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Fluorescence spectroscopy is a widely used detection technology in many 

research and clinical assays.  Further improvement to assay sensitivity may enable earlier 

diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of 

clinical care along with reduction in costs.  Near-infrared, surface-enhanced fluorescence 

(NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous 

increase in signal with a reduction in background.  This dissertation describes research 

conducted with the overall goal to determine the extent to which fluorescence in solution 

may be enhanced by altering specific variables involved in the formation of plasmon-

active nanostructures of dye-labeled protein and silver nanoparticles in solution, with the 

intent of providing a simple solution that may be readily adopted by current fluorescence 

users in the life science research community.  First, it is shown that inner-filtering, re-

absorption of the emitted photons, can red-shift the optimal fluorophore spectrum away 

from the resonant frequency of the plasmon-active nanostructure.  It is also shown that, 

under certain conditions, the quality factor may be a better indicator of SEF than the 

commonly accepted overlap of the fluorophore spectrum with the plasmon resonance of 

the nanostructure.  Next, it is determined that streptavidin is the best choice for carrier 

protein, among the most commonly used dye-labeled detection antibodies, to enable the 



largest fluorescence enhancement when labeled with IRDye 800CW and used in 

combination with silver nanoparticles in solution.  It is shown that the relatively small 

and symmetric geometry of streptavidin enables substantial electromagnetic-field 

confinement when bound to silver nanoparticles, leading to strong and reproducible 

enhancement.  The role of silver nanoparticle aggregation is demonstrated in a droplet-

based microfluidic chip and further optimized in a standard microtiter-plate format.  A 

NIR-SEF technology based on aggregation with optimized salt concentration 

demonstrates a fluorescence signal enhancement up to 2530-fold while improving the 

limit-of-detection over 1000-fold.  Finally, the NIR-SEF technology is applied to 

demonstrate 42-fold improvement in sensitivity of the clinically-relevant biomarker, 

alpha-fetoprotein, along with a 16-fold improvement in limit-of-detection. 
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CHAPTER 1. INTRODUCTION 

 

1.1. FLUORESCENCE SPECTROSCOPY 
 

Fluorescence spectroscopy, the optical detection of light emitted by a fluorophore upon 

relaxation from light-induced excitation, has been widely used for imaging and detection 

in the biological and chemical sciences for many years
1
.  Due to its unique combination 

of sensitivity and quantitation, fluorescence spectroscopy has replaced other imaging and 

detection modalities in various applications, including many life science and chemical 

research assays.  As an example, the western blot traditionally made use of radioactivity
2
 

or, more recently, chemiluminescence
3
 via radiolabeled and enzyme-labeled antibodies, 

respectively.  Radioactivity is a very sensitive detection technique involving the 

measurement of ionizing radiation emitted due to isotopic decay; however, it requires 

special safety precautions and limits the ability to multiplex (detect multiple antigens or 

multiple epitopes of a single antigen).  Chemiluminescence involves the use of enzyme-

linked antibodies that create a luminescent signal when combined with an appropriate 

substrate.  Enzyme-based detection strategies, such as chemiluminescence, are often 

sensitive but limiting in terms of quantitation, due to a relatively small linear range, and 

the inability to multiplex.  Fluorescence has since been adapted to the western blot 

technique in order to simultaneously detect multiple antigens of interest
4
 and to enable 

more accurate protein quantitation
5
.  Another example is the enzyme-linked 

immunosorbent assay (ELISA), one of the most widely used among all assay techniques 



2 

 

in clinical and research settings
6
.  While ELISA is sufficient for many clinical and 

research diagnoses, the method may be inadequate for some biomarker implementations 

and development.  ELISA typically involves the enzyme-based production of a 

colorimetric product for detection, which can limit its linear range and inherently limits 

the ability to simultaneously measure multiple antigens of interest.  The fluorophore-

linked immunosorbent assay (FLISA) is a closely related technique, which employs 

fluorophore-labeled antibodies for a fluorescence-based detection strategy, that offers 

some advantages including an extended linear range, a reduced number of assay steps, 

and multiplexed detection
7
.  In summary, fluorescence spectroscopy has been shown to 

compare advantageously to other detection modalities when considering the important 

assay parameters of sensitivity, dynamic range, cost, quantitation, and ability to 

multiplex. 

Fluorescence spectroscopy is also used in many applications beyond the detection 

technique in bioassays.  Due to the ability to detect many fluorophores of differing 

wavelengths simultaneously, fluorescence is often used for detailed imaging applications 

such as cells
8
, tissue sections

9
, and small animals

10
.  The future appears promising for 

fluorescence spectroscopy as new applications continue to evolve.  Recently, 

fluorescence has translated into clinical research enabling innovation in, e.g., image-

guided surgery
11

 and detection of biomarkers associated with cancer
12-14

 and other 

diseases
15-17

.   
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1.2. NEED FOR ENHANCED SENSITIVITY 
 

Despite being a well-established, broadly-used technique, there remains a demand for 

improved sensitivity for many applications that rely on the use of fluorescence.  Further 

improvement to assay sensitivity, in general, remains desirable for early detection of 

cancer and other diseases, as well as novel biomarker discovery.  Clinical assays that 

detect cancer early can prevent progression
18

 which may lead to improved prognosis and 

reduced costs of care
19

.  Highly-sensitive clinical assays may also lead to routine cancer 

screening as opposed to investigation of suspected tumors
20

, which is often too late for a 

favorable prognosis.  Improved limit of detection (LOD) may also enable researchers to 

identify novel biomarkers that lack the in vivo quantity required for detection with 

currently available diagnostic technology
21-23

.  Along with reducing assay LOD, it is also 

desirable to be able to measure small changes in biomarker concentration.  For example, 

prostate specific antigen (PSA) is an important biomarker to measure over time after 

radical prostatectomy.  Removal of the main source of PSA
24

, however, makes the serum 

levels difficult to detect due to extremely low abundance.  Enhanced sensitivity may also 

enable novel biomarkers that can be taken from non-local samples, such as blood, breath, 

urine, or sweat, where the concentration is significantly lower than near the diseased 

organ.  An example is Alzheimer’s disease which can often be confirmed by biomarkers 

obtained via brain biopsy, however, measurement in blood or cerebrospinal fluid may 

enable detection without major surgery or autopsy
25

.   

The potential of improved prognoses and reduction in costs of care has led to a 

surge in research aimed at increasing the sensitivity, and thus the LOD, of biomarker 
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assays in an attempt to diagnose disease as early as possible.  LOD can be improved 

through increased signal intensity and/or reduced background noise.  In fluorescence-

based bioassays, the antigen of interest (biomarker) is indirectly detected using a 

fluorophore-labeled antibody that binds to it.  Ideally, every antigen is bound by one or 

more labeled antibodies and the antibodies do not bind to other molecules or surfaces and 

thus a signal is generated that is directly proportional to the amount of antigen present in 

the sample.  Therefore, the main contributors to the signal in fluorescence-based assays 

are the efficiencies of the fluorescence and antibody binding processes.  Likewise, the 

main contributors to the background noise are the autofluorescence or scatter from the 

assay materials and non-specific binding of the antibodies.  This work focuses on 

improvements to the fluorescence process, including signal and background.  One 

approach to reduction in background noise is to use near-infrared (NIR) fluorescence.  

NIR fluorescence typically has lower background than visible fluorescence due to 

reduced scatter
26

 and lower autofluorescence
27

 of common assay substrates.  

Unfortunately, NIR probes often suffer from lower signal intensity, relative to visible 

probes, due to low intrinsic quantum yield
28

.  An approach to overcome low intrinsic 

quantum yield, and thus, improve fluorescence signal is by locating the fluorophore near 

a plasmon-active nanostructure (typically gold or silver), which leads to modified 

excitation and decay rates, a process known as surface-enhanced fluorescence (SEF).  

SEF is a technology that can significantly improve quantum yield, increase the excitation 

rate of fluorophores, as well as improve photostability.  The combination of NIR probes 

and SEF has the potential to synergistically improve the LOD of fluorescence-based 
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assays by simultaneously increasing the numerator (signal), while decreasing the 

denominator (background noise) in the signal-to-noise ratio. 

 

1.3. LONG-TERM GOAL OF RESEARCH 
 

Ultimately, it is desirable to have a full understanding and complete control of the SEF 

process in order to maximize the detectability of individual fluorophores.  This 

knowledge would enable the design of optimized plasmon-active substrates that could 

then be fabricated with high efficiency and subsequently applied to improve the use of 

fluorescence spectroscopy.  An example outcome of achieving this goal could be orders 

of magnitude reduction in LOD leading to novel diagnostic biomarkers.  SEF may also 

benefit assays where the necessary LOD is already achievable by reducing the power and 

sensitivity requirements of the optical components.  A reduction in required excitation 

intensity and detector sensitivity may enable low-cost, early diagnosis of disease in third-

world countries using fluorescence detection with a cell phone in ambient light.  

Fluorophore design and synthesis may also benefit from SEF if the intrinsic quantum 

yield is no longer a major technical hurdle.  These opportunities may be achievable after 

several research goals are met, including:  identification of optimal plasmon-active 

nanostructure geometries for various fluorophores, enabling the accurate prediction of the 

enhancement potential of various nanostructure geometries combined with various 

fluorophores via mathematical models, development of efficient fabrication processes to 

create the nanostructures, assembly of the various nanostructures with their respective 
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emitters in a reproducible and efficient process, and assay design to implement the 

technology in ways beneficial to society. 

 

1.4. CONTRIBUTION OF RESEARCH IN THIS DISSERTATION 
 

This dissertation describes research conducted with the overall goal to determine the 

extent to which NIR fluorescence signal in solution may be enhanced using citrate-

stabilized silver nanoparticles (AgNP) by altering specific variables involved in the 

process, with the intent of providing a simple solution that may be readily adopted by 

current fluorescence users in the life science research community.  Specifically, the 

following contributions to the research community are disclosed: 

i. The idea that an emitter must spectrally overlap with the resonance of the 

plasmon-active substrate is challenged and demonstrated to be true only in 

particular situations.  Further, it is shown that significant enhancement can be 

achieved with plasmon-active substrates that have minimal ensemble, far-field 

interaction with the excitation or emission light (Chapter 3). 

ii. It is shown that various proteins can enable SEF using non-specific 

interactions with AgNP in solution.  It is also determined that streptavidin 

(SAv) may be the most effective, commonly used carrier protein for enhanced 

detection using SEF-based immunoassays (Chapter 4). 

iii. A microfluidic device is used to investigate the relationship between mixing 

of AgNP with dye-labeled SAv and the ability to generate NIR-SEF.  This is 
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the first known combination of SEF and microfluidics in the literature 

(Chapter 5). 

iv. Aggregation of AgNP and dye-labeled SAv to enhance fluorescence signal is 

further investigated in the more common assay environment of a microtiter 

plate.  Greater than 1000-fold improvement in LOD is demonstrated for NIR-

dye-labeled SAv using citrate-stabilized AgNP in solution combined with an 

optimized salt concentration (Chapter 6). 

v. A NIR-SEFLISA assay is described with a demonstration of 42-fold 

improvement in sensitivity, along with a 16-fold reduction in LOD for the 

clinically-relevant biomarker, alpha fetoprotein (AFP) (Chapter 7). 
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CHAPTER 2. BACKGROUND INFORMATION 

AND LITERATURE REVIEW 

 

2.1. FLUORESCENCE SPECTROSCOPY 
 

Fluorescence spectroscopy is the optical detection of molecules that absorb a particular 

spectrum of electromagnetic radiation (light) and re-emit electromagnetic radiation at 

another spectrum.  Figure 2.1 shows a simplified Jablonski diagram
29

 that demonstrates 

the fluorescence mechanism.  The absorption of a single photon with an appropriate 

frequency, and thus energy, causes an electron to move from the electronic ground state 

to a high-energy state.  Over a very short period of time, (e.g. 10
-12

 s)
1
, the electron loses 

some energy to the environment (in the form of heat) which moves the electron to the 

lowest singlet excited state.  After some time in this state, (e.g. 10
-8

 s)
1
, the electron is 

then able to move back to the electronic ground state by emitting the remaining energy as 

another single photon at a lower frequency (longer wavelength). 
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Figure 2.1.  Jablonski diagram of the fluorescence mechanism.  A photon is absorbed 

causing the molecule to move to an excited electronic state (blue line).  The molecule 

loses some energy to heat as it moves to the lowest excited state (green).  A photon is 

spontaneously emitted allowing the molecule to return to the ground state (red line). 

 

 

 

The optical detection of this process, known as fluorescence spectroscopy, is 

conducted by exciting the fluorophore with a light source at an appropriate wavelength 

(one readily absorbed by the fluorophore) and collecting the emission light at a longer 

wavelength.  The excitation source can be a laser, light-emitting diode, or a broadband 

filament bulb with an appropriate filter in place.  The emission is also filtered to prevent 

the detection of scattered excitation light.  The difference between the wavelength of 

maximum absorption and the wavelength of maximum emission is known as the Stokes’ 

shift.  The longer the Stokes’ shift, the easier it is to separate the emission energy from 

the excitation energy.  It is common for an organic fluorophore to have a Stokes’ shift of 
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approximately 10 - 20 nm.  As an example, Figure 2.2 shows the absorbance and 

emission spectra for IRDye 800CW which is used frequently in this dissertation. 

 

 

Figure 2.2.  Aborbance and emission spectra of IRDye 800CW in PBS.  The Stokes shift 

(Δλs) is the difference between the wavelength of maximum absorbance and the 

wavelength of maximum emission. Copyright LI-COR, Inc.  Adapted with permission. 

 

 

 

2.2. NEAR-INFRARED FLUORESCENCE 
 

NIR fluorescence involves fluorophores that absorb and emit light in the wavelength 

range of 700 - 900 nm.  NIR fluorescence typically has lower background than visible 

fluorescence due to reduced scatter
26

 and lower autofluorescence
30

 of common assay 

substrates such as nitrocellulose, polyvinylidene difluoride (PVDF), poly(methyl 

methacrylate) (PMMA), and polydimethylsiloxane (PDMS).  NIR fluorescence is also 
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useful for in-vivo imaging due to deeper penetration in tissue and reduced 

autofluorescence, compared to visible light.  The deeper penetration is mostly enabled 

due to the relatively low absorption and scatter of NIR light by hemoglobin (oxygenated 

and deoxygenated) and water.  Figure 2.3 shows the extinction coefficient of hemoglobin, 

oxygenated hemoglobin, and water in the wavelength range of 400 to 1000 nm.  The 

extinction coefficient of a material is the amount of light attenuation per mole of the 

material, per unit length of depth.  In addition to the increased depth of penetration, the 

lower absorption and scatter of biological materials in the NIR also reduces the 

autofluorescence and total background signal, which ultimately leads to improved signal-

to-noise.  The advantages of NIR fluorescence for in vivo imaging of animals and humans 

has led to applications, including imaging of normal and diseased vasculature, tissue 

perfusion, protease activity, hydroxyapatite, and cancer
31

. 

 

 

Figure 2.3.  Extinction coefficient of hemoglobin, oxygenated hemoglobin, and water 

across the visible to NIR spectrum.  Copyright LI-COR, Inc.  Reprinted with permission. 
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2.3. SURFACE PLASMONS 
 

Plasmonics is another important research topic involving the interaction of light and 

electrons.  When a metal nanoparticle (mNP) is subjected to an electromagnetic field at 

certain frequencies, its conduction band electrons can be forced to oscillate within the 

particle volume and slightly into the surrounding medium.  The electrons can be thought 

of as an incompressible fluid, often referred to as an electron cloud.  The collective 

oscillations of these electron clouds are known as localized surface plasmons (LSP).  

They are termed ‘localized’ because the net displacement, relative to the mNP, is zero.  

There are propagating surface plasmons (PSP) that can occur on the surface of larger 

metal structures in which the net displacement is not zero; however, the research included 

in this dissertation relies specifically on LSP. 

 LSP can be modeled as a spring-mass system where the mass is analogous to the 

electron cloud and the spring is analogous to the electric charge caused by the 

displacement of the electron cloud (see Figure 2.4).  The natural frequency      of a 

spring-mass system is given by 

    
  

 
              

where    is the spring constant and   is the mass.  Similarly, the plasma frequency      

of LSP is given by 
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where    is the number of electrons,   is the charge of one electron,    is the mass of 

one electron, and    is the permittivity of the surrounding medium.  Equations 1 and 2 

show the similarity of LSP to that of a simple, spring-mass system; however, like nearly 

all natural systems (as opposed to ideal systems) there are non-linear damping processes 

and other higher-order effects that must be considered.  The collective effects of all 

processes involved determine the response of the electron cloud to the electromagnetic 

field, which is represented as the complex permittivity      of the material, or,  

                       

The complex permittivity enables theoretical prediction of light-interaction at the 

nanoscale
32

 and can be obtained via theoretical models
33, 34

 or empirical data
35

. 
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Figure 2.4.  Diagram showing the analogous, force-induced oscillations of LSP from a 

mNP subjected to an electromagnetic field and a simple, spring-mass system subjected to 

an external driving force.  

 

 

 

The ability of mNP to convert energy in the form of light to LSP has caused them to be 

referred to as nanoantennas
36-41

.  Like antennas on the macroscale, nanoantennas can 

collect energy from a large volume and confine it to a much smaller volume, much 

smaller than the wavelength.  In doing so, the electromagnetic field is highly enhanced in 

these regions, commonly referred to as ‘hot-spots’
42-47

.  The high-intensity field in these 

regions can be coupled to a fluorophore to increase the excitation rate and, through the 

law of reciprocity, similarly increase the emission rate
48

.  The effect of LSP on the 

fluorescence process is referred to as surface-enhanced fluorescence (SEF). 
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2.4. SURFACE-ENHANCED FLUORESCENCE 
 

SEF has been studied for decades, though it only recently became widespread in the 

research community.  The formation of the SEF research field seems to have been a 

gradual progression, as opposed to a research track launched from a seminal manuscript.  

The interaction of light with nanoparticles dates back to Lord Rayleigh at the end of the 

19
th

 century
49, 50

 with studies involving the absorption and scattering of sunlight by 

particles in the atmosphere, much smaller than the wavelength of light (i.e. a few nm or 

less), which generate the blue sky hue.  Mie later solved for an analytical solution of light 

interaction with spherical nanoparticles similar in size to the wavelength
51

, based on 

Maxwell’s equations .  This pioneering work is still frequently used in modern-day 

plasmonics research as many plasmon-active nanostructures are indeed spherical 

nanoparticles similar in size to the wavelength of light.  Perhaps the first SEF-like 

research can be credited to Purcell who found that the radiative decay of an emitter can 

be affected by the environment
52

.  Specifically, Purcell demonstrated the enhancement of 

spontaneous emission rates of atoms in small resonant cavities with a dependence on the 

quality factor and mode volumes.  Kleppner later found that the environment could 

inhibit or enhance the radiative decay depending on if the characteristic dimension of the 

cavity is small or resonant with the emission wavelength, respectively
53

.  Once the related 

phenomenon of surface-enhanced Raman scattering (SERS)
54, 55

 became popular in the 

research community the interest in the use of nanoparticles to enhance optical detection 

gained momentum. 
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 SERS is the phenomenon of enhanced Raman scattering due to an increased local 

electromagnetic field near a plasmon-active nanostructure.  When a molecule scatters 

light, most of the energy is elastically scattered (at the same wavelength); however, a 

small portion is inelastically scattered at various wavelengths depending on the chemical 

structure of the molecule.  This inelastic scattering is known as Raman scattering and is 

important because it enables label-free detection of individual molecules due to unique 

Raman signatures (scattering spectra).  Unfortunately, Raman scattering occurs at 

extremely low intensity and is often undetectable.  SERS is an important research field as 

it enables the benefits of Raman scattering within a detectable level of energy; however, 

even with enhancement the scattering intensity rarely approaches a level close to the 

emission of a fluorescent dye
54

, which thus inhibits the wide-spread adoption of the 

SERS technique in bioassays.   

SEF combines the electromagnetic field enhancement demonstrated in SERS with 

enhanced emission rates due to the Purcell effect.  Early works included the formation of 

a Purcell cavity by placing fluorophores near mirrored surfaces
56

.  The Lakowicz group at 

Maryland can be credited for re-energizing the field of SEF in the early 2000s when the 

term radiative decay engineering (RDE) was coined in a series of manuscripts
57-61

.  RDE 

was introduced with a thorough description of the fluorescence process and how it can be 

modified by nearby plasmon-active substrates
57

.  Importantly, the explanations and 

language were inviting to researchers in the fluorescence field, as opposed to previous 

work by physicists, which may have assisted in the acceleration of progress.  The effects 

of silver island films (SIF) on the quantum yield and radiative decay rates of common 

visible dyes were presented
58

.  SIF are random, nanoscale clusters of solid silver formed 
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on glass substrates by deposition of silver nitrate solution.  Next, the isotropic emission of 

fluorophores where found to become directional when placed near thin metal films
59

.  

This directional emission phenomena was further studied experimentally and found to 

enable 50% collection efficiency of the emitted light
60

.  Research efforts were then 

directed back towards nanostructure effects when it was proposed that fluorescence 

quenching could be expected for small nanoparticles dominated by absorption, while 

fluorescence enhancement could be expected for larger nanoparticles able to scatter light 

into the far-field
61

.  At this point in time, the understanding was that plasmon-active 

nanostructures and surfaces could enhance or quench the fluorescence process via 

increased decay rates, though the exact mechanism had not been determined.  The decay 

rates were thought to depend on the intrinsic quantum yields and distance from the metal 

surface, which was suggested to be optimized at 10-100 nm.  Further contributions made 

it clear that RDE was a misleading description of the process as a change in the radiative 

decay rate is only part of the process
62

, thus the term SEF was born.  SEF has also been 

frequently referred to as metal-enhanced fluorescence
63-72

 (MEF).   The field of SEF has 

expanded significantly in the last decade and many review papers have been published
62, 

69, 73-75
, as well as books

76, 77
. 

More thorough reviews of the process have been published
62, 74, 78, 79

; however, a 

brief summary of the current theory is provided.  Fluorescence in free space can be 

described by the relationship between intrinsic rates of emission (   
 ), excitation (   

 ), 

radiative decay (  
 ), and non-radiative decay (   

 )
1
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When in close proximity to a plasmon-active nanostructure, the excitation (   ) and 

radiative (  ) decay rates are increased and an additional non-radiative decay path (   ) is 

introduced giving a new emission rate (   )
80-82

 

       

  

          
               

SEF can thus be described by 

    
   

   
  

   

   
 

    
  

           
     

     
   

              

and more conveniently in terms of the intrinsic (  ) and enhanced ( ) quantum yields as 

    
   

   
 

 

  
               

Thus, SEF is simply the combination of enhanced excitation rate and quantum yield; 

however, the theory is more complicated when breaking down the individual components 

of these processes.  Since quantum yield cannot exceed unity, fluorophores with high 

intrinsic quantum yields can only be notably enhanced by an increased excitation rate.  A 

local increase in field intensity is responsible for the enhanced excitation rate as well as 

any improvement in quantum yield, and is dependent on material properties, 

nanostructure geometry, dipole emitter orientation, and distance between the emitter and 

the nanostructure
78, 79

.  Of these parameters, the most straightforward to control is the 

material.  The quality factor ( ) is a material-dependent property that describes the 

number of plasmon oscillations prior to field decay and can be calculated by
79

 

  
 

  
 

 
 

  
  e        

 Im       
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where   is the angular frequency (eV),   is the decay rate (eV), and    is the complex 

permittivity of the material.  The calculated quality factors for Ag and Au from visible to 

NIR wavelengths are shown in Figure 2.5.  Based on   alone, Ag is predicted to 

outperform Au at all visible and NIR wavelengths, while both Ag and Au are maximized 

in the NIR.  It is important to note that the relative trend of   may be useful; however, a 

quantitative value should be used cautiously. The commonly used optical properties of 

Ag and Au contain a margin of error approaching the magnitude of the measured values
35

 

(this is especially true for the imaginary index of refraction for Ag which is near zero at 

particular frequencies). This error propagates into the calculation of Q but is rarely 

considered in the literature.  Figure 2.5 also shows the resonant plasmon wavelengths for 

Ag and Au spherical nanoparticles under the quasi-static approximation, where free 

electrons can be treated as an incompressible fluid that oscillate collectively as a dipole
83

.  

The plasmon resonance shifts when the nanostructure geometry is larger and no longer 

negligible in size compared to the wavelength of excitation.  Nanostructures experience 

maximum polarizability at their plasmon wavelengths leading to the strongest, plasmon-

induced, increase in field intensity.  The increased electromagnetic field intensity may be 

the reason that various nanostructures have been selected to match the excitation or 

emission wavelength of the fluorophore in many SEF studies
82, 84-87

.  This reasoning can 

be misleading though, since     is also maximized at the plasmon frequency.  Therefore, 

the optimal wavelength for SEF is not necessarily at the plasmon resonance
83

 and may 

occur at significantly red-shifted wavelengths where   is maximized.    Beyond the 

relatively low intrinsic quantum yields, the relatively large   value may explain the 

magnitude of enhancement found only in the NIR thus far. 
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Figure 2.5.  Calculated quality factor (Q) for Ag and Au as a function of wavelength.  

The surface plasmon wavelengths (λsp) of spherical nanoparticles, under the quasi-static 

approximation, are shown along with the normalized absorbance and emission curves of 

IRDye 800CW. 

 

 

 

As mentioned above, theoretical calculations based on commonly accepted 

experimental values should be used with caution.    for Ag is shown in Figure 2.6 with 

error bars corresponding to those published in a commonly used reference
35

.  While many 

plasmonic calculations do not require   explicitly, they all depend on the complex 

permittivity values of which   is based.  To the authors’ knowledge, there are no known 

examples in the literature where this error margin has previously been discussed. 
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Figure 2.6.  Quality factor for Ag with error bars (using experimental margin of error
35

). 

 

 

 

2.6. NEAR-INFRARED, SURFACE-ENHANCED FLUORESCENCE 
 

NIR-SEF has received relatively little attention compared to SEF with visible 

fluorophores in the literature.  NIR-SEF has been demonstrated with silver nanostructures 

on surfaces
88-91

, gold nanostructures on surfaces
28, 92, 93

, and gold nanoparticles in 

solution
87, 94-96

.  Initially, NIR-SEF was studied for the potential enhancement of in vivo 

imaging
90, 91

 by applying SEF to the only FDA cleared fluorophore for use in humans, 

indocyanine green (ICG).  Enhancement to signal intensity with ICG of 20-fold
91

 and 30-

fold
90

 were demonstrated on SIF and AgNP on glass, respectively.  This initial 
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enhancement using NIR fluorescence was promising as the enhancement found with 

visible fluorophores is typically 10-fold or less.  Later, Anderson et al. demonstrated that 

the advantages of NIR fluorescence in general, such as low background and 

autofluorescence, could be combined with the SEF technology
88, 89, 97

.  SIF were used to 

demonstrate 18-fold enhancement of IRDye 700 and 15-fold enhancement of IRDye 

800CW
88

.  Colloid-coated surfaces turned out to be less effective with only 5-fold 

enhancement of IRDye 700 and 11-fold enhancement of IRDye 800CW
89

.  A 

breakthrough occurred when substantially larger enhancement of IRDye 800CW was 

found using highly-concentrated, citrate-stabilized AgNP (unpublished), fabricated using 

a proprietary adaption to common methods
98, 99

.  Further research determined that 

nanoparticle interactions, or aggregation, may be responsible for the enhancement.  

Aggregates of AgNP were formed in solution and deposited on glass slides to enhance 

the fluorescent signals of Alexa Fluor 680 and IRDye 800CW by over 200-fold and 100-

fold, respectively
89

.  Citrate-stabilized AgNP are typically stable due to the negatively 

charged citrate ions on the surfaces, which prevent collisions between individual AgNP.  

The addition of salt can screen the surface charges and allow interaction between the 

AgNP, hence forming aggregates.  A design of experiments method was conducted to 

optimize the citrate-stabilized AgNP for enhancement of IRDye 800CW-labeled SAv in 

solution and applied to a FLISA assay
100

.  At this point, significant enhancement of 

IRDye 800CW could be demonstrated; however, further insight into the physical 

mechanisms was needed to convey the results to the broader scientific community and 

enable further optimization.  Recently, NIR-SEF on a surface of gold nano-pillars 

demonstrated enhancements of 2970-fold
101

 and 7400-fold
102

 (by far the largest ensemble 
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enhancements, at any wavelength, ever published to the author’s knowledge).  The 7400-

fold enhancement using IRDye 800CW
102

 was greater than 10X improvement over 

previous work using the same dye
88, 89, 92, 95

.  These recent contributions demonstrate 

substantial improvement in fluorescence sensitivity using NIR fluorophores; however, 

they are limited to surface-based assays and are not pertinent to real-world applications. 

 

2.7. LIMITATIONS OF CURRENT TECHNOLOGY 
 

Despite promising progress in NIR-SEF there are no known commercially available 

assay kits, or researchers from outside the plasmonic community able to implement these 

techniques to improve assay sensitivity and/or LOD.  The lack of technology transfer and 

adoption may be due to the expense and expertise needed to fabricate these 

nanostructures and/or the modifications required of traditional assay preparation formats 

and workflows.  The surface-based technology developed in the Chou lab at Princeton
101, 

102
 may eventually provide improved assay sensitivity; however, it does not address the 

need for a solution-based platform and would likely be displaced if a simple solution 

provided the same (or even similar) enhancement.  The solution-based strategy 

investigated by Anderson et al. at LI-COR has the potential to fill this gap; however, it 

requires further discovery to interpret the mechanisms involved with the goal of 

maximizing sensitivity and minimizing complexity.  In this dissertation, these problems 

are addressed by advancing the fundamental understanding of NIR-SEF, while 

demonstrating significant enhancement using simple-to-fabricate AgNP in solution.  This 

contribution may enable life science researchers to incorporate NIR-SEF in their current 
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fluorescence-based assays in order to address the need of enhanced sensitivity and/or 

improved LOD. 
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CHAPTER 3. SURFACE-ENHANCED 

FLUORESCENCE WITH VISIBLE AND NEAR-

INFRARED FLUOROPHORES IN SOLUTION 

 

3.1. INTRODUCTION 
 

It is commonly accepted in the literature that fluorophores having absorption and/or 

emission spectra that overlap with the resonant frequency of a plasmon-active 

nanostructure demonstrate the greatest SEF.  Successful implementations of SEF using 

this logic have been demonstrated in several publications; however, the studies have 

often required experiments on a surface and/or measurement at the single nanostructure 

level
85, 86, 103

, as opposed to ensemble measurements including many fluorophores and 

many plasmon-active nanostructures.  Solution-based SEF has been demonstrated using 

NIR fluorophores
100

; however, it remains unclear if visible fluorophores can provide 

similar, or better, levels of enhancement as suggested by the commonly accepted spectra 

overlap theory.  It is hypothesized that a correlation between fluorophore spectra and 

nanostructure resonance may not be ideal when using a concentrated solution of mNP as 

the plasmon-active substrate.  It is expected that a competition between signal 

enhancement and signal attenuation
104, 105

 (or inner-filter effect
106, 107

) may ultimately 

lead to a negative relationship between nanostructure resonance and SEF with increasing 

concentration of mNP.  Further, it is hypothesized that the quality factor may be an 
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important material property to determine the ability to generate substantial SEF.  It has 

been previously suggested that maximum fluorescence enhancement may not always 

occur near the resonant frequency of the nanostructure due to absorption
83

; however, it 

has not been demonstrated in the literature to the author’s knowledge.   ecently, it was 

shown that the related phenomenon of surface-enhanced Raman scattering (SERS) may 

also occur at excitation wavelengths significantly red-shifted from the resonant frequency 

of the nanostructure
108, 109

.  Further, like SERS, SEF is dominated by light interactions in 

‘hot spots’ which may contain active spectra that differ from the ensemble measured 

absorbance
110

.  Here, we use theoretical analysis along with experimental data to test the 

hypotheses that (1) inner-filtering (or reabsorption of the emitted light by the plasmon-

active nanostructure) may red-shift the optimal fluorophore spectra away from the 

resonant frequency of the plasmon-active nanostructure and (2) that in some cases, the 

quality factor may be a more important predictor of SEF as opposed to the nanostructure 

resonance indicated by the absorbance spectra. 

 

3.2. MATERIALS AND METHODS 
 

Materials.  Alexa Fluor 488 and Alexa Fluor 594 were purchased pre-conjugated with 

SAv (Life Technologies, Grand Island, NY).  IRDye 680LT and IRDye 800CW were 

acquired pre-conjugated with SAv (LI-COR, Lincoln, NE).  Unlabeled SAv was 

purchased in solution (Life Technologies, Grand Island, NY).  AgNP were acquired at a 

stock concentration of ~ 20 nM with an average diameter of ~ 20 nm (LI-COR, Lincoln, 

NE).  All dilutions were performed with ultrapure water from a Milli-Q system 
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(Millipore).  All reagents were used as received and handled per the manufacturer’s 

instructions, unless otherwise noted. 

Absorbance measurements.  Absorbance measurements were made on an 

Agilent 8453 UV-Visible spectrophotometer (Agilent Technologies Inc., Santa Clara, 

CA).  All SAv-fluorophore conjugates were measured in PBS at a concentration of 

approximately 1 μg/ml.  The actual fluorophore concentration varies for each conjugate 

solution due to variation in the degree of labeling (dye molecules per SAv molecule).  It 

is assumed that the actual fluorophore concentration is not important since all 

measurements are relative and conducted as ensemble averages.  Absorbance of AgNP 

was measured after diluting the stock solution 10-fold to be within the linear range of the 

spectrophotometer. 

Fluorescence measurements.  Fluorescence emission spectra were acquired 

using a QuantaMaster spectrofluorometer (Photon Technology International, 

Birmingham, NJ).  Figure 3.1 shows a schematic of the spectrofluorometer system and 

components.  All measurements were conducted with all slits opened 2 full turns on the 

adjustment knobs, which corresponds to a slit-width of 1 mm.  A high-pass filter was 

placed in front of the detector to reduce undesired scatter from the excitation diffraction 

grating.  The cut-off frequency of the filter was 450 nm for Alexa Fluor 488 and 500 nm 

for all other fluorophores.  Labeled and unlabeled SAv were mixed with various 

concentrations of AgNP by adding 2 ml of 2 nM SAv-conjugate to 2 ml of AgNP 

solution in optical-grade poly(methyl methacrylate) cuvettes and incubated for 4 hours in 

the dark at room temperature.  Each sample was carefully inverted three times prior to 

measurement to suspend any large aggregates that may have settled over time.  All 
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fluorescence spectra involving AgNP were corrected with background subtraction using a 

cuvette with identical contents minus the fluorophore.  For example, 2 nM dye labeled 

SAv with 20 nM AgNP was corrected by subtracting the corresponding spectrum of 2 nM 

unlabeled SAv with 20 nM AgNP. 

 

 

Figure 3.1.  Schematic of spectrofluorometer components including: (1) light source, (2) 

adjustable slits, (3) excitation and emission monochromator, (4) excitation and emission 

grating, (5) sample compartment, (6) excitation correction, and (7) detector.  Copyright 

Photon Technology International, Inc. 

 

 

 

3.3. RESULTS AND DISCUSSION 

 
Fluorophore characterization.  The intrinsic absorbance and emission spectra were 

acquired for each fluorophore (Figure 3.2).  In general, the absorbance and emission 

maxima occurred at, or very close to, the manufacturers’ published values (Table 3.1).  

The four chosen fluorophores provide a sample spanning 300 nm in wavelength (500 to 
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800 nm) with nearly even spacing of 100 nm between each.  The range was chosen to 

include a fluorophore very close to the resonant frequency of the AgNP solution near 500 

nm all the way to 800 nm where there is minimal attenuation of light and a maximized 

quality factor (see Figure 3.2).  The absorbance spectrum of the AgNP solution is broader 

than expected with Mie theory due to the presence of large particles within the 

polydisperse sample. 

 

 

Figure 3.2.  Top:  Normalized absorbance of AgNP (gray), Alexa Fluor 488 (cyan), Alexa Fluor 

594 (yellow), IRDye 680LT (red), and IRDye 800CW (purple).  Bottom:  Normalized quality 

factor (gray, dashed) and corresponding emission curves for each fluorophore. 
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Table 3.1.  Properties of fluorophores used in this work (per manufacturers’ websites). 

 
Fluorophore λabs,max (nm) λem,max (nm) ελabs,max (M

-1 cm-1) QY 

Alexa Fluor 488 496 519 71000 0.92 
Alexa Fluor 594 590 617 73000 0.66 

IRDye 680LT 680 694 250000 0.19 
IRDye 800CW 778 794 240000 0.07 

 

 
 

Theoretical calculations.  The spectral and distance dependent enhancement of 

fluorophores near a mNP can be calculated using the multi-multipole (MMP) theory
84

.  

Assuming the dipole moment of the fluorophore is normal to the mNP (best case for 

SEF) the modified emission rate,    , can be calculated by 

   

   
  

    

    
 

 

  
              

where    
  is the emission rate far from the mNP,      is the modified excitation rate, and 

  is the modified quantum yield.  The excitation rate far from the mNP and intrinsic 

quantum yield are denoted with the superscript ‘0’.  The modified excitation rate can be 

calculated by 

    

    
      

  

      

         

         
 

 

              

where   is the diameter of the mNP,   is the distance between the fluorophore and the 

surface of the mNP, and         is the complex permittivity of the mNP at the excitation 

wavelength.  The modified quantum yield can be calculated based on the enhancement of 

the radiative decay rate,     
  , and the non-radiative decay rate,    , using 
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where     and        are the circular frequency and complex permittivity of the mNP at 

the emission wavelength.  When the Stokes-shift of the fluorophore is small, equations 

(2) and (4) are essentially equal due to the law of reciprocity.  This means that a mNP 

acting as a nano-antenna performs equally well as a collector of light and emitter of 

light
48

. 

The trouble with SEF using mNP in solution is that along with possibly enhancing 

the fluorescence of a nearby emitter, they may also cause attenuation of the excitation 

light and/or emitted energy of fluorophores far away.  The absorption, scattering, and 

extinction cross sections of mNP are given by
83

 

                    
    

     
               

     
  

  
     

  

 
     

    

     
 
 

              

                   
    

  

            
 
              

where   is the polarizability of the mNP,   is the wavenumber (in the surrounding 

medium),    is the permittivity of the medium surrounding the mNP, and the complex 
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permittivity of the mNP is         .  Using the extinction cross section from equation 

(8) and the number of mNP per unit volume one can obtain the average reduction in 

signal for a homogeneously dispersed mix of fluorophores as 

                      

                            

  
 

 
            

 

 

 
           

          
               

where   is the absorbance,   is the number of mNP per unit volume,   is the total depth 

of the sample,   is the intensity,    is the intensity prior to entering the sample, and   is 

the integrated average value of the intensity relative to   . 
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Figure 3.3.  Schematic of fluorescence measurement using spectrofluorometer with 

direction of detection normal to excitation.  The green arrows show a decrease in 

excitation intensity due to attenuation by mNP.  The red arrows show a similar decrease 

in emission intensity also due to attenuation.  

 
 

 

 

Taking the optical properties as equivalent for the excitation and emission wavelength 

(assuming a small Stokes shift), using equations (1) through (11), the ‘observed’ 

fluorescence enhancement for the schematic in Figure 3.3 becomes 

         
   

   
                

Combining equations (1) through (12), the wavelength dependent SEF is shown in Figure 

3.4.  Optical properties of Ag were taken from published data
35

, the radius of the mNP (a) 

was held constant at 10 nm, and the calculations were averaged for distances (z) of 1 to 
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10 nm in increments of 1 nm.  SEF with minimal impact from attenuation is calculated at 

a mNP concentration (N) of 1 x 10
8
 μl

-1
 and a sample depth (L) of 0.1 mm.  With 

negligible attenuation, or inner-filtering, the theoretical enhancement is maximized near 

the resonant frequency of the mNP (~ 400 nm in water).  Increases in the concentration of 

mNP and/or sample depth dramatically change the curve such that the resonant frequency 

produces the lowest observed enhancement.  In this situation, the observed enhancement 

increases with wavelength where attenuation is minimal but quality factor is maximized.  

Also, note that the theoretical enhancement in the NIR is independent of mNP 

concentration or sample depth due to negligible inner-filtering or attenuation. 
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Figure 3.4.  Theoretical fluorescence enhancement (observed) as a function of wavelength for 

negligible light attenuation (dotted line) and order of magnitude increases in mNP concentration 

(N) or sample depth (L). 

 

 

 

 

Experimental results.  Experiments were conducted to test the hypothesis that 

observed SEF is maximized near the resonant frequency when attenuation is negligible 

and shifts toward maximized quality factor (Q) when attenuation is significant.  Figures 

3.5 through 3.9 show fluorescence intensity versus wavelength for the four fluorophores 

in this study.  Each fluorophore was measured without AgNP and with AgNP at 

concentrations of 0.01X (0.2 nM), 0.1X (2 nM), and 1X (20 nM).  The fluorophore 

concentration was held constant at 2 nM for all experiments except for IRDye 800CW 

without AgNP.  This signal was extremely low due to a lack of sensitivity of the detector 

at long wavelengths along with the low intrinsic quantum yield of the fluorophore; 
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therefore, the fluorophore was measured at 20 nM for the IRDye 800CW sample without 

AgNP (see Figure 3.8). 

 

 

Figure 3.5.  Measured fluorescence of Alexa Fluor 488 labeled SAv with various 

concentrations of AgNP.  Each curve represents the average of three measurements with 

background subtracted. 
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Figure 3.6.  Measured fluorescence of Alexa Fluor 594 labeled SAv with various 

concentrations of AgNP.  Each curve represents the average of three measurements with 

background subtracted.  
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Figure 3.7.  Measured fluorescence of IRDye 680LT labeled SAv with various 

concentrations of AgNP.  Each curve represents the average of three measurements with 

background subtracted.  
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Figure 3.8.  Measured fluorescence of IRDye 800CW labeled SAv with various 

concentrations of AgNP.  Each curve represents the average of three measurements with 

background subtracted.  

 
 

 

 

The results for all fluorophores are summarized in Figure 3.9.  Alexa Fluor 488 showed 

enhancement with 0.1X AgNP that was reduced upon further addition of AgNP.  This 

may be due to the large attenuation of excitation and emission light with high 

concentrations of AgNP.  The fluorescence signal was reduced almost 100-fold at 1X 

AgNP.  Alexa Fluor 594 and IRDye 680LT showed modest enhancement at all 

concentrations of AgNP, which may indicate a balance between SEF and attenuation.  

IRDye 800CW showed a slight reduction in fluorescence at the lowest concentration of 

AgNP and large enhancement upon further addition of AgNP.  The slight reduction at 

0.01X AgNP is unexpected and may be due to error associated with very low signal. 
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Figure 3.9.  Fluorescence enhancement for each fluorophore at various molar ratio of 

AgNP:SAv-fluorophore.  Error bars indicate +/- one standard deviation.   

 
 

 

 

Combining experimental results with theory.  The theoretical analysis and 

experimental data are in reasonable qualitative agreement; however, there is further 

explanation warranted to synchronize the evidence towards the hypothesis.  There are 

four main causes for prevention of quantitative agreement between the experimental data 

and the theoretical analyses.  First, the AgNPs are not monodisperse as the theory 

requires.  In fact, they are quite polydisperse.  Second, the polydisperse AgNP solution 

contains significant numbers of particles that do not fall within the quasi-static limit (i.e. 

they are not negligible in size compared to the wavelength of light).  The presence of 
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large particles is also the reason that the measured AgNP absorbance is significantly red-

shifted from the theoretical peak.  Third, each fluorophore has a different quantum yield 

which is expected to have a significant impact on the potential of fluorescence 

enhancement, regardless of the wavelength.  Finally, the theoretical analysis does not 

take into account the changes in local field intensity due to multiple AgNP attached to the 

SAv molecule, which is expected to occur (see Chapter 4).  Further, the number of dimers 

and higher-order aggregates formed by AgNP and the SAv molecules is expected to 

increase with the concentration of AgNP. 

 Most of the listed limitations for quantitative comparison are irreconcilable; 

however, the quantum yield of each fluorophore can be found in the literature.  Equation 

1 shows that, on a first-order approximation, the intrinsic quantum yield is inversely 

proportional to the fluorescence enhancement.  Therefore, the contribution of the intrinsic 

quantum yield can be eliminated and the contribution of the local field intensity estimated 

by correcting for quantum yield.  This correction is achieved by simply multiplying the 

observed SEF by the intrinsic quantum yield.  As an example, if an emitter had a 

quantum yield of 0.5, than the approximation is that the local field intensity must be 

responsible for at least 50% of the enhancement.  Figures 3.10 and 3.11 show the 

fluorescence enhancement corrected for quantum yield for AgNP:SAv-fluorophore molar 

ratios of 0.1 and 10, respectively.  Figure 3.10 demonstrates that at low AgNP:SAv ratios, 

the accepted theory holds that SEF is maximized near the resonant frequency of the mNP 

(demonstrated by absorbance).  Figure 3.11 demonstrates that at high AgNP:SAv ratios 

the accepted theory is no longer correct and SEF becomes maximized in the NIR where 

the quality factor is also maximized.  Further, the enhancements due to local field 
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intensity, as well as the total enhancement, are significantly larger for NIR dyes far from 

the resonant frequency of an AgNP monomer in comparison to the dyes closer to the 

resonant frequency (or absorbance maximum).  The additional enhancement is likely due 

to the increase in aggregates formed around the labeled-SAv molecules, which is 

expected to create ‘hot spots’ where SEF can be extremely large
46

. 

 

 

Figure 3.10.  Fluorescence enhancement (*corrected for quantum yield) versus excitation 

wavelength for each fluorophore at a molar ratio of 0.1 AgNP:SAv-fluorophore plotted with the 

absorbance of AgNP on an arbitrary scale.  Error bars (hidden by the markers) indicate +/- 

one standard deviation at each data point.  
 

 

 



43 

 

 
Figure 3.11.  Fluorescence enhancement (*corrected for quantum yield) versus excitation 

wavelength for each fluorophore at a molar ratio of 10 AgNP:SAv-fluorophore plotted with the 

quality factor of AgNP on an arbitrary scale..  Error bars indicate +/- one standard deviation 

at each data point.  
 

 

 

3.4. CONCLUSIONS 
 

In this chapter, it was demonstrated that the currently accepted theory predicting 

maximized SEF near the resonant frequency of a plasmon-active nanostructure is 

dependent on the amount of inner-filtering.  Further, it was shown that NIR fluorophores, 

significantly red-shifted from the resonant frequency of Ag, can experience substantial 

SEF.  The experimental data agreed with the qualitative trends expected from theory; 

however, the magnitude of enhancement for IRDye 800CW, in particular, was far beyond 
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the predicted value.  It is expected (though not tested in this chapter) that the formation of 

aggregates may be responsible for the increased magnitude of enhancement.  The effect 

of aggregation on the SEF process is studied in Chapters 5 and 6.  The findings in this 

chapter are valuable for multiple reasons.  First, it opens the doors for further research 

involving fluorophores in the NIR range that have not previously been widely expected to 

demonstrate significant SEF.  Second, it suggests that a non-specific interaction between 

AgNP and labeled-SAv can be easy and powerful without significant inner-filtering if 

using a NIR dye. Further evidence of interaction between AgNP and SAv is shown in 

Chapter 4.  Third, though not tested directly, the findings suggest that Ag may be a better 

material choice than Au for NIR-SEF because Ag is expected to have less inner-filtering 

in combination with a larger quality factor. 
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CHAPTER 4. A COMPARISON OF CARRIER 

PROTEINS 

 

4.1. INTRODUCTION 
 

Fluorescence-based assays frequently make use of a fluorophore-conjugated biomolecule 

as a carrier for detection.  These fluorophore-labeled biomolecules enable indirect 

detection of a target antigen by binding specifically to the target and thus providing a 

fluorescent signal that is proportional to target concentration.  Carrier biomolecules can 

be in the form of DNA, RNA, oligonucleotides, proteins, or peptides.  Proteins are a 

common carrier of fluorophores in various immunoassays including the prevalent 

Western blot and fluorophore-linked immunosorbent assay (FLISA).  The most 

commonly used carrier proteins are streptavidin (SAv), immunoglobulin G (IgG), and 

IgG fragments.  SAv is a tetrameric, bacterium protein that can bind up to four biotin 

molecules.  The SAv – biotin interaction forms one of the strongest non-covalent bonds 

in nature
111

.  For this reason, antibodies are often conjugated with biotin and 

subsequently probed with labeled-SAv as the secondary, or tertiary, detection antibody.  

IgG is an antibody protein found in the serum of humans and other animals.  The whole 

IgG molecule consists of two identical variable regions and one constant region, all 

connected by disulfide bonds in the ‘hinge’ regions.  The variable regions can differ from 

molecule to molecule and are responsible for the ability to bind to a specific antigen.  The 

constant region remains identical from molecule to molecule (for a given animal) and is 
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usually used as the target for subsequent antibodies in immunoassays.  When used as the 

final detection antibody it is common for fragments of the IgG molecule to be used 

without the constant region.  The antibody fragments come as either a single fragment 

antigen-binding (Fab) region or both antigen-binding (F(ab’)2) regions connected by 

disulphide bonds.  Figure 4.1 shows the structure of SAv and IgG.  The Fab regions are 

identical and located above the ‘hinge’, while the constant region is below the ‘hinge’.  

Various enzymes are used to cleave specific portions of the IgG molecule in order to 

isolate the fragments. 

Successful SEF has been demonstrated with labeled SAv and citrate-stabilized 

AgNP in Chapter 3; however, it remains unclear whether SAv is the best choice for 

carrier protein.  Further, to enable future implementations of SEF in a multiplexing 

format, SAv cannot be used solely, as a different detection antibody must be used to 

locate a second antigen.  It is hypothesized that the physical size and shape of these 

carrier proteins may be able to influence the ability to enhance the fluorescent signal from 

the fluorophores they carry.  This hypothesis is tested in three parts.  First, it is 

hypothesized that the size of the carrier protein is important because it determines the 

average distance of the fluorophores to the nanoparticles.  Second, it is hypothesized that 

the size and shape of the carrier protein determines the number of nanoparticles that can 

be bound simultaneously per protein, as well as distance between the nanoparticles.  

Third, it is hypothesized that the shape of the carrier protein determines the number of 

possible orientations between nanoparticles and the likelihood of the fluorophores to be 

in the optimal position for plasmon enhancement.  To test these hypotheses, SAv, IgG, 

and F(ab’)2 proteins were experimentally and theoretically compared for performance in 
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surface-enhanced fluorescence using IRDye 800CW as the fluorophore and citrate-

stabilized AgNP as the plasmon-active substrate. 

 

 

Figure 4.1.  3D models showing the size and structure of SAv (5 x 4.5 x 4.5 nm), lower 

left
112

, and IgG (16 x 15 x 5 nm), right
113

.  F(ab’)2 is equivalent to IgG without the 

constant region below the ‘hinge’ (circled).  

 

 

 

4.2. MATERIALS AND METHODS 
 

Materials.  SAv and IgG (goat anti-rabbit) were acquired pre-labeled with IRDye 

800CW (LI-CO , Lincoln, NE).  F(ab’)2 (purified non-immunized donkey) was 

purchased unconjugated (Jackson ImmunoResearch Laboratories, West Grove, PA) and 

subsequently labeled with IRDye 800CW – NHS ester (LI-COR, Lincoln, NE) using a 

common labeling technique
114

.  AgNP were acquired at a stock concentration of ~ 20 nM 
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with an average diameter of ~ 20 nm (LI-COR, Lincoln, NE).  All dilutions were 

performed with ultrapure water from a Milli-Q system (Millipore).  All reagents were 

used as received and handled per the manufacturer’s instructions, unless otherwise noted. 

Absorbance measurements.  Absorbance measurements were conducted in a 96-

well plate using a Synergy 4 Hybrid Microplate Reader (BioTek Instruments Inc., 

Winooski, VT).  SAv, F(ab’)2, and IgG at various concentrations were mixed with 0.1X 

AgNP (~ 2nM) by adding 50 μl of protein diluted in ultrapure water to 50 μl of AgNP 

and then incubating for 1 hour at room temperature.   

Fluorescence measurements.  Fluorescence measurements were conducted in 

384-well plates using an Odyssey Sa Infrared Imaging System (LI-COR Biosciences, 

Lincoln, NE).   

Boundary element method simulations.  Electromagnetic field enhancement 

was calculated using a freely distributed MATLAB toolbox incorporating the boundary 

element method (BEM)
115

.  A custom program was developed to calculate the electric 

field modulus between a pair of AgNP under the quasi-static approximation (Appendix 

A). 

 

4.3. RESULTS AND DISCUSSION 
 

Protein-nanoparticle geometry considerations.  As stated before, it is expected that the 

physical size and geometry of SAv, F(ab’)2, and IgG has considerable impact on their 

ability to create enhanced electromagnetic fields when aggregating with citrate-stabilized 
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AgNP.  Figure 4.2 illustrates this point by presenting examples of possible binding 

arrangements between the protein and AgNP.  The simplest interaction occurs between 

SAv and AgNP.  With an approximately cube-like structure of 5 nm sides (see Figure 

4.1), SAv can only bind a maximum of two 20 nm AgNP simultaneously due to 

geometric limitation (i.e. SAv is too small to contact three 20 nm AgNP simultaneously 

when they are packed as closely as possible).  Figure 4.2(a) shows that a third AgNP 

cannot make contact with the SAv when two AgNPs are already in contact.  When 

contacting two AgNP simultaneously, the SAv molecule always creates a gap of 

approximately 5 nm.  The antibody fragment, F(ab’)2, consists of two identical structures 

that can be approximated as square prisms with 5 nm sides and a length of 7 nm (see 

Figure 4.1).  The two structures are connected by a disulfide ‘hinge region’ which creates 

a gap on the order of 1 nm.  Figure 4.2(b) shows that F(ab’)2 can contact a total of four 

AgNP simultaneously.  In this case, the distance between any two AgNP can vary 

between 5 nm and 15 nm.  It should be noted that when the distance is minimized (see 

Figure 4.2(b) dotted lines) there is only a small probability that the attached 

fluorophore(s) are located directly between the AgNP.  On the other hand, the probability 

that the fluorophore(s) are located directly between the AgNP is maximized when the 

distance is also maximized.  It is expected that this relationship is not ideal for 

fluorescence enhancement.  The whole antibody, IgG, consists of three nearly identical 

structures that can be approximated again as square prisms with 5 nm sides and a length 

of 7 nm each.  The three structures are held together by ‘hinge regions’ that consist of 

disulfide bonds creating gaps of approximately 1 nm.  Figure 4.2(c) shows that IgG can 

bind up to three coplanar AgNP at a time.  It is expected that two more AgNP could 
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simultaneously be bound, including one in front of and one behind the structure in the 

diagram, giving a total of up to 5 AgNP at once.  There are two likely orientations for the 

coplanar capacity, shown as the solid particles and dotted lines respectively.  The dotted 

lines are expected to occur less frequently as the protein would likely make contact with 

the AgNP prior to allowing it to wedge itself between multiple regions.  In this case, the 

distance between AgNP can vary between 5 nm and 15 nm.  In contrast to F(ab’)2, the 

fluorophore(s) on IgG are likely to be directly between two AgNP when the distance is 

minimized.  This orientation would require the AgNP to be positioned as shown by the 

dotted lines in Figure 4.2(c), which is improbable due to unfavorable entropy.  It should 

be noted that it is possible that IgG could bind more than three coplanar AgNP 

simultaneously if the hinges are positioned correctly and the AgNP assemble in an 

appropriate orientation.  Nonetheless, these diagrams are intended to compare the binding 

capacities and probable orientations of the AgNP in relation to the protein and ultimately 

the location of the fluorophore(s) relative to the AgNP.  A comparison of these diagrams 

suggests that SAv is most probable to position the fluorophore(s) directly between AgNP 

with a minimal gap. 
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Figure 4.2.  Diagram showing possible interaction orientations for 20 nm AgNP with (a) 

SAv, (b) F(ab’)2, and (c) IgG.  The colored blocks represent the proteins and are drawn to 

scale relative to the 20 nm AgNP.  The gaps between blocks for (b) F(ab’)2 and (c) IgG 

represent the ‘hinge regions’.  

 

 

Absorbance measurements were made at various ratios of protein to AgNP to 

experimentally investigate the relative number of AgNPs that each protein can 

simultaneously bind.  Aggregation of the AgNPs induced by protein interaction can be 

detected as a distinct change in the absorbance spectrum in comparison to AgNPs in the 

absence of protein.  Specifically, the plasmon resonance peak is reduced and the 

spectrum becomes relatively flat.  The absorbance of each protein at the various ratios to 

AgNPs can be seen in Figure 4.3.  The amount of protein required to aggregate the 

AgNP, and thus change the absorbance spectrum, is indicative of the number of AgNP 

each protein can bind simultaneously.  Specifically, the protein that distorts the plasmon 

resonance of the AgNP monomers at the lowest concentration likely binds the largest 

number of AgNP per protein.  Likewise, the protein requiring the highest concentration to 

distort the plasmon resonance of the AgNP monomers likely binds the least number of 

AgNP per protein.  SAv causes sufficient aggregation to significantly impact the 

spectrum at a ratio of 5 molecules per AgNP and completely flattens it at 10 molecules 
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per AgNP.  F(ab’)2 completely flattens the spectrum at a ratio of 5 molecules per AgNP, 

suggesting that the binding capacity of F(ab’)2 is larger than that of SAv.  IgG almost 

flattens the curve at just 2 molecules per AgNP, suggesting that its binding capacity is 

even larger yet.  This experiment is not intended to quantitatively compare the binding 

capacities; however, it does provide qualitative data in agreement with the binding 

capacity predictions based on the geometry of each biomolecule and AgNP. 
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Figure 4.3.  Absorbance measurements of (a) SAv, (b) F(ab’)2, and (c) IgG mixed with 

AgNP at various molar ratios (protein:AgNP).  The AgNP concentration was held 

constant at ~ 2 nM, while the protein concentrations varied.  Aggregation causes the 

resonant peak to decrease and the spectra to become flat.  

 

 

Simulated electromagnetic field intensity.  As stated before, it is expected that 

the fluorescence enhancement using the various biomolecules may also differ due to the 
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physical distance between multiple AgNP bound by the proteins.  To study this effect, 

BEM simulations were conducted on a pair of AgNP at separation distances of 5, 10, and 

15 nm (see Figure 4.4).  The calculations were made under the quasi-static 

approximation, which assumes the conduction band electrons move as an incompressible 

fluid, or cloud, and thus limits the induced oscillations to dipoles.  This assumption is 

known to be valid when the AgNP diameter is significantly smaller than the wavelength 

of excitation light
116

.  The results provide both quantitative and qualitative insight into the 

distance effect.  As the AgNP pair is brought closer together the electromagnetic field is 

further confined creating larger field intensity.  Figure 4.4 shows the simulated electric 

field modulus (|E|
2
) on identical logarithmic color map for each distance.  At 15 nm, the 

AgNP dimer have little influence on one another and the field between only reaches 2- or 

3-fold enhancement over the far-field intensity.  At 10 nm, the particles begin to show a 

synergistic effect where the individual dipole fields are not only excited by the far-field 

but also one another.  Further, they become able to confine the energy into a smaller 

volume than individually possible.  This enables the intensity to achieve an order of 

magnitude enhancement.  Further enhancement occurs at 5 nm where the energy is 

confined to an even smaller volume.  It is theoretically possible to achieve greater field 

enhancement by using a smaller carrier protein, and/or, using slightly larger AgNP.  This 

may prove difficult experimentally, however, for two reasons.  SAv is the smallest, 

commonly used carrier protein in bioassays.  A smaller protein may not bind multiple 

AgNP as easily or may be difficult to achieve a useful degree of labeling (fluorophores 

per protein).  Also, larger AgNP diffuse more slowly and do not aggregate as quickly.  
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Further, the molar concentration decreases as one increases the size of AgNP for a given 

amount of silver, which further slows the aggregation process. 
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Figure 4.4.  Simulated, relative electromagnetic field intensity around a pair of 20 nm 

diameter AgNP with separation distances of (a) 5 nm, (b) 10 nm, and (c) 15 nm.  The 

simulations were conducted with light propagation perpendicular to the particle pair axis 

(y-direction) at a frequency representative of 785 nm wavelength excitation.  The 

polarization is set so that the electric field is parallel with the particle pair axis (x-

direction).  

 

 

Fluorescence enhancement.  Experiments were conducted with labeled SAv, 

F(ab’)2, and whole IgG to determine the ability of each biomolecule to enable 

fluorescence enhancement when combined with the AgNP solution.  Figure 4.5 shows the 

fluorescence enhancement at various molar ratios of protein to AgNP.   

                          
               

           
 

As expected, SAv demonstrates the largest enhancement of 1000-fold at a ratio of 1 

molecule to 2 AgNP.  At lower protein concentrations, however, it only achieves 100-

fold enhancement.  This may be due to the more concentrated solutions of protein being 

able to create higher-order aggregates that further enhance the electromagnetic field 

intensity, while the lower concentrations are expected to form primarily dimers.  Two 

data points at the highest SAv:AgNP ratios were omitted due to detector saturation.  

F(ab’)2 demonstrates the lowest levels of enhancement, ~20-fold.  The enhancement for 

F(ab’)2 appears relatively independent of protein:AgNP ratio which suggests the distance 

between the AgNPs as the limiting factor, rather than protein-AgNP interaction.  IgG 

achieves an enhancement of ~60-fold at all ratios of protein:AgNP.  Again, protein-AgNP 

interaction is probably not limiting in this case.  As expected, all three carrier proteins 

show a trend of reduced fluorescence enhancement at the highest protein:AgNP ratios.  
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This is likely due to an increase in monomers coated with protein which are subject to 

substantially smaller electric field intensities in comparison to dimers and higher-order 

aggregates.  The standard deviations of each data point are relatively small for all three 

proteins, but clearly smallest for SAv.  This may be due to the consistent position of SAv, 

and thus the fluorophores, in relation to the AgNP as discussed previously. 

 

 

Figure 4.5.  Fluorescence enhancement of dye-labeled SAv, F(ab’)2, and IgG at various 

molar ratios of protein to AgNP.  Error bars display +/- 1 standard deviation at each data 

point.  

 

 

Assay potential.  While enhancement of the fluorescent signal is desirable, real-

world applications desire a technology that is also linear in respect to signal versus 
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concentration and ultimately achieves greater LOD than available with traditional 

approaches.  To determine the assay potential of each carrier protein, a 2-fold dilution 

series, 131 nM down to 62.5 fM, was incubated with and without AgNP in a 384-well 

plate.  The data were then plotted to check linearity as well as empirical LOD.  SAv-

800CW alone is linear from ~64 pM on up to an undetermined limit with an empirical 

LOD of 16 pM (see Figure 4.6).  The addition of AgNP improves the LOD 4-fold to 4 

pM.  The data remain relatively linear until instrument saturation occurs at concentrations 

above 8 nM. 

 

 

Figure 4.6.  Fluorescence intensity versus SAv-800CW concentration with and without 

AgNP.  Error bars at +/- 1 standard deviation at each data point are included, though they 

are smaller than the data markers and therefore hidden.  
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F(ab’)2-800CW alone is linear from ~64 pM on up with an empirical LOD of 32 

pM (see Figure 4.7).  The addition of AgNP improves the LOD 2-fold to 16 pM.  The 

data remain linear until instrument saturation occurs at concentrations above 65.5 nM. 

 

 

Figure 4.7.  Fluorescence intensity versus F(ab’)2-800CW concentration with and 

without AgNP.  Error bars at +/- 1 standard deviation at each data point are included, 

though they are smaller than the data markers and therefore hidden.  

 

 

IgG-800CW alone is linear from ~64 pM on up with an empirical LOD of 32 pM 

(see Figure 4.8).  The addition of AgNP improves the LOD 4-fold to 8 pM.  The data 

remain linear until instrument saturation occurs at concentrations above 16.4 nM. 
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Figure 4.8.  Fluorescence intensity versus IgG-800CW concentration with and without 

AgNP.  Error bars at +/- 1 standard deviation at each data point are included, though they 

are smaller than the data markers and therefore hidden.  

 

 

4.4. CONCLUSIONS 
 

In this chapter, it was hypothesized that the physical size and shape of carrier proteins 

play an important role in the ability to enhance the fluorescent signal from the 

fluorophores they carry when combined with AgNP in solution.  The effect of protein 

size on distance between bound AgNP and thus electromagnetic field intensity was 

studied using BEM simulations.  The effect of protein size on the number of bound AgNP 
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was experimentally studied by measuring aggregation at various protein/AgNP ratios by 

changes in absorbance.  The effect of protein shape on possible AgNP-fluorophore 

orientations was qualitatively discussed based on geometric limitations.  To study these 

effects in combination, experiments were conducted to measure fluorescence 

enhancement with dye-labeled SAv, F(ab’)2, and IgG.  Each protein demonstrated the 

ability to enhance fluorescence, maintain a linear relationship with signal versus 

concentration, and ultimately improve the LOD.  SAv was determined to be the best 

choice for carrier protein due to its unmatched ability to generate 1000-fold enhancement 

with the smallest standard deviations. 
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CHAPTER 5. SURFACE-ENHANCED 

FLUORESCENCE VIA COLLOID 

AGGREGATION IN A DROPLET-BASED 

MICROFLUIDIC DEVICE 

 

This chapter is based on previously published work by the author
117

.  Copyright Springer 

and Plasmonics, 4, 2009, 273-280, Near-infrared metal-enhanced fluorescence using a 

liquid-liquid droplet micromixer in a disposable poly(methyl methacrylate) microchip, 

Furtaw, M.D., Lin, D., Wu, L., and Anderson, J.P.  Reprinted with kind permission from 

Springer Science and Business Media.  

 

5.1. INTRODUCTION 
 

Fluorescence spectroscopy is a sensitive and relatively simple method of detection used 

in biotechnology research for decades.  Recent trends in research however, have 

demanded the ability to push the limit of detection (LOD) beyond traditional capabilities 

for increased sensitivity of fluorescence based assays.   Improvements in the LOD can be 

achieved by reduced sample volumes, lower background signals, and increased 

absorption cross-section, photostability, and quantum efficiency of fluorophores.     

Microfluidics, near-infrared (NIR) fluorescence, and surface enhanced fluorescence 
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(SEF) are emerging technologies that can improve the LOD but have not been studied in 

combination. 

Microfluidic systems are becoming increasingly popular in biotechnology 

research and offer many advantages over the traditional macroscale approaches.  Small 

reagent volumes, shorter reaction times, parallel operation, and the ability to precisely 

control and study the interaction of biological samples make microfluidic based assays 

highly appealing
118-120

.  While the benefits of microfluidics are astonishing there are 

inherent difficulties that must be overcome.  One such problem arises when detecting 

dilute sample concentrations in microfluidic channels, especially in continuous flow 

devices where the exposure time becomes limited, resulting in reduced signal and poor 

signal-to-noise.  Fluorescence detection with NIR fluorophores in combination with SEF 

may provide a solution for the exposure time limitations of continuous flow 

microdevices.  NIR fluorescence is increasingly being used in biological imaging and 

molecular applications because it provides significantly lower background signal from 

scatter than visible wavelength excitation
121, 122

.  NIR fluorescence has also been 

demonstrated to be advantageous in microfluidic applications due to the significant 

reduction in autofluorescence of common plastics used in microchip fabrication
30, 123-126

.  

While NIR fluorophores greatly increase signal-to-noise they can be difficult to detect 

with traditional fluorescence microscopy as the longer wavelengths lead to reduced 

excitation intensities from common Hg lamps and significantly lower quantum efficiency 

of most CCD cameras.  SEF has emerged as a promising technology that can greatly 

increase the quantum yield of fluorophores, which can overcome the limited exposure 

times of continuous flow microfluidic devices and the lower efficiencies of NIR 
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fluorescence microscopy.  SEF has been used to provide enhancement of fluorophores in 

the visible spectrum as well as the NIR.  Background signal from silver nanostructures in 

the visible spectrum, however, may adversely affect the overall signal-to-noise ratio of 

the system.  Surface enhancement in the NIR provides the benefits of enhanced emissions 

with low background signal
97

. 

SEF can improve the quantum yield and photostability of a fluorophore when it is 

located in close proximity to a metal surface.  Unlike fluorescence excitation in free 

space, an excited fluorophore near a metal surface can utilize an additional pathway to 

return to the ground state by inducing surface plasmons (SPs)
1, 71, 127

.  This additional 

radiative decay mechanism reduces the life-time of the fluorophore and thus improves the 

photostability
128-130

.  The induced SPs propagate along the metal surfaces and either emit 

photons at the same wavelength as the fluorophore or dissipate as thermal energy, 

depending on the ability for momentum, or wave vector matching at the metal-dielectric 

interface
61

.  Additionally, local electric fields around the metal surface can act as an 

antenna to increase the apparent absorption cross-section of the fluorophore
62

.  The 

increased excitation, reduced life-time, and additional emitted photons can lead to 

substantial improvements in quantum yield and photostability.  There are excellent 

reviews that discuss these mechanisms in greater detail
57, 61, 62, 69

. 

Research on SEF has focused mainly on flat metallic surfaces or glass slides 

coated with Al, Au or Ag nanostructures
88, 97, 131-134

, the latter known as silver island films 

(SIFs).  Solution-based SEF has received little attention in the literature even though it is 

highly desirable for solution based assays and medical imaging
69

.  The lack of 

publications involving SEF in solution may be due to the difficulty in controlling 
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aggregation and the position of fluorophores in relation to metal nanoparticles in 

suspension
135-139

.  Microfluidic technologies may overcome these difficulties but have not 

yet been used to study solution-based SEF, even though it has been used to study the 

related mechanisms involved in surface enhanced Raman scattering
140-144

.  The control of 

microfluidics in combination with the low background signal of NIR fluorescence 

provides an ideal system for the study of solution-based SEF. 

Here, we report on the use of a liquid-liquid droplet micromixer in a disposable 

poly(methyl methacrylate) (PMMA) microchip to study the effects of salt concentration, 

colloid concentration, and mixing efficiency on SEF of NIR fluorophores with 

aggregated Ag nanoparticles using conventional fluorescence microscopy.  Microfluidics 

provides the advantages of less sample volume, easy manipulation of solution 

parameters, and controlled mixing and aggregation of the nanoparticles.  Furthermore, the 

use of a water-in-oil droplet micromixer overcomes the “memory” effect of particles 

sticking to the channel walls and eliminates Taylor dispersion
144, 145

, while maintaining 

discrete packets of known contents without cross contamination.  Plastic microchips are 

desirable for their low-cost, ease of fabrication, and optical clarity, especially in the NIR 

wavelengths
125

.  PMMA has the additional benefit of neutral hydrophobicity (i.e. contact 

angle of approximately 90°), which minimizes interaction with proteins and other 

biological samples
124

, relative to more hydrophobic polymer materials commonly used as 

microchip substrates.  The NIR dyes not only provide lower background signals, but also 

demonstrate significant enhancement from SEF when combined with Ag 

nanostructures
88, 97

.  Aggregated silver nanoparticles (AgNP) prove useful in solution-

based SEF for their optical properties
61

 and compatibility with biological samples
69

. 
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5.2. MATERIALS AND METHODS 
 

The experimental apparatus and microchip geometry are shown in Figure 5.1.  Syringe 

pumps (New Era Pump Systems Inc., Farmingdale, NY) provide flow through each inlet 

channel.  The colloid and dye solutions consistently form droplets bound by oil with 

volumes that can be manipulated and reproducibly controlled by changing the flow rates 

of the aqueous and oil solutions in relation to one another, see Figure 5.2.  For the 

purposes of this study the droplet volumes were held constant at an arbitrary volume of 

approximately 35 nL.  Detailed descriptions of water-in-oil droplet formation, mixing in 

serpentine channels, and AgNP preparation can be found in the literature
100, 145-148

.  The 

AgNP are characterized by dynamic light scattering measurements using a Brookhaven 

90Plus particle sizer (Brookhaven Instruments Corporation, Holtsville, NY), which 

indicate a normal distribution of nanoparticle size with a mean, intensity-weighted 

diameter of 76 nm and number-weighted mean of 21 nm.  The particle density can be 

calculated using the average diameter and known amount of Ag in the solution.  IRDye 

800CW-streptavidin dye (LI-COR Biosciences, Lincoln, NE) is diluted to 1 µg mL
-1

 in 

each required phosphate buffered saline (PBS) solution.  PBS is used as the aggregation 

enabling salt for its commonality and compatibility with biomolecules.  Deionized water 

is used for all dilutions.  Typical cooking oil is used to form droplets in the microchannel 

as it is readily available and immiscible to the aqueous solutions.  All solutions are used 

as received without further filtering. 
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Figure 5.1.  Diagrams showing (a) the experimental apparatus and (b) microchip 

geometry with image acquisition point designated by X1, X2, and X3.  A CCD camera 

acquired images through a fluorescence microscope with a 10X objective lens using Hg 

arc lamp excitation.  A filter cube set appropriate for IRDye 800CW was used with 

excitation, dichroic, and emission peaks at 740, 770, and 780 nm respectively.  The 

PMMA microchip was fabricated using a hot-embossing technique and bonded with a 

thin layer of adhesive.  Channel dimensions are approximately 200 μm across and 200 

μm in depth.  Syringe pumps provide flow rates of 1 µL min
-1

 for the colloid and dye 

solutions and 3 μL min
-1

 for the oil which consistently form droplets of approximately 35 

nL that travel through the microchannel at a velocity of 2 mm s
-1

.  
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Figure 5.2.  The liquid-liquid droplet micromixer allows easy manipulation and control 

of various parameters including the droplet volume.  Droplets of (a) small, (b) medium, 

and (c) large volume are shown as an example of the capabilities of the device.  Other 

parameters that can be easily manipulated include the relative flow rates of each reagent 

as well as the mean velocity of the combined solutions and thus the reaction rate.  Images 

were taken with a 10X objective lens under brightfield excitation without post-processing 

other than simple cropping and adding scale bars.  

 

 

Chip fabrication.  The liquid-liquid droplet micromixers are fabricated using a 

hot-embossing technique in PMMA.  PMMA is purchased as 2 mm thick sheets.  A steel 

dye was milled to leave the necessary geometry for embossing.  Mold release agent is 

sprayed on all surfaces prior to the embossing process to allow easy separation.  A heated 

plate press (Specac Ltd., United Kingdom) is operated at 90°C to heat the PMMA chip 
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near its glass transition temperature.  A force load of 3.5 tons is slowly applied to 

displace the desired material forming the microchannel geometry.  The device is slowly 

brought back to room temperature before removing the embossed microchip so as not to 

allow internal stresses to form cracks around the delicate features.  The microchip is then 

cleaned with methanol and deionized water before being placed on a hot-plate to rid the 

surfaces of moisture. 

The mating chip is cleaned and then coated with a thin layer of UV-curable 

adhesive (Summers Optical, Hatfield, PA) using a spin-coater (Laurell Technologies 

Corp., North Wales, PA).  The prepared chips are again stacked in the heated plate press 

at 80°C and a force load of 1.2 tons for approximately 15 minutes.  We find this step to 

be convenient for the removal of air bubbles between the chip surfaces.  Finally, the chip 

is placed under a UV-lamp for at least an hour to fully cure the adhesive.  PMMA does 

not transmit light in the deep UV (< 300 nm) but allows sufficient light in the 350-400 

nm range to enable curing of the adhesive. 

Data acquisition.  The microchip is placed, with all required tubing attached, 

under a fluorescence microscope (Olympus America Inc., Center Valley, PA) with a 10X 

objective lens and mercury arc-lamp excitation.  A filter cube (Chroma Technology 

Corp., Bellows Falls, VT) designed specifically for IRDye 800CW is used with 

excitation, dichroic, and emission peaks at 740, 770, and 780 nm respectively.  Images 

are acquired in TIFF format with a 16-bit, monochrome CCD camera (Hamamatsu 

Photonics K. K., Japan) which is controlled by the manufacturer supplied software.  

Fluorescence microscopy with NIR fluorophores and broadband excitation typically 

require exposure times on the order of seconds.  SEF in our system enabled the exposure 



71 

 

time to be reduced to 50 ms providing quality images of the moving droplets with 

negligible smearing. 

Image analysis.  All image analysis is completed using Image J software (U. S. 

National Institutes of Health, Bethesda, MD).  Background subtraction for each data set 

used droplets at various positions along the microchannel that contained colloids with no 

fluorophore present.  Individual droplets are analyzed using the ‘Particle Analysis’ 

feature included with the software.  When used for visual comparison, images are 

processed with equal adjustments to the brightness, contrast, and applied false color.  All 

fluorescence enhancement data is based on the baseline intensity acquired from the dye 

solution mixed with deionized water in the absence of AgNP after background 

subtraction. 

 

5.3. RESULTS AND DISCUSSION 
 

The effect of salt concentration on fluorescence enhancement demonstrates an interesting 

trend of modest signal increases at both dilute and highly concentrated solutions with a 

significant but narrow peak in fluorescence intensity (see Figure 5.3).  Mixing the IRDye 

800CW-SAv diluted in deionized water only with the AgNP gives a modest 2 to 3-fold 

enhancement.  This can be attributed to the lack of aggregation due to the electrostatic 

repulsion between individual nanoparticles in the absence of salt.  The aggregation 

process, and thus SEF, increase significantly with low concentrations of salt.  The 

increased extinction of aggregated AgNP is known to be dominated by scattering in the 
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NIR, which allows SPs to radiate into the far-field, rather than dissipate as heat
61

.  Our 

preliminary results suggest an optimal concentration for our system around 0.1X PBS 

which provides a 35-fold fluorescence enhancement when mixed with the AgNP.  Further 

addition of salt beyond the point of neutralizing the electrostatic charge proves 

detrimental to the fluorescence signal enhancement.  Zhang et al. attribute this to a 

migration of loosely attached Ag atoms upon bonding with Cl
-
 ions, which later reattach 

to form a thin layer of non-crystalline Ag of high light absorptivity and low 

conductivity
149

.  In their work, electron micrographs show geometrical changes in the 

aggregated AgNP, which cause smoothing in the transitional areas between neighboring 

nanoparticle surfaces.  The presence of a thin layer of non-crystalline Ag is consistent 

with reduced fluorescence enhancement as the layer of low conductivity would inhibit SP 

propagation, the smoothing between nanoparticles would reduce the electromagnetic field 

amplification for enhanced excitation, and the light absorption property would tend to 

reduce scattering and quench the fluorophores rather than improve their quantum yield. 
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Figure 5.3.  Mean fluorescence enhancement of droplets containing IRDye 800CW-SAv 

(1 µg mL
-1

) in various concentrations of PBS mixed with AgNP at a density of ~ 1x10
7
 

particles nL
-1

.  Data were obtained at position X3 (Figure 1b) using 25 images acquired at 

a frequency of 1 Hz for each salt concentration.  Error bars show the standard deviation 

of fluorescence enhancement at each salt concentration and demonstrate the consistency 

of the data.  When no salt is added the AgNP remain electrostatically repelled to one 

another reducing the aggregation process.  Low concentrations of salt allow the particles 

to become neutrally charged enabling the aggregation process to occur at a rapid rate.  

Higher concentrations of salt react with the AgNP to create a loosely attached, non-

conductive layer
149

 reducing the development of SPs and thus inhibit SEF.  

 

 

The effect of colloid concentration on fluorescence enhancement is shown in Figure 5.4.  

All data points were corrected for background signal at the highest concentrated colloid 

solution.  Lower concentrations demonstrate minimal fluorescence enhancement which 

can be attributed to the significantly lower probability of AgNP-fluorophore interaction 

and lack of sufficient colloid aggregation.  An increase in colloid concentration enables 

the formation of larger aggregates which increases the scattering cross-section in the NIR 

(see Chapter 6).  The probability of AgNP-fluorophore interaction beneficial to SEF is 
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also increased with the greater AgNP surface area and density.  The linear trend in 

enhancement of the more concentrated colloid solutions suggests the possibility of further 

improvement with even denser solutions of colloids.  This trend is expected to reach an 

asymptotic value and perhaps even begin to decrease at higher concentrations of AgNP 

due to the increase in viscosity and eventual blockage of the excitation light from the 

fluorophores in the dilute dye solution. 

 

 

Figure 5.4.  Mean fluorescence enhancement of droplets containing IRDye 800CW-SAv 

(1 µg mL
-1

) in 0.1X PBS mixed with various dilutions of AgNP.  Data were obtained at 

position X3 (Figure 1(b)) using 25 images acquired at a frequency of 1 Hz for each 

colloid solution.  Error bars show the standard deviation of fluorescence enhancement for 

each colloid solution and demonstrate the consistency of the data.  Low concentrations of 

AgNP demonstrate only slight fluorescence enhancement due to the lack of aggregation 

and a reduced probability of interaction between the fluorophores and the AgNP.  Higher 

concentrations of AgNP further the aggregation process and enhance the fluorescence 

signal in a linear trend increasing with particle density and particle surface area.  
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The effect of mixing efficiency on fluorescence enhancement is studied by analyzing 

droplets at different positions within the serpentine microchannel, see Figure 5.5.  Flow 

rates are held constant so that further progression in the micromixer leads to increased 

mixing time and number of vortex rotations within the droplet, and thus mixing 

efficiency
147

.  Data were acquired at the three positions shown in Figure 5.1(b).  The 

fluorescence enhancement demonstrates a linear increase with distance traveled in the 

serpentine micromixer.  The lack of an asymptotic trend suggests that further 

enhancement may be possible further down the channel.  Physical interference between 

the outlet port and the microscope objective lens prevented data from being acquired 

beyond position X3.  Vortex rotations within the droplet are caused by the no slip 

condition at the microchannel wall, much like a rotating wheel on the ground, and thus 

increase linearly with channel distance.  The striation thickness is reduced with each 

rotation allowing diffusion to increase the mixing efficiency in a logarithmic trend.  This 

is interesting as it suggests that the unexpected linear process of fluorescence 

enhancement may not have been limited by mixing but rather by some other process, 

perhaps diffusive in nature, occurring locally around the aggregated structures.  The 

process of aggregation could also be responsible for the unexpected results as the 

localization of nanoparticles would likely lead to viscosity gradients within the droplet.  

Future research is required to determine if further, or more intense, mixing changes this 

trend and to characterize the mixing process involved with aggregation of nanoparticles. 
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Figure 5.5.  Effect of mixing efficiency on fluorescence intensity of droplets containing 

IRDye 800CW-SAv (1 µg mL
-1

) in 0.1X PBS solution mixed with AgNP at a density of 

~ 1x10
7
 particles nL

-1
.  Fluorescence was measured at three positions along the 

micromixer, designated as positions X1, X2, and X3, as shown in Figure 1(b).  The 

protein conjugated fluorophores and AgNP form aggregates as the droplets progress 

through the serpentine micromixer.  The aggregation process significantly enhances the 

fluorescence signal by amplifying the electromagnetic field around the aggregates, 

improving the excitation rate and increasing the scattering cross-section in the NIR, 

which enables the induced SPs to radiate into the far-field.  The lack of an asymptotic 

trend in the data indicates that further enhancement may be achievable with increased 

mixing time or a more intense mixing process.  

 

 

 

5.4. CONCLUSIONS 
 

In conclusion, we demonstrate a 35-fold increase in the detected signal of NIR 

fluorophores with SEF of aggregated AgNP in a PMMA microchip using traditional 

fluorescence microscopy.  Further, the relatively small standard deviations of 
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fluorescence intensity prove this method consistent and reproducible.  The use of our 

microfluidic device enables control of the aggregation process, easy manipulation of 

important parameters, and requires very small amounts of the dye and colloid solutions.  

The liquid-liquid droplet micromixer successfully aggregates the nanoparticles while 

maintaining individual packets of known contents for reproducible quantitative analysis.  

NIR fluorophores prove useful in researching SEF and should be taken into consideration 

when using continuous flow microdevices, especially when fabricated from commonly 

used plastics.  Future research will aim to determine the maximum fluorescence 

enhancement achievable with our system and to further characterize the processes 

involved in nanoparticle aggregation and SEF for future improvement in quantum yield, 

photostability, and ultimately the LOD.  System modifications, including the use of laser 

diode sources, will also be implemented to further improve the LOD. 
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CHAPTER 6. NEAR-INFRARED, SURFACE-

ENHANCED FLUORESCENCE IN SOLUTION 

 

This chapter is based on previously published work by the author
150

.  Copyright Springer 

and Plasmonics, 2013, in press, Near-infrared, surface-enhanced fluorescence using 

silver nanoparticle aggregates in solution, Furtaw, M.D., Anderson, J.P., Middendorf, 

L.R., and Bashford, G.R.  Reprinted with kind permission from Springer Science and 

Business Media. 

 

6.1. INTRODUCTION 
 

Fluorescence spectroscopy is used in many life science and clinical research diagnostic 

assays.  Improvements in the sensitivity and LOD of these assays may have profound 

implications.  In Chapter 5, it was demonstrated that salt concentration, AgNP 

concentration, and aggregation via mixing are important parameters that affect SEF.  

While the microfluidic format was useful for the preliminary research, current 

fluorescence users are not commonly using microfluidic-based assays.  To address the 

use of SEF in a format more compatible with current assays, we now further investigate 

these parameters in a microtiter plate format to determine the achievable enhancement in 

signal and LOD.  We demonstrate an easy-to-implement, inexpensive, NIR-SEF 

technique with 1000-fold LOD improvement of IRDye 800CW labeled streptavidin 
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(SAv-800CW) using ordinary immunoassay consumables and a NIR-fluorescence 

microtiter plate imager.  We introduce the technique which relies on aggregation of SAv-

800CW with AgNP at an optimized concentration of salt.  We then verify that the 

technique applies to other NIR fluorophores with similar spectral characteristics.  Finally, 

the technique is analyzed for possible assay implementation by characterizing its 

linearity, dynamic range, LOD, and repeatability. 

 

6.2. MATERIALS AND METHODS 
 

Materials.  IRDye 800CW labeled streptavidin (SAv-800CW) and silver nanoparticles 

(AgNP) at stock concentration of ~20 nM with an average diameter of ~20 nm were 

obtained from LI-COR Biosciences (Lincoln, NE).  DyLight 800 (Thermo Fisher 

Scientific, Rockford, IL) was purchased pre-conjugated to SAv, while Alex Fluor 790 

(Life Technologies,  Grand Island, NY) and CF790 (Biotium, Hayward, CA) were 

conjugated to SAv using a common NHS-ester labeling technique
114

.  SAv powder, 

molecular biology grade, was purchased from United States Biological (Marblehead, 

MA).  Sodium chloride (NaCl) was purchased from Sigma-Aldrich (St. Louis, MO).  All 

dilutions were completed using ultrapure, Milli-Q water from an EMD Millipore system 

(Billerica, MA).  All reagents were used as received unless otherwise noted. 

Absorbance measurements.  Absorbance (UV-VIS) measurements were made 

on an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies Inc., Santa 

Clara, CA).  Unlabeled streptavidin (SAv) was used for all absorbance measurements 



80 

 

with AgNP so that the dye would not impact the absorbance curves.  All measurements 

were taken with 10-fold diluted AgNP as the optical density cannot be measured reliably 

at stock concentration.  AgNP absorbance was measured by adding 2 ml of AgNP (~ 2 

nM) to 2 ml of dH2O.  The AgNP + SAv absorbance was measured by adding 2 ml of 

AgNP to 2 ml of 0.2 nM SAv in dH2O.  The AgNP + SAv & salt absorbance was 

measured by adding 2 ml of AgNP to 2 ml of 0.4 nM SAv in 5 mM NaCl.  All 

absorbance measurements were taken after 1 hour incubation at room temperature in 4 ml 

plastic cuvettes.  The cuvettes were carefully inverted 5 times prior to the measurement to 

re-suspend any larger aggregates. 

Dynamic light scattering.  Dynamic light scattering measurements were 

conducted on a 90Plus Particle Size Analyzer (Brookhaven Instruments Corp., Holtsville, 

NY) by adding 10 μl of solution from the absorbance cuvettes to 4 ml of dH2O in new 

cuvettes.  Polymer microspheres in water (Duke Scientific Corp., Palo Alto, CA), NIST 

traceable mean diameter 92±3.7 nm, were used as standards to ensure accuracy and 

stability of the instrument. 

Electron microscopy.  SEM images were acquired using a Hitachi S4700 field-

emission scanning electron microscope (Hitachi High Technologies America Inc., 

Schaumburg, IL) at the University of Nebraska – Lincoln.  The samples were 

immobilized on silicon wafers following a NIST-NCL joint protocol
151

.  The 

immobilized samples were sputter-coated with a thin layer of nickel.  TEM images were 

acquired using a Hitachi H7500 transmission electron microscope (Hitachi High 

Technologies America Inc., Schaumburg, IL) at the University of Nebraska – Lincoln.  

The samples were immobilized on silicon monoxide films supported with Formvar on a 
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200 mesh copper grid (Prod # 01830, Ted Pella Inc., Redding, CA) following a NIST-

NCL joint protocol
152

. 

Fluorescence measurements.  NIR-SEF was studied in 384-well optical bottom 

plates (Nunc, Rochester, NY) commonly used for immunoassays, including fluorescence-

linked immunosorbent assays (FLISA) and enzyme-linked immunosorbent assays 

(ELISA).  Figure 6.1(a) shows the steps which include:  SAv-800CW dilutions, the 

addition of AgNP or dH2O, sample incubation, and detection using an Odyssey Sa 

Infrared Imaging System (LI-COR Biosciences, Lincoln, Nebraska).  Specifically, Step 1 

involved the addition of 25 μl of SAv-800CW dilution in dH2O or 5 mM NaCl, as labeled 

in Figure 6.1(b-c).  Step 2 involved the addition of 25 μl of AgNP, at stock concentration 

(~ 20 nM), for NIR-SEF or dH2O for reference fluorescence.  The plate was then 

incubated in the dark at room temperature for 1 hour, allowing only diffusion-limited 

mixing.  Immediately following incubation, images were acquired at several detector gain 

intensities, Step 3, to make use of the maximum dynamic range of the instrument.  Raw 

images (in pseudocolour) at the lowest and highest gain intensity are shown in Figure 

6.1(b-c).  All sample data values were corrected for detector gain setting, using the value 

for each well at the highest gain prior to detector saturation.  The Odyssey Sa is a bottom-

reading, point-scanning fluorescence imager with a solid-state diode lasers at 685 and 

785 nm for excitation and filtered silicon avalanche photodiodes for detection.  The 785 

nm laser is used throughout this study. 
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Figure 6.1.  Diagram showing the 3 steps (a) required to enhance the fluorescence of 

SAv-800CW.  Sample dilutions of the protein-dye conjugate, two-fold from 16.4 nM to 

7.8 fM, along with two columns of background (right most) were imaged with various 

detector gain intensities to extend the dynamic range of the assay.  Raw images at the 

lowest (b) and highest (c) intensity are shown, which differ by 1024-fold. 
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Data processing.  All fluorescence data were normalized to detector gain intensity of 11 

by 

                        

where   is the detector gain intensity.  The values for all sample wells were taken at the 

highest detector gain intensity prior to detector saturation.  In order to verify the linearity 

of the instrument across all detector gain settings, one sample well for each data set were 

corrected from multiple images (Figure 6.2).  This analysis also shows signal intensity 

remains constant over the 30 minutes of image acquisition (approximately 5 minutes for 

each image at differing scan intensity).  The constant signal intensity suggests that 

aggregate sedimentation is not responsible for signal enhancement by bringing more 

fluorophores into the depth of field of the instrument (FWHM = 1.5 mm).  If 

sedimentation were significant, one would expect an increase in signal with time.  The 

only other possibility is that sedimentation fully completed within the 1 hour incubation 

period which is not plausible.  Even so, if sedimentation did occur it could only be 

responsible for a modest amount of enhancement as the original sample depth is only 

about 3 times the depth of field of the instrument. 
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Figure 6.2.  Corrected intensity for one set of wells of each treatment at all detector gain 

settings.  Error bars indicate +/- 1 standard deviation at each data point.  The first data 

points (intensity = 1) may be too small to be considered within the linear range.  The 

near-constant value of the rest of the corrected intensities suggests the instrument is linear 

across all detector gain settings.  

 

 

Enhancement calculations.  Fluorescence enhancement was calculated by 

    
                          

                                
              

Where the sample background was AgNP added to dH2O or 5 mM NaCl and the 

reference background was dH2O. 
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6.3. RESULTS AND DISCUSSION 
 

SEF by AgNP aggregation.  Our technique for NIR-SEF relies on citrate-stabilized, 

AgNP monomers fabricated by a proprietary process based on conventional methods
98, 99

.  

It has been demonstrated in previous research that aggregation of plasmon-active 

nanoparticles can lead to ‘hot spots’, where the local electric field can increase by several 

orders of magnitude
153

.  It is also known that the process of aggregation can shift, or 

reduce, plasmon resonance allowing interaction with a broader spectrum of light.  The 

aggregation process is a crucial ingredient in our NIR-SEF technique.  The other crucial 

ingredient is our use of dye-labeled SAv.  It is well known that direct contact between a 

fluorophore and the plasmonic structure will lead to quenching
154

.  This problem is 

solved by using a fluorophore-labeled protein, or DNA strand, to maintain separation 

between the emitter and the nanostructure surface.  We chose SAv as the labeled carrier 

protein due to its size, symmetry, ability to interact with AgNPs, and its common use in 

immuno-affinity assays (see Chapter 4).  At a certain pH, SAv will interact with 

negatively charged, citrate-stabilized AgNPs to create dimers, trimers, and other low 

order aggregates, see Figure 6.3.  This is accomplished when SAv, a tetrameric protein, 

attaches to the surface of two AgNPs, effectively cross-linking them.  Importantly, SAv is 

the size of a cube with 5 nm sides which geometrically prevents it from interacting with 

more than two 20 nm AgNPs simultaneously.  Therefore, the molar ratio between SAv 

and AgNPs may significantly affect the aggregate size produced through SAv-AgNP 

interactions alone.  When the concentration of AgNPs is significantly larger than that of 

SAv, as in this study, it is expected that the aggregates are primarily in the form of dimers 
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with some other low order aggregates present along with many non-aggregated 

monomers.  Further aggregation occurs by the addition of salt which screens the negative 

surface charge on the citrate-stabilized AgNP monomers enabling AgNP-AgNP 

interactions. 
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Figure 6.3.  Diagram showing the optical response and structural mechanisms of AgNP 

monomers and the formation of aggregates by SAv, with and without salt.  The 
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monomers (a) reflect green and transmit red light while remaining stable due to a 

negative surface charge (shown in blue).  The addition of SAv (b) enables aggregate 

formation solely by SAv-AgNP interactions which reduce green reflectance and red 

transmittance.  The addition of SAv with an appropriate amount of salt (c) screens the 

negative surface charge and enables aggregation from both SAv-AgNP and AgNP-AgNP 

interactions, causing larger aggregates with a further reduction in green light reflectance 

while enabling transmittance of the full spectrum.  The measured absorbance spectrum 

(d) and particle/aggregate size distribution (e) are also shown.  The mean effective 

diameters (weighted by number), via dynamic light scattering, for AgNP alone, with 

SAv, and with SAv and salt are 21, 35, and 252 nm, respectively.  The absorbance 

spectrum of the AgNP monomers is broader than expected with Mie theory due to the 

presence of larger particles within the polydisperse sample.  

 

 

Optimal salt concentration.  The aggregation process is highly dependent on salt 

concentration.  Some amount of salt is required to reduce the monomer zeta potential 

sufficiently to enable collisions.  Too much salt completely removes the particle charge 

and allows the AgNPs to precipitate out of solution.  The optimal salt concentration 

(under our conditions) was found by conducting a 2-D dilution experiment in a 384-well 

plate.  The columns contained varied salt concentration from 200 mM down to 0.2 mM 

NaCl in 2-fold dilutions (2 columns per dilution) with the final 2 columns containing 

dH2O.  The rows contained varied SAv-800CW concentration from 500 ng/ml down to 

500 fg/ml in 10-fold dilutions (2 rows per dilution), with the final 2 rows being 

background wells.  The data (Figures 6.4-6.5) show an optimal salt concentration near 5 

mM NaCl.  The data also show that the signal is linear over the range used of SAv-

800CW, for multiple concentrations of NaCl.  This indicates that slight variation in salt 

concentration should not significantly affect the ability to detect and quantitate the dye 

with our NIR-SEF protocol.  The optimal concentration of 5 mM NaCl was used 

throughout this study. 
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Figure 6.4.  Fluorescence intensity versus NaCl at multiple concentrations of SAv-

800CW.  Error bars indicate +/- 1 standard deviation for each data point.  
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Figure 6.5.  Fluorescence intensity versus SAv-800CW at multiple concentrations of 

NaCl.  Error bars indicate +/- 1 standard deviation for each data point.  

 

 

Electron microscopy images of AgNP monomers and aggregates.  Images of 

the AgNP monomers were acquired using SEM.  The images (Figures 6.6-6.7) show 

diameters in good agreement with the DLS average of 21 nm.  Images of AgNP 

aggregates were acquired using TEM.  It is important to point out that it is very difficult 

to immobilize salt-induced aggregates without affecting the morphology due to the 

inherent instability in the aggregate solution.  The images presented here (Figures 6.8-

6.10) should be taken as qualitative representations of the aggregates and visual proof of 

the aggregation process.  The actual aggregates in solution may differ from those 

immobilized during the TEM imaging process. 
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Figure 6.6.  SEM image of AgNP monomers.  The size of the individual nanoparticles 

appear to be in good agreement with the DLS average of 21 nm.  
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Figure 6.7.  SEM images of AgNP monomers in wider field-of-view. 
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Figure 6.8.  TEM image showing a monomer and two dimers formed by adding SAv to 

the AgNP solution. 
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Figure 6.9.  TEM image showing trimers formed after adding SAv and salt to the AgNP 

solution.  Notice the presence of a triangular plate, which do not show up often in EM 

images, so they are expected to contribute very little, if at all, to the SEF process.  
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Figure 6.10.  TEM image showing higher-order aggregates after adding SAv and salt to 

the AgNP solution.  It appears salt-induced agglomeration may be occurring, which is 

consistent with previous work
149

.  It is unknown at this time what this process contributes 

to the observed SEF.  

 

 

SEF of SAv-800CW.  Figure 6.11 shows fluorescence enhancement with and 

without salt for each SAv-800CW dilution where the reference fluorescence was 

detectable and thus, enhancement could be calculated.  Each dilution was replicated in 4 

wells and the standard deviations are included in the figure.  All values represent 

ensemble enhancement as opposed to the enhancement of individual fluorophores.  The 

maximum enhancement of 2530-fold for AgNP and salt at the lowest concentration of 

SAv-800CW is within 3-fold of the largest ensemble enhancement, to the authors’ 

knowledge, previously published
102

.  The maximum enhancement may even exceed this 
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value at lower concentrations; however, the reference dilutions could no longer be 

detected.    The enhancement is relatively constant, with and without salt, across the 11 

dilutions in which the reference could be detected.  Since aggregation without salt is 

dependent on SAv-linking, the distance between two AgNPs in that situation is 

approximately 5 nm.  The ability of SAv to bind two AgNPs seems to enable it to 

generate and locate within these ‘hot spots’ which is demonstrated by the 241-fold 

average enhancement when no salt is added.  Aggregation with salt gives around five-

fold better results than without salt.  This may be due to further enhanced electric fields 

near and between AgNPs in contact with one another.  Previous numerical simulations 

have shown near-field intensity dependent on the number of particles in an aggregate
155

.  

In their study, aggregates of AgNP create near-field enhancements up to 640-fold when 

excited at 780 nm, which may explain the magnitude of enhancement in this study.  

Increased excitation rate must be responsible for most of the enhancement as less than 

10-fold can be expected due to quantum yield (q
0
~0.07 for IRDye 800CW

95
).  This is 

further suggested by the fact that other fluorophores with similar spectral properties all 

show SEF well over 100-fold despite having differing intrinsic quantum yields (see 

below). 
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Figure 6.11.  Surface enhanced fluorescence versus the molar concentration of SAv-

800CW for AgNP, with and without salt.  Error bars indicate +/- 1 standard deviation at 

each data point.  The overall average enhancement with salt was 1484-fold with a 

maximum of 2530-fold, while the overall average without salt was 241-fold with a 

maximum of 376-fold.  

 

 

SEF of various NIR fluorophores.  The technology was also tested on other NIR 

fluorophores conjugated to SAv with similar spectral properties to IRDye 800CW.  The 

table below summarizes the fluorophores along with their physical characteristics (per 

manufacturer websites). 
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Table 6.2.  Physical characteristics of various NIR fluorophores (per manufacturers). 

 
Fluorophore λabs,max λem,max ελabs,max 

Alexa Fluor 790 782 805 260,000 

DyLight 800 777 794 140,000 

IRDye 800CW 778 794 240,000 

CF790 784 806 210,000 

 

 

Figure 6.12 shows the fluorescence enhancement for the various fluorophores.  The 

enhancement is very similar for all of the fluorophores tested.  Some variation is expected 

as the fluorophores have differing intrinsic quantum yield
156

 and absorption/emission 

spectra.  It is unclear at this time as to why the salt-induced aggregation provided less 

enhancement for the CF790. 
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Figure 6.12.  Fluorescence enhancement for various NIR fluorophores with AgNP only 

(blue) and AgNP with salt (red).  Error bars indicate +/- 1 standard deviation for each 

data point.  

 

 

Assay potential.  Due to the magnitude of potential fluorescence enhancement, 

translation into real-world assays is the next step in our long-range goals.  A few 

characteristics of useful assays include linearity, a large dynamic range, low LOD, and 

repeatability.  These characteristics were analyzed on our NIR-SEF technique.  Figure 

6.13 shows the fluorescence intensity versus SAv-800CW concentration for reference 

samples, as well as NIR-SEF with and without salt.  All three samples have good 

linearity prior to approaching their respective LOD (defined as 3 standard deviations 

above the respective mean background intensity).  The dynamic range of SAv-800CW 

alone (using the described detection system) extends beyond the concentrations included 
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in this study by three orders of magnitude.  Our NIR-SEF technology, however, cannot 

be extended above the range shown in Figure 6.13 as the detector signal saturates at the 

lowest intensity setting on the instrument.  NIR-SEF does extend the dynamic range on 

the low end, though.  NIR-SEF with salt improved the LOD over 1000-fold, while AgNP 

without salt successfully enhances the signal but only improves the LOD by 4-fold.  The 

addition of salt not only increases the intensity of the signal, it also shows lower 

background signal.  This may be due to the fact that the AgNP without salt remain 

primarily as monomers (especially at low concentrations of SAv-800CW) and scatter 

more light than the AgNP aggregates formed upon the addition of salt.  This is contrary 

to the absorbance curves shown in Figure 6.3 since they were acquired in the presence of 

relatively large amounts of SAv.  The background wells did not include any SAv-800CW 

and it has been found that the optical density of AgNP alone is reduced upon the addition 

of salt at all wavelengths in the visible to NIR (data not shown).  Using these results, a 

combination assay (e.g. fluorescent-linked immunosorbent assay, FLISA) in which NIR-

SEF is employed after regular fluorescence detection to extend the dynamic range and 

LOD beyond current assay limitations, while maintaining linearity at higher 

concentrations, could potentially be developed.  Furthermore, the technique has proved to 

be repeatable indicated by the error bars (+/- 1 standard deviation) in Figure 6.11 and 

Figure 6.13 (which cannot be seen in Figure 6.13 as the standard deviations are smaller 

than the data point symbols on the logarithmic scale).  Nonetheless, incorporating this 

technique into ‘real-world’ assays is non-trivial.  This technology relies on the 

aggregation of AgNP with SAv-800CW.  Therefore, the SAv-800CW, which is generally 

immobilized during an immuno-affinity assay, must either be re-mobilized or somehow 
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accessible to the AgNP.  Future work will focus on determining ways to achieve this 

requirement.  It should be noted that the LOD of some immunoassays (e.g., enzyme-

linked immunosorbent assay, ELISA) may be limited by antibody specificity, rather than 

signal intensity.  Yet, there remains a need for signal amplification, as it has been shown 

that antibodies can be used at diluted concentrations to reduce non-specific binding 

(when there is adequate signal) and thus improve the LOD
157

.  Also, signal improvement 

may lead to achievement of current detection limits with less expensive optics, which 

may be particularly attractive for clinical applications as well as locations with limited 

resources. 

 

 

Figure 6.13.  Fluorescence intensity versus molar concentration for SAv-800CW alone, 

with AgNP, and with AgNP and salt.  Error bars at +/- 1 standard deviation at each data 
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point are included, though they are smaller than the data markers and therefore hidden.  

The experimental LODs were 16, 4, and 0.0156 pM for SAv-800CW alone, with AgNP, 

and with AgNP and salt respectively.  

 

 

 

6.4. CONCLUSIONS 
 

In summary, we have demonstrated a NIR-SEF technique that enhances the signal of 

SAv-800CW up to 2530-fold while improving the LOD over 1000-fold.  The technique 

also has the advantage of being easy to implement while maintaining compatibility with 

commercially available immunoassay instrumentation and microtiter plates.  Our NIR-

SEF technique makes use of non-functionalized, citrate-stabilized AgNPs that aggregate 

at an optimal salt concentration.  Future research will focus on applying this technology 

to a common immunoassay (FLISA) (Chapter 7), adapting the technology to other assay 

formats, including surface-based assays such as Western blots, and investigating the 

potential to multiplex with other fluorophores for multiple biomarker assays.  This 

technology may ultimately lead to improved and novel assays for life science research as 

well as clinical diagnoses. 
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CHAPTER 7. A NEAR-INFRARED, SURFACE-

ENHANCED FLUOROPHORE-LINKED 

IMMUNOSORBENT ASSAY 

 

This chapter is based on previously published work by the author
158

.  Reprinted (adapted) 

with permission from Analytical Chemistry, 85, 2013, 7102-7108, A near-infrared, 

surface-enhanced, fluorophore-linked immunosorbent assay, Furtaw, M.D., Steffens, 

D.L., Urlacher, T.M., and Anderson, J.P.  Copyright 2013 American Chemical Society. 

 

7.1. INTRODUCTION 
 

The enzyme-linked immunosorbent assay (ELISA) is one of the most widely used among 

all assay techniques in clinical and research settings.  While ELISA is sufficient for many 

clinical and research diagnoses, the method may be inadequate for some biomarker 

implementations and development.  ELISA typically involves the detection of a 

colorimetric product which can limit its linear range and inherently limits the ability to 

simultaneously measure multiple antigens of interest.  The fluorophore-linked 

immunosorbent assay (FLISA) is a closely related technique which may offer some 

advantages including an extended linear range and multiplexed detection.  It would be 

beneficial to enhance the sensitivity of the FLISA assay in order to maintain its 
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advantages while matching or surpassing the sensitivity of the ELISA assay.  

Importantly, the optimal technology should improve assay sensitivity and LOD while 

maintaining current assay workflow with a minimal learning curve. 

 In this chapter, we introduce a surface-enhanced, fluorophore-linked 

immunosorbent assay (SEFLISA) which maintains the traditional FLISA protocol and 

adds two simple steps to the end that significantly improve LOD and sensitivity.  The 

mechanisms involved are explained using the accumulated knowledge from previous 

work along with insight from Chapters 3-6 in this dissertation.  The SEFLISA technique 

works with direct and sandwich FLISA (see Figure 7.1).  We evaluate the performance 

on a model-system using direct SEFLISA to detect rabbit immunoglobulin-G (IgG) as 

well as a clinically relevant, sandwich SEFLISA to detect alpha-fetoprotein (AFP).   

As mentioned above, the FLISA technique is a closely-related modification of the 

more commonly used ELISA.  Specifically, FLISA makes use of a fluorophore 

covalently linked to the detection antibody instead of an enzyme as used in ELISA.  After 

probing with the detection antibody, a FLISA assay is ready for detection with a 

fluorescence plate reader, whereas ELISA still requires enzyme substrate incubation prior 

to detection with a colorimetric or chemiluminescence plate reader.   A major drawback 

with enzyme-based assays can be the lack of an extensive linear range.  This is 

particularly problematic at high antigen concentrations as the enzyme-based assays 

become non-linear due to substrate limited kinetics, followed by saturation of the detector 

signal.  An additional drawback with colorimetric-based detection is high background 

signal due to any contamination that may absorb light in the visible spectrum, which can 

limit the linear range at the low-signal end.  Fluorescence-based detection often 
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demonstrates significantly broader linear range, partially by reducing background.  The 

use of near-infrared (NIR) fluorophores can further reduce the background due to lower 

autofluorescence
30

 and scatter in comparison to visible dyes.  Background reduction is 

ultimately limited by antibody specificity which remains a problem common to all 

immunoassay techniques.   

Previous studies employing NIR-SEF to improve assay sensitivity typically suffer 

from difficult fabrication processes and/or incompatibility with traditional assay 

workflows.  Our technique for SEFLISA improves upon previous work by enabling 

significant improvements in sensitivity and LOD with only two additional steps beyond 

the traditional FLISA.  Further, the technique allows the traditional FLISA to be fully 

completed with detection prior to any assay modifications.  This maintains the current 

linear range of FLISA while extending the low end with SEFLISA.  In fact, one could 

choose to employ the SEFLISA technique only after verifying that the traditional FLISA 

lacked the sensitivity or detection capability for the specific sample.  This is particularly 

attractive for technology adoption since a current FLISA user could attempt the SEFLISA 

technique without the risk of data loss from precious sample. 

 

 

7.2. MATERIALS AND METHODS 
 

Materials.  IRDye 800CW labeled streptavidin (SAv-800CW), Odyssey blocking buffer, 

protease K salt solution, and silver nanoparticles (AgNP) were obtained from LI-COR 
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Biosciences (Lincoln, NE).  Rabbit IgG was purchased from Rockland Immunochemical 

(Gilbertsville, PA).  Biotinylated donkey anti-rabbit antibody was purchased from 

Jackson ImmunoResearch (West Grove, PA).  Human alpha-fetoprotein capture antibody, 

biotinylated detection antibody, and recombinant standard were all purchased as a 

development kit from R&D Systems (Minneapolis, MN).  All reagents were stored and 

prepared according to manufacturer recommendations.  All dilutions and buffers were 

made with ultrapure, Milli-Q water from an EMD Millipore system (Billerica, MA). 

Absorbance measurements.  Absorbance (UV-VIS) measurements were made 

on an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies Inc., Santa 

Clara, CA).  The AgNP solution was diluted 10-fold to be within the linear range of the 

instrument.  The absorbance spectra of AgNP with SAv, with and without salt, were 

acquired by incubation of the diluted AgNP solution with 100 ng/ml SAv in dH2O or 5 

mM NaCl for one hour prior to the measurement.  This is a relatively high concentration 

of SAv in order to demonstrate the aggregation. 

Dynamic light scattering.  Dynamic light scattering (DLS) measurements of the 

AgNP solution was conducted on a 90Plus Particle Size Analyzer (Brookhaven 

Instruments Corp., Holtsville, NY) in optical grade poly(methyl methacrylate) cuvettes.  

Polymer microspheres in water (Duke Scientific Corp., Palo Alto, CA), NIST traceable 

mean diameter 92±3.7 nm, were used as standards to ensure accuracy and stability of the 

instrument. 

Electron microscopy.  AgNPs were immobilized on 5 mm square, ultra-flat 

thermal silicon dioxide wafers (Ted Pella, Redding, CA) for imaging with a Hitachi 
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S4700 field-emission scanning electron microscope (Hitachi, Schaumburg, IL).  The 

wafers were prepared and AgNPs immobilized according to a NIST-NCL joint assay 

protocol
151

. 

Fluorescence measurements.  Emission spectra were acquired in optical grade 

poly(methyl methacrylate) cuvettes using a QuantaMaster spectrofluorometer (Photon 

Technology International, Birmingham, NJ).  Plate-based fluorescence measurements, 

including assays, were made in 96-well, black, high-bind, optical bottom plates (Corning 

Life Sciences, Tewksbury, MA) using an Odyssey Sa infrared imaging system (LI-COR 

Biosciences, Lincoln, NE). 

SEFLISA assays.  Figure 7.1 shows the steps for direct FLISA, sandwich FLISA, 

and the two additional steps required for SEFLISA enhancement.  Step-by-step protocols 

are provided in Appendix B.  Briefly, FLISA assays were completed using standard 

protocols.  A solution of protease K and salt is then added to cleave the antibody/antigen 

sandwich to free the SAv-800CW.    AgNPs are then added to form aggregates with the 

remobilized SAv-800CW in the salt solution.  Proteins are able to non-specifically 

assemble on citrate-stabilized nanoparticles through electrostatic interactions, depending 

on pH and salt content in solution
159

.  The AgNPs are also able to form aggregates with 

other antibodies, whole and fragments, however these additional interactions are not 

problematic.  The aggregation process of the AgNP is further enabled through a reduction 

of surface charge in salt solution (Figure 7.2(b)). 
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Figure 7.1.  Diagram showing the workflows of sandwich FLISA, direct FLISA, and the 

two additional steps required to increase sensitivity using surface-enhanced fluorescence. 

 

 

Protease efficiency.  Biotinylated bovine serum albumin (b-BSA) was serially 

diluted 2-fold to create 10 samples between 20,000 and 39 ng/ml using  40 μM BSA in 

0.1X PBS as the diluent.  A volume of 100 μl of each sample was added, in 

quadruplicate, to the corresponding columns of a 96-well microtiter plate.  The plate was 

covered and incubated for 1 hour at room temperature on a plate shaker.  The plate was 

then inverted to dump out the sample.  Each well was washed with 300 μl of PBS 3 times 

for 2 minutes each on a plate shaker.  A volume of 300 μl of Odyssey blocking buffer 

was added to each well, covered, and incubated for 1 hour at room temperature on a plate 

shaker.  The blocking buffer was then dumped by inverting the plate.  A volume of 100 μl 
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of SAv-800CW, diluted 1:10,000 in Odyssey blocking buffer, was added to each well, 

covered with seal and foil, and incubated for 1 hour at room temperature on a plate 

shaker.  The plate was then inverted and washed, as before.  Protease K salt solution 

(250X) was diluted 1:250 in dH2O.  A volume of 50 μl of protease K solution was added 

to each well in 2 rows of the plate, with dH2O added to the other 2 rows.  The plate was 

covered with seal and foil and incubated for 30 minutes at room temperature on a plate 

shaker.  The plate was then inverted and washed, as before.  Finally, 50 μl of dH2O was 

added to each well before scanning the plate on an Odyssey Sa with a focus offset of 3.4 

mm at an intensity of 9. 

SDS-PAGE analysis of assay supernatant.  The protocol for a direct SEFLISA 

using a 10-fold dilution series of rabbit IgG from a concentration of 1000 to 0.001 ng/ml 

was followed (see Appendix B), except for the final section using AgNP.  Immediately 

after the protease treatment, 30 μl of solution was collected from each well and combined 

with 10 μl of loading buffer.  The samples were incubated at 70°C for 10 minutes in order 

to denature the proteins.  SDS-PAGE of each sample was performed using NuPAGE 4-

12% Bis-Tris gels.  Also, SAv-800CW and 800CW ladder with the same pre-treatment 

was loaded for comparison. 

 

7.3. RESULTS AND DISCUSSION 
 

Surface-enhanced fluorescence of IRDye 800CW.  Citrate-stabilized AgNPs were 

fabricated by a proprietary method based on commonly used methods
98, 99

.  Figure 7.2(a) 
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shows the relative distribution of size, as determined by DLS, which gave an average 

diameter of 21 nm.  DLS measurements were confirmed using scanning electron 

microscopy (SEM) as shown in the inset.  The absorbance of the AgNP solution is shown 

in Figure 7.2(b), which confirms the interaction with light in the visible spectrum.  The 

absorbance curve is somewhat broad due to the polydisperse population of AgNP 

diameters as a small number of larger AgNPs can significantly affect the ensemble light 

interaction.  By eye, the highly concentrated AgNP solution (~ 20 nM) appears opaque 

green due to the absorbance of blue light, scattering of green light, and weak interaction 

with red light.  This would not typically be considered an ideal substrate for NIR-SEF 

since the far-field interaction with light near the absorbance and emission spectra of 

IRDye 800CW (Figure 7.2(b)) is minimal
82, 84-87

.  It turns out that a good substrate for 

NIR-SEF may not need to be in resonance with the fluorophore and there are a number of 

reasons we believe this to be true.  First, while the interaction with light in the NIR region 

may be relatively weak compared to the visible region, the quality factor is maximized in 

the NIR (Figure 7.2(b)).  The quality factor represents the number of plasmon 

oscillations, prior to decay, per excitation oscillation.  A high quality factor indicates an 

enhanced local electromagnetic field with relatively low internal dissipative losses
79

. 

Therefore, quality factor may be an indicator of potential SEF.  Second, while visible 

fluorophores may experience the greatest local electromagnetic field enhancement near 

AgNPs, the non-local excitation and emission waves are subject to severe attenuation due 

to the high optical density of the AgNP solution.  In contrast, NIR fluorophores have very 

little far-field attenuation and therefore may be able to more efficiently convert near-field 

enhancement into measurable SEF.  Third, aggregation has been known to broaden and 
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red-shift the resonant frequency of AgNPs by enabling multi-pole plasmon modes
160

 and 

thus increases the interaction with NIR light (Figure 7.2(b)).  Aggregation of AgNP has 

also been shown to generate small, localized, enhanced electromagnetic fields, known as 

‘hot spots’, thereby enabling significant SEF of appropriately located fluorophores
89, 161, 

162
.  Therefore, a combination of enhanced near-field due to aggregation with low far-

field losses and the maximized quality factor makes NIR-SEF with AgNPs in solution a 

powerful technology. 
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Figure 7.2.  Size and spectral characteristics of AgNP.  (a) Relative distribution of AgNP 

size as determined by dynamic light scattering (DLS).  The mean diameter was 21 nm.  

The inset is an SEM image of individual AgNPs used to verify the DLS measurements, 

the scale bar (black) is 300 nm.  (b) Normalized absorbance of AgNP alone (solid gray), 

AgNP with SAv (dashed gray), and AgNP with SAv and salt (dotted gray) all relative to 

the maximum absorbance of AgNP alone.  Calculated quality factor of AgNPs based on 

empirical optical properties
35

 (solid blue), along with the absorbance (solid red) and 

emission (dashed red) spectra of IRDye 800CW all scaled relative to their maximum 

value for qualitative comparison.  

 

 

Fluorescence emission scans of SAv-800CW in 5 mM NaCl with and without 

AgNP (Figure 7.3) demonstrate the ability to achieve 300-fold signal enhancement in 

solution.  This demonstrates a larger enhancement than immobilizing the dye on 
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surfaces
88, 89

.  We attribute this difference to the ability to locate the fluorophores within 

and between the aggregating AgNP in solution as opposed to locating on one side of the 

aggregates on a surface.  Further investigation is required to determine the exact 

mechanism that provides the extra enhancement in solution and is beyond the scope of 

this study.  The inset in Figure 7.3 shows a slight blue-shift in the enhanced emission 

spectrum compared to the dye alone, which has previously been shown to coincide with 

an increased radiative decay rate
58
.  The ‘knee’ in the curve around 830 nm is thought to 

be an artifact caused by AgNP-induced scatter which was not completely removed by 

background subtraction (i.e. AgNP spectrum with unlabeled SAv in salt solution).  SEF is 

known to be the product of enhanced quantum yield and enhanced excitation rate.  With 

an intrinsic quantum yield ~ 0.07, IRDye 800CW has been suggested to gain around 10-

fold enhancement due to an improved quantum yield alone
95

.  Furthermore, since 

quantum yield cannot exceed unity the majority of enhancement observed in this study 

must come from an increased excitation rate. 

 



114 

 

 

Figure 7.3.  Fluorescence emission from 20 nM SAv-800CW (solid line) and SEF 

emission from 0.2 nM SAv-800CW with 20 nM AgNP (dotted line) after background 

subtraction, demonstrating ~300-fold enhancement.  The inset shows the normalized 

emission spectra to demonstrate the blue-shift of the peak wavelength from normal 

fluorescence to SEF.  

 

 

SEFLISA technology analysis.  Translating the advantage of solution-based SEF 

into a useful assay is not trivial.  Typical fluorescence-based assays involve the 

immobilization of a dye-labeled detection antibody onto a surface.  To realize the full 

potential of SEF, in this case, the SAv-800CW must be remobilized or brought back into 

solution after immuno-probing.  This can be achieved by using a protease to partially 

digest the immobilized proteins, thus releasing full and partial proteins back into solution.  

To verify this process a model-system, direct FLISA was conducted using biotinylated 

bovine serum albumin (b-BSA).  Two-fold dilutions of b-BSA from 2000 ng/ml to 200 
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ng/ml were incubated in a 96-well plate in 0.1% BSA and 0.1X PBS buffer at room 

temperature for 1 hour.  After washing and blocking, SAv-800CW was used to probe the 

b-BSA.  A final wash was followed by 4 differing treatments to the dilution series:  (1) no 

protease and no AgNP, (2) no protease with AgNP, (3) protease and no AgNP, and (4) 

protease with AgNP.  The protease step consisted of adding 50 μl of salt solution with or 

without protease K and incubating for 30 minutes at room temperature.  Protease K was 

chosen over other proteases due to its promiscuous protein cleaving and temperature 

stability.  It has been experimentally determined that approximately 90% of the SAv-

800CW is remobilized after this step without significant cleavage of the SAv itself.  

Figure 7.4 shows the cleavage efficiency of the protease K solution at the various 

concentrations of immobilized b-BSA.  The asymptotic value is ~ 94%.  As expected, the 

efficiency decreases at very low values of b-BSA where the concentration is insignificant 

in comparison to the blocking buffer proteins. 
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Figure 7.4.  Cleavage efficiency of protease K solution at various concentrations of 

immobilized b-BSA.  Cleavage efficiency is defined as the percent of SAv-800CW 

remobilized after protease K treatment, which was measured as the ratio of fluorescence 

from wells with protease K divided by the reference wells which contained only dH2O.  

 

 

The AgNP treatment consisted of adding 50 μl of AgNP or dH2O and incubating 

for 15 minutes on a plate shaker at room temperature.  All data points were acquired in 

quadruplicate with the standard deviations shown in Figure 7.5.  The protease K 

treatment enabled an average enhancement of 166-fold (background subtracted) with a 

standard deviation of 24, while only 14-fold enhancement with a standard deviation of 1 

occurred without the protease.  This suggests that the protease K treatment not only 

remobilizes the SAv-800CW, but also that the remobilization is an important step in 

realizing the full potential of SEF in this system. 
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Figure 7.5.  Fluorescence enhancement versus concentration of b-BSA with (red squares) 

and without (blue circles) protease K treatment.  Error bars indicate +/- 1 standard 

deviation at each data point.  The protease K treatment enabled an average enhancement 

of 166-fold across this range of antigen, while the treatment without protease only 

enabled an average enhancement of 14-fold.  

 

 

SDS-PAGE was used to determine the form of the SAv-800CW after protease 

treatment.  Specifically, to determine if the protease cleaves the SAv itself and whether or 

not the SAv becomes immobilized alone or as a complex with antibody attached.  

Comparing the sample lanes to the SAv-800CW alone (Figure 7.6), it appears that the 

majority of SAv-800CW is immobilized without remaining attached to antibody.  Some 

fluorescence appears smeared in the size range between 50 and 250 kDa, which is 
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probable due to SAv-800CW remaining attached to various forms of antibody, fragments 

and whole.  The majority of the signal shows up in similar bands as the SAv-800CW 

reference sample which indicates monomers, dimers, trimers, and tetramers of the SAv-

800CW. 

 

 

Figure 7.6.  Fluorescence image of SDS-PAGE gel showing the distribution of SAv-

800CW after protease treatment.   

 

 

Rabbit IgG direct assay.  The SEFLISA technique was then studied using a 

model-system consisting of rabbit IgG detection in a direct FLISA.  There were 4 data 
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points (microtiter plate wells) for each sample dilution which included 2 FLISA and 2 

SEFLISA.  The data are plotted in Figure 7.7 on linear and logarithmic scales.  A linear 

fit for the FLISA gives a slope of 1.7 x 10
-3

 ml/pg and an offset of 7.6 x 10
-1

, with an R
2
 

of 0.97.  The SEFLISA has a slope of 1.0 x 10
-1

 ml/pg and an offset of 4.7, with an R
2
 of 

0.99.  By the ratio of the slopes, the SEFLISA is 59-fold more sensitive than the standard 

FLISA.  In this case, we refer to sensitivity as the difference in signal caused by 

difference in antigen concentration.  This sensitivity enhancement enables the assay to 

detect slight changes in antigen concentration which may be well within the noise for a 

less sensitive assay technique.  LOD lines (3 standard deviations above the mean 

background) are shown in log format to demonstrate the 8-fold improvement from the 

empirical 125 pg/ml for standard FLISA down to 15.6 pg/ml for SEFLISA.  The limit of 

quantitation (LOQ), defined as 10 standard deviations above the mean background, is 

also improved from 143 pg/ml for standard FLISA to 47 pg/ml for SEFLISA.  The 

difference in sensitivity enhancement versus LOD and LOQ enhancement can be 

attributed to the 6-fold increase in background signal.  The background signal increase is 

probably due to scatter of the excitation light from the AgNP.  Due to the small Stokes 

shift of the dye, the excitation light is not completely filtered prior to detection, which 

leaves scatter as a potential problem in assay performance.  Also, the 6-fold increase is to 

a very low background due to using NIR fluorescence, therefore, the background remains 

relatively low.  Nonetheless, the assay performance is clearly improved with the 

SEFLISA technique. 
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Figure 7.7.  Fluorescence intensity versus concentration of rabbit IgG in linear (a) and 

log (b) format.  Error bars indicate +/- 1 standard deviation at each data point.  Linear fits 

were applied to both the standard FLISA (blue) and SEFLISA (red) data sets.  The log 

plot shows the LOD of each data set as dotted lines.  

 

 

AFP sandwich assay.  The SEFLISA technique was then studied on a clinically 

relevant sandwich assay to detect AFP.  In this assay, there were 8 data points for each 

sample dilution which included 4 standard FLISA and 4 SEFLISA.  The data are plotted 

in Figure 7.8 on linear and logarithmic scales, along with a fluorescence image of the 
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assay plate.  A linear fit for the standard FLISA gives a slope of 2.6 x 10
-3

 ml/pg and an 

offset of 1.6, with an R
2
 of 0.99.  The SEFLISA has a slope of 1.1 x 10

-1
 ml/pg and an 

offset of 22, with an R
2
 of 0.99.  The ratio of the slopes is 42 making the SEFLISA 42-

fold more sensitive than the standard FLISA.  LOD lines are again shown in the log 

format to demonstrate the 16-fold improvement from 625 pg/ml for standard FLISA 

down to 39.1 pg/ml for SEFLISA.  The 39.1 pg/ml LOD using the SEFLISA technique 

for AFP is comparable to the typical ELISA LOD of 46 pg/ml
163

, while the LOQ is 

improved from 312 pg/ml for ELISA to 189 pg/ml for SEFLISA.  The difference in 

enhancement between the sensitivity, LOD, and LOQ can once again be attributed to 

increase in background signal.  At 14-fold, the background signal increase is slightly 

higher in this case which may be due to signal enhancement of non-specific binding.  The 

offset of the standard FLISA for AFP is 2-fold higher than that of the rabbit IgG assay, 

which further suggests that non-specific binding is likely the cause of the increase in 

background signal.  Notice that the LOD and LOQ of the SEFLISA are much closer in 

magnitude than those for the ELISA.  This is due to the much lower optical background 

in the NIR fluorescence-based assay. 

AFP was employed in this study for its clinical relevance in a variety of diseases.  

AFP is also an excellent example of a biomarker requiring an assay with a large dynamic 

range.  AFP is produced primarily by the fetal liver and therefore is highest in pregnant 

women and infants, while being significantly lower in normal adults.  The average adult 

serum level is 3 ng/ml, which is slightly higher in men than in women
164

.  During 

pregnancy, the maternal AFP level elevates to 11 ng/ml at the 8th week of gestation
165

 

and continues to rise until it peaks at ~ 250 ng/ml around the 32nd week
166

.  AFP can be 
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measured in pregnant women, via blood or amniotic fluid, to test for various prenatal 

development abnormalities
167

.  The highest levels of AFP are witnessed at birth where the 

average infant serum level is 42,000 ng/ml
168

 (four orders of magnitude above the 

average adult level).  AFP has also been shown to be a biomarker for hepatocellular 

carcinoma, a liver cancer
169

, where a multi-color assay may be advantageous in order to 

measure differences in glycosylation
170

.  With the large range of clinical levels and 

differences in glycosylation of AFP, in this case, the SEFLISA technique introduced in 

this paper, combined with the traditional FLISA, may be a better assay than the 

traditional ELISA. 

 



123 

 

 



124 

 

Figure 7.8.  Fluorescence intensity versus concentration of AFP in linear (a) and log (b) 

format.  Error bars indicate +/- 1 standard deviation at each data point.  Linear fits were 

applied to both the standard FLISA (blue) and SEFLISA (red) data sets.  The log plot 

shows the LOD of each data set as dotted lines.  Grayscale, fluorescence image of 

scanned plate (c) for AFP assay.  AFP is diluted 2-fold in each column from 5 ng/ml in 

column 1 to 9.8 pg/ml in column 10.  Columns 11 and 12 are background wells.  The top 

4 rows are the standard, sandwich FLISA while the bottom 4 rows are sandwich 

SEFLISA.  

 

 

 

7.4. CONCLUSIONS 
 

In conclusion, we have introduced a SEFLISA technique that maintains the advantages of 

FLISA while matching, or surpassing, the sensitivity of ELISA.  Further, the technique 

maintains all of the traditional steps of FLISA while adding two simple steps at the end.  

A 59-fold enhancement to sensitivity and an 8-fold improvement in LOD were 

demonstrated on a direct assay using a model system of rabbit IgG.  The technique was 

also tested on a clinically relevant assay to detect AFP, in which a 42-fold enhancement 

to sensitivity was demonstrated along with a 16-fold improvement in LOD.  Both assays 

demonstrated more favorable enhancement to sensitivity in comparison to LOD and LOQ 

which is likely due to the increase in background from excitation scatter.   

This SEFLISA technique has been demonstrated to be potentially superior to 

ELISA for detecting AFP.  We anticipate this to be the case for other antigens of interest 

as well.  Further research will focus on multiplexing the technique for multiple antigen 

detection, or measuring differences in post-translational modification.  Also, we expect to 

be able to improve the assay performance since the enhancement is far from the empirical 
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limit (Chapter 6).  Further research will be required to determine the limitations and 

optimize adjustments to the current protocol to realize further sensitivity improvement. 
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CHAPTER 8. CONCLUSIONS 

 

8.1. REVIEW OF GOALS AND RESULTS 
 

The overall goal of this work was to determine the extent to which fluorescence in 

solution may be enhanced by altering specific variables involved in the process, such as 

wavelength, carrier protein, AgNP concentration, and salt concentration, with the intent 

of providing a simple solution that may be readily adopted by current fluorescence users 

in the life science research community.  This goal has been achieved by designing and 

completing a series of experiments to test formulated hypotheses and reporting the results 

in the form of peer-reviewed publications, including this dissertation.   

Theoretical analysis along with experimental data tested the hypotheses that (1) 

inner-filtering may red-shift the optimal fluorophore spectrum away from the resonant 

frequency of the plasmon-active nanostructure and (2) that in some cases, the quality 

factor may be a more important predictor of SEF as opposed to the nanostructure 

resonance indicated by the absorbance spectra (Chapter 3).  The data agree with both 

hypotheses when a concentrated solution of AgNP is used causing significant inner-

filtering near the resonant frequency and allowing aggregation to enable SEF in the NIR 

where the quality factor is maximized.   

The hypothesis that the physical size and shape of carrier proteins play an 

important role in the ability to enhance the fluorescent signal from the fluorophores they 
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carry when combined with AgNP in solution was tested in multiple ways (Chapter 4).  

The effect of protein size on distance between AgNP and thus electromagnetic field 

intensity was studied using BEM simulations.  The effect of protein size on the number of 

bound AgNP was experimentally studied by measuring aggregation at various 

protein/AgNP ratios by changes in absorbance.  The effect of protein shape on possible 

AgNP-fluorophore orientations was qualitatively discussed based on geometric 

limitations.  Finally, the effects were studied in combination by measuring fluorescence 

enhancement with dye-labeled SAv, F(ab’)2, and IgG.  Each protein demonstrated the 

ability to enhance fluorescence, maintain a linear relationship with signal versus 

concentration, and ultimately improve the LOD.  SAv was determined to be the best 

choice for carrier protein due to its ability to generate the largest (on the order of 1000-

fold) enhancement with the smallest variance. 

The effect of aggregation on SEF in solution was studied through controlled 

mixing in a digital, microfluidic device (Chapter 5).  Specifically, a liquid-liquid droplet 

micromixer in a disposable poly(methyl methacrylate) (PMMA) microchip was used to 

study the effects of salt concentration, colloid concentration, and mixing efficiency on 

SEF of a NIR fluorophore with aggregated AgNP using conventional fluorescence 

microscopy.  It was found that an optimal salt concentration could be identified.  The 

effect of colloid concentration and mixing efficiency remained unbounded as both 

demonstrated maximum SEF at the highest tested values.  This study was the first 

demonstration in the literature, to the authors’ knowledge, of SEF in a microfluidic 

format. 
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Next, NIR-SEF was investigated in the more common assay format of a microtiter 

plate with the intention of benefiting current fluorescence users.  Through optimization of 

salt concentration, it was demonstrated that a NIR-SEF technique can enhance the signal 

of SAv-800CW up to 2530-fold while improving the LOD over 1000-fold (Chapter 6).  

Importantly, the technique uses simple-to-fabricate, citrate-stabilized AgNPs in solution 

in contrast to other studies that require expensive and complicated manufacturing 

processes to create delicate surfaces that achieve similar results.   

Finally, a NIR-SEFLISA technique was introduced and interpreted, in terms of 

the results acquired throughout this dissertation, to use the NIR-SEF technology in a real-

world application.  A 42-fold improvement in sensitivity for the clinically-relevant 

biomarker AFP was demonstrated, along with a 16-fold improvement in LOD.  This 

assay demonstrates the ability to apply the NIR-SEF technique in ways that may benefit 

other research and medical fields. 

 

 

8.2. RECOMMENDATIONS FOR FUTURE RESEARCH 
 

For every answer or experimental result many questions arise.  This dissertation 

contributes to the overall understanding of SEF and particularly NIR-SEF using citrate-

stabilized AgNP in solution.  The following are recommendations for future research that 

may advance the understanding even further: 
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i. It has been determined in this work that the pH of the AgNP solution is extremely 

important in controlling the interaction between the individual AgNPs and 

proteins (Appendix C).  In fact, no enhancement of fluorescence signal was 

detected using off-the-shelf AgNPs in the same procedures used in this 

dissertation.  Preliminary results show that the off-the-shelf AgNP solutions have 

a pH ≈ 7, while the AgNP solution used in this work is pH ≈ 4.  It is hypothesized 

that the pH directly affects the AgNP-protein interaction by (1) changing the 

overall charge on the protein, which can attract or repel it from the AgNP 

(depending on the pH of the solution and the pI of the protein), (2) changing the 

zeta potential of the AgNPs by protonating/de-protonating the citrate molecules 

on the surface, (3) reducing or increasing the steric hindrance caused by the citrate 

molecules by affecting the equilibrium concentration on the surfaces of the AgNP, 

and (4) a combination of all the above mentioned factors.  An attempt was made 

to simply adjust the AgNP solution pH and then conduct absorbance and SEF 

measurements; however, adjustment of the AgNP solution pH may have caused 

additional effects not accounted for such as particle stability and changes in size 

distribution.  A careful study involving the pH adjustment of AgNP solution 

should be reattempted with confirmation that particle size distribution remains 

unaffected.  In addition, in the future zeta potential measurements will be valuable 

to determine any change in the surface charge associated with the AgNP.  Another 

approach, avoiding the challenges associated with pH changes to the AgNP 

solution, would be to study protein binding on Ag (and Au) surfaces using the 

surface plasmon resonance (SPR) technique
171, 172

.  SPR studies are conducted by 
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measuring the reflection of laser illumination incident at various angles relative to 

a thin metal film.  The reflection intensity at a given angle and the angle of 

maximum reflection change with the local index of refraction near the surface, 

which is related to the concentration of bound biomolecules.  One could then 

change the citrate concentration, pH, salt concentration etc. and measure the 

change in protein interaction with the metal surface.  If successful, this 

experiment could be repeated for various proteins/biomolecules, as well as 

various capping agents on the metal surface (e.g. PVP, tannic acid, etc.).  Further 

insight can be obtained from related research on NP-protein interactions
173-176

 and 

NP functionalization techniques
177, 178

.   

 

ii. Clearly aggregation of AgNP is one successful strategy for fabricating plasmon-

active nanostructures to enable NIR-SEF (Chapters 5 and 6).  The related 

technology of SERS (described in Chapter 2) has also been shown to benefit from 

similar nanostructure formations.  No known combination study has been 

conducted where SEF and SERS are measured simultaneously on the same 

nanostructures.  This combined study would enable the empirical separation of the 

electric field enhancement from the quantum yield enhancement, as SERS relies 

strictly on field enhancement.  More specifically, SERS is proportional to 

        while SEF is proportional to         and     .  The separation of these 

two components in the overall enhancement is needed to confirm theoretical 

predictions with empirical data.  Studies involving single-molecule measurements 

would also be useful for statistical analysis of the processes in discrete spots 



131 

 

instead of ensemble measurements.  It may be the case that a few ‘hot-spots’ are 

responsible for the majority of the ensemble signal enhancement, as has been 

shown for SERS
54

.  This research could be accomplished with an optical detection 

set-up, such as a microscope, where fluorescence and Raman spectra can be 

obtained from the same location on a sample immobilized on a surface.  The 

plasmon-active nanostructures could be aggregated AgNP, as in this dissertation; 

however, a better choice would be nanoparticles in arrays on a surface with 

deliberate periodicity for easier location mapping and comparison to simulated 

electromagnetic fields
179-183

.  This study would require collaboration with other 

researchers who have created such surfaces, or development of the technique 

locally. 

 

iii. Recently, it has been suggested that the intentional design of nanoantennas in the 

form of dimers of mNPs may be significantly more efficient than random 

aggregation for enhancing Raman signals
184

.  A similar hypothesis could be 

formed for fluorescence.  It would be very useful to first solve for an analytical 

solution, if possible, or a semi-empirical solution of the SEF process between a 

symmetric dimer of Ag- or AuNPs.  Currently, Mie theory along with numerical 

techniques must be used to accomplish the task even though SEF can be 

calculated near a monomer with simple equations
154

.  One could then determine 

the optimal design for a specific fluorophore followed by experimental 

verification.  Recent progress towards this goal has been demonstrated by 

modeling the hot-spot between two mNPs as a superposition of hot-spots located 
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on the surface of each mNP
47

.  It was determined that simple, spherical mNPs 

may generate larger local electromagnetic field enhancement than more 

complicated geometries; however, a solution to mathematically represent the 

simplified case was not presented.  Further, incorporation of the dipole emitter 

will require changes to the model.  Ultimately, the suggested research may enable 

the design of a super-bright fluorescent probe for immunoassays with 10,000-fold 

enhancement or better, similar to attempts involving SERS
185-187

. 

 

iv. It is now widely accepted that the SEF process is comprised of an enhancement to 

the electric field along with an improved quantum yield of the emitter.  It has also 

been shown that an improved quantum yield (radiative decay rate) can be 

accompanied with a shorter Stokes-shift (Chapter 6).  It was hypothesized that the 

amount of Stokes-shift reduction may be positively correlated with the 

improvement in quantum yield.  The reasoning is that a blue-shift in the emission 

spectra may be indicative of improved efficiency in the process (i.e. less loss to 

the surrounding environment).  A quick experiment did not demonstrate this 

effect.  Further research is warranted as this aspect of the SEF process is poorly 

understood.  This study could be accomplished by using a simple, plasmon-active 

substrate, such as SIF or AgNP on a surface, to measure the change in decay rate 

of multiple fluorophores with similar spectral properties but differing intrinsic 

quantum yield.  This acquisition of this data would require a fluorescence 

detection system with time-resolved capability.  The experiment could be 

repeated with fluorophores on different substrates, or varying distance from the 
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substrate, to determine if the trend remains the same.  The research may have 

implications in optical design when using SEF, as the optimal emission filter(s) 

could differ from those without the blue-shifted emission.  The blue-shift may 

also counteract the enhancement in signal by reducing the collection efficiency of 

the emitted light due to a smaller Stokes-shift. 

 

 

v. The NIR-SEFLISA assay presented (Chapter 7) may be improved with further 

development.  The 59-fold improvement in sensitivity is well below the empirical 

limit of over 2000-fold improvement (Chapter 6).  This gap should be closed with 

further exploration.  One research activity could involve the design of a linker to 

the SAv-800CW molecule that can be specifically cleaved so that non-specific 

antibodies and fragments are not in direct competition for the surface area on the 

AgNP in solution.  First, one should determine whether the extra proteins and 

fragments in solution are troublesome.  This investigation could be accomplished 

by measuring the fluorescence enhancement of SAv-800CW in solution with 

AgNP in the presence of various concentrations of proteins and fragments 

differing in size and composition.  The study could include all proteins present in 

the NIR-SEFLISA assay; however, the blocking buffer itself contains a large 

number of proteins so this would be impractical.  The study should probably 

include proteins of various size and pI as both would likely have an impact on the 

results.  Additionally, the difference in potential sensitivity (Chapter 6) and 

current sensitivity (Chapter 7) could also be due to the microplate surface being 
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coated with protein.  The proteins may reduce the concentration of AgNP in 

solution and/or adversely affect the background signal due to AgNP binding on 

the surface.  This potential effect could be verified by measuring the background 

signal of AgNP with and without proteins on the surface of the microtiter plate.  If 

either of the aforementioned problems exist, the use of a specifically, cleavable 

linker would likely improve assay performance.  If the proteins on the surface are 

determined to be problematic, the cleaved SAv-800CW could be transferred to a 

fresh microtiter plate via centrifugation.  Commercially available cleavable 

linkers include disulfide bonds that can be cleaved with reducing agents, such as 

dithiothreitol (DTT), β-mercaptoethanol (BME), or tris(2-carboxyethyl)phosphine 

(TCEP), as well as UV-cleavable linkers.  While these linkers would be 

convenient, they may generate adverse reactions to the AgNP due to the reducing 

agents, or the UV exposure may destroy the fluorophores.  Another option would 

be to design a DNA/RNA linker that can be cleaved with a nuclease.  The chosen 

nuclease should be efficient in order to require a small concentration to 

accomplish the cleavage.  Ideally, specific release of the bound SAv-800CW 

would create an environment, much like in Chapter 6, where over 1000-fold 

improvement in LOD was demonstrated. 

 

 In summary, this dissertation contributes to the overall understanding of the SEF 

process, particularly NIR-SEF using AgNP in solution.  It has been demonstrated that 

substantial enhancement to fluorescence signal and improved LOD of IRDye 800CW can 

be achieved using a labeled carrier protein with citrate-stabilized AgNP in solution.  This 
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work may enable the adoption of NIR-SEF by researchers outside of the plasmonic 

community to improve sensitivity and LOD of bioassays used in medical research and 

diagnostics.  Recommendations for future research are made to further advance the 

understanding of the physical mechanisms involved in SEF. 
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APPENDIX A. MATLAB CODE 

%This program simulates the electromagnetic field around a dimer 

%of nanoparticles using the MNPBEM toolbox. 

  

%written by Michael Furtaw, 1-5-2012 

  

  

clear all 

clc 

  

  

%INPUT PARAMETERS 

diam = 20;      %nanoparticle diameter, nm 

distbtw = 5;    %distance between NPs, nm 

enei = 785;     %light wavelength in vacuum, nm 

xynum = 161;    %number of points in x and y axes 

  

  

%CREATE NANOPARTICLE AND PLOT NORMAL VECTORS 

p1 = trisphere(256,diam); 

p1 = shift(p1,[-.5*diam-.5*distbtw,0,0]); 

p2 = trisphere(256,diam); 

p2 = shift(p2,[.5*diam+.5*distbtw,0,0]); 

  

  

%CREATE DIELECTRIC ENVIRONMENT 

epstab = 

(epsconst(1.33^2),epstable('silver.dat'),epstable('silver.dat')); 

p = comparticle(epstab,(p1,p2),[2,1;3,1],1,2); 

figure(1) 

plot(p,'EdgeColor','b','nvec',1) 

  

  

%CREATE POINT CLOUD FOR ELECTRIC FIELD VISUALIZATION 

[x,y] = meshgrid(linspace(-2*diam,2*diam,xynum)); 

z = 0*x; 

pt = compoint(p,[x(:),y(:),z(:)],'mindist',1); 

  

  

%SET UP COMPSTRUCT WITH PLANE WAVE EXCITATION 

exc = planewavestat([1,0,0]);   %quasistatic plane wave with x-

polarization 

c = exc(p,enei);                %excitation potential at wavelength 

figure(2) 

plot(p,c.phip)                  %plot excitation field on particle 

  

  

%CALL BEM SOLVER WITH QUASISTATIC APPROXIMATION 

sig = bemstat(p) \ c; 

figure(3) 

plot(p,sig.sig) 

  

  

%CALCULATE GREEN FUNCTION BETWEEN POINTS AND PARTICLE 
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g = compgreen(pt,p); 

  

  

%CALCULATE ELECTRIC FIELD AT POINTS 

field = g.field(sig)+exc.field(pt,enei); 

figure(4) 

coneplot(pt.pos,real(field.e(:,:,1)),'scale',1); 

view(0,90); 

plot(p,'EdgeColor','k'); 

  

  

%CALCULATE ELECTRIC FIELD MODULUS FOR CONTOUR PLOT 

modgrid = 0*x; 

for i = 1:length(field.e)       %loop to put modulus in meshgrid format 

    indx = round((pt.pos(i,1)+2*diam)*(xynum-1)/(4*diam)+1); 

    indy = round((2*diam-pt.pos(i,2))*(xynum-1)/(4*diam)+1); 

    vectpt = real(field.e(i,:)); 

    modgrid(indy,indx) = 

(vectpt(:,1))^2+(vectpt(:,2))^2+(vectpt(:,3))^2; 

end 

figure(5) 

surf(x,y,log(modgrid)); 

view(0,90); 

colorbar; 

shading interp; 

plot(p,'EdgeColor','k'); 
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APPENDIX B. SEFLISA ASSAY PROTOCOLS 

DIRECT SEFLISA (RABBIT IGG) 
 

A. Antigen Immobilization 

 

a. Complete a two-fold serial dilution of rabbit IgG to obtain samples 

between 1000 pg/ml and 2 pg/ml.  The buffer is carbonate-bicarbonate 

with a pH between 9.2 and 9.8. 

b. Add 100 μl of each sample to the appropriate wells in the 96-well 

microtiter plate. 

c. Cover plate and incubate overnight at 4°C. 

 

 

B. Blocking 

 

a. Invert plate and shake out antigen. 

b. Wash each well in plate with 300 μl of PBST 2 times and PBS 1 time for 1 
minute each on a plate shaker. 

c. Add 300 μl of Odyssey blocking buffer to each well. 
d. Cover plate and incubate for 1 hour at room temperature on a plate shaker. 

 

C. Detection Antibody 

 

a. Invert plate and shake out blocking buffer.  No need to wash at this point. 

b. Dilute biotinylated anti-rabbit conjugate in blocking buffer to a 

concentration of 1 μg/ml. 

c. Add 100 μl of diluted detection antibody to each well. 

d. Cover plate and incubate for 1 hour at room temperature on a plate shaker. 

 

D. Streptavidin – Fluorophore Conjugate 

 

a. Invert plate and shake out detection antibody. 

b. Wash each well in plate with 300 μl of PBST 2 times and PBS 1 time for 1 

minute each on a plate shaker. 

c. Dilute SAv-800CW (1 mg/ml) in blocking buffer to a concentration of 0.1 

μg/ml. 

d. Add 100 μl of diluted SAv-800CW to each well. 
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e. Cover plate with seal and foil, incubate for 1 hour at room temperature on 

a plate shaker. 

 

E. Protease K Solution 

 

a. Invert plate and shake out streptavidin – fluorophore conjugate.  

b. Wash each well in plate with 300 μl of PBST 1 time, PBS 1 time, and 
dH2O 1 time for 1 minute each on a plate shaker. 

c. Dilute protease K salt solution (250X) by 1:250 in dH2O. 

d. Add 50 μl of diluted protease K salt solution to each well.  Note: 50 μl of 
dH2O was added to reference (FLISA) wells instead. 

e. Cover plate with seal and foil, incubate for 30 minutes at room 

temperature on a plate shaker. 

 

F. AgNP Solution 

 

a. Add 50 μl of AgNP solution to each well.  Note: 50 μl of dH2O was added 

to reference (FLISA) wells instead. 

b. Cover plate with seal and foil, incubate for 15 minutes at room 

temperature on a plate shaker. 

c. Detect on Odyssey Sa with a focus offset of 3.4 mm at an intensity of 11. 

 

SANDWICH SEFLISA (AFP) 
 

A. Capture Antibody 

 

a. Dilute mouse anti-human AFP in PBS to a concentration of 2 μg/ml. 

b. Add 100 μl of diluted capture antibody to each well in the 96-well 

microtiter plate. 

c. Cover plate and incubate overnight in drawer (dark) at room temperature. 

 

B. Blocking 

 

a. Invert plate and shake out excess capture antibody. 

b. Wash each well in plate with 300 μl of PBST 2 times and PBS 1 time for 1 
minute each on a plate shaker. 

c. Add 300 μl of Odyssey blocking buffer to each well. 
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d. Cover plate and incubate for 1 hour at 37°C on a plate shaker. 

 

C. Antigen 

 

a. Invert plate and shake out blocking buffer. 

b. There is no need to wash at this point. 

c. Complete a two-fold serial dilution of human AFP to obtain samples 

between 5000 pg/ml and 9.8 pg/ml.  The diluent is 1% BSA in PBS. 

d. Add 100 μl of each sample to the appropriate wells in the 96-well 

microtiter plate. 

e. Cover plate and incubate for 1 hour at 37°C on a plate shaker. 

 

 

D. Detection Antibody 

 

a. Invert plate and shake out sample.  

b. Wash each well in plate with 300 μl of PBST 2 times and PBS 1 time for 1 

minute each on a plate shaker. 

c. Dilute biotinylated chicken anti-human AFP in blocking buffer to a 

concentration of 0.2 μg/ml. 

d. Add 100 μl of diluted detection antibody to each well. 
e. Cover plate and incubate for 1 hour at 37°C on a plate shaker. 

 

E. Streptavidin – Fluorophore Conjugate 

 

a. Invert plate and shake out detection antibody. 

b. Wash each well in plate with 300 μl of PBST 2 times and PBS 1 time for 1 
minute each on a plate shaker. 

c. Dilute SAv-800CW (1 mg/ml) in blocking buffer to a concentration of 0.1 

μg/ml. 

d. Add 100 μl of diluted SAv-800CW to each well. 

e. Cover plate with seal and foil, incubate for 1 hour at 37°C on a plate 

shaker. 

 

F. Protease K Solution 

 

a. Invert plate and shake out streptavidin – fluorophore conjugate.  

b. Wash each well in plate with 300 μl of PBST 1 time, PBS 1 time, and 
dH2O 1 time for 1 minute each on a plate shaker. 

c. Dilute protease K salt solution (250X) by 1:250 in dH2O. 

d. Add 50 μl of diluted protease K salt solution to each well.  Note: 50 μl of 
dH2O was added to reference (FLISA) wells instead. 



161 

 

e. Cover plate with seal and foil, incubate for 30 minutes at 37°C on a plate 

shaker. 

 

G. AgNP Solution 

 

a. Add 50 μl of AgNP solution to each well.  Note: 50 μl of dH2O was added 

to reference (FLISA) wells instead. 

b. Cover plate with seal and foil, incubate for 15 minutes at 37°C on a plate 

shaker. 

c. Detect on Odyssey Sa with a focus offset of 3.4 mm at an intensity of 11. 
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APPENDIX C. EFFECT OF PH ON SEF 

As mentioned in Chapter 8, it was found that the pH of the AgNP solution has substantial 

affect on the SEF process.  Commercially available citrate-stabilized AgNP (Ted Pella, 

Redding, California) were purchased in order to study the effect of size distribution on 

SEF (as our in-house recipe creates a polydisperse distribution).  Upon applying the same 

SEF process as with LI-COR AgNP, there was no measurable fluorescence enhancement.  

Knowing the buffer solutions likely differ (without knowing exactly the contents in the 

purchased AgNP) it was hypothesized that the pH may be the cause of the discrepancy.  

The AgNP used in this thesis (LI-COR, Lincoln, Nebraska) have a pH ~ 4.0 while the 

commercially-available AgNP have a pH ~ 7.4.  To quickly test the pH hypothesis, the 

two AgNP solutions were added to a solution of SAv-800CW as received and also with 

the supernatants swapped after spinning-down the AgNP.  Figure C.1 shows qualitatively 

that JA AgNP (LI-COR, Jon Anderson) demonstrate significant SEF while TP AgNP 

(Ted Pella) show no enhancement (Figure C.1, middle row) relative to SAv-800CW 

alone (Figure C.1, top row).  Upon swapping the supernatants (Figure C.1, bottom row), 

the JA AgNP show no enhancement while the TP AgNP show significant enhancement in 

one well and not the other (we assume a mistake was made in the centrifugation or 

pipetting).   
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Figure C.1.  Fluorescence image of SAv-800CW alone (top row), JA AgNP and TP 

AgNP as received (middle row), and JA AgNP and TP AgNP with supernatants swapped 

(bottom row).  The fluorescence intensity is shown on an RGB scale where red is more 

intense and blue is less intense (white is saturated pixels).  

 

 

With further evidence that pH may have a significant effect on SEF, the hypothesis was 

further developed to include the isoelectric point (pI) of the carrier protein.  It was then 

hypothesized that the pH of the AgNP solution must be below the pI of the carrier protein 

in order to allow a positively-charged carrier protein to interact with the negative, citrate-

stabilized AgNP.  This was tested by creating a series of AgNP solutions using a 

common, simple recipe
99

 that involves only silver nitrate and citrate where the pH could 

be tuned using citric acid in place of citrate at various ratios.  Different total 

concentrations of citrate/citric acid were also used to study this effect.  Figure C.2 shows 

fluorescence enhancement versus pH for SAv-800CW mixed with the AgNP solutions at 

2 mM and 6mM total citrate/citric acid concentration.  Clearly, SEF is affected by pH 

with the general trend being that lower pH enables more enhancement.  Interestingly, the 

curves seem to have sections where the slope is constant and then abruptly changes.  The 

pKa values of citrate (~ 3.1, 4.8, and 6.4) were added to show that these abrupt changes 

may be correlated with the protonation of individual carboxyl groups of which there are 

three.  It was also hypothesized that the total concentration of citrate/citric acid may 
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affect SEF by changing the equilibrium surface coverage of the AgNP at each pH value.  

This would suggest that the SEF would be higher at lower citrate/citric acid concentration 

which is opposite of the data shown below.  It is unclear at this time as to why the higher 

concentration of citrate/citric acid demonstrates greater SEF, but may be due to changes 

in the size and/or shape of the AgNP which was not tested.  Overall, this data appears 

quite convincing about some of the hypotheses; however, it was difficult to repeat.  

Further research is suggested as the pH effect is obviously dramatic (significant SEF to 

no SEF) but poorly understood. 

 

Figure C.2.  Fluorescence enhancement versus AgNP solution pH for 2mM and 6 mM 

total citrate/citric acid concentration.  The three pKa values of citrate are shown as 

vertical dashed lines.  
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