui ∩D. Moreover, at the singularity pi, DΦi(pi) has
three eigenvectors corresponding to the directions of the divisor and the directions
of invariant curves of F̃ and L̃ through pi. Since DΦi(pi) has also one eigenvalue
1 corresponding to the directions of the divisor, we have DΦi(pi) = Id. This gives
v(Φi) ≡ 1 and consequently v(Ψi) ≡ 1.

Now at each point p ∈ Vi ∩ D, the map Ψi|lp commutes with the holonomy of F̃
around pi. Since the Camacho-Sad index λi of F̃ at pi is not rational, Lemma 2.4.3
below says that Ψi|lp = Id. Therefore, Ψi = Id. Hence we can glue all Φi together
and the strict conjugacy we need is the projection of this diffeomorphism on (C2, 0)
by σ.

Lemma 2.4.3. Let h ∈ Diff(C, 0) such that h′(0) = exp(2πiλ) where λ 6∈ Q. If
ψ ∈ Diff(C, 0) satisfying ψ′(0) = 1 and ψ ◦ h = h ◦ ψ then ψ = Id.

Proof. Since λ 6∈ Q, there is a formal diffeomorphism φ such that φ ◦ h ◦ φ−1(z) =
exp(2πiλ)z. Denote by ψ̃ = φ ◦ ψ ◦ φ−1, then ψ̃′(0) = 1 and ψ̃(exp(2πiλ)z) =
exp(2πiλ)ψ̃. The proof is reduced to show that ψ̃ = Id. Suppose that ψ̃(z) = z +∑∞
j=2 ajz

j. Then

ψ̃(exp(2πiλ)z) = exp(2πiλ)z +
∞∑
j=2

aj exp(2jπiλ)zj,

and
exp(2πiλ)ψ̃(z) = exp(2πiλ)z +

∞∑
j=2

aj exp(2πiλ)zj.

Since λ 6∈ Q, it forces aj = 0 for all j ≥ 2. Hence ψ̃ = Id.
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2.5 Finite determinacy
Let S be a germ of curve at p in a surface X. we denote by Σ(S) the set of all
germs of singular curves having the same desingularization map and having the
same singularities as S after desingularization. If S is smooth, we denote by mn(S)
the set of all holomorphic functions on S whose vanishing orders at the origin are
at least n.

Proposition 2.5.1. Let S be a germ of curve in (C2, 0) and S1, . . . , Sk be its ir-
reducible components. Suppose that σ : (M,D) → (C2, 0) is a finite composition
of blowing-ups such that all the transformed curves σ∗Si = S̃i are smooth. Then
there exists a natural N such that if fi ∈ mN(S̃i), i = 1, . . . , k, then there exists
F ∈ C{x, y} such that F ◦ σ|S̃i

= fi. Moreover, the same N can be chosen for all
elements in Σ(S).

Proof. We first consider the statement when S is irreducible. If S is smooth then
S̃ is diffeomorphic to S. Therefore, we can suppose that S is singular. Denote by
p = S̃ ∩ D. Choose a coordinate system (xp, yp) in a neighborhood of p such that
S̃ = {yp = 0} and D = {xp = 0}. Then σ−1 is defined by

xp = α(x, y)
β(x, y) and yp = µ(x, y)

ν(x, y) ,

where α, β, µ, ν ∈ C{x, y}, gcd(α, β) = 1 and gcd(µ, ν) = 1. This implies the equality

(2.5.1) α ◦ σ(xp, yp)
β ◦ σ(xp, yp)

= xp

Therefore, there exist a natural k and a holomorphic function h such that

(2.5.2) α ◦ σ(xp, yp) = xk+1
p h(xp, yp), β ◦ σ(xp, yp) = xkph(xp, yp),

where xp - h. We claim that h is a unit. Indeed, suppose h(0, 0) = 0 and denote by L̃
the curve {h(xp, yp) = 0}. Let L be a curve defined in (C2, 0) such that σ∗(L) = L̃.
Let {h̄(x, y) = 0} be a reduced equation of L. By (2.5.2), h̄|α and h̄|β. It contradicts
the fact that gcd(α, β) = 1. Now denote u(xp) = h(xp, 0) which is a unit, we have

(2.5.3) α ◦ σ(xp, 0) = u(xp)xk+1
p , β ◦ σ(xp, 0) = u(xp)xkp.

For each m ≥ (k−1)(k+1) there exists j ∈ {0, . . . , k−1} such that k|(m−j(k+1)).
Thus

m = ik + j(k + 1), i, j ∈ N.
Therefore, (2.5.3) implies that if a holomorphic function f(xp) satisfies x(k−1)(k+1)

p |f(xp)
then there exists a holomorphic function F (x, y) such that F ◦σ(xp, 0) = f(xp). Con-
sequently

(2.5.4) m(k−1)(k+1)(S̃) ⊂ σ∗C{x, y}|S̃.
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In the general case, suppose that Si is defined by {gi = 0}. If fi ∈ mN(S̃i), i =
1, . . . , k, with N big enough, by the above there exist Fi, i = 1, . . . , k, such that
Fi ◦ σ|S̃i

= fi. Hence, it suffices to prove the existence of a holomorphic function F
such that F|Si

= Fi|Si
for all i = 1, . . . , k. This is reduced to show that there exists

a natural M such that the following morphism Θ is surjective

(x, y)M
(g1) ∩ . . . ∩ (gk) ∩ (x, y)M

Θ−→ (x, y)M
(g1) ∩ (x, y)M ⊕ . . .⊕

(x, y)M
(gk) ∩ (x, y)M .

Indeed, by Hilbert’s Nullstellensatz, there exists a natural M1 such that

(2.5.5) (x, y)M1 ⊂ (gi, gj)

for all 1 ≤ i < j ≤ k. We claim that for all i = 1, . . . , k, j = 0, . . . , (k − 1)M1 the
elements eij = (0, . . . , xjy(k−1)M1−j, . . . , 0), where xjy(k−1)M1−j is in the ith position,
are in ImΘ and then Θ is surjective ifM is chosen as (k−1)M1. Indeed, we decompose

xjy(k−1)M1−j =
∏

l=1,...,k
l 6=i

xjlyM1−jl ,

where 0 ≤ jl ≤ M1. By (2.5.5), there exist ail, bil ∈ C{x, y} such that ailgi + bilgl =
xjlyM1−jl . This implies that

eij = Θ

 ∏
l=1,...,k
l 6=i

(
xjlyM1−jl − ailgi

) ∈ ImΘ.

It remains to prove that the same N can be chosen for all elements of Σ(S). In the
case S is irreducible, let S ′ in Σ(S) and {yp = s(xp)} be an equation of σ∗(S ′) = S̃ ′

in a neighborhood of p. In the same manner we can obtain

α ◦ σ(xp, s(xp)) = v(xp)xk+1
p , β ◦ σ(xp, s(xp)) = v(xp)xkp,

where v(xp) = h(xp, s(xp)) which is a unit. Consequently, (2.5.4) still holds for S ′.
In the general case, it is sufficient to show that the same M1 in (2.5.5) can be chosen
for all elements of Σ(S). Let Mij be the smallest natural satisfying

(x, y)Mij ⊂ (gi, gj).

We claim that
Mij ≤ I(gi, gj) = dimC

C{x, y}
(gi, gj)

.

Indeed, there exists xlyMij−1−l 6∈ (gi, gj). Let Pm, m = 1, . . . ,Mij, be a sequence
of monomials such that P1 = 1, PMij

= xlyMij−1−l and either Pm+1 = x · Pm or
Pm+1 = y · Pm. Since Pm|PMij

we have Pm 6∈ (gi, gj) for all m = 1, . . . ,Mij. We will
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show that {P1, . . . , PMij
} is independent in the vector space C{x,y}

(gi,gj) over C. Suppose
that

c1P1 + . . .+ cMij
PMij

∈ (gi, gj).
Suppose there exists cm 6= 0. Let m0 be the smallest natural such that cm0 6= 0.
Then

cm0Pm0 + . . .+ cMij
PMij

= Pm0(cm0 + . . .) ∈ (gi, gj).
This implies that Pm0 in (gi, gj) which is impossible.

Now, it is well known that the intersection number I(gi, gj) is a topological invariant.
It means that if two curves {gi ·gj = 0} and {g′i ·g′j = 0} are topologically conjugated
then I(gi, gj) = I(g′i, g′j). Consequently, M1 can be chosen as max1≤i<j≤kI(gi, gj) that
doesn’t depend on the elements of Σ(S).

Now, we will prove the finite determinacy property of the slidings of foliations.

Theorem C. Let F be a non-dicritical foliation without saddle-node singularities
after desingularization. There exists a natural N such that if there is a non-dicritical
foliation F ′ satisfying the following conditions:

(i) F and F ′ have the same set of singularities after desingularization and at a
neighborhood of each singularity, F̃ and F̃ ′ are locally strictly analytically
conjugated,

(ii) There exist L,L′ in R(L0) such that JN(S(F ,L)) = JN(S(F ′,L′)),

then there exists L′′ such that L′′ is strictly conjugated with L and S(F ,L′′) =
S(F ′,L′).

Here JN(S(F ,L)) = JN(S(F ′,L′)) means JN(gD,p(F̃ , L̃)) = JN(gD,p(F̃ ′, L̃′)) for all
gD,p(F̃ , L̃) in S(F ,L), gD,p(F̃ ′, L̃′) in S(F ′,L′), where JN(gD,p(F̃ , L̃)) stands for the
regular part of degree N in the Taylor expansion of gD,p(F̃ , L̃).

Proof. Suppose that T̃ (F ,L) = ∪Ti, T̃ ′(F ′,L′) = ∪T ′i where Ti and T ′i are irre-
ducible components of T (F ,L) and T (F ′,L′). Then the singularities of F̃ and F̃ ′
are pi = Ti ∩ D = T ′i ∩ D. Denote by hiγ the holonomy of F̃ on Ti.

Now let pi be a singularity F̃ . We first suppose that pi is not a corner. denote by D
the irreducible component of D through pi. Because F̃ and F̃ ′ are strictly conjugated
in a neighborhood of pi, by Corollaries 2.3.2 and 2.3.3, there exists a diffeomorphism
ψi in Diff(D, pi) tangent to identity such that

(2.5.6) ψi ◦ gD,pi
(F̃ , L̃) = gD,pi

(F̃ ′, L̃′) ◦ ψi.

Let πD (resp., π′D) be the projection from Ti (resp., T ′i ) to D that follows the leaves
of L̃ (resp., L̃′). We denote

(2.5.7) φi = π−1
D ◦ ψ−1

i ◦ πD.
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Since JN(S(F ,L)) = JN(S(F ′,L′)), φi is a diffeomorphism of (Ti, pi) tangent to
identity map at order at least N .

In the case pi is a corner, let D be one of two irreducible components of D through
pi and define φi as above.
Lemma 2.5.2. Suppose that there exists a diffeomorphism Φ such that the lifting
σ∗(Φ) = Φ̃ satisfies

• Φ̃|D = Id,

• Φ̃|Ti
= φi,

• T (F ,Φ∗L) = T (F ,L).

Then L′′ = Φ∗(L) satisfies S(F ,L′′) = S(F ′,L′).

Proof. Let pi be a singularity F̃ . In the case pi is not a corner, we denote D, πD,
π′D as above. Let π′′D be the projection following the leaves of L̃′′ from Ti to D, then

π′′D = πD ◦ φ−1
i .

Hence, we have the equality

gD,pi
(F̃ , L̃′′) = π′′D ◦ hiγ ◦ π′′−1

D = πD ◦ φ−1
i ◦ hiγ ◦ φi ◦ π−1

D

= ψi ◦ πD ◦ hiγ ◦ π−1
D ◦ ψ−1

i = ψi ◦ gD,pi
(F̃ , L̃) ◦ ψ−1

i

= gD,pi
(F̃ ′, L̃′).

If pi is a corner, pi = D ∩D′, we still have

gD,pi
(F̃ , L̃′′) = gD,pi

(F̃ ′, L̃′).

Since Φ̃|D = Id the Dulac maps of L̃′′ and L̃′ in a neighborhood of pi are the same.
Hence, Remark 2.2.5 leads to

gD′,pi
(F̃ , L̃′′) = gD′,pi

(F̃ ′, L̃′).

What is left is to prove the existence of Φ in Lemma 2.5.2 for N big enough. Suppose
that F and L are respectively defined by

ω = a(x, y)dx+ b(x, y)dy,
ωL = c(x, y)dx+ d(x, y)dy.

Then the tangent curve T = T (F ,L) is defined by

q(x, y) = da− cb = 0.
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Let Xq = ∂q
∂y

∂
∂x
− ∂q

∂x
∂
∂y

be a vector field tangent to T and X̃q be its lifting by σ. By
the implicit function theorem, if N is big enough, there exists fi defined on Ti such
that

exp[fi]
(
X̃q Ti

)
= φi.

Using Proposition 2.5.1, by choosing N big enough, there exists f ∈ C{x, y} such
that

exp[f ◦ σ]X̃q Ti
= φi.

For each Φ = (Φ1,Φ2) ∈ Diff(C2, 0), let us denote

< Φ >= ωL ∧ Φ∗ωL
dx ∧ dy

= c

(
c ◦ Φ∂Φ1

∂y
+ d ◦ Φ∂Φ2

∂y

)
− d

(
c ◦ Φ∂Φ1

∂x
+ d ◦ Φ∂Φ2

∂x

)
.

It follows easily that T (F ,Φ∗L) = T if and only if q| < Φ >. Lemma 2.5.3 below
implies that there exists a holomorphic function u such that exp[f − uq]Xq satisfies
Lemma 2.5.2 for N big enough. Moreover, by Proposition 2.5.1, we can chose N
that only depends on F .
Lemma 2.5.3. If N is big enough, for all f in (x, y)N there exists a holomorphic
function u such that q| < Φf−uq >.
Proof. To simplify notation, for each holomorphic function f , let us write Φf instead
of exp[f ]Xq. We have

∂

∂x
x ◦ Φf−uq

{q=0}
= ∂

∂x

∞∑
i=0

(f − uq)i
i! adiXq

(x)
{q=0}

= ∂

∂x
x ◦ Φf

{q=0}
− u. ∂q

∂x
.
∞∑
i=1

f i−1

(i− 1)!adiXq
(x)

{q=0}

= ∂

∂x
x ◦ Φf

{q=0}
− u. ∂q

∂x
.
∂q

∂y
◦ Φf

{q=0}
.

Similarly, we obtains
∂

∂y
x ◦ Φf−uq

{q=0}
= ∂

∂y
x ◦ Φf

{q=0}
− u · ∂q

∂y
· ∂q
∂y
◦ Φf

{q=0}
,

∂

∂x
y ◦ Φf−uq

{q=0}
= ∂

∂x
y ◦ Φf

{q=0}
+ u · ∂q

∂x
· ∂q
∂x
◦ Φf

{q=0}
,

∂

∂y
y ◦ Φf−uq

{q=0}
= ∂

∂y
y ◦ Φf

{q=0}
+ u · ∂q

∂y
· ∂q
∂x
◦ Φf

{q=0}
.

This implies that
< Φf−uq > {q=0} = < Φf > {q=0}

− u ·
(
c
∂q

∂y
− d∂q

∂x

)
·
((

c
∂q

∂y
− d∂q

∂x

)
◦ Φf

)
{q=0}

.(2.5.8)
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Let us denote h = c ∂q
∂y
− d ∂q

∂x
. Then {h = 0} is the tangent curve of L and the

foliation defined by the level sets of q. Since at each singularity pi of F̃ , the irre-
ducible component Ti of T is transverse to L̃, the irreducible components of the strict
transform of {h = 0} at pi are also transverse to Ti. This implies that (q, h) = 1
and the two curves {q · h = 0} and {q · (h ◦ Φf ) = 0} are topologically conju-
gated. By Hilbert’s Nullstellensatz and the proof of Proposition 2.5.1 there exists a
natural M such that (x, y)M ⊂ (q, h) and (x, y)M ⊂ (q, h ◦ Φf ). This implies that
(x, y)2M ⊂ (q, h · (h ◦ Φf )). Hence, if < Φf >∈ (x, y)2M , by (2.5.8) we can choose
u ∈ C{x, y} such that q| < Φf−uq >.

Remark 2.5.4. If we replace the condition “F̃ and F̃ ′ are locally analytically con-
jugated” in Theorem C by the condition “F and F ′ are in A” then the conclu-
sion in Theorem C becomes: “For all natural M ≥ N there exists L′′M such that
JM(S(F ,L′′M)) = JM(S(F ′,L′))”. Indeed, in that case, because the Camacho-Sad
indices are not rational, F̃ and F̃ ′ are locally formally conjugated. Therefore, we
can choose ψ in (2.5.6) such that

JM(ψi ◦ gD,pi
(F̃ , L̃) ◦ ψ−1

i ) = JM(gD,pi
(F̃ ′, L̃′)).

The two Theorems B and C give two corollaries on finite determination of the class
of isoholonomy non-dicritical foliations and absolutely dicritical foliations that have
the same Dulac maps.

Corollary D. Let F ∈ A defined by a 1-form ω then there exists a natural N such
that if F ′ is defined by a 1-form ω′ satisfying that JNω = JNω′ and the vanishing
holonomy representations of F and F ′ are strictly analytically conjugated, then F
and F ′ are strictly analytically conjugated.

Proof. Let L ∈ R0 then Jm(N)S(F ,L) = Jm(N)S(F ′,L) wherem(N) is an increasing
function on N and m(N) → ∞ when N → ∞. By Theorem C if N is big enough
there exists L′′ ∈ R0 such that S(F ,L′′) = S(F ′,L). By Theorem B, F and F ′ are
strictly analytically conjugated.

Remark 2.5.5. This Corollary is consistent with the result of Mattei in [11] which
says that the dimension of moduli space of the equisingular unfoldings of a foliation
is finite. Note that the vanishing holonomy representations of two foliations that are
joined by a unfolding are conjugated but the converse is not true.

Corollary E. Let L be a σ-absolutely dicritical foliation defined by 1-form ω. There
exists a natural N such that if L′ is a σ-absolutely dicritical foliation defined by ω′
satisfying JNω = JNω′ and the Dulac maps of L̃ and L̃′ are the same then L and
L′ are strictly analytically conjugated.

Proof. Suppose that D = ∪i=1,...,kDi where Di is an irreducible component of D.
We take a pair of irreducible functions fi and gi for each i = 1, . . . , k, such that the
curve Ci = {fi = 0} and C ′i = {gi = 0} satisfy the following properties:
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1. The strict transforms C̃i and C̃ ′i cut Di at two different points pi, qi, respec-
tively, such that none of them is a corner.

2. C̃i, C̃ ′i are smooth and transverse to the invariant curve of L̃ through pi, qi
respectively.

Because [C : Q] is an infinite field extension, there exists (λ1, λ2, . . . , λk) ∈ Ck such
that

k∑
i=1

ciλi 6∈ Q, ∀(c1, . . . , ck) ∈ Qk \ {(0, . . . , 0)}.

Now, let us consider the non-dicritical foliation F defined by the 1-form

ω0 =
k∏
i=1

(figi) ·
(

k∑
i=1

(
λi
dfi
fi

+ dgi
gi

))
.

Then F admits σ as its desingularization map and the singularities of the strict
transform F̃ are the corners of D and pi, qi, i = 1, . . . , k. We claim that at each
singularity, the Camacho-Sad index of F̃ is not rational. Indeed, denote by mij the
multiplicity of fi◦σ and gi◦σ on Dj. At the corner pij = Di∩Dj, we take coordinates
(x, y) such that Di = {x = 0}, Dj = {y = 0}. In this coordinate system, we can
write σ∗ω0 as

σ∗ω0 = u(x, y)x2
∑k

l=1 mliy2
∑k

l=1 mlj

k∑
l=1

(
(λl + 1)mli

dx

x
+ (λl + 1)mlj

dy

y
+ αij

)
,

where u(x, y) is a unit and αij is a holomorphic form. Therefore, the Camacho-Sad
index of F̃ at pij is given by

I(pij) =
∑k
l=1(λl + 1)mlj∑k
l=1(λl + 1)mli

6∈ Q.

Similarly, the Camacho-Sad indices of F̃ at pi and qi, respectively, are

I(pi) =
∑k
l=1(λl + 1)mli∑k

l=1 λl
6∈ Q, I(qi) =

∑k
l=1(λl + 1)mli

k
6∈ Q.

Now if JNω = JNω′ then Jm(N)S(F ,L) = Jm(N)S(F ,L′) where m(N) is an increas-
ing function on N and m(N)→∞ when N →∞. Moreover if N is big enough the
invariant curves of L̃ and L̃′ through the singularities of F̃ are tangent. By using
Theorem C for F ′ = F , there exists a foliation L′′ strictly conjugated with L such
that the two couples (F ,L′′) and (F ,L′) are strictly conjugated. Consequently, L
and L′ are strictly conjugated.
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Future works

The results of this thesis point to several interesting directions for future works:

The immediate problem is to generalize the second part of the paper [9]. In Chapter
1, we have only found some formal normal forms for topologically quasi-homogeneous
foliations. The next step is to prove that if topologically quasi-homogeneous folia-
tions have the same hamiltonian part and their vanishing holonomy representation
strictly conjugated then they are strictly conjugated. We think that this can be done
by using the sliding invariants.

Although the sliding invariants are finitely determined, we have not found a method
to compute this invariant even in the simplest case such as the nondegenerate re-
duced foliations. In [9], the authors shows that if topologically homogeneous two
foliations, whose vanishing holonomy representations are strictly conjugated, have
the same hamiltonian part after desingularization then they are strictly conjugated.
It seems, at least in the topologically homogeneous case, that the sliding invariants
depend only on the hamiltonian part. Proving and generalizing this result may help
us solve the following problems:

• To prove that, in the topologically quasi-homogeneous case, the hamiltonian
part and the vanishing holonomy representation can classify the foliations.

• To decompose a foliation (or 1-form which defines that foliation) into two parts,
one which contains only the information of the finite determinacy invariant,
other which contains the vanishing holonomy representation. Doing so, we may
found a normal form for non-dicritical foliations (by normalizing each part)
or a criteria of conjugacy for two foliations having the vanishing holonomy
representations conjugated.

Another direction for our future work is to consider the case where the Camacho-
Sad indices are rational. The equality of sliding invariant implies the existence of
local conjugations and the non-rational condition allows us to glue them together.
Without the non-rational condition, it seems that there is a hidden invariant of
resonant type which controls the existence of global conjugation.

73
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transverses, Singularities and dynamical systems (Iráklion, 1983), 161–173,
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