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 Analytical methods, such as enzyme-linked immunosorbent assays (ELISA), are used to 

detect and quantify residues from allergenic sources in food products.  However, ELISAs have 

not been validated for use in foods that have been exposed to proteolysis.  This thesis explores the 

specificities, sensitivities, and capabilities of commercially-available milk ELISA kits for 

detecting milk residues in cheeses that have undergone varying degrees of proteolysis. 

 The specificity, accuracy, and consistency of twelve commercially-available milk ELISA 

kits for individual milk proteins and commonly used milk-derived ingredients, including α-,β-, 

and κ-casein, β-lactoglobulin, α-lactalbumin, non-fat dry milk, sodium caseinate, and whey 

protein concentrate were evaluated.  ELISA kits exhibited targeted specificities to milk proteins 

as opposed to broad-spectrum detection. Kits were able to detect milk residues in all derivative 

ingredients, although the kits were not quantitatively accurate.   

 Further, ELISA kits were used to investigate the effects of proteolysis in Cheddar cheese 

during aging.  As cheese ripened and proteolysis continued, fewer milk residues were detected in 

samples using commercial milk ELISA kits.  In a survey of retail cheeses produced with different 

degrees of proteolysis, the lowest concentration of milk residues were detected in Blue cheese, 

while Mozzarella cheese contained the highest milk residues.  Emmentaler, Brie, and Limburger 

cheeses were also evaluated.  Five samples of enzyme-modified cheese (EMC) were assessed for 



 

their milk residue content; again, not all ELISA kits were able to detect milk residues in samples 

that had been subjected to extensive proteolysis.   

 The recommendation of specific ELISA kits for detecting milk residues is highly 

product-specific.  Current commercially-available milk ELISA kits are capable of detecting milk 

residues in a variety of cheeses, including some that have been exposed to extensive proteolysis.  

However, the quantitative accuracy of commercial milk ELISA kits is jeopardized when 

proteolysis has occurred.  Some ELISAs may have further application to monitor proteolysis and 

indicate cheese maturity during ripening because of their specificities.     
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CHAPTER 1. LITERATURE REVIEW 

1. Introduction 

 Food allergy is an increasing problem around the world.  Not only are food allergies 

inconvenient, they can also be life-threatening and deprive afflicted individuals of certain 

nutritional requirements and quality of life.  With increased demand for readily-available and 

shelf-stable foods by growing populations, food processing technology has developed and 

advanced in the past century.  While beneficial for storage and safety, processing also may affect 

nutritional, organoleptic, structural, chemical and allergenic properties of the food product.  

While processing may decrease the allergenicity of foods, it may also reveal previously hidden 

epitopes and alter immunoreactivity.  The relationships between structure, function, and 

allergenicity for the major allergenic food proteins are mostly unclear at this time.  

 Milk allergy is quite prevalent, affecting between 2-3% of children in the United States 

(Sicherer, 2011b).  While many children diagnosed with milk allergy will outgrow their 

sensitivity prior to adolescence, milk still presents a risk for many who ingest it.  Resolution of 

milk allergy has recently been reported near 50% (Wood et al., 2013).  Production of milk-

containing foods, modification of milk by food processing methods, and cross-contamination of 

non-milk containing foods by use of shared equipment and facilities contribute to the risk allergic 

consumers have to accidental ingestion and reaction. Commercially-available immunochemical 

methods are widely available and determine the presence, absence, or concentration of a target 

analyte present in a food.  These methods represent one of the best available techniques at the 

current time for assessing the presence of target analyte in a food, especially at low 

concentrations.  Processing can affect the allergenicity of foods, but the effect of processing on 

immunochemical detection of target analyte has not been established.  This thesis seeks to 

identify the capabilities and limitations of commercially available milk detection methods and 

describe their efficacy especially in relation to fermented foods.   
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2. Food Allergens and Allergy 

The prevalence of food allergy is increasing; recent reports indicate that between 3-6% of 

the US population has a food allergy (Sicherer, 2011a). Almost 90% of allergic reactions to foods 

are caused by eight groups of allergenic foods; milk, egg, peanut, tree nuts, soy, wheat, fish, and 

shellfish (1995; Bush and Hefle, 1996).  The prevalence rates of food allergy according to 

geographic region as food consumption patterns are not globally consistent.  Buckwheat and 

celery, for example, are unique to the priority allergen lists in Asia and Europe, respectively 

(Fernandez-Rivas and Ballmer-Weber, 2007). These allergenic foods are commonly consumed in 

these respective regions which increases overall exposure to the allergenic proteins.  Increased 

exposure may contribute to increased sensitization compared to regions of the world where these 

foods are not commonly consumed.   

  The prevalence of food allergy is higher in infants and young children, averaging  near 5% 

in westernized countries (Sicherer and Sampson, 2010).  Food allergies are more common in 

children than adults, as many will outgrow their allergies within the first few years of life 

(Sampson, 1999).  Allergies to milk, soy, wheat, and eggs are commonly outgrown, whereas 

peanut, tree nut, shellfish, and fish allergies are more likely to persist through adulthood 

(Hourihane, 1998).  Although food allergy is most prevalent in the 0-9yr age group, most 

fatalities occur in the 10-19yr age group to milk, peanut, and tree nuts (Bock et al., 2001, 2007).  

The likelihood of outgrowing a food allergy may depend on the structure of the allergenic 

epitope(s) to which the individual is sensitized.   

While it is not well known what renders certain proteins allergenic, many share similar 

biochemical characteristics. Typically, food allergens are relatively small and highly water-

soluble proteins.  They are often resistant to heat, proteolytic degradation, and pH extremes and 

are capable of reaching the small intestine largely intact and ready to provoke the immune system 

(Fu et al., 2002). 
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Most major food allergens are abundant within the food, accounting for typically greater 

than 1% of the total protein from the allergenic source (Metcalfe et al., 1996).  Proteins present at 

higher concentrations have an increased chance of interacting with the immune system.  This is 

thought to be important for sensitization and has been documented to be important for 

provocation of an allergic reaction based on clinical low dose food threshold challenges.  Higher 

concentrations of allergenic protein present in the food increase the probability of exceeding the 

allergic individual’s minimum eliciting dose.  Allergenic proteins usually have several epitopes 

capable of binding IgE antibodies.  The structure of the allergenic protein and epitopes, whether 

conformational or sequential, is largely responsible for the relationships among processing, 

reaction severity, remission, and other allergenic properties of the molecule (Poms and Anklam, 

2004).   

3. Adverse Reactions to Food  

 Adverse reactions to foods are classified into two main groups; food hypersensitivities 

and food intolerances (Sampson, 2004).   Food intolerances are not immunological responses and 

can be a result of anaphylactoid reactions, metabolic food disorders, or idiosyncratic reactions.   

Food hypersensitivity and food allergy are immunological responses to food and can be IgE-

mediated or non-IgE-mediated.   

a. Food Intolerances 

 The best known metabolic food disorders include lactose intolerance and favism.  

Lactose intolerance is a condition in humans that occurs due to β-galactosidase enzyme 

deficiency, rendering the individuals incapable of completely digesting lactose from dairy 

products.  Ingestion of lactose by affected individuals causes abdominal pain, flatulence, and 

diarrhea (Taylor et al., 2001).  Favism is another intolerance characterized by deficiency of the 

glucose-6-phosphate dehydrogenase enzyme. Ingestion of fava beans by affected individuals 

results in hemolytic anemia.  Lactose intolerance and favism have high prevalence among are 
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certain populations.  While enzyme supplements are available for managing lactose intolerance, 

food intolerances are best treated and managed by avoidance diets (Taylor et al, 2001).    

 In anaphylactoid responses, ingestion of the offending food causes the release of 

histamine and other chemical mediators from basophils and mast cells without the degranulation 

signal from IgE binding and recognition (Taylor, 1997).  Certain foods, including strawberries, 

egg white, chocolate, citrus fruits, and shellfish muscle are capable of triggering the release of 

histamine upon ingestion (Anderson, 1984; Baldwin, 1996).  While ingestion of the food may 

cause anaphylaxis-like symptoms, the reaction lacks an immunological component (Taylor, 

1997).     

 Idiosyncratic reactions are the third category of food intolerance, affect only certain 

individuals, and occur through unknown mechanisms.  Some people have unexplainable 

sensitivities to products such as sulfites, aspartame, and monosodium glutamate (MSG) (Bush 

and Taylor, 1998) .  These sensitivities have been attributed to induce symptoms of asthma, rash 

and hives, headaches, and muscle spasms.  Although MSG naturally occurs in proteins, its 

individual addition to foods is claimed to be associated with development of adverse symptoms.     

b. IgE-mediated Food Allergy 

 IgE-mediated reactions to food are referred to as immediate hypersensitivity reactions 

and “true” food allergies.  Upon exposure to an allergenic protein, individuals may become 

sensitized and form antigen-specific IgE molecules. Little is known about the factors that 

predispose certain individuals to develop food allergies. Factors that influence sensitization of 

individuals may include genetic predisposition, an immature mucosal immune system, deficient 

antibody production,  improper or late microbial colonization of the infant gastrointestinal tract, 

diet, vitamin D intake, and route of exposure (oral vs. cutaneous exposure) (Lack, 2008; Murphy, 
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2007).  IgE antibodies are produced by plasma cells in the lymph nodes and at the site of allergic 

exposure, which, in the case of food allergens, is often the gastrointestinal tract. 

 The gastrointestinal tract has many physiologic barriers to prevent penetration by 

allergens (Murphy, 2007).  The tight junctions between intestinal epithelial cells and the mucus 

layer covering the intestinal wall are especially important.  Even with the physiologic barriers of 

the gastrointestinal tract, nearly 2% of food antigens are still capable of crossing the gut wall and 

entering the lymphoid tissue as intact proteins (Husby et al., 1986).   

 Once absorbed across the mucosal epithelium, antigens are bound by antigen-presenting 

cells (APCs) (Murphy, 2007).  Professional APCs, such as dendritic cells and macrophages, bind 

to the foreign material, recognize it as “non-self”, become activated, and transport the bound 

antigen further into the lymphoid tissue.  In the lymphoid tissue, antigens are processed and 

broken down into small peptides and presented to a specific class of T cells, which then release 

chemical mediators.  If the peptides are deemed a threat, chemokines trigger antigen-specific 

immunoglobulin production by B-cells.  Non-professional APCs, such as intestinal epithelial 

cells, can also process and present antigen to T cells, but they are not capable of inducing 

tolerance to food antigens (Sampson, 2004).  Once produced, IgE circulates through the 

bloodstream and attaches to high-affinity receptors on basophils and mast cells.  These cells 

reside and travel near surfaces exposed to pathogens and allergens, including the skin and gut 

lymphoid tissue.  After the sensitization phase, mature tissue-bound antigen-specific IgE 

molecules are primed and ready for exposure to antigen.   

 With repeat exposure to the antigen in sensitized individuals, IgE antibodies recognize 

the antigen and signal basophils and mast cells to elicit a response (Murphy, 2007).  For a 

response to occur, crosslinking of two conserved epitopes on the antigen by IgE antibodies is 

required.  While some IgE is free-floating, most is bound to immune cells.  Crosslinking of 
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antigen by IgE initiates the release of inflammatory mediators and granules from mast cells and 

basophils.   Cytokines, including histamine, interleukins, and tissue-destructive enzymes travel 

throughout the body and initiate immune responses.  Histamine is a prevalent mediator in allergic 

responses and increases local blood flow to the reaction site and throughout the body, often 

causing swelling, redness, and itching and triggering additional antigen-specific IgE production 

by B cells.   Additional symptoms of an allergic response to food include vomiting, diarrhea, 

hives, and uncommonly anaphylaxis (Murphy, 2007).  Immunoregulation is the key to controlling 

allergic disease.   

 

Figure 1.1. Sensitization and Degranulation of IgE- mediated food allergy.  Taken from Li et al. 

(2001).  

  From the immediate response, cytokines initiate production of late-phase response 

immune mediators. The immunological development of an allergic response is depicted in Figure 

1.1.  Late-phase reactions occur in up to 20% of patients with immediate-hypersensitivity 

response (Brazil and MacNamara, 1998; Douglas et al., 1994; Kemp and Lockey, 2002; Lee and 

Greenes, 2000).  These responses are caused by induced synthesis and release of mediators, 

including prostaglandins, leukotrienes, chemokines, and cytokines from activated mast cells and 

basophils.  The late- phase response is associated with a second phase of T-cell mediated smooth 
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muscle contraction.  Sustained edema and tissue remodeling are characteristic of late-phase 

responses (Murphy, 2007).  

 Certain food allergens, including peanuts, tree nuts, and shellfish are associated with a 

more severe IgE-mediated allergic response upon ingestion than other allergens (Sampson, 2004).  

A severe systemic response, termed anaphylaxis, can result in multiple organ failure and death.  

Unfortunately, allergic reactions are not an uncommon event, accounting for about 125,000 

emergency room visits and 53,000 episodes of anaphylaxis per year in the US (Decker et al., 

2008; Ross et al., 2008).  Other allergens are capable of prompting anaphylactic responses, 

although typically less frequent and of less severity.   

c. Non-IgE-mediated Food Allergy 

 In addition to IgE-mediated allergies, there are other types of hypersensitivity reactions.  

Some of these reactions are mediated by other antibodies (IgG) and others are mediated by T-

cells.  T-cell mediated responses include food protein-induced enterocolitis, food protein-induced 

proctocolitis, food protein-induced enteropathy, and celiac disease, among others.  Cell-mediated 

reactions typically occur several hours after ingestion of the allergenic food and are grouped as 

delayed hypersensitivity reactions (Murphy, 2007).  

 The rate of celiac disease has increased in the recent decade, and is probably the most-

reviewed example of cell-mediated food allergy (Rubio-Tapia et al., 2009).  Celiac disease is an 

inappropriate T-cell mediated immune response to certain peptides formed during the catabolism 

of gluten.  Specific subsets of T-cells are abnormally primed to recognize α-gliadin, a precursor 

of gluten.  Individuals with cell-mediated food hypersensitivities like celiac disease have high 

rates of genetic predisposition and experience serious and potentially life-threatening 

consequences of their illness, including chronic intestinal inflammation, body wasting, diarrhea, 

and anemia.   The ingestion of wheat, rye, and barley by celiac-individuals triggers the 
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inflammatory response that eventually destroys the absorptive capacity of the small intestine.  

The only known treatment for celiac disease is the avoidance of gluten-containing foods.   

 The remainder of this review will focus on IgE-mediated food allergies.  

d. Diagnosis of Food Allergy 

 The “gold standard” of methods to diagnose food allergy is the double-blind, placebo-

controlled food challenge (DBPCFC) (Binslev-Jensen et al., 2004).  While more time-consuming 

and difficult to orchestrate than in vitro analyses, the DBPCFC allows clinicians and researchers 

to obtain definitive, quantitative, and unbiased data on allergy thresholds.  Safety concerns when 

undergoing food challenges are common, especially for young children or those who have a 

clinical history of severe reactions.  Even with medical staff present, there is risk of developing 

severe symptoms and possibly anaphylaxis.  DBPCFC have additional drawbacks; false negative 

responses as a result of insufficient challenge doses, alteration of allergenicity during preparation 

of challenge material, and matrix effects.  While the DBPCFC does not reliably identify all 

allergic patients, it is the favored method for diagnosing food allergy (Fernandez-Rivas and 

Ballmer-Weber, 2007).  The most informational method for assessing processing effects on 

allergenicity is through DBPCFCs.  However, these methods are expensive and time-consuming 

to properly orchestrate.  Few DBPCFC have been performed using fermented milk proteins, but 

some data are available.  More data are available regarding the allergenicity of enzymatically 

treated food proteins.   

 Other methods, such as skin prick tests (SPTs), rapidly provide useful information about 

levels of tissue-bound IgE (Hill et al., 2001).  Because SPTs do not involve ingestion of the 

suspected allergen, the risk of severe reactions to food is largely reduced (Sicherer and Sampson, 

2010).  SPTs are often favored for infants and young children and as an initial screening for food 

sensitivities because of their reduced risk of severe reaction.  Depending on the size of wheal 
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development upon pricking with an allergen or allergen-extract, SPT can indicate the presence 

and severity of clinical reactivity.  A negative skin test often, but not always, indicates the 

absence of IgE-mediated food sensitivity to the tested antigen.  It is also possible for a positive 

SPT reaction to occur in tolerant individuals (Sicherer and Sampson, 2010).  Several studies have 

determined that reactions to SPTs for milk, egg, peanut, and fish were more than 95% predictive 

of clinical reactivity, although the predictive accuracy depends upon the wheal diameter size (Hill 

et al., 2001; Sampson, 2001).  SPTs with fresh fruits and vegetables are often less accurate in 

predicting allergic reactivity due to the instability of these allergens during extraction and 

preparation.  With allergens of this nature, prick-to-prick testing is used to preserve the protein’s 

structure.    

 Radioallergosorbent tests (RASTs) and enzyme-allergosorbent tests (EASTs) are not 

currently relied on to predict clinical reactivity to food allergens although related methods such as 

ImmunoCAPs (see below) are popular.  These types of assays provide only semi-quantitative 

information about patient sensitivity.  RASTs and EASTs measure the amount of circulating 

antigen-specific IgE but can be less accurate than SPTs in predicting reactivity (Hill et al., 1993).  

More accurate tests for measuring severity of food sensitivities have been developed and are 

increasingly favored over the semiquantitative RAST and EAST methods.   

  ImmunoCAP methods also measure the amount of food-specific serum IgE, but have 

improved specificity and accuracy over other allergosorbent assays.  Recent studies have 

established ImmunoCAP as the standard method for quantitative measurement of serum-specific 

IgE (Sampson, 2001; Wang et al., 2008).  Differences in food allergy diagnosis among diagnostic 

methods are possibly due to the differences between detecting tissue-bound or circulating IgE.  

Some authors favor the theory that children with severe IgE food allergy have high levels of 

tissue-bound and circulating food-specific IgE.  Studies have shown that children with prolonged 
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milk allergy have higher levels of milk-specific IgE than patients who will become tolerant (Ito et 

al., 2012).   

e. Treatment and Therapy for Food Allergy 

 While the only proven therapy for food allergy is avoidance of the offending food, other 

therapies have been suggested to improve the quality of life of food-allergic individuals (Sicherer 

and Sampson, 2010).  Certain drug treatments for allergy focus on the prevention of IgE 

production or the downstream pathways initiated by IgE-antigen crosslinking.  After accidental 

exposure to food allergens, symptoms are commonly treated with antihistamine and/or 

epinephrine.   Desensitization and specific allergen immunotherapy have gained much recent 

support (Burks et al., 2008).  The goal of desensitization therapy is to decrease antigen-specific 

IgE response by increasing exposure to the antigen in a controlled manner.   

 Ingestion of certain plant-derived supplements has also gained support as a method of 

preventing allergic reactions.  A Chinese herbal formula, FAHF-2, has undergone extensive 

testing in murine models with some success in decreasing allergenic phenotypes and circulation 

of allergy-associated interleukins and cytokines (Li et al., 2001).   

4. Bovine Milk 

Bovine milk and milk products have extremely widespread use in the food industry as it 

is capable of gelation, emulsification, and binding within food matrices (Damodaran and Parkin, 

2008).  Its nutritional aspects render it an ideal primary food for most children.   

Bovine milk is a complex substance with an average protein content of 30-36g/L (Wal, 

2002b). The nutritional, chemical, and sensory properties of milk change during lactation, 

environmental changes, and with geography.   

 All major milk proteins are allergenic.  The four main allergenic proteins  in bovine milk 

are the caseins (Bos d 8), BLG (Bos d 5), ALA (Bos d 4), and bovine serum albumin (Bos d 6) 
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(Poms et al., 2004b).  Additional milk proteins, including immunoglobulins and lactoferrin also 

display allergenic activity.  Roughly 80% of milk proteins are caseins, while the remaining 20% 

are whey proteins.  The casein proteins are characterized by their precipitation and separation 

from the whey fraction of milk at pH 4.6 or during hydrolysis by chymosin. The caseins naturally 

cross-link and form ordered aggregates called micelles within a milk suspension (Wal, 2002b).   

Table 1.1. Sizes of Major Allergenic Milk Proteins (Jost, 1988) 

Protein Fraction Size (kDa) Length of AA sequence 

αs1-casein 23.6 199 

αs2-casein 25.2 207 

β-casein 24.0 209 

κ-casein 19.0 169 

α-lactalbumin 14.2 123 

β-lactoglobulin 36.6 (dimer); 18.3 (monomer) 162 (monomer) 

 

Recent research has determined that great variability exists in affinity, specificity, and 

magnitude of IgE response to milk proteins.   A study by Wal et al. (1995b) of 92 milk-allergic 

patient sera determined that most patients were sensitized to more than one milk protein, with no 

particular trend in protein combinations.  According to the research, patients were sensitized to 

casein 66% of the time, BLG 68%, ALA 58%, BSA 50%, immunoglobulins 36%, and lactoferrin 

45% (Wal et al., 1995a).  Additionally, Bernard et al. (1999) determined that of 58 IgE sera from 

milk-allergic individuals, only one patient had a monospecific reaction (κ-casein).   

a. Composition 

Caseins 

 Caseins are a functional part of the milk transfer system (Horne, 2002).  The casein 

fraction of bovine milk contains 80% of the total milk proteins.  There are four casein proteins: 

αs1, αs2, β, and κ-casein.  Although genes for the proteins are coded on the same chromosome, the 

caseins share little similarity in structural homology (Chatchatee, 2001a).     
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 While each of the caseins is a unique chemical compound, the caseins aggregate in 

solution.  In fluid milk, caseins clump together in ordered aggregates called micelles. Micelles are 

composed of 92% protein and 8% milk salts of calcium, magnesium, and citrate (Damodaran and 

Parkin, 2008). Caseins occur in fluid milk in generally stable proportions, with αs1, αs2, β, and κ-

casein comprising 37%, 13%, 37%, 13% of total casein, respectively (Wal, 2001a).   The 

distribution of caseins is not uniform within micelles; the center of the micelle is rich in calcium-

sensitive α- and β- caseins, while the surface submicelles are dominated by κ-caseins.  Assembly 

of micelles is facilitated by interactions with calcium ions and phosphoserine groups of α- and β- 

caseins.  In micelles, polar fragments are exposed on the surface, especially in the case of k-

casein.  Polar regions of the other caseins also occur at the micelle periphery.  A depiction of the 

casein micelle is shown in Figure 1.3.   

 

Figure 1.2. Casein micelle structure as occurs in bovine milk. Adapted from Schmidt (1982). 

   

 Homologs of bovine caseins are present in milk of other ruminant species.  Some cow 

milk-allergic individuals may also exhibit IgE binding to milk of other ruminant species.  Among 
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other ruminant species, especially ewe and goat, 80% to 90% homology exists among the protein 

sub-fractions that occur in bovine milk.  Therefore, a high cross reactivity occurs in CMA 

patients between milk of different species (Wal, 2001b).  Bernard et al. (1999) documented the 

cross reactivity of CMA patients to ewe and goat milk.  According to the study, most CMA 

patients exhibit a reaction, albeit typically less intense, to ewe and goats milk.  

 Milk salts, especially calcium salts, affect not only the structure of casein micelles, but 

also the stability and function of individual milk proteins (Damodaran and Parkin, 2008).  The α- 

and β-caseins are calcium sensitive, while κ-casein is insensitive to calcium.  It is thought that 

calcium-sensitive caseins are derived from a common ancestral gene, while κ-casein evolved 

from a separate gene.  Calcium-binding of caseins results in dehydration of the region that can 

alter the hydrophobic interactions and electrostatic forces and have a dramatic effect on structure.   

 Because of the sensitivity of the caseins to calcium, caseins cannot be crystallized, and 

thus their 3D structure has not been determined (Damodaran and Parkin, 2008).  The chemical 

properties and proteolytic susceptibilities of individual caseins suggest that the tertiary structure is 

quite flexible.  The large concentration of proline residues is thought to contribute to the 

flexibility, as these large residues interrupt the secondary structure of the proteins and prevent the 

formation of complex structures (Damodaran and Parkin, 2008). The lack of stable secondary and 

tertiary structures renders caseins relatively resistant to chemical or thermal denaturants, while 

the open structure exposes the caseins to proteolytic enzymes (Fox, 2001).  Due to susceptibility 

to proteolysis, early researchers suspected caseins to be poorly immunogenic (Wal, 2002b; Wal, 

1998b).   

 The presence of κ-casein is absolutely critical to maintain the micellar structure of 

caseins in fluid milk.  The tail of κ-casein is a large polar sequence with several serine and 

threonine residues.  These are often glycosylated during post-translational modifications.  The 
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large hydrophobic domain of β-casein makes it more heat sensitive than the other caseins 

(Damodaran and Parkin, 2008).  

Whey  

 The major protein constituents of whey are BLG and ALA.  Both are globular proteins 

that have allergenic properties and are synthesized in the bovine mammary gland.  Less prevalent 

proteins present in whey include bovine serum albumin, the immunoglobulins, and lactoferrin.  

These three proteins originate in the blood and are minor allergens (Restani et al., 1999).  The 

whey fraction of milk may also contain some casein-derived fragments, particularly γ-caseins and 

casein macropeptide (derived from the polar portion of κ-casein), as their polarity renders them 

soluble in whey (Wal, 2002b).  Function may be added to the whey proteins by modifications 

such as the addition of disulfide bonds and sulfhydryl groups.   

 At the typical pH of milk, 6.6-6.8, BLG forms dimers.  Between pH 3.5 and pH 5.2, the 

dimers often aggregate and form octamers.  BLG is highly sensitive to thermal treatments, but 

displays some resistance to acid hydrolysis and proteolysis (Astwood and Fuchs, 1996).  

Pasteurization or UHT processing causes irreversible unfolding of BLG (Wal, 2001b).  

Denaturation by heat treatment exposes a key sulfhydryl group which can interact with κ-casein 

and drastically alter milk structure (Reddy et al., 1988).  According to Wal (2001b), the cleavage 

of the disulfide bonds of BLG has little effect on protein immunoreactivity.  However, upon 

denaturation, BLG becomes much less soluble and is more likely to precipitate.  Some whey 

proteins precipitate during cheese-making and can become incorporated in the cheese curd.   

 ALA is a 14.4 kDa protein with four disulfide bonds and a high affinity-calcium binding 

site (Wal, 2001b). It has a similar structure to lysozyme and plays an important role in regulating 

lactose synthesis.  ALA is calcium sensitive.  ALA unfolds at lower temperatures than BLG, but 

with intact disulfide bonds, the tertiary structure can unfold and refold reversibly.  Under most 
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standard processing conditions, disulfide bonds remain intact, and ALA is not thermally 

denatured (Damodaran and Parkin, 2008).  At temperatures above 70
o
C, whey proteins rapidly 

denature.  In terms of irreversible heat damage, the sensitivity of whey proteins ranks as: 

IgG<BSA<BLG<ALA.  Bovine-derived ALA exhibits a 74% homology to human ALA 

(Järvinen et al., 2001).   

 Ovine BLG shares sequence similarities with bovine BLG, but no counterpart exists in 

human milk (Järvinen, 2001).  Traditionally, BLG had been largely attributed to CMA due to the 

uniqueness of the protein. In clinical studies, BLG showed the highest rate of positive oral 

challenges in children with milk allergy (Schutte and Paschke, 2007).  Additionally, there is a 

high cross reactivity among ewe, goat, and cow milk in CMA patients, thought to be a result in 

homology of BLG molecules among the animals.   

Other Potentially Allergenic Components of Milk 

 Research has shown that Maillard reaction products in milk have allergenic potential 

(Wal, 1998a).  Additionally, other types of post-translational modification may induce allergenic 

potential of food proteins.   

 Other minor casein fractions exist in cow’s milk.  Hydrolysis of β-casein by naturally 

occurring milk enzymes produces a smaller sub-fraction called γ-casein (Wal, 2002).  The γ-

caseins are derived from the polar region of β-casein, and therefore are soluble in the whey 

fraction of milk.  Additionally, casein macropeptide (derived from κ-casein) is also soluble in 

whey.  It has been documented that casein macropeptide can retain allergenic activity even when 

separated from other caseins (Wal, 1998b).   

 Breakdown products of caseins by indigenous milk enzymes may play a role in allergic 

reactions.   Plasmin, a naturally-occurring milk enzyme, catalyzes the breakdown of β-casein into 

γ-casein.  Additionally, plasmin can produce λ-caseins from αs1 degradation.  While it is known 
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that these compounds exist, the peptides have not been thoroughly identified, nor has their 

allergenic potential been assessed (Fox, 2001).  Additional milk proteinases, such as the 

cathepsins, also produce peptides in milk, but these peptides have not been identified or 

evaluated. 

b. Cow’s Milk Allergy (CMA) 

 Nearly 80% of children diagnosed with CMA develop clinical tolerance within the first 3 

years of life (Høst, 1997).  Symptoms of CMA typically include urticaria, atopic dermatitis, and 

vomiting.  It has been suggested that differences exist in the structure and sequence of epitopes 

recognized by individuals with transient or persistent CMA (Chatchatee et al., 2001a).   

 The resistance of BLG to acid hydrolysis and proteolysis allows relatively large 

derivative peptides to persist in the human body and transfer to human breast milk (Axelsson et 

al., 1986).  The persistence of BLG-derivatives has been attributed to the development of colic in 

infants (Wal, 2001b).   

 In some sera, the IgE response is greatly reduced by modifying the major 

phosphorylation sites on cow’s milk proteins (Otani et al., 1987).  It is believed that post-

translational modifications (phosphorylation, glycation, etc.) may play a critical role in the 

allergenicity of food proteins.  A conserved region of phosphoserine residues are thought to be 

important in the allergenicity of calcium-sensitive caseins.   

 In a study evaluating allergenic and immunogenic responses of germ-free and 

conventional mice to adjuvant-free milk proteins, germ-free mice synthesized IgE and/or IgG1to 

BLG, αS1-, and κ-casein (Morin et al., 2011).  No significant antibody response was observed in 

conventional mice.  The research concluded that gut colonization by bacteria can have a 

significant impact on the susceptibility of mice to the allergenic and immunogenic effects of milk 

proteins.  Additionally, the research described that with heat treatment, there was a decrease in 
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IgE response to BLG in germ free mice, but an increase in production of anti-BLG and anti-κ-

casein IgG1 in both germ free and conventional mice (Morin et al., 2011).   

 One of the major explanations for the change of immunoreactivity with processing is 

through the destruction of protein structure.  Much research on egg and milk suggests that 

patients whose IgE antibodies recognize sequential (linear) epitopes on food proteins have an 

increased likelihood of lifelong, chronic allergy (Poms et al., 2004).  On the other hand, patients 

whose sera bind to conformational epitopes on a food protein often have less severe and transient 

allergies (Figure 1.3).  Allergy to foods other than egg and milk may not exhibit the same trends 

in allergenicity and structure.  The destruction of conformational epitopes, however, can expose 

previously hidden sequential epitopes.   

 

 Figure 1.3. Potential effects of processing on protein structure and epitopes.  Taken from 

(Nowak-Wegrzyn and Fiocchi, 2009).  Illustration displays potential effects of processing on 

protein structure and conformational or sequential epitopes. 
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 An increase in temperature is suggested to decrease allergenicity by destroying 

conformational epitopes (Nowak-Wegrzyn and Fiocchi, 2009).  However, evidence suggests that 

some epitopes are stable and capable of retaining allergenicity in thermally processed foods.   

Thermostability is highly variable, even among food allergens belonging to the same protein 

family (Nowak-Wegrzyn and Fiocchi, 2009).  Cow’s milk caseins and BSA have increased 

thermostability over other milk proteins.  After 2 hours of boiling at 100
O
C, caseins retained 

structural bands on electrophoretic gels whereas LF, BLG, and ALA exhibited extreme sensitivity 

to heat treatment.  Matrix effects have been described as highly important for milk proteins, as the 

heating of BLG allows the formation of disulfide bonds and binding to other proteins.  This 

binding can decrease allergenicity of the food product (Thomas et al., 2007).  The ingestion of 

extensively heated milk products by milk-allergic patients gave no immediate symptoms for 70% 

of patients (Lemon-Mule et al., 2008; Nowak-Wegrzyn and Fiocchi, 2009).   

c. Major Allergenic Epitopes of Bovine Milk 

 Caseins 

 As mentioned above, the casein subfragments share similar structural homology, but are 

encoded by different genes on the same chromosome.   Evidence suggests that children with IgE 

that recognizes structural epitopes are more likely to have a transient food allergy than children 

who have IgE that recognizes sequential epitopes.  This trend has been documented among 

patients with specific-IgE to each of the four casein fragments. 

 The most prevalent casein subunit in bovine milk is αs1-casein (Wal et al., 2001).  It is a 

199 amino acid (AA) peptide with high proline content and lacks established secondary and 

tertiary structure.  According to Chatchatee et al. (2000), there are 9 IgE binding regions and 6 

IgG binding regions on αs1-casein.  Two IgE-binding regions have sequence homology; AA69-78 

and AA109-120.  Of 24 human sera tested for reactivity, each individual reacted to an average of 
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5 IgE binding regions on αs1-casein (Chatchatee et al., 2001a).  Patients were split among two 

groups, based on age, to further evaluate trends in IgE binding.  Seven of nine regions were 

recognized by patients from both groups, while two regions, AA 69-78 and AA173-194 were 

only bound by individuals displaying clinical and immunological history of persistent CMA.  

Follow-up studies determined that individuals less than 3 years of age that had IgE that 

recognized the two epitopes dominated by older individuals were more likely to have persistent 

CMA.  Alternately, individuals that did not recognize these two epitopes were likely to outgrow 

their CMA.  AA69-78 on αs1-casein is a unique IgE binding region that IgG from patient sera 

does not recognize.  Some evidence suggests that IgE and IgG-production are not triggered by the 

same peptide sequences (Murphy, 2007; Chatchatee et al., 2001a).  However, other evidence 

suggests that sometimes class-switching during antibody production may skip the IgG stage and 

directly switch from IgM production to IgE production, thus producing IgE antibodies with no 

IgG counterpart.  The linear IgE and IgG binding epitopes of αs1-casein are displayed in Figure 

1.4.   

   

Figure 1.4. αs1-casein sequence with IgE and IgG binding epitopes.  Taken from (Chatchatee et 

al., 2001a). Thick or broken underlines correspond with major and minor IgE binding epitopes, 

respectively. Major IgG epitopes are shown in bold italics.   

 

 The next casein, αs2-casein, is a 207-AA protein with a mass of 25.2kD.  It has one 

disulfide bond and four genetic variants.  According to Busse et al. (2002), αs2-casein has 4 major 
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and 6 minor IgE binding epitopes.  Two of the major epitopes, AA83-100 and AA165-188, share 

50% sequence homology.  There are two phosphorylation sites on αs2-casein, one in the region of 

AA143-158, and another at AA 168. Phosphorylation at the former site has been shown to 

potentially increase allergenicity, while dephosphorylation at AA168 has been shown to decrease 

allergenicity of αs2-casein.  Treatment of αs2-casein with strong denaturing agents, including urea, 

hydrochloric acid, sodium dodecyl sulfate, sodium hydroxide, or excessive heating, had little 

effect on the allergenicity of the protein (Busse et al., 2002).  It is thought that sequential epitopes 

are most important for allergenicity of αs2-casein; degradation of any 2
o
 or 3

o
structure has limited 

effects on the binding of sera from most milk-allergic patients.  The AA sequence and IgE 

binding epitopes of αs2-casein are shown in Figure 1.5.   

  

Figure 1.5. αs2-casein amino acid sequence and sequential IgE binding epitopes. Taken from 

(Busse et al., 2002) 

 B-casein is a 209AA peptide that has 6 major and 3 minor IgE binding epitopes.  

Additionally, β-casein has 9 IgG binding epitopes.  The sequence is pictured in Figure 1.6.  

Structurally, β-casein is similar to αs1-casein (Chatchatee et al., 2001b). β-casein is a 

phosphoprotein with high proline content, no disulfide bonds, and minimal, if any, 2
o
 or 
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3
o
structure.  These characteristics point to linear epitopes on the molecule, due to lack of 

advanced peptide folding beyond the primary structure.  AA1-16 is the primary epitope on β-

casein recognized by sera from 15 CMA patients.  However, AA83-92 and AA135-144 are 

recognized with the highest intensity of the patients examined (Chatchatee et al., 2001b).  Two of 

the major IgE-binding epitopes on β-casein are not recognized by sera obtained from younger 

patients.  AA149-164 and AA 167-184 are only recognized by older patients; those characterized 

by persistent CMA.  The IgE and IgG binding epitopes of β-casein are depicted in Figure 1.6.   

 

Figure 1.6. β-casein amino acid sequence and IgE and IgG binding epitopes. From (Chatchatee et 

al., 2001b)Major IgE binding epitopes shown in bold italic.  Minor IgE epitopes shown in italic. 

Major and minor IgG epitopes shown as solid and broken underline, respectively.  

 

 κ-casein is the smallest of the casein fragments, at 169AA.  It contains a bound 

carbohydrate moiety, and has disulfide bonds and a characteristic 3
o
 structure.  κ-casein has 8 

major IgE binding epitopes (Chatchatee et al., 2001b).  There are 6 linear epitopes on the 

molecule that are recognized only by older patients; AA 9-26, AA67-78, AA95-116, AA111-126, 

AA137-148, and AA 149-166.  Two epitopes on k-casein were recognized by young patients 

only.  The IgE and IgG binding epitopes of κ-casein are depicted in Figure 1.7.   



22 
 

 

 

Figure 1.7. κ-casein IgE and IgG binding epitopes.  From Chatchatee et al. (2001b). Major IgE 

epitopes shown in bold italic. Minor epitopes shown in italic only. Major and minor IgG epitopes 

shown as solid and broken underline, respectively.  

 

Whey Proteins 

 ALA is a 123AA globular protein with a weight of 14.4kD.  It has extensive secondary 

and tertiary structure, supported by its four disulfide bonds and calcium-dependence.  Bovine 

ALA has a high level of homology (74%) to human ALA (Järvinen et al., 2001).  There are four 

IgE-binding epitopes on ALA.  The major antigenic site on ALA is AA5-18, which interestingly, 

is homologous to an antigenic site on BLG: AA124-134.  Conformational epitopes appear to be 

particularly important to the allergenicity of ALA.  While sera from eight of eleven  CMA 

patients  >3 years of age bound to one linear epitope, a high level of milk-specific IgE does not 

necessarily coordinate linear epitope recognition on ALA (Järvinen et al., 2001).  Sera from 

young patients (<3 years of age) with CMA did not recognize any of the allergenic linear epitopes 

commonly recognized by older milk-allergic patients.   Three IgG epitopes were identified on 

ALA, with all patients (including the five control subjects) exhibiting a high level of binding to 

the antigenic epitopes.  Other studies have agreed that AA5-18 is the prominent IgE-binding 

epitope of ALA, but intense and frequent IgE recognition is also observed on tryptic digest 

fragments containing AA17-58 (Järvinen et al., 2001).  

 A study by Maynard et al. (1997) determined that more than 60% of patient sera 

evaluated responded to native ALA and had limited reaction after ALA was unfolded and/or 
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digested.  It has been suggested that tryptic cleavage of ALA leads to longer residues and a 

potential for increased reactivity in CMA subjects.  The most intense binding regions on bovine 

ALA share little sequence homology with human ALA.  The IgE and IgG binding regions of 

ALA are depicted in Figure 1.8.  Again, it is thought that most allergenic regions on ALA are 

conformational.     

 

Figure 1.8.  IgE and IgG binding epitopes on ALA.  Taken from (Järvinen et al., 2001).IgE 

epitopes are shown in bold, and IgG epitopes are underlined. 

 BLG is a 36kD dimer of the lipocalin-family; each monomer comprises a 162AA protein.  

The two disulfide bonds and free cysteine residue give BLG unique structural and reactive 

properties.  7 IgE and 6 IgG binding regions have been identified on BLG by Järvinen et al. 

(2001), with general agreement among other researchers.  Younger patients (< 3 years of age) 

recognized only 3 of 7 epitopes.  AA119-128 exhibited intense binding for young patients, but 

weak binding by older patients.  Of the identified IgG binding regions, studies with patient sera 

determined that these epitopes are frequently recognized by non-allergic control subjects.   

Tryptic cleavage of BLG molecules in other studies has been shown to largely reduce 

immunoreactivity for most patients (Järvinen et al., 2001).  While the relationship between 

clinical reactivity and level of milk-specific IgG in patient sera has not been established, children 

who are likely to retain their allergy have been observed to have significantly higher serum milk-

specific IgG than patients who will outgrow their milk allergy. IgE and IgG binding epitopes are 

displayed in Figure 1.8. 
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 In ALA and BLG, many of the IgE and IgG epitopes align.  However, three regions on 

ALA and one region on BLG are recognized only by IgE, supporting the theory that epitopes 

responsible for IgE synthesis are different than epitopes that promote production of IgG (Järvinen 

et al., 2001).  These trends possibly contribute to the persistence of CMA.   

 

Figure 1.9.  IgE and IgG binding epitopes on BLG.  Taken from (Järvinen et al., 2001). IgE 

epitopes are shown in bold, and IgG epitopes are underlined. 

 

5. Detection of Food Allergens 

 Because food-allergic patients often have extremely low sensitivities to the offending 

food, the food industry must be able to detect allergens at a sufficiently low level to mitigate the 

risk of reaction among consumers.  Since the passage of the Food and Allergen Labeling and 

Consumer Protection Act of 2004 (FALCPA), an increasing number of companies make it a 

consistent practice to label products with the potential to contain allergens.  Due to widespread 

use of allergen-containing products, industry compliance with a zero tolerance policy is almost 

impossible (Kerbach et al., 2009).  The establishment of action levels for product labeling and is a 

topic of much recent debate.  Consumer perspective of the establishment of these levels often 

provides a negative view of the food industry. 

 In addition to its use in diagnosis of food allergy, radioallergosorbent (RAST) assays 

have been used to detect allergens in foods.  These methods have been phased out in recent years 

in favor of more accurate and sensitive procedures (Poms et al., 2004b).  The RAST assay is 
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based on competitive inhibition of binding using a radiolabeled antibody for detection of antigen-

specific IgE isolated from human sera.  While sensitive and allergen-specific, the assay is labor-

intensive, expensive, inconsistent, and only provides semi-quantitative results.  Because most 

commercial ELISA kits are incapable or invalidated for detecting allergens in highly processed 

products, RAST may be one of the only ways to verify the presence or absence of allergenic 

proteins in specific foods.   

 PCR methods have been used to detect genetic sequences specific to the allergenic source 

using specialized DNA-primers (Poms et al., 2004a).  PCR-based methods are not used in 

industry settings due to the cost of instrumentation and the high likelihood of assay 

contamination.  The key disadvantage of this method is that the PCR test does not definitely 

prove or deny presence of an allergen.  DNA may also be susceptible to the effects of processing.  

Milk, however, contains only low amounts of bovine DNA and does not make a good target for 

PCR-based detection methods (Koppelman and Hefle, 2006; Poms et al., 2004a).     

a. ELISAs 

 Enzyme-Linked Immunosorbent Assay (ELISA)-based technologies are the most popular 

assays used to detect allergens in food (Koppelman and Helfle, 2006). By using a consistent 

source of animal antisera for assay development, kits are designed to maintain integrity between 

production lots.  ELISA assays are developed using antibodies that have been obtained from 

animals sensitized to proteins within the food.  Target proteins are not always allergens, but often 

are proteins that are selected for their stability to the effects of processing and digestion, and can 

indicate presumptive presence or absence of the allergenic food.  Antibodies cross-link antigen 

sequences.  During antigen processing and presentation, proteins are hydrolyzed and short 

sequences are presented to T and B cells for antibody maturation and class switching.  Once 

activated, each B-cell has the capability of producing an antibody with a unique specificity.  At 
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any time, there may be several antibodies capable of recognizing individual epitopes on a single 

protein (Murphy, 2007).  

 There are several types of quantitative ELISA, including sandwich and direct and indirect 

competitive.  ELISA assays may use antibodies with a single specificity for detection 

(monoclonal), or may use two or more antibodies, each with individual specificities (polyclonal).  

Many researchers support the theory that a polyclonal ELISA is more robust than a monoclonal 

ELISA, especially if the antigen has undergone any type of processing or heat treatment.  Some 

proteins are easily modified under processing conditions, and these are not ideal target proteins 

for detection.  However, the more epitopes that are detectable by an ELISA, the more likely the 

assay is to detect the presence of target proteins.   

 In a sandwich ELISA, antigen-specific IgG antibodies are obtained from sensitized 

animals (often rabbit, sheep, goat, or mouse) and are used to coat the bottom of wells in a non-

pyrogenic plastic microtiter plate.  Extracted and centrifuged samples suspected of containing the 

target antigen are applied to the wells and incubated.  Target antigen, if present, will be bound by 

the IgG antibodies, and equilibrium between bound and unbound antigen develops during the 

incubation period.  Unbound antigen is rinsed away, and an enzyme-bound conjugate antibody is 

added.  Binding will occur to the antigen-antibody complex.  Typically, the enzyme-linked 

conjugate antibody is obtained from a different animal than used to generate the primary antibody 

to prevent false positive results.  The bound enzyme is often horseradish peroxidase or alkaline 

phosphatase.  Unbound conjugate is rinsed from the wells, and a substrate solution is added.  The 

substrate is selected for its specificity to the enzyme label on the detector antibody.  The substrate 

is allowed to incubate with the antibody-antigen-antibody-enzyme conjugate complex for a set 

amount of time and a colorimetric reaction occurs as a result of enzyme action on the substrate.  

The intensity of the color is directly proportional to the concentration of target antigen in the 

sample.  Acidic stop solution is then added to deactivate the enzyme, and the solution maintains a 
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consistent color for spectrophotometric measurement.  A standard curve is developed from the 

optical density of solutions containing a known concentration of target antigen.  Quantification of 

the concentration of target analyte present in samples can be interpolated from the standard curve.   

 Competitive ELISAs also employ IgG antibodies.  In this type of assay, antigen is bound 

directly to the microtiter plate.  In a non-pyrogenic tube, sample is incubated with antigen-

specific IgG antibodies.  If the antigen is present, some of the antibodies will bind in solution.  

The sample-IgG solution is then applied to the microtiter plate.  Any unbound IgG will bind to 

the antigen coated in the wells.  Unbound material will be washed away.  Enzyme-labeled 

conjugate antibody is added to the well plate and will bind to the primary antibody.  The addition 

of substrate results in a colorimetric reaction which can be read at appropriate wavelengths.  

Unlike the sandwich ELISA, the intensity of the developed color in the competitive ELISA is 

inversely proportional to the concentration of the antigen present in the sample.  A stronger color 

development in the microtiter plate indicates a lower concentration of antigen in the sample.  

Quantitation of unknown samples is done by interpolating values from a standard curve 

developed using standards of known concentration.   

 The two main factors affecting ELISA performance are extraction and detection 

efficiency.  For many proteins, even low levels of heating can cause precipitation and 

aggregation.  While some proteins are more sensitive than others to the various effects of 

processing, it is generally accepted that an increase in the severity of processing typically 

destroys conformational antibody binding epitopes on target proteins.  However, the destruction 

of some epitopes that provide structure for the molecule may expose previously-hidden sequential 

epitopes (Dumont et al., 2010).  In addition, processing may facilitate chemical modification of 

the food, including glycosylation and oxidation, which may also alter the allergenicity of food 

proteins.  The effects of processing on allergen structure and function is discussed further in 

Section 6.    
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   ELISA assays are sensitive, specific, rapid, and relatively consistent.  They may be 

quantitative or qualitative, depending on stringency of analysis.   For many commercial assay 

kits, quantitative results can be obtained from a sample in less than one hour.  Some commercial 

quantitative ELISA assays can accurately quantify less than 1 part per million (ppm) of an 

allergen or protein present in a sample.  Detection at this level is typically sufficiently sensitive to 

make informed decisions regarding the safety of a product. 

 Qualitative ELISAs are typically much faster than quantitative analyses, and can provide 

results in as few as five minutes.  Lateral flow or dipstick ELISAs are used in semi-quantitative 

analyses.  

 Some ELISAs that show particular integrity in detection and sensitivity with consistent 

antisera production are adapted for use by external laboratories.  Milk ELISAs were initially 

developed to detect the presence of bovine milk in ovine and caprine dairy products.  Therefore, 

the development of these assays was specifically focused on the sequences and structural 

differences in proteins between cow and sheep and goat’s milk.  Anguita et al. (1996) developed 

an ELISA specific to bovine β-casein.  Negroni et al. (1998) discussed the development of an 

ELISA using two monoclonal antibodies; one reactive to native BLG, and the other to denatured 

BLG.  A publication by Mariager et al. (1994) documented the development of an ELISA assay 

that used polyclonal antibodies specific to both native and heat-treated BLG.  

b. Commercially-available ELISAs:  Interpretation of Results and Limitations 

 While being simple and relatively consistent, commercially-available ELISA assays are 

not without issues.  Each kit manufacturer generates antigen-specific antibodies for ELISA kit 

development.  While possible for manufacturers to build kits with similar target protein 

sensitivities, commercial kits often have different analytical targets.  Knowing the specificity of 

ELISA antibodies is necessary to correctly interpret results obtained by each kit.  Understanding 



29 
 

 

the type of antibodies used in assay development (whether monoclonal or polyclonal, or reactive 

to native or denatured protein) is crucial to correct kit selection and interpretation of results.  In 

addition to choosing specific materials for sensitization of animals and antibodies with target 

specificities, each kit manufacturer may choose to develop a standard curve with unique 

calibration material; whether pure dilute target material, an extract of the target material, a 

specific group of proteins, or even one protein in particular. Based on these selections, many 

ELISA manufacturers apply quantitative conversion factors or other arbitrary values to 

calculations to obtain results with theoretically relevant units.  For example, a kit manufacturer 

may select antibodies that target α-casein, but provide standards in some other unit, such as milk 

protein.  Because of the diversity of allergen-derived food ingredients, it would be nearly 

impossible to develop a kit capable of accurately detecting and quantifying every derivative of a 

specific allergenic food.   

 There is little validation data available for commercial ELISAs.  Due to large variation in 

kit performance as a result of differences in antibody preparation, extraction, and calibrants used 

in kit development, comparison among commercialized analytical kits is highly erroneous (Poms 

et al., 2005).  In 2009, the European Union funded a working group, entitled Monitoring and 

Quality Assurance (MoniQA), to harmonize methods used worldwide for validation of safety and 

quality of foods.  The group was funded with the goal of providing unified validation protocols 

and reference materials for calibration and development of ELISA methods (Poms et al., 2009).  

The MoniQA working group has identified four main challenges with harmonization of allergen 

detection tools.  These challenges include: lack of certified reference material, matrix dependence 

of antibody recognition in processed foods, need for improved validation procedures, and lack of 

defined clinically-relevant thresholds to define limits of quantification for allergenic methods 

(Poms et al., 2009).  
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 In concert with MoniQA, the AOAC Presidential Task Force on Food Allergens 

published a set of validation procedures for food allergen ELISA methods (Abbott et al., 2010).  

The authors suggest that the major challenges with ELISA development and consistency deal 

with the solubility and extractability of food antigens and the ability of ELISA antibodies to 

recognize them.  Some of the main sources of variation within a kit deal with food matrix 

interactions, changes in solubility and reactivity of proteins as a result of processing, and different 

protein profile as a result of growth conditions and species variety (Abbott et al., 2010; 

Koppelman and Hefle, 2006). In the publication, the guidelines address required information to 

be included by the development laboratory and recommend interlaboratory validation procedures.  

The AOAC Task Force recommends use of NIST nonfat milk powder (NIST-RM-1549) as the 

reference material for calibration and quantification of milk ELISAs.  If a different calibration 

material is used to build the standard curve, it is suggested that the manufacturer provide an 

experimentally validated conversion factor between units of calibration and the NIST milk 

powder.  

 Without use of a consistent certified reference material by kit manufacturers and kit 

users, false positive and negative samples, kit sensitivity, matrix effects, and recovery efficiency 

cannot be appropriately evaluated (Abbott et al., 2010).  Adoption of a single reference material 

would allow kit manufacturers to develop consistent reporting units for assays, and provide 

conversion factors among detected antigen, antibody sensitivity, and reference material.  There is 

critical and widespread need for the adaptation of a single reference material for food allergen 

testing.  Without this, identical samples will give differing results when analyzed by kits of 

different manufacturers, comparisons are not possible, and observed differences in data cannot be 

appropriately attributed to experimental factors.   

 Additional collaboration among regulatory and advisory groups to validate current 

analytical test kits for various food allergens and set standards for the development of improved 
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methods is ongoing.  The European Committee for Standardization, the European Commission’s 

Joint Research Center, the German Institute for Standardization, and Health Canada have adopted 

initiatives to validate methods for allergen detection and quantitation.     

 Another topic of debate surrounding ELISA development regards sensitivity.  At the 

present time, kit manufacturers often strive to develop kits that are highly sensitive to the 

presence of targeted material.  Because, however, a zero tolerance action level on the presence of 

allergens in foods is unachievable, many current kits may be far more sensitive than actually 

necessary.  While work is being done on threshold doses required for the elicitation of a reaction 

in allergic individuals, there is still much disagreement about how low detection limits should be 

set for analytical methods and how those levels should be applied to labeling requirements.  

Individuals may react at doses lower than one milligram or may not begin to react until they have 

ingested over one gram of allergenic protein (Taylor et al., 2002).  There is agreement that 

analytical methods should be sufficiently sensitive to protect allergic consumers.  Given the 

varying sensitivities of allergic individuals, it is difficult to determine how many consumers can 

feasibly be protected by analytical methods.  While no official regulation has been established 

regarding the detection limits for application to labeling policies, the general assumption is that 

detection limits should be around 10 ppm of allergenic protein (Koppelman et al., 1996; Poms 

and Anklam, 2004b).  Clinical data obtained in double-blind placebo-controlled food challenges 

is currently being critically assessed to determine suggested thresholds of detection, alert, and 

action for application in research, industry, and regulatory settings.   

 There are some types of samples that cannot be analyzed with ELISAs.  Due to the 

aqueous nature of the assay, oils and oil-derived ingredients are not validated for ELISA 

evaluation.  Some proteins may be extracted from oils using an aqueous buffer system, but the 

extraction efficiency is inconsistent and unpredictable.  While allergenic proteins may be present 

in the sample, if they cannot be pulled from the matrix and into solution, an ELISA will not detect 
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their presence.  In this way, a negative result does not necessarily indicate that there is no 

allergenic residue in the sample.   

 Hurst et al. (2002) performed an interlaboratory validation study of ELISA methods, in 

which the research suggested that because commercialized ELISAs were developed at different 

sites, using different reagents, and different antibody sources, individual kits will develop 

substantially different data.  Additionally, it was determined that laboratories often choose kits 

based on geographical considerations, as opposed to technical considerations regarding the 

ideality of the kit for analysis of matrix, species variations, or processing effects on the target 

protein.   

 The major impairments during detection and quantitation by ELISA kits come as a result 

of three issues; matrix interference, extraction efficiency, and antibody affinity (Diaz-Amigo et 

al., 2010; Abbot et al., 2010).  Processing of any kind has the potential to cause issues in all three 

areas.  Additionally, the use of ELISA kits without the requirement of a standard reference 

material renders correlations among kits and among different varieties, species, and 

environmental conditions nearly impossible.  As discussed further in Section 1.6, processing can 

have an enormous impact on solubility and reactivity of proteins as well as trigger reactions with 

other non-target compounds in the product matrix.    

6. Effects of Processing on Allergens 

 The relationship between protein structure and function with regards to the effects of 

processing on allergenicity and immunoreactivity remains unclear.  While certain trends can be 

established among allergenic food proteins of the same family, most do not hold true for all 

proteins.   

 Processing methods can be separated into two groups:  thermal and non-thermal 

treatments.  No definite relationship has been established between type of processing method and 
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effect on protein allergenicity.  Thermal treatments include dry heat and wet heat methods.  

Methods are listed below in Table 1.2.     

Table 1.2. Food Processing Methods and Classification 

Thermal Processing Non-thermal Processing 

Dry Heat Wet Heat  

Oven Roasting Microwaving Infrared Radiation 

Oil Roasting Pressure Cooking Soaking 

Infrared Heating Extrusion Milling 

 Blanching Germination 

 Boiling Fermentation 

 Steaming High Pressure Processing 

  Dehulling 

  Grinding 

 

 Food processing alters the structure of food proteins in two major ways; protein 

unfolding and aggregation and covalent modification by other food components.  Processing 

methods can destroy or reduce allergenicity of proteins, such as the Bet v 1 homolog proteins- 

mostly contained within fresh fruits and vegetables.  The Bet v 1 homologs unfold easily, 

especially with heat treatment, and become modified with plant polyphenols (Nicoletti et al., 

2007).  Proteins can also retain their allergenicity through the presence of stable protein scaffolds 

that prevent unfolding or allow refolding, typically occurring upon cooling.  Proteins that have 

been characterized with stable scaffold structures include members of the prolamin superfamily, 

non-specific lipid transfer proteins (nsLTPs), and the 2S albumins (Barbosa-Cánovas, 2009).  

Other proteins, including caseins and some seed storage prolamins are thermostable due to their 

mobile structures.  Some proteins are more susceptible to processing, and will partially unfold but 

retain their allergenic epitopes.  The food matrix has dramatic effects on the stability of proteins 

and susceptibility to processing methods (Nicoletti et al., 2007). This will be discussed further in 

Section 6a.  
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  Even at low levels, heating is capable of triggering protein precipitation and aggregation 

and affecting solubility.  Processing can both destroy and reveal antibody-binding epitopes.  

Conformational epitopes, or those that depend on protein structure for allergenic activity, are 

often destroyed by heat treatment, as a result of protein unfolding.  Linear epitopes are not easily 

destroyed by heat treatment, but are often hydrolyzed during fermentation and enzymatic 

modification (Dumont et al., 2010).   

 Processing may trigger chemical modification within food products such as oxidation, 

Maillard reactions, glycosylation, or protein-protein interactions.  These modifications may create 

new epitopes, expose existing epitopes, or destroy conformational epitopes on the proteins 

required for IgE-binding (Sanchez and Frémont, 2003).  The food matrix containing the protein 

has a large impact on the release and stability of allergens.  For example, interaction with sugar or 

other moieties during processing may trigger Maillard reactions or other chemical modifications 

that affect the structure and functionality of allergenic or potentially allergenic proteins.   Cross-

reactive carbohydrate determinants (CCDs), also called haptens, are IgE binding epitopes that 

may occur as glycosylated regions on proteins and can represent thermally stable epitopes.   

Detection assays that use antibodies measure immunoreactivity.  A decrease in 

immunoreactivity does not necessarily indicate a decrease in allergenicity.  Likewise, it is 

noteworthy to mention that lack of detection of an allergen does not necessarily correlate to 

absence of the allergen from the food product.  The modification of proteins during fermentation 

could alter the immunoreactivity of proteins by changing their stability, conformation, or protein 

sequence.  Literature regarding the effects of fermentation on protein structure and 

immunoreactivity is present, but there is a lack of sound evidence to support the theory that a 

decrease in immunoreactivity correlates to a decrease in allergenicity, or that a change in 

structure results in a change in protein function.   
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Where data are available, the effects of processing on milk proteins will be described and 

reviewed.  Where data on milk proteins is limited, other allergen data will be provided as 

appropriate.  Due to the focus of this research, a section specifically devoted to the documented 

effects of fermentation on various food proteins will be included.    

a. Thermal Denaturation of Proteins 

 Proteins can be classified into several groups based on thermostability.  Thermolabile 

proteins are not resistant to heat treatments and rapidly unfold upon exposure to heat.  

Conformational allergenic epitopes can be destroyed by thermal exposure, as marked by a 

decrease in IgE reactivity and lower potential to trigger an allergic reaction in a sensitized 

individual. 

 Some proteins are only slightly susceptible to effects of heat treatment.  Limited 

unfolding and some aggregation among proteins occur, drastically altering textural properties in 

food matrices.  Examples are the whey proteins BLG and ALA, and the 11S and 7S seed storage 

globulins.  As BLG unfolds, the buried cysteine residue is exposed and becomes susceptible to 

disulfide bond rearrangement.  After thermal treatments, IgE binding of BLG decreases, but trace 

IgE binding remains.  At moderate temperatures or at low pH, ALA is partially unfolded and 

exists in a molten globule state.  Heat treatment of the 11S and 7S seed storage globulins 

increases the likelihood that these proteins will aggregate.   

 Another class of protein is highly thermostable and proteins in this class resist unfolding.  

Even if unfolding occurs, the proteins are capable of refolding rapidly upon removal from heat.  

These proteins typically retain their allergenicity even after extensive heat treatment.  The 

prolamin superfamily is included in this class.  Proteins in this class are utilized in the food 

industry for their heat-induced gelation capabilities.  Soy globulins, β-lactoglobulin, bovine 
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serum albumin, ovalbumin, and myosin are commonly used for these properties (Damodaran, 

1994).   

 Yet another protein class is the thermostable rheomorphic proteins.  These proteins have 

minimal secondary and tertiary structures, and their interactions are driven by their open and 

flexible primary structure.  The caseins are a group of rheomorphic proteins with stable scaffold 

structures that withstand heat treatment without drastic effects on protein structure or reactivity.  

The proline-rich primary structure of the caseins prevents the β-strands of the secondary structure 

from forming stable tertiary structures.  The proline residues force the structure of the caseins 

open, and is largely responsible for the stability of the protein.   

b. Processing-induced changes in allergenicity and immunoreactivity 

 In the late 20
th
 Century, the terms neoallergen and neoantigen were used in many 

publications to describe the activation or increased capability of proteins to elicit an allergic 

response upon a change in exposure or environment.  Neoepitopes are defined as novel epitopes 

that are introduced as a consequence of processing (Mills et al., 2007).  While the terms are not 

widely used, the activation or exposure of allergenic epitopes as a result of processing or other 

effects remains relevant.  Pecans are well documented to have increased allergenicity for some 

patients after heating (Malanin et al., 1995).  Some foods, such as shrimp, seem to exhibit little or 

no change in reactivity to processing (Leung et al., 1994).  Reports of sensitivity only to 

processed foods are rare.  A 1921 report described an allergy to cooked fish, but not to raw fish 

(Prausnitz and Küstner, 1921). 

 Heating has been documented to reduce the allergenicity of beef, purified bovine 

allergens, lupine, almond, and potato (Fiocchi et al., 1995).   Heating of milk in the presence of 

other food proteins has been documented to decrease the allergenic reactivity of the products 

(Nowak-Wegrzyn and Fiocchi, 2009).  Especially when interaction with wheat occurred, a baked 
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muffin or cupcake was less likely to induce an allergic reaction to the same amount of milk.  The 

occurrence of a reaction with other molecules is dependent on the intensity of heating, water 

activity, pH, salt content, and concentration of other molecules in the matrix (Paschke and Besler, 

2002).  An early study described the lactosylation of milk proteins by the Maillard reaction and 

its reductive impact on allergenicity (Bleumink and Berrens, 1966).  

 Even harvest, transport, and storage of food can facilitate changes in protein stability.  

During transport and storage of soybeans, the heat generated by mold and microbes can raise the 

temperature and potentially generate additional allergens and expose previously hidden epitopes 

(Codina et al., 1998).  Storage, especially of fruits and vegetables, can impact allergenicity.  

During storage, the allergenicity of apples increased, while no change was observed in 

allergenicity of mangoes (Paschke and Ulberth, 2009).  During storage, enzymes have been 

documented to reduce the allergenicity of hazelnuts, rice, soybeans, and wheat, but have no effect 

on the allergenicity of peanut or peach.  This has been assessed by skin prick testing and double-

blind placebo-controlled food challenges. 

  The effects of pasteurization and homogenization on the allergenicity and antigenicity of 

milk proteins are well studied.  Høst and Samuelsson (1988) reviewed studies on the allergenicity 

of raw, pasteurized, and pasteurized/homogenized milk.  The authors suggested that processed 

milk products induce quicker and more severe reactions than raw milk.  According to Høst and 

Samuelsson (1988), the trends observed indicate that milk-allergic patients have a lower threshold 

for processed milk products than raw milk products. However, whether raw, pasteurized, or 

pasteurized and homogenized, milk proteins remain able to induce similar adverse reactions 

among allergic children (Fiocchi et al., 2004).  Although occurring at high temperature, 

pasteurization methods for most milk products consumed in developed countries (flash and HTST 

pasteurization) occur for such a short time that protein structure should not be significantly 

modified.  Boiling milk for 10 minutes has been shown to decrease sensitivity in skin prick tests.  
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However, oral challenges with boiled milk failed to significantly reduce allergic reactions 

(Fiocchi et al., 2004). 

 A murine study by Poulsen et al. (1987) found that high fat content and homogenization 

increase the ability of milk to induce allergic reactions.  Other studies, however, have found that 

heat treatment reduces the allergenicity of milk proteins (Gjesing et al., 1986).  Kilshaw et al. 

(1982) discussed that severe heat treatment eliminates the capability of whey proteins to sensitize 

individuals and reduces the antigenicity of caseins.  Regardless of heat treatment, however, 

allergic children retained reactivity to all types of milk, whether processed or not (Høst and 

Samuelsson, 1988).    

 Literature regarding the increased tolerability of baked or extensively heated milk 

products in milk-allergic children is available.  Nowak-Wegrzyn et al. (2008) evaluated 100 milk 

allergic children for their reaction to extensively heated milk.  Of the children, 68 tolerated 

extensively heated milk, 23 reacted to heated milk, and 9 reacted to both unheated and heated 

milk.  The study concluded that the 70-80% of children with cow milk allergy can tolerate 

ingestion of heated milk.  Additionally, a study by Bartnikas et al. (2012)determined that there is 

a strong correlation between SPT wheal diameter and ability to tolerate baked milk in open 

challenge.   Smaller wheal diameter corresponded with increased ability to tolerate baked milk.  

Additional studies have supported the evidence that analysis of serum from children with 

persistent CMA shows an increased level of IgE to linear epitopes when compared to children 

who have achieved tolerance.   

 In a follow-up study, the researchers identified that there are significant differences 

between children who react to baked milk and those who do not.  Baked milk-tolerant milk-

allergic children have a less severe type of allergy and lower risk of anaphylaxis than CM allergic 

children who cannot tolerate baked milk (Caubet et al., 2013; Kim et al., 2011b).    
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 Lara-Villoslada et al. (2005) described a study in which Balb/c mice were exposed to 

dairy preparations containing different casein: whey ratios.  They determined that a higher 

amount of casein in the preparation leads to an increase in plasma histamine level and an increase 

in lymphocyte sensitization.  Further, lower amounts of casein (increased whey protein) 

sensitized mice at a significantly lower level than the 80:20 ratio present in native cow milk.  The 

authors suggest that the ratio of casein to whey is the reason why milk of different species has 

different sensitization capacities, even though the protein sources are similar.   

c. Enzymatic Hydrolysis and Fermentation 

 Studies regarding allergenicity modification by cheese making have not found the 

process to affect allergenicity of bovine or ovine proteins.  Lactic acid fermentation was reported 

to have a 99% decrease in antigenicity of ALA and BLG by ELISA, but allergenicity in skin 

testing was minimally affected.  Because sensitization typically occurs at a very young age, 

particular attention is paid to the infant diet in terms of allergen exposure.  Milk formulas are 

highly hydrolyzed with the goal of hypoallergenicity and ease of digestion for infants.  In addition 

to prolonged exposure to proteolytic enzymes, infant formulas undergo ultrafiltration to separate 

remaining proteins from small peptides and amino acids.  Ultrafiltration suppresses its 

allergenicity as a result (Thomas et al., 2007).  Morisset et al. (2008) performed a study in which 

115 infants were fed infant formula containing cow’s milk proteins. Half of the infants were fed 

fermented infant formula and the remaining infants were fed standard (unfermented) infant 

formula.  A significantly lower number of infants fed fermented milk formula became sensitized 

to cow’s milk (prevalence of 1.7% compared to 12.5% in standard formula group).  Björkstén et 

al. (2001) showed that statistically significant differences in allergic sensitization occur among 

infants with specific gut microflora.    

 During the production of milk-derived infant formulas, proteins are modified by heat 

denaturation, enzymatic hydrolysis, and sometimes ultrafiltration.  Still, some individuals have 
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severely reacted to residual antigenic activity of milk-derived infant formulas in vitro and in vivo 

(Fiocchi et al., 2004).  Clinical reactions have been reported with every type of available cow’s 

milk hydrolysate, but 90% of milk-allergic children tolerate extensively hydrolyzed formulas 

(Fiocchi et al., 2004).  It has been documented that the allergenic potency of casein-derived infant 

formulas is less than the allergenicity of whey-derived formulas for milk-allergic children.   

Proteolysis of milk proteins during fermentation can affect immunoreactivity, but 

evidence regarding the effects on allergenicity is not as prevalent.  Two studies have assessed the 

effects of fermentation on immunoreactivity and allergenicity of the major bovine whey proteins 

(Jedrychowski and Wróblewska, 1999; Paschke and Besler, 2002).  The research showed that 

fermentation of sterilized milk reduced immunoreactivity by up to 99%, but allergenicity in skin 

prick tests (SPT) of milk-allergic patients was minimally affected.   Kleber et al. (2006) also 

observed that allergenicity was retained when fermented skim milk and sweet whey (90% and 

70% reduction in immunoreactivity, respectively) were analyzed in SPT with milk-allergic 

individuals.   All three studies concluded that fermentations can reduce immunoreactivity, but 

does not necessarily correspond to a decrease in allergenicity. 

Some microorganisms besides lactic acid bacteria show potential to reduce the 

immunoreactivity of milk proteins.  Lakshman et al. (2011) evaluated the action of two fungal 

proteases isolated from Monascus pilosus on whey proteins. M. pilosus is used in Asia to produce 

fermented tofu and rice foods.   After exposure to the proteinases, the antigenicity of whey 

proteins was measured by sandwich ELISA.  The evaluated M. pilosus enzymes hydrolyzed α-

lactalbumin and reduced its detection in their laboratory-developed ELISA.  The enzymes, 

however, failed to reduce the detection of β-lactoglobulin by ELISA.  No comment was made as 

to the degree of hydrolysis of BLG by M. pilosus proteases.   

 The microbial enzyme transglutaminase (MTG) has undergone much study as it 

possesses the capacity to decrease the allergenicity of casein and wheat.  MTG catalyzes the 

formation of a cross-linking lysine-glutamine bond between two proteins.  In milk, the enzyme 
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uses both casein and whey proteins as substrate. MTG is also capable of cross-linking soybean 

globulins, gluten, actin, myosins, and egg proteins (Watanabe et al., 2005).  This newly formed 

bond is highly resistant to proteolytic degradation and has other dramatic effects on protein 

behavior. 

The effects of enzymatic crosslinking by MTG have been evaluated for β-casein (Stanic 

et al., 2010).  Highly polymerized caseins had an increased potential to inhibit IgE binding 

compared to untreated β-casein.  Upon exposure to pepsin, cross-linked β-casein was digested 

slower than untreated β-casein.  Stanic et al. (2010) also evaluated the effects of MTG cross-

linking on allergenicity; in a study of non-atopic individuals, the reactivity of treated and control 

β-casein was equal, indicating that allergenicity was not enhanced in non-atopic individuals.  

However, Koppelman et al. (1999) described a case of anaphylaxis caused by ingestion of casein 

in MTG-treated salmon.  The patient had previously reported allergic reactions to unintentionally 

ingested milk-containing products.  Treatment by MTG has also been attributed to increasing 

serum IgA binding to gliadins and prolamins in wheat and maize in celiac patients over 8 years of 

age (Cabrera-Chavez et al., 2009).   

Asian countries produce many fermented soy products.  Soy sauce, miso, tempeh, and 

tofu have all been described to lose a large portion of their IgE binding through fermentation 

during production as assessed by a RAST IgE binding study (Herian et al., 1993).  The research 

described that degradation of soy proteins did not occur consistently, providing evidence that 

some epitopes are favorably hydrolyzed by enzymes, while others are more resistant to 

hydrolysis.   

7. Cheese Manufacture  

 In the United States, cheese and yogurt are among the most commonly consumed 

fermented dairy products.  Cheeses made from bovine milk are more popular in the US than 

sheep or goat’s milk cheeses.  While cheese-making procedures differ slightly depending on 
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desired flavor and style characteristics, the production principles remain the same.  Cheese 

manufacture is a lengthy dehydration process that serves to concentrate the fat and caseins in 

proportions roughly 6-12 times that of fluid milk (Fox et al., 2000).  Although flavor and aroma 

development in cheese is a result of the combination of products of lipolysis, proteolysis, and 

carbohydrate utilization, the focus of this thesis is on the fermentation of bovine proteins with 

respect to allergenicity.  Therefore, the biochemical mechanisms of cheese-making in this review 

will focus mainly on proteolysis and amino acid catabolism.   

a. Milk Selection and Pre-treatment 

  The process of making cheese begins with proper milk selection. Even if obtained from 

the same species, the breed, climate, lactation stage, and diet of the animal has profound effects 

on the flavor and composition of the milk.  Milk for the production of cheese must be free of 

antibiotics, which can otherwise inhibit starter bacteria and reduce product quality.  Raw milk 

typically contains bacteria that are either naturally occurring or have been collected through 

contact with bovine skin and hair, milking equipment, transport vehicles, cheese vats, and other 

environmental sources.  

 To reduce the content of unwanted bacteria in milk, heat treatment is one of the first steps 

in the production of most cheeses.  If milk is untreated, United States safety regulation dictates 

that any cheese made from unpasteurized milk must be aged for more than 60 days.  Cheese 

produced from pasteurized milk has less intense flavor and ripens slower than raw milk cheeses, 

but reduces the numbers of potentially pathogenic and non-starter bacteria (Fox et al., 2004).  

Additionally, pasteurization, especially at high temperatures, denatures whey proteins and allows 

interaction with micellar κ-casein, which can have effects on texture, flavor, and moisture content 

of finished cheeses (Fox et al., 2004).  While pasteurization has a noticeable effect on cheese 

flavor, many large US manufacturers use pasteurized milk for cheese production, regardless of 

intended age, due to concerns about food safety and product consistency.    
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b. Starter Culture Addition 

 Starter cultures are added to pasteurized milk to produce lactic acid and facilitate a 

decrease in pH.  Cultures are selected on the basis of acid production, cook temperature, growth 

temperature, phage resistance, and development of flavor and texture.  For cheeses like Cheddar, 

Edam, Gouda, and Camembert, the cook temperature is no more than 40
o
C, and cultures such as 

Lactococcus lactis subspecies lactis or Lactococcus lactis subsp. cremoris are added.  For cheeses 

with cook temperatures above 40
o
C (often around 55

o
C) , thermophilic LAB are added, such as 

Streptococcus thermophilus, Lactobacillus delbrueckii (subsp. bulgaricus, casei, or lactis), or 

Lactobacillus helveticus are added (Fox et al., 2004).  High cook temperature cheeses include 

those of Swiss (Emmentaller and Gruyere) and Italian varieties (Mozzarella, Grana, Peccorino).   

 Acid production by starter LAB affects many aspects of cheese, especially concerning the 

activity of chymosin.  Chymosin activity is pH-dependent; a large level of lactic acid in solution 

can increase the rate of casein coagulation.  Additionally, acidification prior to draining due to 

lactic acid production influences the amount of chymosin trapped in the curd, gel strength, and 

moisture content. Residual coagulant influences the rate of proteolysis during ripening and affects 

cheese quality.    

k-casein is hydrolyzed to para-kappa-casein and glycomacropetide, the micelle is 

destabilized, calcium bridges form, and coagulation of the curd occurs (Lucey, 2002).  The 

presence of calcium during rennet coagulation is important; the positively charged calcium ions 

neutralize negatively charged casein residues, which increase the aggregation of casein micelles 

and reduce the total coagulation time (Lucey and Fox, 1993).  A rapid pH decrease affects the 

dissolution of colloidal calcium phosphate, disrupts the casein micelle stability, and renders the 

caseins more susceptible to proteolysis. 
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c. Post-acidification 

 After coagulation, curd is cut with large wires to promote syneresis, and the milk-culture-

chymosin mixture is cooked.  The efficiency of syneresis is influenced by how small the curd is 

cut.  Cooking temperature, as mentioned previously, affects the gel strength and moisture content 

of cheeses.  High moisture cheeses are cooked at a temperature of less than 40
o
C, while low 

moisture cheeses are cooked at higher temperatures than 40
o
C.  After cooking, the whey is 

drained from the coagulated curds.  A high heat treatment of milk provides the potential for 

maximizing cheese yield by encouraging the inclusion of whey proteins in the curd.  However, 

whey proteins have poor gel-formation characteristics, and their incorporation or remnants in 

curd can reduce cheese stability and structure (Damodaran and Parkin, 2008).  With heat 

treatment, BLG denatures and often cross-links with intact κ-casein, reducing its susceptibility to 

chymosin (Fox et al., 2004).   

 The lactose in the cheese is fermented to lactic acid and cutting and salting of the curd 

enhances syneresis.  Cheese is then milled, pressed, salted, and left for aging.  Depending on 

variety, cheese can mature from two weeks to several years.  As cheese is aged, it loses moisture 

and develops complex flavors.  Typically, fresh cheeses (aged for short times) have higher 

moisture content and milder flavor than aged cheeses.  Many primary biochemical changes occur 

during ripening, including metabolism of lactose, lactate, and citrate, lipolysis, and proteolysis.  

Secondary biochemical processes, including amino acid catabolism, fatty acid catabolism, and 

lactic acid catabolism, can also be responsible for flavor and texture development, whether 

desirable or undesirable.   

8. Proteolysis during Cheese Manufacture and Ripening 

In most cheeses, proteolysis is the major metabolic process attributed to flavor and 

texture development, although lipolysis is also partially responsible for specific flavors in some 

cheeses.  Proteolysis is primarily responsible for changes in hardness, elasticity, cohesiveness, 
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brittleness, and other textural properties of cheese.  The level of proteolysis can range from 

limited in some cheese varieties (e.g. Mozzarella) to quite extensive in others (Blue cheeses).   

Two main types of proteases occur in most organisms; proteinases and peptidases.  

Proteinases are enzymes capable of hydrolyzing proteins and large oligopeptides, while 

peptidases hydrolyze smaller oligopeptides and di- and tri-peptides to free amino acids.  The 

proteases present during cheese manufacture and ripening come from a variety of sources.  

Sources include enzymes naturally present in raw milk, added proteases (chymosin), enzymes 

from primary and secondary starter organisms, and enzymes from non-starter microorganisms 

(Fox, 1989).  Levels of moisture, pH, salt, temperature, and microorganisms influence the 

biochemical changes that occur in cheese during ripening (Fox et al., 2004).  Flavors and aromas 

are largely produced by both primary and secondary microflora and developed as a result of 

production and catabolism of low molecular weight peptides and free amino acids (Law and 

Tamime, 2011). Large casein-derived peptides often exhibit a bitter flavor.  Beneficial and 

characteristic flavors and are developed through the catabolism of small oligopeptides and free 

amino acids (Law and Tamime, 2011).    

a. Chymosin  

 Chymosin is absolutely critical in cheese manufacture and is arguably the most important 

enzyme involved in flavor and texture development during cheese ripening.  Also called rennet, 

chymosin is a heat-labile aspartic proteinase, and its activity increases as the pH of the milk drops 

from lactic acid production by added starter culture.  Activity of chymosin is highest at pH 6.3-

6.6.  Chymosin is a coagulant with limited proteolytic activity, hydrolyzing specifically one bond 

of κ-casein (Upadhyay et al., 2004).  The Phe105-Met106 bond of κ-casein, when cleaved, releases 

the hydrophilic casein macropeptide and para-κ-casein remains temporarily bound to the casein 

micelle.   The cleavage of this bond and the acidification of the matrix initiate the reactivity of 

calcium present in the serum.   Hydrolysis of other caseins by chymosin can also occur, but only 
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during aging.  Chymosin is primarily responsible for casein catabolism in low-cooked cheeses 

and makes insignificant contributions to ripening of high-cooked cheeses (Upadhyay et al., 2004).   

 Traditionally, chymosin derived from calf stomachs was used to facilitate the coagulation 

of caseins and separation from the whey portion of milk.  However, natural production of 

chymosin is dependent upon the veal market and has limited availability.  Because calf rennet and 

other aspartic proteinases exhibit a high degree of structural homology, scientists have isolated 

effective alternate rennet enzymes.   

 Today, the majority of chymosin used in the cheese-making industry is produced in 

industrial scale fermenters.  The most commonly used chymosin-producing cultures are clones of 

E. coli, Kluyveromyces lactis, and Aspergillus niger.  Commercial production of chymosin 

substitutes is significantly less expensive than the traditional production of calf rennet and allows 

consistent availability.  However, bacterial and fungal proteinases cause substantial non-specific 

hydrolysis of both κ-casein and para-κ-casein.  Non-specific casein hydrolysis affects 

coagulation, flavor and texture development, and protein profiles in cheese.  Microbial-derived 

chymosin is influenced by the host species used for cloning and typically exhibits varying 

caseinolytic specificity when obtained from different sources (Fox et al., 2000).  Two 

commercially-produced recombinant chymosin enzymes, Chymax (Chr. Hansen, Denmark) and 

Maxiren (DSM Food Specialties, the Netherlands), are responsible for a large portion of world 

cheese production, cornering 35% of the cheese market as of the year 2000 (Fox et al., 2000). 

 Upon whey draining, chymosin can become trapped in the cheese matrix and proteolyze 

non-target caseins during aging.  While the main role of chymosin is hydrolysis of the Phe105-

Met106 of κ-casein and coagulation of milk, hydrolysis of other proteins will occur during aging at 

a slower rate.  Up to 30% of rennet can be retained in the curd, depending on cooking 
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temperature, pH at draining, and moisture content (Upadhyay et al., 2004).  More chymosin will 

be retained in the curd as the pH is decreased (Creamer et al., 1985).   

 If chymosin is obtained from traditional calf sources, it can contain 10%-50% bovine 

pepsin, depending on quality (Fox et al., 2000).  Pepsin is a digestive protease with broad 

specificity and can drive the differential hydrolysis of caseins.  Electrophoresis gels of renneted 

cheese displays numerous additional casein-derived peptides not seen in cheese produced by 

microbial-derived chymosin.  This is described to be a result of pepsin activity (Fox et al., 2000).  

Additionally, pepsins are more pH sensitive than chymosin, and the activity level in cheese is 

strongly dependent on the cheese pH at draining (Sousa et al., 2001).   

b. Indigenous Milk Enzymes  

Milk contains many indigenous proteases; the most important of these during cheese 

ripening is plasmin.  Plasmin is a heat stable serine-proteinase that has similar specificity to the 

digestive enzyme trypsin (Fox et al., 2000).  Plasmin hydrolyzes caseins with the following 

specificity: β≈αs2 >> αs1, while κ-casein is largely resistant to plasmin proteolysis (Bastian and 

Brown, 1996).   Hydrolysis of β-casein and αs1-casein produces two unique casein subclasses, the 

γ-caseins and λ-caseins, respectively.   

 The activity level of plasmin in cheese is largely dependent upon cooking temperature 

and pH during ripening (Farkye and Fox, 1990).  Chymosin can be inactivated during the cooking 

step of high-cook cheeses (55
o
C), and plasmin is majorly responsible for texture and flavor 

development in these varieties.  Cheeses that are smear- or mold-ripened exhibit increased 

plasmin activity throughout aging due to increasing pH from metabolic byproducts (O'Farrell et 

al., 2002).   

Another indigenous milk protein, cathepsin D, has been noted for proteolytic activity in 

milk.  In studies employing model systems, cathepsin D has similar caseinolytic specificity to 

chymosin, but lacks the ability to cause coagulation (Fox et al., 2004; McSweeney et al., 1995).  
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Cathepsin D is a heat-labile acid proteinase, but its contribution to cheese ripening is unclear (Fox 

et al., 2000). Additionally, it has been suggested that because it is a serum protein, very little 

cathepsin D survives in the curd after draining during cheese manufacture (Upadhyay et al., 

2004).  However, Hurley et al. (2000) described that about 8% of cathepsin D survives in cheese 

after pasteurization and does play a contributing role in proteolysis of rennet-free cheeses.  Other 

indigenous proteinases have been detected in ripened cheeses, although their contribution to 

flavor and texture has not been established as significant.   

Cheeses made from pasteurized milk are markedly different in terms of proteolytic 

patterns than cheeses produced from raw milk.  High temperature treatments during 

pasteurization inactivate many enzymes present in raw milk, including plasmin, can affect milk 

flavor, and can also affect the structure of some proteins.   

c. Primary Starter Cultures 

Lactic acid bacteria (LAB) starter cultures are added during their active growth stage and 

begin the production of lactic acid from lactose in cheese milk.  The main LAB species used as 

starter cultures in cheese manufacture are Lactococcus lactis, Leuconostoc species, Streptococcus 

thermophilus, Lactobacillus delbruecki subsp. lactis and subsp. bulgaricus, and Lb. helveticus.  

High concentrations of active cells are added to cheese milk and acidification occurs quite 

rapidly, and some flavor and aroma compounds are also produced.   

LAB employ complex proteolytic machinery to meet their nutritional requirements and 

grow to high concentrations in milk.  Most LAB have similar proteolytic systems, including a cell 

wall bound proteinase, amino acid transport systems, and several intracellular peptidases and 

proteinases.  The main LAB proteinase involved in cheese ripening is anchored to the cell wall 

and is known as the cell envelope proteinase (CEP).  All CEPs are serine-proteases and target the 

degradation of caseins to oligopeptides  (Juillard et al., 1995).  The most well-defined CEP is PrtP 

of Lactococcus lactis.  Amino acid substitutions in the binding cleft of PrtP are responsible for 
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varying specificity of αs1-, β-, and κ-casein degradation.  Other CEPs have been studied in both 

thermophilic and mesophilic LAB, with high homology in enzyme active sites.  When used for 

cheese manufacture,  it has been suggested that CEPs act on caseins, typically releasing 4-10 

oligopeptide residues (Fox and McSweeney, 1996).  All LAB peptidases are internal, and 

oligopeptides of 4-18 residues are transported into the cell via the non-specific oligopeptide 

transport system.  After uptake into the cell, oligopeptides are hydrolyzed to shorter peptides and 

free amino acids by endopeptidases and exopeptidases, respectively (Christensen et al., 1999; 

Kunji et al., 1996; Law and Haandrikman, 1997).  Many cheese-makers and scientists claim that 

the breakdown of κ-casein to peptides and free amino acids by a combination of chymosin and 

proteinases is the most important aspect of cheese-making.   

Typically due to low pH, salt sensitivity, and limited fermentable carbohydrates, starter 

culture cells lyse after primary proteolysis, releasing intracellular enzymes into the surrounding 

matrix.  Lysis is a critical step in cheese making as it releases classically intracellular enzymes 

into the surrounding matrix where they can continue proteolysis.  Autolysis can also occur as a 

result of thermoinducible phage.  Heating the cheese milk above a certain cook temperature 

triggers the lysis of many starters.  The released peptidases continue to hydrolyze oligopeptides in 

the matrix during fermentation.  The action of released peptidases during aging is termed 

secondary proteolysis (Rank et al., 1985).  

d. Non-starter Lactic Acid Bacteria 

Especially in traditionally manufactured cheeses, non-starter Lactic Acid Bacteria 

(NSLAB) play important roles in texture and flavor development.  Lactobacilli are the most 

commonly occurring NSLAB, especially Lactobacillus casei, L. paracasei, L. plantarum, and L. 

curvatus (Fox et al., 2004).  While they impart unique characteristics during aging, these bacteria 

are adventitiously obtained through environmental contact, and are usually unpredictable in 

concentration and species.  Due to variability and minimal control over NSLAB growth and 
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metabolism, most large-scale cheese manufacturers employ pasteurization or additional 

processing methods to remove or minimize unwanted or unpredictable cultures.  The proteolytic 

activity of NSLAB is similar to that of starter LAB.  NSLAB occur in unripened cheese in low 

numbers, and their concentration increases through ripening.  A review by Peterson and Marshall 

(1990) described the consensus of NSLAB, determining that they cause detrimental effects on 

cheese quality equally as often as they benefit the final product.  

A study by Fitzsimons et al. (1999) assessed the genetic similarities among NSLAB 

isolated from Cheddar cheeses produced at three separate locations from the same starting 

materials.  The research determined that NSLAB from cheeses produced at the same factory were 

genetically similar to each other, while distinctively different from the NSLAB produced at 

different factories.  Further, NSLAB present in defective cheeses were distinctly different from 

NSLAB in premium-quality cheeses.   

McSweeney et al. (1993) compared quality and sensory characteristics as well as count of 

NSLAB after three months of aging in cheeses produced from microfiltered, pasteurized, and raw 

milk.  The research showed that at pressing, the cheeses contained 4.3x10
1
, 3.9x 10

2
, and 

1.47x10
5
 cfu/g NSLAB, respectively.  After 11 weeks of aging, the cheeses contained 9.3x10

6
, 

1.12x10
7
, and 1.19x10

8
 cfu/g NSLAB, respectively.  Sensory panels determined that the cheese 

produced from raw milk quickly developed off-flavors, while the filtered and pasteurized milks 

maintained equivalent taste and quality.   

e. Secondary Cultures and Adjunct Microflora 

Additional cultures are sometimes intentionally added to develop unique flavor and 

texture characteristics in ripening cheese.  Smear-ripened, surface-ripened, and internal mold –

ripened cheeses are among those which require further treatment prior to and/or during aging.   

Secondary starter cultures are typically added at low levels at the same time as the 

primary starter LAB, but have no function in the acidification of cheese.  Their role is to produce 
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biochemical and organoleptic changes in cheese during ripening.  The main groups of secondary 

cultures are non-starter lactic acid bacteria, propionibacteria, coryneforms, staphylococci, yeasts, 

and molds.  These cultures are present at low cell concentrations during early stages of cheese 

ripening, and flourish during aging after lysis of starter cultures.  Secondary cultures are key for 

the development of unique flavors through the release of free amino acids during aging.   

Molds are traditionally implemented for aging surface-ripened or blue-veined cheeses.  

While lipolysis is often considered the dominant biochemical process performed by molds, 

proteolytic activity is still considered significant.  The most common species of molds used as 

adjuncts during cheese ripening are Penicillium roqueforti and Penicillium camemberti .  P. 

camemberti is a white mold used to make Camembert and Brie- type cheeses, while P. roqueforti 

is a blue-green mold used in the production of Roquefort and other Blue cheeses.  Both species 

have proteinase activity that typically begins on the surface.  The extracellular proteinases 

specifically hydrolyze αs1-,  β-, and κ-casein and other chymosin-derived peptides (Law and 

Tamime, 2011).  The free amino acids released by Penicillium peptidases are known for their 

debittering activity.   

Yeasts are commonly used in conjunction in surface-ripened cheeses as they promote 

growth of molds and bacteria.  They can be added directly to cheese milk with primary starters or 

can be applied to the surface of cheese after pressing in brine form.  Yeasts contribute some 

proteolytic activity during ripening, as they employ caseinolytic and peptidolytic activity.   

Coryneform bacteria and Staphylococci are used during the aging of bacterial-smear 

ripened cheeses, including Limburger, Munster, Tilsit, Raclette, Brick, and Monterrey.  These 

bacteria are grouped together based on their characteristic production of red-orange pigments on 

cheese rinds.  While both Staphylococci and Coryneform are present in the adjunct cultures for 

these cheeses, Staphylococci are outnumbered by Coryneforms early in the ripening process (Fox 

et al., 2004).  The most popular Coryneform for cheese production is Brevibacterium linens, and 

is used in the ripening of Munster cheese.  B. linens has targeted specificity for αs1- and β-casein.   
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Cultures used in the production of smear- or bacterial-surface ripened cheese have two functions; 

enzyme production and deacidification.  These bacteria are capable of metabolizing lactic acid to 

carbon dioxide and water, causing a pH increase during ripening.  While these bacteria have a 

minor contribution to casein proteolysis, they catabolize many small casein-derived oligopeptides 

and amino acids and contribute to the production of characteristic aromas and flavors.   

Propionic acid bacteria (PAB) are known for their ability to metabolize many carbon 

sources, especially alcohols and lactic acid, to produce carbon dioxide, propionic acid, and 

acetate.  These bacteria are responsible for eye development in Swiss-type cheeses and are 

especially active on proline-containing peptides (Fox et al., 2000).  This cheese family includes 

Emmental cheese.  They exhibit minor caseinolytic activity, but possess extensive peptidolytic 

activity that contributes to flavor production.  The most commonly used PAB in cheese making is 

Propionibacterium freudenreichii subsp. shermanii.   

9. Monitoring Proteolysis in Dairy Products 

 Comparing extent and patterns of proteolysis in cheese is the basis for classification and 

measurement of cheese quality and maturity.  Because of the vast differences in milk, treatments, 

enzymes, microflora, and environmental conditions during production and aging, proteolytic 

patterns of ripening are distinctly different among cheeses, especially those of different varieties.  

Several methods of analysis have been described for monitoring cheese proteolysis, and include 

classification by nitrogen content, gel and capillary electrophoresis, chromatography, and free 

amino acid content.  Extent of proteolysis correlates well with age. 

a. Non-specific Methods 

Non-specific methods of monitoring proteolysis include evaluation of cheese solubility 

and protein extraction in various buffers.  Commonly used buffers for extracting proteins from 

cheese include pH 4.6 citrate buffers, water, sodium chloride, ethanol, trichloroacetic acid, 

phosphotungstic acid, and sulfosalicylic acid (Christensen et al., 1991; Fox and McSweeney, 
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1996; McSweeney and Fox, 1997; Sousa et al., 2001).  Extracts can be evaluated in several ways: 

by various nitrogen determination methods including Kjeldahl, Lowry, Hull, absorbance at 

280nm, or by electrophoretic methods.  The selectivity of various extraction buffers provides 

different protein concentrations and profiles when analyzed, even for identical samples.  

Depending on the cheese conditions during manufacture and aging, different buffers will provide 

improved or less efficient protein extraction from the matrix.  Buffer solubility is a rapid, 

inexpensive, and valuable technique for routine assessment of cheese maturity and quality.  As 

cheese ages, the profiles obtained through fractionation will appear more concentrated as a result 

of the increased level of released peptides and amino acids.   

If analysis of particular proteins is desired, fractionation is a useful technique to 

discriminate among the proteins and peptides of specific size and solubility (Christensen et al., 

1991).  The soluble and insoluble fractions obtained from extraction with these chemicals display 

distinctly different electrophoretic profiles.   

Many studies use Kjeldahl analysis to determine the ratio of soluble nitrogen to total 

nitrogen in cheeses.  As cheese ages and proteolysis continues the amount of soluble nitrogen 

increases.  The Kjeldahl method, while useful, is a very laborious and time-consuming procedure 

for evaluation of cheese proteolysis.  More rapid techniques have been suggested for measuring 

free amino groups in cheese based on spectrometry and titration. Most of the rapid methods 

require a fractionation step prior to analysis, while only two methods can be performed on whole 

cheese.   

b. Specific Methods 

 Polyacrylamide gel electrophoresis (PAGE) is one of the most widely used techniques for 

assessing proteolysis in cheese.  As cheese ages, proteins are broken down into larger peptides, 

from larger peptides to smaller peptides, and then into free amino acids.  PAGE allows visual 

observation of changing proportions of milk proteins during fermentation to be observed (Chin 
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and Rosenberg, 1998).  The efficiency of various electrophoretic protocols, buffers, and staining 

procedures for cheese analysis has been extensively reviewed (Kuchroo and Fox, 1982; Ledford 

et al., 1966; Morr, 1971; Shalabi and Fox, 1987; Veloso et al., 2004).   

Much research conducted in the late 20
th
 century relied upon urea-PAGE to monitor 

proteolysis. Urea, however, is a strong denaturant, and can cause changes in protein structure, 

function, or response in downstream analyses.  Difficulties in resolving and staining milk proteins 

derived from cheese samples was common when using 1-D sodium dodecyl sulfate (SDS)-PAGE 

for milk proteins due to limited construction of sufficient separation matrices within acrylamide 

gels, but using urea-PAGE  was documented to provide improved separation of caseins (Creamer, 

1991; O'Sullivan and Fox, 1990; Shalabi and Fox, 1987).  Casein fractions, especially αs1- and 

αs2-,  migrate closely within SDS-polyacrylamide and native gels of low and broad 

concentrations, as they share similar molecular weights and isoelectric points(see Table 1.1) 

(Marshall and Williams, 1988).  Two-dimensional electrophoresis, using isoelectric focusing 

(IEF) as the first dimension and PAGE as the second, has been suggested as an superior method 

of separating protein fractions with increased specificity (Chin and Rosenberg, 1998; Marshall 

and Williams, 1988).   Recent advances, however, have improved the capabilities of SDS-gels 

and buffers for electrophoresis.  These gels are commercially available and useful for 1-D 

separation of milk proteins at specific concentrations.   

10. Conclusions 

 The relationship between protein structure and function is unclear.  This thesis seeks to 

determine the effects of fermentation-driven proteolysis on the detection of allergen-specific 

residues in cheese.  Different levels of proteolysis, whether limited or extensive, will be evaluated 

using imaging and immunoassay methods.  The relationship between structure and allergenicity is 

also unclear.  Theoretically, the detection of protein fragments derived from allergenic proteins 

will be decreased as a result of structural degradation.  However, research suggests that new 
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allergenic epitopes are commonly exposed upon destruction of conformational protein structures, 

but this relationship, again, is unclear.  This thesis seeks to add supporting data and insight to 

these scientific uncertainties.   
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CHAPTER 2. EVALUATION AND VALIDATION OF COMMERCIAL MILK ELISA 

KITS 

1. Abstract 

 

 Reliable and sensitive methods of allergen quantitation are needed to ensure protection of 

allergic consumers and to allow food manufacturers to assess the effectiveness of their preventive 

allergen control practices.  The consistency and accuracy of twelve commercial milk ELISA kits 

were evaluated based on the performance of calibrator solutions.  Calibration standards were run 

in triplicate wells on duplicate ELISA plates.  The suitability of using certificates of analysis, 

%CV, and r
2
 to assess and describe ELISA kit performance was evaluated.  Recommended 

benchmarks for acceptability of ELISA kit performance are suggested.  Standard curves were 

constructed from the manufacturer provided calibration standards, and the ELISA data for all 

commercial kits should be expected to meet or exceed an r
2
 ≥0.98 and %CV ≤20% when 

replicates are evaluated.  Three commercial kits did not meet the suggested performance criteria: 

Romer Labs® AgraQuant® Casein, Morinaga® Casein, and Morinaga® BLG.  Unless the 

manufacturers of these kits improve the stability and performance of calibrator solutions during 

transport, storage, and proper kit use, these kits should not be used to quantify trace amounts of 

milk residues in food samples.  The remaining 9 kits performed in accordance with expectations.  

Establishing harmonized guidelines for kit performance will improve the accuracy and reliability 

of results.  When selecting ELISA kits, efforts should be made to assure that the kit offers 

consistent and reliable performance.  

2. Introduction 

  Enzyme-linked immunosorbent assays (ELISAs) exist to quantitatively detect allergenic 

residues in foods.  ELISAs are one of the most commonly used immunochemical methods for the 

detection of residues of allergenic foods.  ELISAs are specific, sensitive, and quantitative.  In 
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recent years, ELISA methods for the detection of many food allergens have been commercialized 

and improved to quantify residues in less than an hour.  While commercial ELISA kits are 

excellent tools for allergen detection, they still have limitations.  ELISA kits are developed with 

antibodies of limited sensitivity.  Either monoclonal or polyclonal antibodies can be used for 

ELISA kits, with many manufacturers favoring polyclonal antibodies that detect several epitopes 

on one or more proteins from an allergenic food.  If an epitope is identified that is stable to a 

variety of processing methods, monoclonal antibodies may be developed for its specific detection.     

 None of the commercially-available or published ELISA methods have been validated.  

An approach to validate ELISA kits has been recommended, but the criteria have not been widely 

adopted.  Some collaborative inter-laboratory validation data is available for detection of trace 

amounts of milk in foods or spiked food matrices, but these kits still lack certification by 

standardization organizations.  Validation would ensure that available ELISA methods are 

suitable for their intended use in detecting allergen residues.   

 Many sources of variation exist within ELISA kits.  It is well known that evaluation of an 

identical sample with different ELISA test kits can provide vastly differing results.  Antibody 

sensitivity, calibration materials, extraction reagents and procedures, and reporting units all 

contribute to differences in results when identical samples are analyzed with different ELISA kits.    

Variation observed in kit performance can be a result of stress from shipping, storage, improper 

handling, or contamination.   

 Because commercial ELISA kits do not typically use antibodies with reactivity 

specifically toward all proteins or epitopes within an allergenic food, calibration materials are 

selected and used to normalize data.  Solutions of different concentrations of calibration materials 

are used to build a standard curve for quantitation of allergenic residues within a food.  Often, 

regardless of antibody specificities or calibration materials, kits will use mathematical conversion 
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factors to report results in yet another unit.   Taylor et al. (2009) discussed that kit antibodies may 

be calibrated against the whole food, total or soluble protein, or a specific protein.  Additionally, 

manufacturers may use calibrator solutions derived from purified, partially purified, the entire 

spectrum of soluble proteins, or even from the whole food.  For example, antibodies of milk 

ELISA kits may be sensitive to one or several epitopes on an individual milk protein, while whole 

casein is used as the calibration material and data are quantified and reported in units of non-fat 

dry milk (NFDM).   

 The quantitative nature of ELISA kits relies on the use of a standard curve composed of 

several solutions of known analyte concentrations.  Each assay requires running the standard 

solutions in parallel to samples of unknown concentration.  The results obtained from the analysis 

of the known solutions are used to build a standard curve.  Analyte concentration in a test sample 

can be interpolated from the standard curve.  AOAC guidelines for ELISA detection suggest that 

acceptable recovery of spiked samples should be between 50%-150%.  The guidelines, however, 

do not recommend limits for maximum levels of variation in an acceptable assay (Abbott et al., 

2010).   

 Because ELISA kits do not express results in the same units, comparison between kits is 

difficult.  Not only do commercial milk kit antibodies target different milk fractions, but they also 

use different calibration materials and different units of reporting.  Diaz-Amigo and Popping 

(2010) suggest that conversion factors between detected and reporting units should be based on 

soluble protein in a commodity food, not total protein contained in a whole food.  Conversion 

factors likely introduce additional uncertainty into ELISA results because they are not 

standardized between different kits.  Public health and clinical concerns may necessitate that 

commercial ELISAs express results in clinically relevant units.  Because food challenges to 

determine threshold doses for allergic individuals are performed using the whole food and not 

individual proteins, ELISA manufacturers may present results in converted units.  Kits that are 
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developed using calibration materials other than the whole food may need to provide 

mathematical conversion factors for data analysis and interpretation.   

  The development and adoption of reference materials for kit validation must account for 

natural differences in protein composition among varieties of the same allergenic food.  Ideally, 

reference materials will also account for the effects of processing.  No widely accepted standard 

materials exist for allergen test kits, although some reference materials are widely available.  

 Abbott et al. (2010) suggest the adoption of NIST RM 1549 (non-fat dry milk) as the 

standard reference material for milk allergen test kits.  Additionally, if kit manufacturers decide to 

use a different reference material, then a conversion factor must be provided with the test kit for 

proper data quantitation. 

  Certain assumptions regarding ELISA kit performance are often implied; users expect 

that when protocols are followed, data obtained with test kits will be free from significant bias, kit 

response will be proportional to the concentration of antigen present in the sample, and errors are 

randomly and consistently distributed throughout the data (Thompson et al., 2002).   Ideal 

recovery for spiked samples is between 80%-120%, although acceptable recoveries should fall 

within the 50%-150% range (Abbott et al., 2010; Thompson et al., 2002).   

 The coefficient of variation (CV), also known as the relative standard deviation (RSD), is 

a dimensionless unit and is typically expressed as a percentage.  During analyses where sample 

replicates are evaluated, the coefficient of variation provides a useful measure of consistency 

among replicate samples.  In statistics, the standard deviation also measures data consistency, but 

%CV has the advantage of expressing consistency with relation to the mean and is a 

standardization of the SD (Reed et al., 2002).  Regardless of analyte concentration, the CV 

estimates the magnitude of variation.  A low %CV indicates that sample points are distributed 

closely around the mean.  Consistent data suggests acceptable and homogenous kit performance.  
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Likewise, a high %CV may indicate biased or inappropriate kit performance.   Although standard 

solutions are not typically evaluated, they should be expected to meet stringent requirements for 

consistency.   

 Depending on the concentrations of standards, kit calibration curves display relatively 

clear limits of antigen detection and quantitation.  Kits always provide or recommend the use of a 

zero standard.  The zero ppm calibrator gives an estimation of the background interference and is 

often affected by contamination, incomplete washing, and user proficiency and experience.  

Because ELISA kits typically provide a certificate of analysis (COA) for calibrators, the 

acceptability of kit performance can be inferred from the optical density of standard solutions.  

Evaluated samples, either in absence of detectable analyte or at low concentrations can give 

readings at or below the zero calibrator and the lowest positive solution.  Because quantitation of 

unknown samples is performed using the linear part of the standard curve, enzyme kinetics reveal 

that the response observed between the zero standard and the lowest positive calibrator does not 

always give a linear response.  OD values that fall in this region cannot be accurately quantified, 

and are given a ‘below the level of quantitation’ (BLQ) designation.   

 The coefficient of determination, often referred to as the r
2
, is another commonly used 

statistic for data evaluation.  When a calibration curve is fit to the data, the r
2
 measures how 

closely the data fits the curve.  Values that are closer to 1 indicate the curve fits the data well, 

while lower values suggest that the results are not accurately predicted by the curve.  The r
2 
value 

obtained from kit calibration curves  are recommended to exceed 0.98 (Cordle, 2006).   

 The calibrator solutions provided with each kit provide quantitative estimates of allergen 

concentration in a tested food product.  The reporting units of a kit are expected to reflect its 

detection specificity.  Adoption of proper reference materials and unification of reporting units 

will help minimize differences observed in kit results.  
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 An evaluation of peanut kits by Pomés et al. (2003) claimed that because calibrators and 

reporting units in different ELISA kits do not agree, results cannot be correlated.  Some research 

suggests that because ELISA results are expressed differently, the exact mathematical factors and 

calculations used to correlate the reporting units of different kits are specific to each test.  Others, 

however, suggest that correlation factors between peanut protein and other units are relatively 

consistent and correlation can be performed between kits (Zeleny and Schimmel, 2010).  

Regardless of position on correlation, research agrees that protocol provided with a kit must be 

closely followed for results to be accurate.  Variation in environmental conditions and incubation 

time during assay performance should be ≤ 5% for obtaining acceptable results (Immer, 2006).  

Because ELISA kits rely heavily on the principles of chemical equilibrium and enzyme kinetics, 

disruption of the assay prior to the recommended incubation time can dramatically alter assay 

performance.   

 Published ELISA methods often list the variation in performance of standard calibrator 

solutions, while commercial kits typically do not.  A peanut ELISA developed by Holzhauser and 

Vieths (1999) listed the range of optical densities for replicates of standard solutions between 

1.4% and 3.1% CV.  Typical accuracies in sample detection fall within ± 5%-20% (Cordle, 

2006).  An assessment of commercial milk ELISA kits determined that experimental %CVs for 

standard solutions were in the range of 1-5% (Monaci et al., 2011).  The accuracy of standards is 

used to evaluate the precision and stability of the test.  It has been suggested that a high %CV 

among standards may indicate poor washing technique or improper pipetting by the user.  If 

replicates of a standard solution vary by more than 20%CV, the assay must be repeated (Immer, 

2006).   

 The Food Allergy Research and Resource Program (FARRP) at the University of 

Nebraska-Lincoln uses internal control points to assess the performance of each kit tested.  These 

control points include a ± 20% confidence interval for calibrator solutions and sample replicates 
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in ELISA analyses.  Additionally, FARRP requires an r
2
 value of ≥0.98 for the standards of all 

kits.  The applicability of using these guidelines for the quality control of commercial ELISA kits 

will be assessed.   

 The objective of this research was to assess the validity of twelve commercial milk 

ELISA kits using manufacturer-provided calibration solutions.  The OD values obtained will be 

compared to the expected values on the Certificate of Analysis (COA) provided with each kit. R
2
 

values, %CV, and % difference from expected values will also be calculated for each data set.  

These analyses will investigate the consistency of each kit within a lot code and will contribute to 

establishing criteria for acceptable performance of commercial ELISA kits. 

3. Materials and Methods 

Kit Selection and Procurement 

 To assess the validity of commercial ELISA milk kits, twelve kits were selected for 

analysis. Neogen Veratox® Total Milk, Casein, and BioKits™ BLG (β-lactoglobulin) were 

obtained from Neogen® Corporation (Lansing, MI, USA).  ELISA Systems™ Casein and β-

lactoglobulin kits were obtained from ELISA Systems (Windsor, Queensland, Australia).  R-

Biopharm RIDASCREEN® Fast Casein, Fast Milk, and Fast BLG (Darmstadt, Germany) and 

Romer Labs® AgraQuant® Casein and BLG (Union, MO, USA) were also used and obtained 

from their respective distributors.  Morinaga® BLG and Morinaga® Casein were obtained from 

Morinaga Institute of Biological Science (Yokohama, Japan).  Each commercial kit provides its 

own set of standard solutions at given concentrations.  Lot numbers of each kit evaluated are 

listed in Table 2.1.   
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Table 2.1 Commercial milk ELISA kits and lot numbers used 

KIT LOT # 

Neogen Veratox® Casein 31105 

ELISA Systems™ Casein  CAS11-283 

R-Biopharm RIDASCREEN® Fast Casein 14350 

Romer Labs® AgraQuant® Casein 1005-1106 

Morinaga® Casein 1201SACA93SA 

Neogen Veratox® Total Milk 12158 

R-Biopharm RIDASCREEN® Fast Milk 11421 

Neogen BioKits™ BLG 146,009 

ELISA Systems™ BLG  11-104 

R-Biopharm RIDASCREEN® Fast BLG 14121 

Romer Labs® AgraQuant® BLG BL1005-1111 

Morinaga® BLG 1110SABL30A 

 

ELISA Analysis   

 Each of the standard solutions provided by kit manufacturers were evaluated using 

respective kits.  For each commercial kit, standards were evaluated in triplicate wells on two 

independent plates.  While each kit recommends a specific extraction procedure for the analysis 

of unknown samples, no extraction is required for standard solutions; they are applied directly to 

antibody-coated wells.  A few sets of standards require additional dilution prior to ELISA 

analysis; this was performed according to manufacturer’s instructions.   

 All kits used in the analysis are sandwich ELISAs, with the exception of Neogen 

BioKits™ BLG, which uses an indirect competitive format.  The sandwich ELISA kits provide 

antibody-coated wells, standard solutions, conjugate antibody solution, substrate solution, stop 

solution, wash buffer, and extraction buffer.  The indirect competitive-ELISA kit (Biokits BLG) 

provides protein-coated wells and avidin peroxidase, an enzyme that allows the detection of 

antigen in wells.  Differences between the mechanisms of sandwich and competitive ELISA 

formats are discussed in detail in Chapter 1.   
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 Each kit, with the exception of Morinaga kits, is accompanied by a Certificate of 

Analysis (COA) for each solution and standard present in the kit, verifying its purity and 

performance by a quality assurance laboratory.  The COA of each kit lot contains optical density 

(OD) values for the standards as obtained in quality analysis and deemed acceptable by the 

manufacturer.  In data analysis, the values on the COA were regarded as the expected results for 

the OD of the standards. 

 Protocol for each ELISA kit was followed as outlined in kit inserts.  Briefly, for each of 

the sandwich-ELISA assays, 100 μL-150 μL of each standard was added to milk-specific 

antibody coated wells in triplicate and was allowed to incubate at room temperature for a 

recommended period of time as stipulated by the manufacturer’s instructions.  For r-Biopharm® 

RIDASCREEN Fast Casein, Fast Milk, Fast BLG, and Neogen Veratox® Total Milk and Casein, 

the incubation period was 10 minutes.  For ELISA Systems™ BLG and Casein kits, the 

incubation period was 15 minutes.  For Romer Labs® AgraQuant® Casein and BLG, the 

incubation period was 20 minutes.  The incubation time for Morinaga® BLG and Casein was 60 

minutes.  After incubation, the wells were thoroughly washed with wash buffer solution provided 

by the manufacturer a determined number of times.  In most kits, the wash buffer solution was a 

dilute solution of PBS-Tween.  In the R-Biopharm RIDASCREEN® Fast Casein kit, wells were 

washed 3 times; R-Biopharm RIDASCREEN® Fast Milk and Fast BLG, 4 times; ELISA 

Systems, Romer, and Neogen BioKits™ BLG kits, 5 times; Morinaga Kits, 6 times; and Neogen 

Veratox® kits, 10 times.  Well plates were inverted and tapped repeatedly on paper towel after 

washing to remove excess wash solution.  Remaining bubbles in the wells were popped with a 

clean pipette tip to prevent assay interference.   

 Next, 100 μL of enzyme-conjugated antibody solution was added to each well using a 

multichannel pipette and incubated for the prescribed time period.  Wells were washed and 

tapped dry using the protocol described above.  Substrate solution (100 μL) was added to each 
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well with a multichannel pipette and the well plate was allowed to incubate as a colorimetric 

reaction occurred.  After the incubation, acidic stop solution was added to each well to deactivate 

the enzymatic reaction and prevent additional color formation.   

 The optical density of each well was then read using a plate reader at the absorbance 

wavelength recommended by each kit manufacturer.  Two replicate plates were run, each with 

calibration standards analyzed in triplicate.  Expected values as provided on the COA were 

compared to actual values.  Data was analyzed in Microsoft Excel, GraphPad Prism, and the 

manufacturer-provided software program, if supplied.  Standard curves were created using the 

curve fits recommended by kit manufacturers or using a four-parameter sigmoidal dose-response 

curve if no curve fit was suggested.  Curves were created in GraphPad Prism version 4.03.   

4. Results 

 All kits were accompanied by a Certificate of Analysis (COA) with the exceptions of the 

Morinaga® Casein and Morinaga® BLG kits.  Values listed on COAs by kit quality assurance 

labs were considered expected values.  Kit manufacturers often recommend that experimental 

optical density values meet certain criteria to confirm kit stability and analyst proficiency. When 

the optical density of standard solutions falls outside of a certain suggested range, error is 

indicated, sample data must be discarded, and the assay must be performed again to alleviate or 

confirm error.  

 The percent coefficient of variation obtained during data analysis was quite high for 

several kits.  The Romer Labs® AgraQuant® Casein and Morinaga® Casein kits display the 

highest levels of variation among replicates of the same standards, both within and between 

replicates (see Table 2.2).  These two kits also display the lowest r
2
 values.  ELISA kits are 

characterized by a high correlation coefficient, with acceptable r
2
 values typically falling between 

0.97-1.0.  For kits that provided a COA, recommended values for standard solutions were used as 
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expected values.  The means of experimentally obtained data were compared to the expected 

values and the difference from expected values, represented as a percentage (%DFE), was 

calculated (Equation 2.1).  The significance of %DFE measurements represents the variation 

observed in standard solutions as a potential result of kit transport and/or storage.  Larger %DFE 

represents the conditions that the standard solutions exhibited greater differences from values 

listed on the COA.  %DFE was calculated using the following equation: 

Equation 2.1. Calculation of % Difference from expected values (%DFE). OD represents 

optical density. Please note the equation absolute value of the difference between the mean 

experimental and expected optical density is taken.  

 

      
|                   |

          
      

Table 2.2. Results from standard solution analysis of commercial ELISA kits. 

Key KIT %CV
a
 r

2 
%DFE

b
 

1 Neogen Veratox® Casein 5.6% 0.997 16.3% 

2 ELISA Systems™ Casein  9.1% 0.991 49.7% 

3 R-Biopharm RIDASCREEN® Fast Casein 5.0% 0.999 49.6% 

4 Romer Labs® AgraQuant® Casein 28.1% 0.973 44.1% 

5 Morinaga® Casein 22.6% 0.920 n/a 

6 Neogen Veratox® Total Milk 3.8% 0.999 13.1% 

7 R-Biopharm RIDASCREEN® Fast Milk 8.5% 0.998 27.2% 

8 Neogen BioKits™ BLG 3.8% 0.988 17.8% 

9 ELISA Systems™ BLG  11.2% 0.998 40.4% 

10 R-Biopharm RIDASCREEN® Fast BLG 9.3% 0.997 37.4% 

11 Romer Labs® AgraQuant® BLG 7.4% 0.992 19.4% 

12 Morinaga® BLG 8.1% 0.998 n/a 
a
 %CV represents percent coefficient of variation 

b
 %DFE represents the percentage difference from expected values 
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Figure 2.1. Analysis of manufacturer-provided standard solutions. Kits are listed on the x-

axis according to numerical assignment in Table 2.1.  %CV represents percent coefficient of 

variation. %DFE represents the mathematical difference from expected values expressed as a 

percentage.  Because the Morinaga® Casein and BLG kits lacked COAs, no expected values 

were available, and %DFE was not calculated.   

 

 Because the Morinaga® Casein and BLG kits (kits 5 and 12, respectively) lacked a COA, 

no expected values were available for calculations.  Therefore, %DFE could not be determined 

for these kits, and this data is not shown in Table 2.2 or Figure 2.1.  The Morinaga® assay insert 

claims ≤ 10% intra- and inter-assay percent coefficient of variation, according to the product 

inserts for both the Casein and BLG kits although these values could not be confirmed.   

 Because ELISA methods are recommended to display a %CV among sample replicates of 

≤20%, the standard solutions should be expected to meet, if not exceed, the constraints (Immer, 

2006).  Two kits, Romer Labs® AgraQuant® Casein and Morinaga® Casein exhibit high %CVs, 

at 28.1% and 22.6%, respectively.  The kits do not meet the 20%CV cutoff mark (kits 4 and 5, 

Table 2.2, Figure 2.1).  The Neogen Veratox® Total Milk and Neogen BioKits™ BLG ELISA 

kits display the lowest %CV, at 3.8% and 3.0%, respectively.  All other evaluated kits fall within 

the acceptable range for observed %CV data.  With the exception of the ELISA Systems™ BLG  
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kit, Romer Labs® AgraQuant® Casein, and Morinaga® Casein kits, the other assay standards fall 

below 10% CV. A more stringent requirement for %CV observed among replicates of kit 

standards may be appropriate.   

 %DFE is a valuable measure of kit stability and differences in performance observed 

between the manufacturer testing facility and user laboratories. Kit instability during shipping and 

storage may suggest that the standards or other reagents in the kit are unstable and fail to provide 

consistent results.  While the differences from expected values do not have suggested points for 

validity, it might be reasonable to recommend that experimental values to fall within 20% of the 

values observed during post-production kit testing by the manufacturer.  ELISA protocol dictates 

that a new standard curve must be prepared and analyzed with each evaluation.  Day-to-day 

variability in observed optical densities for standard solutions is not uncommon, but large 

variation is unusual and cause for concern.   

 According to the observed data, only four of the kits meet the 20% DFE criteria: Neogen 

Veratox® Casein, Neogen Veratox® Total Milk, Neogen BioKits™ BLG, and Romer Labs® 

AgraQuant® BLG.  The Morinaga® Casein and BLG kits do not provide expected values for 

standard solutions on a COA and therefore, %DFE cannot be calculated for these two kits.  The 

ELISA Systems™ Casein, R-Biopharm RIDASCREEN® Fast Casein, and the Romer Labs® 

AgraQuant® Casein kits display the largest differences from the COA values, at 49.7%, 49.6%, 

and 44.1%DFE, respectively (Table 2.2).   
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Figure 2.2. Coefficient of Determination data for Commercial ELISA kits. The red bar at 

0.98 displays the minimum r
2
 value for acceptable results as recommended by the Food Allergy 

Research and Resource Program at the University of Nebraska-Lincoln and Cordle (2006).    

 Two kits fail to meet the recommended r
2
 values for standard analysis; Romer Casein (kit 

4) and Morinaga® Casein (kit 5) (Figure 2.2).  The Morinaga® Casein kit exhibits especially 

poor values, averaging near 0.92.  Additional replicates were performed of these kits, but 

improvements were not observed.   
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Figure 2.3. Performance of kit standards by common calibrator.  WMP: whole milk powder, 

a-cas: α-casein.  Note, there are an unequal number of replicates for each calibration material.   

Table 2.3. Kit performance sorted by common calibrator.  

    averages 

  n CV DFE 

NFDM 2 4.7% 14.7% 

MP 3, 1 13.0% 27.2%
a 

CAS 2 11.0% 46.8% 

BLG 3 9.3% 32.4% 

a-cas 1 9.1% 49.7% 

wmp 1 3.8% 17.8% 
a
 Because Morinaga® Casein and BLG Kits lacked COA, no DFE could be calculated. CV for 

MP has n=3, DFE for MP has n=1.   

 Considering the results on the basis of calibration materials, some trends are apparent.  

On the basis of %CV, it appears that whole milk powder (WMP) and non-fat dry milk (NFDM) 

are the highest performing calibrators, displayed on Figure 2.3 and Table 2.3.  Each displays a 

low %CV (3.8% and 4.8%CV, respectively).  Considering the %DFE measurement, NFDM and 

WMP are again the highest performing calibration standards, at 14.7% and 17.8% DFE, 

respectively.  These inferences, however, may be inappropriate, as there are an unequal number 

of kits that employ each calibrator (see Tables 2.3 and 2.4).  Further, normalization of the data 
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prior to performing statistics may contribute to statistical error, as the true distribution of data is 

not represented. 

Table 2.4. Information provided in kit inserts regarding calibrators and reporting units.   

KIT Standards Reporting Units 

Neogen Veratox® Casein NFDM NFDM 

ELISA Systems™ Casein a-casein skim milk powder 

R-Biopharm RIDASCREEN® Fast Casein casein casein 

Romer Labs® AgraQuant® Casein casein casein 

Morinaga® Casein milk protein milk protein 

Neogen Veratox® Total Milk NFDM NFDM 

R-Biopharm RIDASCREEN® Fast Milk milk protein milk protein 

Neogen BioKits™ BLG whole milk powder BLG 

ELISA Systems™ BLG BLG BLG 

R-Biopharm RIDASCREEN® Fast BLG BLG BLG 

Romer Labs® AgraQuant® BLG BLG BLG 

Morinaga® BLG milk protein milk protein 
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 Given the data, NFDM appears to be the most favorable calibration material for milk 

ELISA kits.  NFDM standards exhibit the lowest average %DFE and second-lowest %CV on the 

kits where it is employed.  The characteristics of high consistency and low variability exhibited 

by kits that use NFDM are indicators of kit stability.  Whole milk powder also performs with high 

consistency in the Neogen BioKits™ BLG kit.  However, the NIST Standard Reference Material 

for whole milk powder used in this kit is no longer available and production has been 

discontinued indefinitely as of February 2011 (NIST-SRM-8435).  In concert with ending 

production of NIST-SRM-8435, the use of whole milk powder for the calibration of current 

assays and the development of new milk-specific immunoassays should be reconsidered.   

 The three kits with the highest %DFE are all based on casein calibrants (Figures 2.2 and 

2.3, Tables 2.2 and 2.3).  After the caseins (whole or α-casein), BLG has the next highest %DFE 

at 32.4%.  Composite milk powders, whether NFDM or whole milk powder, have less variability 

in performance than individual proteins or fractions (casein or BLG) and are often more 

consistent with the values recommended by manufacturers or quality assurance laboratories.    

5. Discussion 

 According to the results observed when manufacturer-provided standard solutions are 

analyzed, two kits fail to meet criteria for acceptance.  The Romer Casein kit exceeds acceptable 

values for %CV and does not meet requirements for r
2
 of standard curves.  It is possible that the 

data is better suited to a curve-fit other than the four-parameter sigmoidal dose-response curve 

used and applied in GraphPad Prism.  Without manufacturer direction, the user is left to make 

assumptions regarding data manipulation and interpretation.  For calculation of results from raw 

data using the Romer Labs® AgraQuant® Casein kit, Romer Labs provides a Microsoft Excel 

spreadsheet with built-in formulas.  However, the r
2 
is not provided, nor is an appropriate curve fit 
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recommended in the product insert.  Morinaga Institute of Biological Science suggests that either 

of two curve fits be performed with the standard curve of each assay: a linear curve fit or a 4-

parameter curve fit (cubic regression).  No software is provided for performing these calculations, 

therefore certain assumptions must be made by the user.  The two fits suggested by Morinaga can 

provide drastically different results, especially if the standards are unstable.  Variation during data 

analysis compounds the error of kit stability.   

 Although day-to-day assay variation is not unexpected, the application of calibrator 

solutions and the development of a standard curve within each assay attempt to limit the 

differences in quantitation between assays.   Some kit developers argue that regardless of 

deterioration in standards or other sources of variability, the slope of the standard curve should 

remain the same.  However, even though the slope may remain relatively consistent, the y-

intercept will likely change and affect the results of sample quantitation.  The stability of standard 

solutions should be improved to minimize errors in sample quantitation. 

 Applying a maximum of 20% DFE seems reasonable; however, only four of the kits 

evaluated meet the criteria.  The applicability of using %DFE to evaluate kit performance should 

be evaluated with ELISA kits for additional allergen residues.  The variability of calibration 

standards during shipping and storage and their performance during assay protocol should be 

minimized.  Ideally, variation in assay results will be a result of deliberate experimental 

alterations, as opposed to external and uncontrollable circumstances.  However, this does not 

necessarily translate to kit design and manufacturing practices.   

 In addition to establishing a widely adopted and certified reference material, some 

literature suggests the importance of internal quality control points to indicate how well methods 

perform over time (Thompson et al., 2002).  Many suggest that the internal quality control 

standard also be developed from the same reference material used as a kit calibrator.  A reference 
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material should be established to allow more accurate data comparisons and validation of ELISA 

methods.   

 The %CV is an acceptable and effective measure of variability in ELISA kits.  

Conservative criteria for acceptable %CV are between 15%-20%, while stringent levels are 

recommended to be set near 5%-10% (Cordle, 2006; Immer, 2006; Monaci et al., 2011; Reed et 

al., 2002).   Holzhauser and Vieths (1999) recommend that the precision of triplicate samples 

should be ≤ 15%.  In this analysis, 75% of kits evaluated have %CVs less than 10%.  The two kits 

with unacceptable %CVs (≥20%) also displayed r
2
 values below 0.98; both measures suggest kit 

inconsistencies and poor performance.  The stringency of acceptable limits for the %CV of 

standard curves could be increased to 10-15% with minimal negative consequences. 

 Accurate detection and quantitation of milk residues with ELISA kits is challenging.  

Comparing results among assay kits that use antibodies of different specificities, different 

calibration materials, and different reporting units adds to the difficulty of appropriate 

comparisons and interpretations.  This research evaluated twelve commercialized milk ELISA 

kits for their consistent and precise detection of analyte in calibration materials.  NFDM exhibits 

a low %CV, DFE, and a high r
2
 value when used to construct standard curves.  In this research, 

NFDM is shown to be the most consistent, robust, and stable calibrator of those evaluated.  

Individual proteins and protein fractions, such as casein and BLG, display higher levels of 

instability as assessed by %DFE than do powders containing multiple unfiltered milk proteins.  

Commercial ELISA kits used to analyze milk residues in food should meet the criteria of r
2 
≥ 0.98 

and %CV ≤ 15%.  Use of kits that fail to meet these conditions cannot be recommended for 

quantitative analysis.    
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CHAPTER 3: COMMERCIAL MILK ELISA KIT SENSITIVITES TO PURIFIED MILK 

PROTEINS AND MILK-DERIVED INGREDIENTS 

1. Abstract 

 Commercial enzyme-linked immunosorbent assay (ELISA) kits exist to quantitatively 

detect bovine milk residues.  Milk contains many proteins that can serve as ELISA targets 

including caseins (α-, β-, or κ-casein) and whey proteins (α-lactalbumin or β-lactoglobulin). 

However, because not all ELISAs target the same protein fractions, comparison among assay kits 

is challenging.  To correlate the detection levels and specificity of ELISAs, nine milk-specific 

commercial kits were selected for evaluation.  Samples of five purified milk proteins (α-,β-, and 

κ-casein, α-lactalbumin (ALA) , and β-lactoglobulin (BLG)), and three milk-derived ingredients 

(non-fat dry milk (NFDM), whey protein concentrate (WPC), and sodium caseinate) were 

evaluated with commercial ELISA kits that target casein, BLG, or total milk.  All milk kits tested 

are capable of quantifying NFDM, but do not necessarily detect all of its protein components. No 

kits are capable of detecting α-lactalbumin, even though it is considered an important milk 

allergen.  One total milk kit detects only the caseins, while the common whey allergens (BLG and 

ALA) are virtually undetectable.  Another total milk kit detects BLG, but is incapable of 

detecting α- and κ-casein.  While the milk-derived ingredients (NFDM, WPC, and sodium 

caseinate) are detected by the kits, their quantitation is inaccurate due to the use of different 

calibrators, reference materials, and antibodies.  The evaluated ELISA kits rely on mathematical 

conversion factors for quantitation of target antigen in a sample.  Mathematical assumptions may 

affect the quantitative accuracy of ELISA kits, especially when allergenic foods have been 

modified or processed.  Milk ELISA kits target specific proteins as opposed to broad spectrum 

detection of protein fractions and sub-fractions.  The establishment of a standard reference 

material for calibration of milk ELISA kits is increasingly important.  Appropriate selection and 
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understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk 

residues and informed risk management decisions.  

2. Introduction 

 The prevalence of food allergies is increasing around the world (Sicherer, 2011a).  While 

the “Big Eight” food allergens are responsible for 90% of allergic reactions to foods, nearly 80% 

of reactions among infants are to milk, egg, and peanut (Bock et al., 1988).  Allergy to cow’s 

milk is especially common among children, affecting between 2-3% of young children in the 

United States (Monaci et al., 2006; Sampson, 2004).  While nearly 80% of children diagnosed 

with milk allergy will outgrow their sensitivity prior to adolescence, milk still presents a risk for 

many who ingest it (Chapman et al., 2006; Høst and Halken, 1990).  The importance of rapid, 

sensitive, robust, and specific methods for the detection of allergenic residues in packaged and 

processed foods, along with ensuring allergenic protein residue is effectively removed from 

shared processing equipment, is critical for the protection of food-allergic consumers and 

compliance with labeling and food processing regulations.   

 Bovine milk contains several major allergens.  Milk can be separated into two fractions 

by acid precipitation at pH 4.6; casein and whey (Damodaran and Parkin, 2008).  The casein 

fraction of milk contains nearly 80% of the total milk protein, while the whey fraction contains 

the remaining 20%.  There are three major casein groups, α-, β-, and κ-casein.  While the genes 

for casein production are coded on the same chromosome, there are major differences among the 

caseins in their sequences, functionality, reactivity, and allergenicity (Chatchatee et al., 2000; 

Chatchatee et al., 2001b).  The whey fraction of bovine milk contains two major allergens, α-

lactalbumin (ALA) and β-lactoglobulin (BLG).  No counterpart of bovine BLG exists in human 

breast milk.  Research now indicates that milk-allergic patients are typically allergic to more than 

one milk protein, and BLG is not the predominant milk allergen (Wal et al., 2001; Wal et al., 

1995a).  
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 The proportions of proteins within fluid milk remain relatively consistent across breeds 

and geographical changes.  For the casein fractions, the proportions of α-,β-,and κ-casein 

comprise roughly 50%, 37%, and 13% of total casein protein (Wal, 2002b).  BLG and ALA 

comprise roughly 50% and 25% of the total protein present in the whey fraction of fluid milk.  

Other milk proteins are documented to exhibit some allergenic activity, but their low 

concentration in milk renders ELISA analysis based on these fragments challenging and largely 

irrelevant, especially in processed foods (Wal, 2002b).   

 Due to widespread use of milk and derivative ingredients in the food industry and the 

allergenic importance of milk to consumers, accurate and reliable methods of detecting small 

amounts of milk in products, equipment, and facilities must be available.  One of the most 

commonly used methods to quantitatively analyze target proteins in food is the enzyme-linked 

immunosorbent assay (ELISA).  Many commercialized ELISAs are available for use in industry 

laboratories and by regulatory agencies, as are contract services for evaluating samples and 

analyzing data.  Commercial ELISA kits are typically based on detection of a specific protein or 

group of proteins that are generally always present in the allergenic food, stable to matrix 

interactions and processing effects, and are easily extractable.  The target proteins are not always 

allergens, but rather are proteins that fit the above criteria, are found in conjunction with the 

allergen and do not occur outside of the allergenic food (Abbott et al., 2010).  ELISA kits must be 

appropriately sensitive to detect trace amounts of allergenic food residue.  Abbott et al. (2010) 

suggested guidelines that all ELISA kits should meet before the kit can be considered for AOAC 

method validation.  In addition to requiring a standard reference material, spiking methods and 

matrices must be established.   

 Fluid milk is modified in numerous ways to maximize desirable characteristics for use in 

the food industry.  While many milk ingredients contain whey and casein proteins at their 

conception, the differential susceptibility of these proteins to denaturation by various methods of 



104 

 

 

processing (heating, drying, high pressure, etc.) can alter the prevalence and specificity of 

antibody binding epitopes in foods (Poms and Anklam, 2004a).  Some milk-derived ingredients 

undergo processes to remove certain milk components.   

 Among the most commonly used milk-derived ingredients in the food industry are 

caseinate and whey protein concentrate.  The concentration of protein and other materials in these 

products is modified by manufacturers to suit customer needs.  Caseinates undergo acid 

precipitation to facilitate the removal of whey proteins.  Through various processes, caseinates 

can reach a level of greater than 90% protein, of which, nearly all is casein and very little is 

whey-derived.  Caseinates are derivatives of various salts, commonly sodium, potassium, or 

calcium.  The minerals used in precipitation can affect the function and reactivity of the caseinate 

in a food.  Using an ELISA kit that relies on detection of whey protein for quantitation of milk in 

a food product containing caseinate residues will be inaccurate and may yield a false negative 

result.  Additionally, use of a kit that detects milk proteins in equivalent presence of nonfat dry 

milk (NFDM) or milk powder would incorrectly indicate the presence of whey proteins in the 

sample.  One of the most important principles of ELISA kits is that lack of detection does not 

indicate absence of the protein or allergenic food—it does, however, indicate that fewer targets 

are present in the sample.   

 Whey protein concentrates contain only traces of casein proteins.  These concentrates can 

range from 35% to upwards of 85% protein, chosen depending on desired applications.  A milk 

powder manufactured with similar procedures and containing more than 85% protein is typically 

referred to as a whey protein isolate.  The detection of caseinate and whey derivatives by 

commercial ELISA kits has not been evaluated.   

 One of the most commonly used milk-derived ingredients used by the food industry is 

NFDM.  Like other milk ingredients, NFDM can be manufactured under various conditions.  
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These conditions affect the structure and function of milk proteins.  One of the most common 

variables in the production of NFDM is the drying temperature.  NFDM can be dried under high, 

medium, or low heat conditions.  Unlike caseinates and whey protein-derived ingredients, the 

proportions of milk proteins in NFDM remain relatively consistent with those observed in fluid 

milk (Wal, 2002b).   

 Various processing methods, especially thermal treatments, have been documented to 

affect allergenicity of food products (Fiocchi et al., 2004; Lemon-Mule et al., 2008; Nowak-

Wegrzyn et al., 2008; Sampson et al., 2013; Wal, 2003; Wróblewska et al., 2000).  Additionally, 

antigen detection by ELISA is altered by processing (Cucu et al., 2013; Downs and Taylor, 2010; 

Hildebrandt and Garber, 2010; Khuda et al., 2012a; Khuda et al., 2012b; Polenta et al., 2012; 

Poms et al., 2004c).  Both of these trends occur due to the effects of processing on protein 

structure and function.  Due to the occurrence of conformational and sequential epitopes on 

native and denatured proteins, no definite relationship can be established between protein 

structure, function, and allergenicity.  Some allergens are more resistant to the effects of 

processing than others.  Susceptibility of allergens to effects of processing does not always 

indicate that processing reduces protein allergenicity.  While protein denaturation can destroy 

conformational allergenic epitopes, it can also expose new sequential epitopes.  Additionally, 

some unfolded proteins will aggregate with other proteins or moieties within the food and create 

novel molecules with allergenic potential (Sathe et al., 2005; Thomas et al., 2007).   

 The specificity of antibodies used in commercial ELISA kits varies.  It has been 

suggested that the main sources of variation within a kit are food matrix interactions, changes in 

solubility and reactivity of proteins as a result of processing, and different protein composition as 

a result of environmental conditions and species variety (Abbott et al., 2010; Koppelman and 

Hefle, 2006). The effects of common food processing methods on the detection of milk residues 

have been studied with three commercially-available milk ELISA kits in a model food matrix 
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(Downs and Taylor, 2010).  However, the detection specificities of the kits themselves have not 

been reviewed.  Without understanding the antibody sensitivities used in each kit, comparing 

results and kits is highly challenging.   

 In addition to selection of antibodies with specific sensitivities, kit manufacturers use 

various materials to serve as kit calibrants, standards, and reporting units.  Kit information is 

listed in Table 3.1.  Even within a single kit, these materials are not always consistent.  These 

units are rarely comparable among kits.  The lack of an established standard reference material 

for the development of ELISA kits increases the complexity of kit comparison.  The AOAC Task 

Force recommends use of National Institute of Standards and Technology (NIST) nonfat milk 

powder (NIST-RM-1549) as the standard reference material for calibration and quantification of 

commercial milk ELISAs (Abbott et al., 2010).  If a calibration material other than NIST NFDM 

is used to build the standard curve, it is suggested that the manufacturer provide an 

experimentally validated conversion factor between the calibration material and NIST milk 

powder.   

 Many ELISA kit users are unaware of the importance of kit specificities in accurate 

detection and quantification of antigens.  In this research, the sensitivity of nine milk-specific 

ELISA kits to five purified milk proteins and four milk-derived ingredients were be determined.  

Kit selection and usage by food industry as well as regulators must be driven by an appropriate 

understanding of the specificities, assumptions, and limitations of commercial milk ELISAs.   

3. Materials and Methods 

Materials, Equipment, and Kits 

 Milk protein fractions were purchased from Sigma-Aldrich (St. Louis, MO).  Fractions 

evaluated include αs-casein (≥ 70% purity), β-casein (≥ 98% purity), κ-casein (≥ 70% purity), β-

lactoglobulin (≥ 90% purity), and α-lactalbumin (≥ 85% purity).  Samples of whey protein 
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concentrate at two concentrations, 34% protein and 80% protein, and sodium caseinate were 

donated by Erie Foods International (Erie, IL).  Whey protein concentrate at 34% and 80% 

protein will be referred to as WPC34 and WPC80, and sodium caseinate will be referred to as 

NaCas.  Low-heat processed nonfat dry milk was obtained from Darigold (Seattle, WA).  C & H 

Pure Granulated White Cane Sugar was purchased from a local retail store in Lincoln, NE 

(distributed by Domino Foods, Yonkers, NY, USA).   

 Neogen Veratox® Total Milk, Casein, and BioKits™ BLG ELISA kits were obtained 

from Neogen® Corporation (Lansing, MI, USA).  ELISA Systems™ Casein and β-lactoglobulin 

ELISA kits were obtained from ELISA Systems (Windsor, Queensland, Australia).  R-Biopharm 

RIDASCREEN® Fast Casein, Fast Milk, and Fast BLG (Darmstadt, Germany) and Romer 

Labs® AgraQuant® BLG (Union, MO, USA) ELISA kits were also used and obtained from their 

respective distributors.  Kit information is listed below in Table 3.1.
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 Equipment used in this experiment included a Mr. Coffee® IDS77 Coffee Grinder 

(Jarden Consumer Solutions, Boca Raton, FL), DYNEX Spectra MR™ Plate Reader (Dynex 

Technologies, Chantilly, VA), Thermo Scientific Legend Micro 17 Centrifuge (Dubuque, IA), 

Thermo Scientific Titer Plate Shaker (Dubuque, IA), and a Julabo™ SW22 shaking waterbath 

(Julabo USA, Allentown, VA).   

Spike Preparation 

 Homogenous spikes were created in a neutral matrix of granulated cane sugar at levels 

that correlate with the levels detectable by milk ELISA kits.  First, a 250 ppm concentrated spike 

of each purified protein or milk ingredient was developed.  Briefly, 0.025 g of each purified 

protein and milk ingredient was weighed and added to 99.975 g of granulated sugar.  The mixture 

was ground for one minute in a coffee grinder.  The sides of the bowl were scraped down with a 

rubber spatula, and grinding was continued for another minute.  The finely ground sample was 

removed from the grinder and poured into a plastic zip-top bag.  Nine subsamples of each 

concentrated spike were evaluated for homogeneity using the Neogen Veratox® Total Milk kit. 

 The concentrated 250 ppm spike was used to create spikes of lower concentration in 

granulated sugar. The concentrations were selected based on the standard solutions provided by 

each ELISA kit manufacturer.  For example, a kit with standard solutions at 0 ppm, 2.5 ppm, 5 

ppm, and 10 ppm NFDM would have spikes of 0, 2.5, 5, and 10 ppm of each purified protein.  

Spikes were produced using the same method of weighing and grinding, as described above.  A 

total of 100 g of each concentration of spike was produced. 

Sample Evaluation: Protein Concentration and Electrophoresis 

 The protein content of each milk-derivative was determined by LECO Dumas Protein 

analysis.  Proportions were applied to ELISA results to evaluate the capability of kits to quantify 

milk proteins in samples where bovine milk micelle proportionality is not preserved.   
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 Additionally, each purified protein and milk ingredient was evaluated using SDS-PAGE.  

Each analyte was evaluated using the protocol of Laemmli (1970).  Samples were solubilized in 

0.01M phosphate-buffered saline (PBS) and protein concentrations were estimated using the 

Lowry Protein Assay (Lowry et al., 1951).  Proteins were prepared using reducing conditions.  

Briefly, 50 μg of each sample was boiled in Laemmli sample buffer containing 5.4% dithithreitol 

(w/v) for 5 minutes.  Protein separation was performed using a Bio-Rad Mini-Protean® Tetracell 

electrophoresis unit (Bio-Rad Laboratories, Hercules, CA).  5 μL of Precision Plus Protein™ 

Dual X-tra Standard was loaded in the first lane of each gel (#161-0377; Bio-Rad Laboratories, 

Hercules, CA). Multiple protein levels of each reduced sample were loaded on 12% Mini-

Protean® TGX™ Tris-HCl precast gel, 10 wells, with 30 μL maximum volume per well (Bio-

Rad Laboratories, Hercules, CA).   Gels were run at a constant voltage of 200V for approximately 

30 minutes, or until the dye front reached the bottom of the gel.   

 Gels were fixed in a solution of 60% trichloroacetic acid (w/v) and 17.5% 5-sulfosalicylic 

acid (w/v) diluted 1:5 with deionized water (Sigma-Aldrich, St. Louis, MO).   Fixed gels were 

stained overnight using Coomassie Brilliant-Blue R-250 Staining Solution (Bio-Rad 

Laboratories, Hercules, CA).  After a minimum of 8 hours of staining, gels were destained using 

the Coomassie Brilliant Blue R-250 Destaining Solution (Bio-Rad Laboratories, Hercules, CA).  

Gels images were captured using a Kodak Gel Logic 440 Imaging System (Eastman Kodak, 

Rochester, NY) and evaluated using Carestream Molecular Imaging software (v5.02.30, 

Carestream Health, Rochester, NY).   

Kit Selection 

 The ELISA kits selected for analysis were the Neogen Veratox® Casein, Neogen 

Veratox® Total Milk, and Neogen BioKits™ BLG (Lansing, Michigan, USA), ELISA 

Systems™ Casein and β-lactoglobulin (Windsor, Queensland, Australia), r-Biopharm 

RIDASCREEN® Fast Casein, Fast Milk, and Fast BLG (Darmstadt, Germany), and Romer 
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Labs® BLG (Union, Missouri, USA).   These kits were selected based on prior history of 

acceptable performance.  Other commercial ELISA kits are available, but did not meet our 

internal minimum criteria for accuracy and precision.  For kit results to be considered valid, 

standard curves must exhibit an r
2
 ≥ 0.98 and a %CV ≤ 20% among sample replicates.  Spikes 

were weighed, extracted, and analyzed according to kit manufacturer’s instructions.  

 Each purified protein was analyzed using appropriate kits.  Sodium caseinate and whey 

protein concentrates were analyzed using only the total milk kits (Neogen Veratox® Total Milk 

and r-Biopharm RIDASCREEN® Fast Milk).  NFDM was analyzed with all kits.  

Sample Preparation and Extraction for ELISA ktis 

 Briefly, 1g of each sample was weighed into a 50 mL polypropylene Falcon™ tube 

(Fisher Scientific, Pittsburgh, PA) and the appropriate amount of pre-warmed extraction buffer 

(60
o
C) was added to the tube according to the manufacturers’ instructions in each kit.  The 

samples were vortexed and placed in a 60
o
C shaking waterbath for the allotted extraction period. 

Tubes were removed from the waterbath after the appropriate extraction period and were cooled 

to room temperature.  1mL of each extracted sample was pipetted into a 1.5 mL Eppendorf™ 

microcentrifuge tube (Fisher Scientific, Pittsburgh, PA).  Samples were centrifuged in a Thermo 

Scientific Legend Micro 17 centrifuge for the recommended time and speed (ThermoScientific, 

Rockford, IL).  Three independent extractions were performed of each sample. 

 The r-Biopharm RIDASCREEN® Fast Milk and Fast BLG kits utilize an extraction 

buffer containing β-mercaptoethanol (BME) and sodium dodecyl sulfate (SDS) to improve 

protein solubility.  Extraction buffers containing BME or SDS were disposed according to 

guidelines for hazardous material collection procedures as indicated by Environmental Health and 

Safety at the University of Nebraska-Lincoln.   
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ELISA Analysis 

 Extracted samples were analyzed with respective ELISA kits.  Of the kits selected, eight 

were sandwich-ELISAs and the Neogen® BioKits BLG was an indirect-competitive format.  For 

the eight sandwich ELISAs, antibody-coated wells, conjugate antibody, substrate, stop solution, 

wash buffer, and solutions of standard concentration were provided with each kit.  For the 

indirect-competitive ELISA kit, antibody-coated wells, avidin peroxidase, conjugate antibody, 

substrate, and stop solution were provided.  Prepared samples were applied to respective kits 

according to manufacturer’s instructions and allowed to incubate. Wells were washed using wash 

buffer in 500 mL wash buffer bottles.  Each well on the plate was filled with wash buffer.  The 

plate was inverted to remove the wash buffer, and filling was repeated.  Washing was repeated for 

the appropriate number of times as directed by the kit manufacturers.  After washing was 

completed, microplates were inverted and excess wash buffer was repeatedly tapped out onto an 

absorbent paper towel.   

 Enzyme-labeled conjugate antibody was added to each well using a Ranin® multichannel 

pipette. The plate was allowed to incubate for the appropriate amount of time, and washing was 

repeated, as described above.  Substrate solution was added to each well, producing a 

colorimetric reaction throughout the incubation period.  Acidic stop solution was added to each 

well to stop the enzyme reaction after incubation. The optical density of each well was read at the 

appropriate wavelength recommended for each kit with a DYNEX Spectra MR™ plate reader.   

 The optical density readings of each manufacturer-provided standard solution was used to 

build a standard curve.  The optical density of each sample was then applied to the curve to 

establish the analyte concentration in the recommended reporting units.  



113 

 

 

Criteria for acceptable ELISA results 

 The Food Allergy Research and Resource Program at the University of Nebraska-Lincoln 

utilizes certain criteria for acceptability of ELISA results.  Manufacturer-provided standard 

curves must have an r
2
 value of ≥ 0.98 and a coefficient of variation (CV) less than 20% among 

sample replicates for acceptance.  These criteria have been adapted from Lipton et al. (2000).  In 

the present study, these guidelines were adjusted and followed; any sample with a CV greater 

than 15% among replicates or a standard curve r
2
 value of less than 0.97 was rerun.   

Data Analysis 

 Data was quantified and analyzed in Microsoft Excel, GraphPad Prism Version 4.03, and 

any manufacturer-provided software (Neogen Veratox® Version 3 and r-Biopharm 

RIDASCREEN® Ridasoft Win Version 1.42).  Curve fits were applied with software as 

recommended per manufacturer instructions.  If no curve was recommended, a four-parameter 

sigmoidal dose response curve was used for quantitation.  Statistical analyses were performed in 

Microsoft Excel and GraphPad Prism Version 4.03. 

Kit Comparison Approaches 

 Upon literature review, it is apparent that casein sub-fractions occur in relatively stable 

proportions in bovine milk micelles.  As suggested by Wal (2001b), the proportions for α-,β-, and 

κ-casein compose roughly 50%, 37%, and 13% of total casein in the bovine milk micelle.  These 

proportions remain fairly consistent across breeds of cattle, climate, and geographical differences 

(Wal et al., 2001).  ELISA kits that rely on casein detection for quantitation of milk residues use 

conversion factors based on the proportions of specific casein in the bovine milk micelle.   

 To compare results observed with different kits, several equations were used.  To 

compare kits that use different reporting units, the Equations 3.1- 3.4 were used. Detailed 

equations are listed in Appendix A.  Estimates for the proportion of individual protein fractions to 
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the overall milk protein concentration were obtained from (Wal et al., 2001).  Estimates for the 

concentration of milk protein in NFDM were obtained from the USDA Nutrient Database and 

through LECO Dumas Analysis; NFDM contains approximately 35% milk protein.    

Equation 3.1. Converting ppm casein to ppm milk protein 

            
                  

              
                       

Equation 3.2. Converting ppm BLG to ppm milk protein 

        
                  

           
                      

Equation 3.3. Converting ppm milk protein to ppm NFDM 

                   
          

                     
               

Equation 3.4. Converting ppm NFDM to ppm milk protein 

           
                     

          
                       

Equation 3.5. Applying conversion factors to spike concentrations for equivalent casein estimate 

Protein Conversion Factor 

α-casein 2 

β-casein 2.7 

κ-casein 7.7 

 

          (              )                                           

Equation 3.6.  Applying conversion factors to kit results for whey protein spikes 

Protein Conversion Factor 

BLG 10 

ALA 20 

 

          (          )                                                
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Equation 3.7. Calculating ratios of quantitation for ELISA kits using milk proteins 

 Proportions 

Spike Material Proportion of casein Proportion of MP Proportion of 

NFDM 

α-casein 0.5 0.4 0.14 

β-casein 0.37 0.3 0.100 

κ-casein 0.13 0.1 0.036 

BLG  0.1 0.035 

ALA  0.05 0.018 

 

∑[(
                     
               

)  (          )]

                              
                            

a
Applicable only for spike levels > 0 ppm.  

4. Results 

SDS-PAGE 

 All purified proteins (α-, β-, and κ-casein, BLG, and ALA) and milk ingredients 

(WPC34, WPC80, NaCas) were analyzed with SDS-PAGE.  The primary purpose of 

electrophoresis was to evaluate the purity of individual proteins and the milk-derived ingredients 

to be examined with the commercial milk ELISA kits.  Results obtained were used to estimate 

appropriate concentrations of milk proteins within each sample and account for the presence and 

quantity of unforeseen protein remnants (β-casein in purified α-caseins, casein in whey protein 

concentrates, etc.).  NFDM was not evaluated with SDS-PAGE because it is documented to 

maintain the proportionality observed in bovine milk micelles (Wal, 2002b).   Gel images are 

displayed in Figures 3.1-3.5. Purified protein samples are denoted with Greek letters, with the 

exception of the molecular weight marker, which is denoted above each lane as “X”.  Subscripts 

indicate μg of protein loaded in each well.  
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Figure 3.1. SDS-PAGE image of α-casein; ≥70% purity (Sigma-Aldrich). The purified protein 

sample was prepared under reducing conditions and the gel was run at 200V, fixed, stained, and 

imaged.  Subscripts indicate μg of protein loaded in each well.  The molecular weight marker 

(kDa) is denoted as lane “X”.   

 Figure 3.1 displays the protein profile of purified α-casein.  The sample was marketed as 

≥70% purity.  The gel image displays an intense band near the documented molecular masses of 

αs1- and αs2-casein (23.6 kDa and 25.2 kDa, respectively) (Jost, 1988).  The band near 150 kDa 

corresponds with traces of immunoglobulins, which typically compromise about 3% of total 

protein in cow’s milk (Wal, 2002b).  The stained proteins between 50-75 kDa may correspond 

with bovine serum albumin (66 kDa) and lactoferrin (76 kDa).  These proteins are responsible for 

about 1% of the proteins in fluid bovine milk.  Low molecular weight protein bands that have 

migrated further than the αs-caseins may be breakdown products.  Some αs-casein derived 

proteins are identified as members of the λ-casein subclass, but have yet to be thoroughly 

described.  While the lowest concentration of protein loaded on the gel (2.7 μg) does not clearly 
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separate several bands within the casein region, it is known that caseins often migrate closely 

together in an SDS-PAGE format (Creamer, 1991).  

 

Figure 3.2. SDS-PAGE image of β-casein; ≥98% purity (Sigma-Aldrich).  The purified 

protein sample was prepared under reducing conditions and the gel was run at 200V, fixed, 

stained, and imaged.  Subscripts indicate μg of protein loaded in each well. The molecular weight 

marker (kDa) is denoted as lane “X”.   

 The β-casein purchased for this experiment is listed as ≥98% purity.  The gel displays an 

intensely stained band near 25 kDa (Figure 3.2).  β-casein comprises nearly 30% of total milk 

protein and has a size molecular mass of 24 kDa (Wal, 2002b).  Low intensity bands appear 

between 50-65 kDa, and may correspond to bovine serum albumin (66 kDa).  Breakdown 

products in this gel (shown between 5-20 kDa) display different profiles from those bands 

observed in the separation of purified α-casein (see Figure 3.1).  These bands may be identified as 

γ-caseins, the subclass of protein derived from β-casein breakdown.  
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Figure 3.3. SDS-PAGE Image of κ-casein; ≥70% purity (Sigma-Aldrich).  The purified 

protein sample was prepared under reducing conditions and the gel was run at 200V, fixed, 

stained, and imaged.  Subscripts indicate μg of protein loaded in each well. The molecular weight 

marker (kDa) is denoted as lane “X”.   

 In the κ-casein gel shown in Figure 3.3, a large band is observed around 25 kDa.  While 

κ-casein is documented to have a molecular weight of 19 kDa, the caseins are known to migrate 

differently in SDS gel systems than their documented molecular weights would suggest (Veloso 

et al., 2004). The purity of the κ-casein purchased from Sigma-Aldrich is ≥70% purity.  The band 

observed near 17-18 kDa may be intact κ-casein or another derivative; para-κ-casein is suggested 

to migrate between 10-15 kDa (Fox, 1989).  However, the Phe105-Met106 bond in κ-casein is 

typically only susceptible to proteolysis during cheesemaking (Fox, 1989).  Other derivatives of 

κ-casein can be produced as well.  The band observed near 70-75 kDa is possibly lactoferrin (76 

kDa).    
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Figure 3.4. SDS-PAGE image of β-lactoglobulin: ≥90% purity (Sigma-Aldrich).  The 

purified protein sample was prepared under reducing conditions and the gel was run at 200V, 

fixed, stained, and imaged.  Subscripts indicate μg of protein loaded in each well. The molecular 

weight marker (kDa) is denoted as lane “X”.   

 Figure 3.4 displays the gel image of βLG at ≥90% purity.  The most intense band 

observed on the gel migrates near 17 kDa.  BLG is documented to have a molecular weight of 

about 18 kDa (Wal, 2002b).  A medium-intensity band is observed near 32-35 kDa and may 

correspond to BLG in dimer form.  BLG commonly forms dimers when present at high 

concentrations, and the bands may indicate inefficient reduction by SDS and dithiothreitol during 

sample preparation.  However, it is also possible for α- and β-caseins to migrate in this region. A 

low-intensity band is observed near 70 kDa and may correspond to bovine serum albumin (66 

kDa) or lactoferrin (76 kDa).  The level of contaminants in this sample is quite low in comparison 

to the samples evaluated in Figures 3.1 and 3.3 (α- and κ-casein, respectively).  
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Figure 3.5. SDS-PAGE of Milk-Derived ingredients.  Samples were as follows: ψ: whey 

protein (WPC34); ω: whey protein (WPC80); ν: sodium caseinate. Subscripts indicate μg protein 

loaded in each well.  The molecular weight marker (kDa) is denoted as lane “X”.  Samples were 

run under reducing conditions at 200V, fixed, stained, and imaged. 

 The analysis of whey protein concentrates revealed that when compared at equivalent 

levels of protein, the sample purity was similar (see ψ and ω lanes, Figure 3.5).  Whey protein 

concentrates at 34% and 80% protein exhibit similar separation patterns with intense bands 

migrating near the appropriate locations for BLG and ALA (18 and 14 kDa, respectively).  In 

WPC80, the band corresponding to BLG (near 17 kDa on the gel) appears slightly smaller, yet of 

similar intensity, than the same band observed in WPC34.  Breakdown products of the whey 

proteins are not observed in Figure 3.5, as the bands have migrated beyond the bottom of the gel.  

As observed in Figures 3.3 and 3.4, the band near 70-75 kDa may parallel lactoferrin (76 kDa) or 

bovine serum albumin (66 kDa).  The band displayed near 150 kDa in Figure 3.5 corresponds 

with the molecular weight of immunoglobulins (150 kDa) and is also observable in Figure 3.1.  In 
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the casein migration region (20-25 kDa), a wide low-intensity band is displayed and corresponds 

to trace levels of caseins.   

 In the sodium caseinate lane where 5 μg of protein is loaded, at least two distinct bands 

are observable in the region where casein typically migrates (lane ν5, Figure 3.5).  Some 

breakdown products are observed in sodium caseinate samples, migrating between 5-20 kDa (ν 

lanes, Figure 3.5).  Bands migrating in the low molecular weight region may also be derivatives 

of BLG and ALA.  Non-specific shadowing seen in Figure 3.5 between 50 kDa is also shown in 

the casein gels (Figures 3.1-3.3).  While the shadowing may be a result of traces of bovine serum 

albumin or lactoferrin, it could also be derived from residues of small milk enzymes. 

 Electrophoresis results indicate that purified protein samples are sufficiently pure for 

ELISA analysis.  Purity levels for purchased proteins are estimated to meet or exceed the values 

listed on the container packaging.  Specifically, purity levels listed on the packaging for α-, β-, 

and κ-casein and BLG are at or above 80%, 98%, 85%, and 90%, respectively.   

Casein Kits and Detection of α-, β-, and κ-casein 

 Spiked samples of α-,β-,and κ-casein were analyzed with Neogen Veratox® Casein, 

ELISA Systems™ Casein, and r-Biopharm RIDASCREEN® Fast Casein ELISA kits.  Figures 

3.6-3.8 display the differential detection of casein fragments by the various casein ELISA kits.  

 For the Neogen Veratox® Casein kit, several equations and conversions were used to 

prepare data for comparison.  Spike concentrations were created by weight.  To convert the spike 

concentration from units of α-, β-, and κ-casein to the units of the calibrant used in the kit (ppm 

NFDM), Equations 3.5, 3.1, and 3.3 were applied. The ratios of quantitation to kit standards 

supplied with the kit were calculated using Equation 3.7.  For more detailed information and 

equations regarding conversions, see Appendix A.  Spikes of α-and β-casein are detected at 

similar levels to the kit standards and exhibits ratios of quantitation of 1.0 for both materials.  



122 

 

 

However, κ-casein is not detected at any of the spike levels evaluated with the Neogen Veratox® 

Casein kit and exhibits a ratio of 0.04.   

 

 α-casein β-casein κ-casein 

%CV 5.82% 5.91% 8.76% 

Correlation 0.9849 0.9941 0.9502 

Ratio to kit Stds 1.0 1.0 0.04 

Figure 3.6. Neogen Veratox® Casein Proportional ELISA Results 

 

 In the ELISA Systems™ Casein kit, the spike concentrations were converted to 

equivalent values in ppm casein using Equation 3.4.  Ratios of quantitation for each spike were 

calculated using Equation 3.7.  With the ELISA Systems™ Casein kit, α-casein is primarily 

detected.  Spikes of β- and κ-casein are virtually undetectable (Figure 3.7).  α-casein spikes are 
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detected at a ratio of 0.9, while ratios are non-calculable for β- and κ-casein.  

 

 α-casein β-casein κ-casein 

%CV 11.59% N/A N/A 

Correlation 0.9992 N/A N/A 

Ratio to kit standards 0.9 0.0 0.0 

Figure 3.7. ELISA Systems™ Casein Proportional ELISA Analysis 

 

 The r-Biopharm RIDASCREEN® Fast Casein kit supplies standards in units of ppm 

casein.  Spikes concentrations were converted to the units of the kit calibrant using Equation 3.5.  

Ratios of quantitation for each spiking material were calculated using Equation 3.7.  According to 

analysis performed with the  r-Biopharm RIDASCREEN® Fast Casein kit, the antibodies in the 

kit are highly sensitive to the presence of κ-casein (ratio of 1.0) (Figure 3.8).  α-casein is 

minimally detected (ratio of 0.01), while detection of β-casein occurs at a ratio of 0.1 to the kit 

standards.   
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 α-casein β-casein κ-casein 

%CV 4.07% 6.18% 7.47% 

Correlation 0.9500 0.9945 0.9982 

Ratio to kit Stds 0.01 0.1 1.0 

Figure 3.8. r-Biopharm RIDASCREEN® Fast Casein Proportional ELISA Analysis 

 When the bovine milk micelle proportions are applied to the data, results indicate that the 

r-Biopharm RIDASCREEN® Fast Casein kit detects κ-casein at the same capacity as observed 

with the standard solutions (Figure 3.8).  The β- casein spikes are minimally detected at the 

highest spike concentration evaluated, while the α-casein spikes are not significantly detected at 

any level capable of influencing kit quantitation.   

BLG Kits and Detection of Whey Proteins 

 BLG kits evaluated include Neogen BioKits™ BLG, ELISA Systems™ BLG, r-

Biopharm RIDASCREEN® Fast BLG, and Romer Labs® BLG.  Spikes were created of ALA 

and BLG at concentrations equivalent to those provided by the kit manufacturers. Total milk kits 

were also used to evaluate BLG and ALA spikes.  Equations 3.2, 3.3, and 3.6 were used to 
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correlate concentrations of BLG and ALA spikes to units of milk protein and NFDM.  Ratios of 

quantitation were calculated using Equation 3.7.  Results are displayed in Figure 3.9.    

 

 

 

BIOKITS 

BLG 

ES 

BLG 

rB Fast 

BLG 

Romer 

BLG 

Neogen 

TM 

rB Fast 

Milk 

%CV 10.9% 14.0% 10.0% 8.2% N/A 3.5% 

Correlation 0.9944 0.9983 0.9954 0.9912 N/A 0.9970 

Ratio to Stds 0.68 1.20 0.73 1.73 0.00 0.42 

Figure 3.9. Results of BLG ELISA Kits.  Kit standards are manufacturer-provided solutions of 

BLG. In the total milk kits, results are converted to ppm BLG using Equations 3.4 and 3.2, 

where appropriate.  A. Kits with dynamic ranges at 0-60 ppm BLG. B. Kits with dynamic 

ranges at 0-2.5 ppm BLG. 
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 Less variation is observed in detection among BLG kits than with casein kits (Figure 3.9).  

All BLG-specific kits are capable of detecting BLG.  The sensitivity of these kits to BLG spikes 

varies (Figure 3.9).  Interestingly, none of the kits evaluated detect BLG at the same sensitivity as 

calibration solutions provided with the kits (Figure 3.9).  The ELISA Systems™ BLG and r-

Biopharm RIDASCREEN® Fast BLG kit have the closest ratios of quantitation to the kit 

standards (1.20 and 0.73, respectively).  The Neogen Veratox® Total Milk kit is unable to detect 

BLG at any of the levels tested; this is discussed further in the following section.    

Total Milk Kits and Detection of Milk Proteins 

 Two total milk kits were analyzed in this study; Neogen Veratox® Total Milk and r-

Biopharm RIDASCREEN® Fast Milk.  The Neogen Veratox® Total Milk kit reports results in 

ppm NFDM, while the r-Biopharm RIDASCREEN® Fast Milk kit reports results in ppm milk 

protein.  Equations 3.1-3.7 were applied to the data to compare results across kits and analytes.  

Neither kit was capable of detecting ALA at any concentration evaluated, and these points are not 

displayed in Figures 3.10 or 3.11.  Data obtained with the Neogen Veratox® Total Milk kit is 

displayed in Figure 3.10. 
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 α-casein β-casein κ-casein BLG 

Proportion of NFDM 14% 10% 4% 4% 

Ratio to kit standards 0.11 0.13 0.48 N/A 

 

Figure 3.10.  Neogen Veratox® Total Milk Proportional Spikes 

 

 While the Neogen Veratox® Total Milk is capable of detecting α-, β-, and κ-casein, the 

kit fails to detect BLG or ALA at any level evaluated (Figures 3.10).  As shown, the ratios of 

detection of individual milk proteins are quite low compared to ratios observed in other evaluated 

kits (ratios of 0.1, 0.1, and 0.5, for α-, β-, and κ-casein, respectively).  Detection and 

quantification with the Neogen Veratox® Total Milk kit primarily depends on sensitivity to κ-

casein and less on sensitivity to β- and α-casein (Figure 3.10).   
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 α-casein β-casein κ-casein BLG 

Proportion of MP 40% 30% 10% 10% 

Ratio to kit standards 0.00 0.19 0.00 0.42 

 

Figure 3.11. Proportional detection with r-Biopharm RIDASCREEN® Fast Milk ELISA. 

Kit standards are manufacturer-provided solutions of milk protein.   

 According to results, the r-Biopharm Fast Milk kit also has limitations.  α-casein and κ-

casein are undetectable using the kit (Figure 3.11).  The r-Biopharm Fast Milk kit fails to detect 

ALA.   However, the kit is able to detect one protein from each fraction (casein and whey) of 

bovine milk; β-casein and βLG.  The r-Biopharm RIDASCREEN® Fast Milk kit relies primarily 

on BLG detection and to a lesser extent on β-casein for quantitation (ratios of 0.4 and 0.2, 

respectively) (Figure 3.11).  

Detection of Milk-Derived Ingredients with ELISA kits 

 Spikes of milk-derived ingredients were evaluated with Neogen Veratox® Total Milk and 

r-Biopharm RIDASCREEN® Fast Milk kits.  In the Neogen Veratox® Total Milk kit, results 

were reported in ppm NFDM.   The results of the r-Biopharm RIDASCREEN® Fast Milk kit 
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were reported in ppm milk protein.  The protein concentration of each milk-derived ingredient 

was determined using LECO Dumas Analysis (Table 3.2).  The protein estimates displayed in 

Table 3.2 were applied to Equation 3.8 to determine the equivalent or expected concentration of 

spikes of derivative ingredients.  Results without conversions for the Neogen Veratox® Total 

Milk are presented in Figure 3.12.  

Table 3.2. LECO Dumas Protein Analysis of Milk-Derived Ingredients 

Derivative % Protein  (g/100g) 

NFDM 36% 

WPC34 32.55% 

WPC80 78.47% 

NaCas 89.88% 

   

 

Neogen Veratox® Total Milk kit 

Ingredient NFDM WPC34 WPC80 NaCas 

Ratio to Stds 0.70 1.13 3.04 2.14 

 

Figure 3.12. Neogen Veratox® Total Milk Analysis of Milk Ingredient Spikes. Standards are 

manufacturer-provided solutions of NFDM.  
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 The results in Figure 3.12 display the detection of milk residues in milk-derived 

ingredients.  The Neogen Veratox® Total Milk kit detects a higher concentration of milk residues 

in WPC80 and sodium caseinate than in the calibrator solutions.   These results are expected, 

given the higher concentration of protein present in these materials (Table 3.2).  WPC 80 contains 

approximately 78.5% protein, while sodium caseinate contains 90% protein.  WPC34 is detected 

at almost the same level as the standard solutions provided by Neogen®.  NFDM spikes display 

the lowest level of detection with this kit although the detection ratio does not vary substantially 

from the standard.  Ratios of quantitation are also displayed; WPC80 and sodium caseinate 

exhibit high ratios (3.04 and 2.14, respectively).  The advantage of viewing the milk ingredient 

data in a non-proportional format (Figure 3.12) is that it reflects the conditions of incidental 

contamination during manufacturing.  The spikes were created on a w/w basis, all other 

conditions were normalized, and ELISA detection is based on protein content and kit sensitivity.  

While the trends observed in Figure 3.12 agree with the percentage of protein in the milk derived 

ingredients, the spike concentration and results are not presented in the same units, resulting in 

skewed depiction and comparison of residue detection.  Conversion factors for converting spike 

ingredients to reporting units were calculated and results are listed in Table 3.3.  Detailed 

equations for the calculation of conversion factors are shown in Equations A.11-A.16.  To correct 

the skewed results, Equation 3.8 was applied to convert spike concentrations to ppm milk protein 

for the r-Biopharm RIDASCREEN® Fast Milk kit.  Equation 3.9 was applied to milk ingredient 

spike concentrations to calculate the equivalent ppm NFDM.       

Table 3.3. Conversion Factors for ppm spike to ppm reporting unit 

Spike Ingredient CF1 - equivalent MP CF2- equivalent NFDM 

WPC34 1.62 4.63 

WPC80 3.92 11.21 

NaCas 1.12 3.21 

Equation 3.8. Converting spike concentration to ppm milk protein 
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a
Conversion factors taken from Table 3.3. Detailed equations shown in Equations A.11, A.13, 

amd A.15.    

Equation 3.9. Converting spike concentrations to ppm NFDM 

              
                      

a
Conversion factors listed in Table 3.3. Detailed equations for the calculation of conversion 

factors are shown in Equations A.12, A.14, and A.16. 

 

 Applying Equation 3.9 to the spike concentrations used depicts a more accurate 

representation of kit ability to detect milk residues in various milk-derived ingredients.  Figure 

3.13 displays corrected data for the Neogen Veratox® Total Milk kit.  Milk residues in NFDM 

and sodium caseinate spikes are detected most accurately with the Neogen Veratox® Total Milk 

kit (0.70 and 0.71, respectively).  Milk residues in spikes of WPC are detected with similar 

affinity, exhibiting ratios of 0.27 and 0.24 for WPC34 and WPC80, respectively.  The detection 

of WPC with the Neogen Veratox® Total Milk kit is somewhat surprising considering the lack of 

detection of spikes of BLG and ALA with this kit.   
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Neogen Veratox Total Milk 

Ingredient NFDM WPC34 WPC80 NaCas 

%CV 8.11% 8.7% 9.78% 11.1% 

Correlation 0.9991 0.9923 0.9924 0.9987 

Ratio of Detection 0.70 0.24 0.27 0.71 

Figure 3.13. Proportional Neogen Veratox® Total Milk Analysis of Milk Ingredients Spikes.  

Standards are manufacturer-provided solutions of NFDM.   

 With the r-Biopharm RIDASCREEN® Fast Milk kit, initial observations suggest that 

WPC80 is the most strongly detected with the kit (Figure 3.14, ratio of 1.78).  Milk residues of 

WPC34 appear to be present at similar levels to those observed in the kit standards (ratio of 0.71).  

NFDM spikes are the least detected by the kit (ratio of 0.4, Figure 3.14).  Based on antibody 

specificity, the kit is primarily sensitive to BLG and β-casein (ratios of 0.4 and 0.2, respectively)   

(Figures 3.8 and 3.9).  Given the results, it is apparent that the kit has a higher sensitivity to whey 

proteins than caseins.  The data depicted in Figure 3.13 give indications of potential results 

observed when using this kit to analyze traces of residue of different milk ingredients in 

manufacturing settings.   

 However, the data observed in Figure 3.14 are skewed; spike concentrations depicted on 

the X axis of Figure 3.14 and used to calculate ratios of detection are not represented in the same 

units as the kit calibrant and are not normalized to the protein content.  To convert spike 

concentrations to equivalent ppm milk protein, Equation 3.8 was used with conversion factors 

represented in Table 3.3.  For more detailed information regarding the calculation of conversion 

factors for the r-Biopharm RIDASCREEN® Fast Milk kit, see Equations A.11, A.13, and A.15.     
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r-Biopharm RIDASCREEN® Fast Milk 

Ingredient NFDM WPC34 WPC80 NaCas 

Ratio to stds 0.40 0.71 1.78 0.54 

 

Figure 3.14. r-Biopharm RIDASCREEN® Fast Milk Analysis of Milk Ingredient Spikes. 

Standards are manufacturer-provided solutions of milk protein.   

 Once the data has been corrected using Equation 3.8, more accurate assessments of kit 

results can be performed.  With the r-Biopharm RIDASCREEN® Fast Milk kit, NFDM is 

detected with the highest sensitivity at a ratio of 1.14 of the actual milk residues present (Figure 

3.15).  Additionally, WPC34, WPC80, and NaCas are all detected near the same level (ratios of 

0.53, 0.45, and 0.48, respectively) (Figure 3.15).  According to previous work, the r-Biopharm 

Fast Milk kit is primarily sensitive to BLG (ratio of 0.4) and exhibits some sensitivity to β-casein 

(ratio of 0.2).  Because of the accuracy and sensitivity exhibited with the detection of NFDM, it is 

possible that NFDM or a closely related milk derivative was used for kit calibration.   

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

D
et

ec
te

d
 p

p
m

 M
il

k
 P

ro
te

in
 

ppm Spike 

r-Biopharm RIDASCREEN® Fast Milk 

Milk Derivative Spikes 

WPC34

WPC80

NaCas

NFDM

Standards



134 

 

 

 

r-Biopharm RIDASCREEN Fast Milk 

Ingredient NFDM WPC34 WPC80 NaCas 

%CV 5.52% 8.8% 7.76% 12.9% 

Correlation 0.9996 0.9912 0.9875 0.9707 

Ratio of Detection 1.14 0.54 0.45 0.48 

 

Figure 3.15. Proportional r-Biopharm RIDASCREEN® Fast Milk Analysis of Milk 

Ingredient Spikes. Standards are manufacturer provided solutions of milk protein. 

 The r-Biopharm RIDASCREEN® Fast Milk kit detected WPC and NFDM at higher 

levels than the Neogen Veratox® Total Milk kit.  However, sodium caseinate was detected more 

efficiently using the Neogen Veratox® Total Milk kit than when the r-Biopharm 

RIDASCREEN® Fast Milk kit was used.  Given the increased sensitivity of the Neogen 

Veratox® Total Milk kit to κ-casein and the primary sensitivity of the r-Biopharm 

RIDASCREEN® Fast Milk kit to BLG, these results are expected (Figures 3.16 and 3.18).   

NFDM exhibited the highest level of reactivity for both total milk kits among milk-derived 

ingredients (Figures 3.13 and 3.15).   
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Detection of NFDM using milk ELISA kits 

 NFDM was evaluated using all nine commercial milk ELISA mentioned throughout this 

study (Figure 3.16).  Results indicate that the Neogen BioKits™ BLG kit detects NFDM at the 

highest ratio of all kits evaluated (ratio of 2.0, Figure 3.16 and Table 3.4).  However, this kit is 

not capable of detecting trace residues of NFDM.  The kit with the highest level of sensitivity to 

NFDM is the Romer Labs™ BLG kit, which is capable of detecting milk residues in samples 

containing 1ppm NFDM.  

 Of the two total milk kits evaluated, the Neogen Veratox® Total Milk kit is more 

sensitive to milk residues in NFDM than the r-Biopharm RIDASCREEN® Fast Milk kit.  The 

Neogen Veratox® Total Milk kit detects milk residues in the 10 ppm NFDM spike, while 

detection of milk residues with the R-Biopharm RIDASCREEN® Fast Milk kit does not occur 

until spikes reach 25 ppm NFDM.  In terms of quantitative accuracy, the Neogen Veratox® Total 

Milk kit more accurately represents the concentration of milk residues present in the sample than 

the r-Biopharm® Fast Milk kit (ratios of 1.1 and 0.7, respectively) (Table 3.4).   
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Figure 3.16. Detection of NFDM spikes by commercial milk ELISA kits.  The Neogen 

BioKits™ BLG data point only displayed at lowest spike value (approximately 100 ppm NFDM 

spike, 220 ppm NFDM detected). Standards are manufacturer-provided solutions of milk residues 

converted to equivalent ppm NFDM using Equations 3.1, 3.2, and 3.3. 
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5. Discussion 

 Detecting milk residues in foods is a challenge due to the variety of milk-based 

ingredients and the availability of ELISA kits with varying targets.  The selection of the 

appropriate kit for any given application is an additional challenge.  This research highlights that 

each kit manufacturer uses antibodies of varying specificity and affinity in the development of 

commercial ELISAs.  While most ELISA manufacturers do not reveal the nature of the antibodies 

used in detection of milk residues, some information can be inferred from this data.  Casein 

ELISA kits detect various casein fractions, BLG kits detect BLG, and total milk kits detect 

various milk proteins.  Although a major whey protein and an important allergen, ALA is not 

detected by any milk kit tested.  In addition to varying antibody specificities, kits recommend or 

provide extraction buffers comprised of various chemical components that affect the extraction of 

proteins from a food matrix and solubility in the buffer system, in turn affecting results.   

 All kits evaluated are capable of detecting milk residues in NFDM.  However, variation 

in detection observed with NFDM spikes among kits highlights the lack of standardization among 

commercial ELISA kits.  Because kits are not developed using the same materials, antibody 

sensitivities, or calibrated to a standard reference material, even testing the sample with multiple 

kits will not provide consistent results.   Users are often required to select kits with little to no 

information about kit applicability for specific samples or processing methods. 

 Purified protein analysis reveals that r-Biopharm RIDASCREEN® Fast Milk kit detects 

one protein from both casein and whey fractions: β-casein and BLG.  However, the Neogen 

Veratox® Total Milk kit only detects proteins from the casein fraction.  Sole reliance of this kit 

on detection of κ-casein for accurate estimation of whole casein in a kit is cause for concern.  In 

addition to being the least prevalent of the casein sub-fragments (approximately 13% of total 

casein), it is known that κ-casein is more sensitive to proteolysis than other caseins and will 

interact with other milk proteins upon heat treatment (Wal, 2002a).  Using κ-casein as the 
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primary target for detecting milk residues with ELISA kits may only be suitable for specific food 

products and applications.  Both total milk kits are capable of detecting milk residues in all milk-

derived ingredients evaluated.  Results suggest that even in samples that contain primarily whey 

protein, the Neogen Veratox® Total Milk kit is capable of detecting and quantifying substantial 

milk residues.  In the analysis of NFDM spikes, Neogen Veratox® Total Milk kit is more 

quantitatively accurate and more sensitive to the presence of milk residues than the r-Biopharm 

RIDASCREEN® Fast Milk kit.   While dependent on application, the Neogen Veratox® Total 

Milk kit appears to be the most suitable and broad-spectrum ELISA kit for the detection of trace 

levels of milk residues in foods.   

 In the absence of adopting a standard reference material for the calibration of milk 

ELISA kits, the quantitative accuracy of the kits is questionable.  Without industry and 

government agreement on established threshold doses and action levels for allergen labeling and 

recall, unified positions on allergen levels that pose a threat to human health are unlikely.  While 

numerous barriers to accurate quantitation exist, the semi-quantitative abilities of the kits may be 

sufficient for responding to contamination at or near arbitrary action levels set within each 

company.  In order for industry to appropriately respond to the impending establishment of 

threshold values by regulatory agencies, the semi-quantitative nature of ELISA kits must be 

reevaluated.  This is not to say that proprietary differences in kit development must be discarded, 

but rather that calibration of each kit to a standard reference material and conversion factors from 

kit reporting units to relevant reference units must be provided by kit manufacturers.  As a mildly 

processed material with high consistency and accuracy of detection across all milk ELISA kits 

evaluated, NFDM appears to be a good choice for a standard reference material.   

 This research has especially highlighted the differences observed among kits in the ability 

to detect both purified milk proteins and commonly used milk-derived ingredients.  While 

conversion factors can be applied to ELISA results to obtain relevant units and facilitate 
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comparisons among kits, this type of data extrapolation may lead to inappropriate regulatory and 

industry recommendations.  Because individual proteins or protein groups do not directly 

represent the materials from which they are derived in concentration or proportion, the 

application of conversion factors to achieve relevant results is prone to error.  Food processing 

methods have the capability to reduce the solubility and detection of allergenic foods by ELISA 

analyses.  Therefore, even with the assumptions of conserved protein proportionality across all 

milk-containing foods and derivative ingredients, the effects of processing on antibody 

recognition, epitope reactivity, and protein solubility add high levels of variability and 

inconsistency in detection among ELISA kits.  Use of ELISA kits that do not use standard 

reference materials for regulatory analysis in the food industry can lead to false positive, false 

negative, and other inaccurate results.  The need to establish specific criteria for kit validation and 

adopt a standard reference material among ELISA kits is also discussed in this research.  Current 

commercial ELISA kits should be considered semi-quantitative.  The extreme variability 

observed in detection of purified milk proteins suggests critical limitations of ELISA kits.  The 

importance of proper calibration and understanding of ELISA kits is crucial for the protection of 

milk-allergic consumers.   

 Kits that inaccurately quantify target antigens represent a risk for food industry 

laboratories and regulatory agencies.  While the scientific community debates establishing 

allergen detection thresholds for labeling requirements of packaged foods, the available analytical 

methods fail to accurately detect and quantify trace amounts of purified and unprocessed 

allergens.  In order for industry and regulatory agencies to make appropriate recommendations, 

the validation and unification of commercial ELISA methods is paramount.   
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CHAPTER 4. EFFECT OF PROTEOLYSIS DURING CHEDDAR CHEESE AGING ON 

THE DETECTION OF MILK PROTEIN RESIDUES BY ENZYME-LINKED 

IMMUNOSORBENT ASSAY 

1. Abstract 

 During cheese ripening, milk proteins are degraded by proteases from enzymes and 

bacterial sources.  Commercialized allergen detection methods are not validated for detection of 

residues in fermented or hydrolyzed products.  The objective of this research was to evaluate 

commercially-available milk enzyme-linked immunosorbent assay (ELISA) kits for their 

capability to detect milk residues in aged Cheddar cheese.  Cheddar cheese was manufactured in 

Brainard, Nebraska and was aged at 40
o
C for 24 months.  Samples were removed at ten points 

throughout aging and transferred to a freezer until the time of analysis.  Milk residues and protein 

profiles were measured using commercial ELISA kits and SDS-PAGE.  The protein content of a 

5% sodium chloride extract of each cheese sample was evaluated using the Lowry protein assay, 

absorbance at 280 nm, and the microtannin protein assay.  Protein assay results were compared to 

residue detection by ELISA kits.  Several commercial milk ELISA kits were evaluated including 

Neogen Veratox® Total Milk, Neogen Veratox® Casein, R-Biopharm RIDASCREEN® Fast 

Milk, and ELISA Systems™ Casein.  ELISA data revealed a 90% loss of milk residue signal 

between the youngest and oldest Cheddar cheese samples (0.5 months and 24 months, 

respectively).  SDS-PAGE analysis showed protein degradation throughout aging, with the 

highest levels of proteolysis observed at 24 months.  Results suggest that current commercial 

ELISA methods can detect milk residues in young Cheddar cheese, but the detection signal 

dramatically decreases during aging.  The four evaluated ELISA kits are not capable of detecting 

trace levels of milk residues in aged cheese.  Reliable detection of allergen residues in fermented 

food products is critical for upholding allergen control programs, maintaining product safety, and 

protecting allergic consumers.   
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2. Introduction 

 Cow’s milk represents one of the most commonly allergenic foods around the world 

(Sampson, 2004).  Cow’s milk contains several different allergenic proteins including casein, β-

lactoglobulin, and α-lactalbumin (Wal et al., 2001).  Milk-allergic individuals are advised to 

avoid all milk-derived food products and ingredients (Sicherer and Sampson, 2010).  The level of 

risk of an allergic reaction is related to the dose of exposure to milk proteins.  However, milk-

allergic individuals vary widely with respect to their threshold doses for milk protein (Skripak et 

al., 2008).  Many milk-allergic individuals outgrow their sensitivity to milk over a period of 

months to years (Skripak et al., 2007) and presumably their individual threshold doses increase 

during that period until they become fully tolerant.  Oral immunotherapy (OIT) with milk can be 

used to accelerate the development of oral tolerance to milk (Skripak et al., 2008).  Furthermore, 

studies have found that milk-allergic individuals can tolerate heat-treated (baked) foods 

containing milk before they can tolerate other heat-treated (pasteurized) foods (Kim et al., 2011a; 

Leonard et al., 2012).  Recent studies evaluating milk oral immunotherapy have exposed patients 

to aged cheeses, either as a component of the therapy regimen or as an evaluation of the achieved 

level of tolerance.  Approximately 58% of milk-allergic patients tolerated fully—matured 

Parmigiano-Reggiano (Alessandri et al., 2012).  In general, milk-allergic individuals are advised 

to avoid cheeses but the degree of tolerance to various cheeses among milk-allergic individuals 

has not been examined. 

 Two protein classes comprise the majority of milk proteins; caseins, representing nearly 

80% of total milk protein, and the whey proteins, representing the remaining 20%.  The caseins 

are composed of four subfractions: αs1-, β-,αs2-,and κ-casein.  These proteins comprise 

37:37:13:13 of the casein proportions (Wal, 2002b).  During cheese manufacture, several 

biochemical processes occur.  Perhaps the most important process for developing structure, 

texture, and flavor characteristics of cheese is proteolysis.  Proteolysis during manufacture and 



146 

 

 

aging of cheese has been reviewed for many cheese varieties (Fox and McSweeney, 1996; 

Ledford et al., 1966; Marcos et al., 1979; Mooney et al., 1998; O'Keeffe et al., 1976; Singh et al., 

1997).  Proteolytic activity is attributed to chymosin, indigenous milk proteases, and the proteases 

of starter and non-starter microorganisms.  The most obvious function of proteases in cheese is to 

hydrolyze κ-casein and destabilize the milk micelle, coagulate the curd, and form the cheese 

matrix.  Proteases also play a significant role in developing characteristic flavors and texture 

during ripening.   

 Primary proteolysis during cheese ripening is dominated by the actions of chymosin and 

the indigenous milk proteinase plasmin.  The primary role of chymosin during cheese production 

is the hydrolysis of κ-casein and subsequent destabilization of the milk micelle.  However, during 

the early stages of ripening, chymosin also hydrolyzes αs1-casein at several sites.  In Cheddar 

cheese, as1-casein is almost completely degraded by chymosin after ripening for 20 

weeks(Mooney et al., 1998).  Due to its low water activity, β-casein is highly resistant to 

hydrolysis by chymosin, but about 50% of it is degraded during Cheddar cheese ripening 

(Ledford et al., 1966; O'Keeffe et al., 1976).  Chymosin has not been documented to degrade 

para-κ-casein during ripening (Green and Foster, 1974).   

 Plasmin preferentially hydrolyzes β-casein during primary proteolysis (Upadhyay et al., 

2004).  In addition, plasmin has minor activity on αs1-casein and is responsible for producing 

caseins of the λ-subclass (Upadhyay et al., 2004).  The fraction of κ-casein remaining in the 

cheese after coagulation is largely resistant to proteolysis during the early stages of ripening. 

Even though these similarities exist in primary proteolysis among many cheeses, dramatic 

differences in proteolysis still occur as a result of myriad environmental factors, including pH, 

water activity, cook temperature, storage content, fat content, and homogenization (Deegan and 

McSweeney, 2013; Di Luccia et al., 2013; Larsen et al., 2010).    
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 While the concentration of αs2-casein decreases during ripening, no large peptides have 

been isolated from its hydrolysis(Mooney et al., 1998).  However, Singh et al. (1997) described 

the isolation of four αs2-casein derived peptides from the water soluble fraction of Cheddar 

cheese.  These peptides were produced through the action of plasmin and a starter-culture 

associated aminopeptidase (O'Keeffe et al., 1976; Singh et al., 1997).   

 Several extraction and fractionation schemes have been developed to evaluate the extent 

of ripening and proteolysis in cheese and are based on liberation of free amino acids and protein 

fragments (Christensen et al., 1991; Kuchroo and Fox, 1982; O'Sullivan and Fox, 1990; Quesnel, 

1968; Singh et al., 1994).  As aging continues, the number of large peptides isolated from cheese 

dramatically decreases (Addeo et al., 1995; Singh et al., 1994).  Larger pH 4.6-soluble peptides 

are typically derived from the action of chymosin, while pH 4.6-insoluble fragments are typically 

γ-caseins derived from the action of plasmin on β-casein(O'Keeffe et al., 1976).  Small peptides 

and free amino acids, however, are a result of peptidases derived from starter and non-starter 

cultures(O'Keeffe et al., 1976).  The small peptides produced during ripening, especially those 

produced during secondary proteolysis, are particularly difficult to visualize with electrophoretic 

methods.  These peptides are often only distinguishable using chromatography or mass 

spectrometry (Mooney et al., 1998; Singh et al., 1997).   

 In solution, αs1-casein has 20 chymosin-susceptible bonds.  In the cheese matrix, 

however, only six peptides are produced by the action of rennet on αs1-casein (Mulvihill and Fox, 

1980).  One of the most consistently produced fragments is αs1-I casein; it is characteristically 

present in all cheeses during the early stages of ripening (Grappin et al., 1985).  αs1-casein is 

completely degraded to αs1-I casein (f24-199) and αs1-casein (f1-23) in mature cheeses(Fox and 

Guiney, 1973).   In many cheeses, αs1-I casein is resistant to proteolysis (Marcos et al., 1979).   
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 Plasmin activity is responsible for producing γ-caseins from β-casein.  Three major 

subclasses of γ-caseins exist.  γ1: (f29-209), γ2: (f106-209), and γ3: (f108-209).  The γ-caseins 

have been used in several studies as an indication of ripening, particularly with Parmigiano-

Reggiano and Grana Padano cheeses (Addeo et al., 1995; Gaiaschi et al., 2001).  

 Secondary proteolysis is the term used to describe the hydrolysis of peptides generated 

during primary proteolysis.   Secondary proteolysis is performed by chymosin, plasmin, and 

peptidases provided by the microflora in cheese (Rank et al., 1985; Sousa et al., 2001).  

Chymosin and lacotococcal cell envelope proteinases (CEP) continue to break down αs1-I casein 

and αs1-casein f(1-23) in Cheddar cheese during secondary proteolysis.  Small peptides are 

produced from the αs1-casein derived fragments and have been isolated from the water soluble 

fraction of Cheddar cheese(Singh et al., 1997).  The breakdown of γ-caseins by lactococcal CEP 

also occurs during secondary proteolysis.  Due to their size, many products of secondary 

proteolysis are only isolated using advanced methods of chromatography, mass spectrometry, and 

amino acid sequencing(Fox and McSweeney, 1996).     

 Literature indicates that throughout aging of Cheddar cheese, several epitopes capable of 

binding IgE and eliciting an allergic response remain intact on the most abundant caseins, αs1- and 

β-casein (Mooney et al., 1998; Singh et al., 1997; Wal, 2002b).  However, some allergenic 

epitopes can lose their immunoreactive potential as a result of proteolysis during cheese 

manufacture and aging.  The comparative allergenic potency of various types of cheeses has not 

been carefully assessed. 

 For the food industry, labeling regulations in most countries require the labeling of milk 

and all ingredients derived from milk.  According, milk is identified as a priority allergenic food 

in Allergen Control Plans by the food industry.   Potential for allergen cross contact exists in 

manufacturing facilities where various food ingredients including milk-derived ingredients are 
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processed on shared equipment.  Allergen Control Plans require the development and validation 

of sanitation procedures capable of removing allergen residues from equipment surfaces so that 

such residues do not appear in the following formulations.  Detecting cross contact of food 

products with allergens is critical for the validation of Allergen Control Plans and the sanitation 

procedures incorporated into those plans.  Detection of cross contact is also critical to maintain 

product and consumer safety.  However, current immunochemical methods are not validated for 

evaluation of all forms of the allergenic food.  Fermented or hydrolyzed food products are 

particularly difficult to assess for residues of allergenic foods because the immunoassay methods 

used for allergen detection are oriented to detect intact protein from those foods.  While receiving 

a false positive result when analyzing food products can result in unnecessary regulatory action 

and product recall, a false negative analysis may not support a response sufficient to protect 

allergic consumers.  The consequences of a false negative result may be more severe than those 

of a false positive result for food companies.  Current commercial ELISA methods are not 

validated for the detection or accurate quantification of allergen residues in foods subjected to 

protein hydrolysis.  The relationship between the extent of proteolysis and detection of milk 

proteins using commercial ELISA kits has not been evaluated.   

 This research seeks to measure the proteolytic effects in aging Cheddar cheese by 

evaluating the antibody detection of commercial ELISA kits and the polyacrylamide profiles of 

the cheeses.  This research seeks to determine if proteolysis during cheese ripening affects the 

detection and quantitation of milk residues by commercial total milk and casein ELISA kits.  

Because whey proteins have limited and inconsistent presence in Cheddar cheese, evaluation of 

cheese for whey protein residues was not included.  The commercial ELISA kits selected for 

analysis included three casein kits and one total milk kit.  The specificities of the selected ELISA 

kits to milk proteins and milk ingredients were determined previously.  Established scientific 

knowledge indicates that proteolytic enzymes can destroy or reveal allergenic epitopes on 



150 

 

 

proteins (Besler et al., 2001).  The cumulative effects of proteolysis during long-term cheese 

aging on the capability for detection of milk protein residues by ELISA has not been previously 

assessed.   

3. Materials and Methods 

Cheese manufacture 

 Cheese was manufactured at Jisa’s Farmstead Cheese in Brainard, Nebraska, under the 

supervision of David Jisa and according to standard procedure for New York Cheddar developed 

by the University of Nebraska-Lincoln Dairy Plant.  Briefly, 9,000 pounds of raw milk (3.4% 

butterfat) from Holstein cows was pasteurized by HTST on location.  The milk was piped to a 

10,000 gallon steam-jacketed stainless steel cheese vat in the production facility.   Once the vat 

was filled with 4,500 gallons of milk, freeze-dried Vivolac Vivopel MSM 960 starter culture was 

added, the vat was filled, and the mixture was agitated for one hour at 90
o
F (Greenfield, Indiana). 

Next, 14oz. of double-strength rennet was added to the vat. The mixture was stirred until rennet 

was evenly distributed.  After the curd had set (approximately 25 minutes after rennet addition), 

the curd was cut with ½ inch-spaced wire mesh and was allowed to rest for 15 minutes).  Curds 

were then cooked at 100
o
C with slow stirring.  Once the whey acidity had reached the appropriate 

level after cutting, whey draining began.  Curd was piled along each side of the vat while whey 

was drained.  Upon completion of draining, matted curd was cut into wide slabs for Cheddaring.  

Slabs were rotated every 15 minutes until the appropriate acidity was reached, at which time slabs 

were milled and salted.  Milled curds were pressed into 20 lb cheese hoops and held under 

pressure at 40psi overnight at 8-10
o
C.  A 20 lb. hoop of Cheddar cheese was transported from the 

production facility in Brainard, Nebraska to the University of Nebraska-Lincoln Dairy Plant for 

packaging and aging.  The cheese was cut and vacuum packaged into eighty ¼ lb. blocks, and 

placed in the cheese cooler for ripening (40-44
o
C).   
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Sampling during manufacture and aging 

 Ten samples of aged Cheddar cheese were collected at the following time points: 2 

weeks, 1 month, 2 months, 4 months, 6 months, 8 months, 10 months, 13 months, 19 months, and 

24 months of aging.  At each sampling point, four ¼ lb. blocks of cheese were randomly selected 

and removed from the cheese cooler at the University of Nebraska-Lincoln Dairy Plant.  Each of 

the four blocks was cut in half and one half was shredded using a fine-texture grater attachment 

with a 13-cup KitchenAid™ Food Processor.  Shredded cheese was mixed and portioned into 10 

g aliquots in plastic zip-top bags.  The remaining portions of the blocks were resealed and placed 

into plastic zip-top bags.  All samples were transferred to a -20
o
C freezer for storage until time of 

analysis.    

Sample Preparation for SDS-PAGE and ELISA Analyses 

 Approximately 30 grams of each finely-grated and aged cheese sample was removed 

from the -20
O
C freezer and pulverized to a fine powder using a Spex 6850 CentriPrep 

Freezer/Mill (Metuchen, NJ).   

 Samples to be analyzed using SDS-PAGE were prepared as follows.  5 g of freezer-

milled cheese were weighed into a 50mL Falcon™ tube (Fisher Scientific, Rockford, IL).  20 g of 

5% sodium chloride solution was added to the cheese, and the sample was mixed using a pulse 

vortex technique for approximately 5 seconds.  Samples were extracted with horizontal shaking 

for 60 minutes at room temperature (22
o
C) on a Barnstead Thermolyne LabQuake Shaker 

(Thermo Fisher Scientific, Rockford, IL).  Extracts were centrifuged at 4,200 RPM for 30 

minutes at 10
o
C in an IEC Centra MP4R Centrifuge (International Equipment Company, 

Needham Heights, MA).  The aqueous layer was removed to a new 50 mL Falcon™ tube.  Pellets 

and fat layers were discarded and extracts were frozen at -20
o
C until time of analysis.   
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 Samples to be analyzed with ELISA were defatted by hexane extraction prior to 

solubilization.  Previous work with cheese highlighted that solubilized cheese provides a more 

homogenous solution and consistent results than analyses with solid cheese.  Briefly, 20 g of 

freezer-milled cheese was weighed into a 500 mL Erlenmeyer flask.  Approximately 180mL of 

cold hexane at -20
o
C was added to the flask.  Flasks were placed in an ice bath on a horizontal 

shaker.  Flasks were shaken for 30 minutes at 50% max speed. The aqueous layer was decanted 

and the remaining sample was retained.  Two additional hexane washes were performed, for a 

total of three -20
o
C hexane washes.  The final wash was gravity filtered through a fluted 

Whatman Size 1 Filter paper in a glass funnel.  The filter and retained cheese were removed from 

the glass funnel and were allowed to dry overnight in a fume hood.  Used hexane was disposed 

using standard operating procedure for hazardous material disposal dictated by the Office of 

Environmental Health and Safety at the University of Nebraska-Lincoln.  Dried defatted cheese 

was stored in plastic zip-top bags at -20
o
C until time of analysis.   

 Prior to ELISA analysis, 1 g of each aged defatted cheese was suspended in 5% sodium 

chloride solution at a 1:10 (w/v) ratio in a 50 mL Falcon™ tube.  Tubes were shaken horizontally 

on a Barnstead Thermolyne LabQuake Shaker for 3 hours at room temperature.  Extracts of 

defatted cheese were centrifuged in an IEC Centra MP4R Centrifuge (International Equipment 

Company, Needham Heights, MA). The aqueous layer was removed and reserved in a clean 50 

mL Falcon™ tube and pellets were discarded.  Extracts were frozen at -20
o
C until further use. 

Protein Concentration of Extracts 

 The concentration of 5% NaCl soluble protein in extracts was determined using the 

Lowry Protein Assay (27) as adapted for application in a 96-well microtiter plate  The assay 

measures the intact protein concentration in a sample by allowing it to complex with cupric 

sulfate in alkaline conditions.  Folin-Ciocalteu Phenol reagent is added to the solution and is 
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reduced in proportion to the chelated copper-protein complexes, producing a colorimetric 

reaction.  Cheese samples were solubilized as described above for analysis with SDS-PAGE.  

Standard solutions at concentrations between 0-200 μg/mL were generated by dilution of a 2 

mg/mL Bovine Serum Albumin Standard (Pierce Scientific, a division of Thermo Scientific, 

Rockford, IL).   The absorbance of standards and samples were read at 490 nm with a BioTek 

EC808x Microplate Reader and evaluated with KC Junior Software (Winooski, VT).   

 Additionally, the UV-absorbance of extracts was measured at 280 nm using a NanoDrop 

2000c Spectrophotometer (ThermoScientific, Rockford, IL).  Proteins that contain tyrosine, 

tryptophan, or disulfide bonds will absorb UV radiation at 280 nm.  Protein concentration was 

calculated using the Warburg-Christian equation (Warburg and Christian, 1942).  Because both 

amino acids and nucleic acids absorb ultraviolet light at 280 nm, and ribonucleotides also absorb 

strongly at 260 nm, the 260/280 ratio can be used to correct the measurement for the contribution 

of nucleic acids to the sample absorbance.  The Warburg-Christian Equation is applied to the 

260/280 nm ratio to provide a more accurate estimate of protein concentration as compared to 

estimation based on absorbance readings at A280 alone.  Using UV absorbance has been suggested 

to be a potentially problematic method for analyzing ripening cheeses (Wallace and Fox, 1998).  

Caseins are differentially sensitive to proteolysis.  As cheese is fermented, α-casein is among the 

first to be hydrolyzed. The N-terminal residues of αs1-casein that are released early in the aging 

process do not contain tyrosine or tryptophan residues, and the peptides do not absorb UV light.  

Even though proteolysis has occurred, a corresponding change in fluorescence at A280 is not 

observed (Marcos and Esteban, 1993).  Because the Lowry Assay is a dye-binding assay that 

relies on intact protein fragments for quantitation, and the A280 assay can be affected by 

interference from several sources, the Microtannin Protein Assay was also used to measure 

protein concentration.  The Microtannin Protein Assay is a rapid, reliable, and robust assay that 

relies on protein precipitation for protein content determination.   
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 The Microtannin protein assay was performed according to the procedure developed by 

Mejbaum-Katzenellenbogen and Dobryszycka (1959) and modified by Trayer and Trayer (1988).  

Briefly, 1 mL of each defatted cheese extract was suspended 1:10 (w/v) in 5% NaCl.  1 mL of the 

diluted cheese solution was added to a 10mL disposable glass culture tube.  A standard curve was 

created by diluting a standardized solution of Bovine Serum Albumin at 2 mg/mL to 

concentrations ranging from 0-75 μg/mL (Pierce Scientific, a division of Thermo Scientific, 

Rockford, IL).  1 mL of each standard was also added to 10 mL disposable glass culture tubes.  

Next, 1 mL of 10% (w/v) tannic acid in 2% phenol solution (v/v) in 1N HCl was added to each 

tube.  For the phenol-HCl solution, 41.75mL of 12N HCl was mixed with 458.25 mL of d2H2O.  

After the solution was homogenous, 10 mL of phenol was added to the solution.  The solution 

was heated to 80
o
C and 50 g of tannic acid was added and mixed until completely dissolved.   

The solution was cooled to room temperature and gravity filtered using a fluted Whatman size 1 

filter paper.  A 0.2% solution of gum Arabic was created by dissolving 1 g of gum Arabic in 

500mL d2H2O at 40
o
C.  After cooling, 0.1g of sodium azide was added to the solution to inhibit 

microbial growth.  Solutions were stored at room temperature (≈22
O
C) until use.   

 Sample tubes were briefly mixed in a vortex-type mixer and incubated at room 

temperature (approximately 22
o
C) for 10 minutes.  Next, 1 mL of 0.2% gum Arabic solution was 

added to each standard and sample tube to suspend the precipitated protein.  Tubes were promptly 

mixed in a vortex-type mixer and the absorbance was read at 520 nm in disposable cuvettes using 

a Thermo Scientific NanoDrop 2000c Spectrophotometer.  All samples were analyzed in 

duplicate, and the standard solutions were prepared and analyzed in triplicate.  The standard curve 

was constructed in GraphPad Prism (Version 4.03) and the concentration of unknown samples 

was interpolated from the curve.  Used reagents were disposed to the sewer after pH adjustment 

to pH 6.5-9.0 according to the Office of Environmental Health and Safety at the University of 

Nebraska-Lincoln.    
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Electrophoresis  

 Proteins were prepared under reducing conditions according to the procedure of Laemmli 

(1970).  Briefly, 50 uL of each sample was boiled in a 100
o
C waterbath in Laemmli sample buffer 

containing 5.4% dithiothreitol (w/v) for 5 minutes.  Protein separation was performed using a 

Bio-Rad Mini-Protean® Tetracell electrophoresis unit (Bio-Rad Laboratories, Hercules, CA).  5 

μL of Precision Plus Protein™ Dual X-tra Standard was loaded in the first lane of each gel (Bio-

Rad Laboratories, Hercules, CA).  

 Briefly, 18% Tris-HCl precast polyacrylamide Ready Gels® for Mini-Protean® Systems, 

10 wells, 30 µL maximum volume per well were used to separate proteins and evaluate banded 

regions (Bio-Rad Laboratories, Hercules, CA).  Three sets of gels were run; each set was loaded 

with 10, 15, or 20 μg of protein per lane.  Approximate loading volume was determined by the 

averaged protein concentrations as determined by the Lowry, A280, and microtannin assays.  

Empty lanes were filled with 5 µL of sample buffer to improve profile quality.  Gels were run at a 

constant voltage of 200V for approximately 30 minutes, or until the dye front reached the bottom 

of the gel.   

 Gels were fixed for 30 minutes in a solution of 60% trichloroacetic acid (w/v) and 17.5% 

5-sulfosalicylic acid (w/v) diluted 1:5 with deionized water (DI) (Sigma-Aldrich, St. Louis, MO).   

Fixed gels were rinsed in DI water and stained overnight using Coomassie Brilliant-Blue R-250 

Staining Solution (Bio-Rad Laboratories, Hercules, CA).  After approximately 8 hours of 

staining, gels were destained using the Coomassie Brilliant Blue R-250 Destaining Solution (Bio-

Rad Laboratories, Hercules, CA).  Gels images were captured using Kodak Gel Logic 440 

Imaging System (Eastman Kodak, Rochester, NY) and evaluated using Carestream Molecular 

Imaging software (v5.02.30, Carestream Health, Rochester, NY).   
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ELISA Analysis 

 Four commercial ELISA kits were used.  Neogen Veratox® Total Milk and Casein 

ELISA kits were obtained from Neogen ® Corporation (Lansing, MI, USA).  ELISA Systems™ 

Casein kits were obtained from ELISA Systems (Windsor, Queensland, Australia).  R-Biopharm 

RIDASCREEN® Fast Casein (Darmstadt, Germany) kits were obtained from a distributor, Pi 

Bioscientific (Seattle, WA, USA).    

 Prior to ELISA analysis, 1mL of each defatted cheese extract was diluted 1:100 (v/v) in 

5% sodium chloride solution.  Sample preparation and ELISA analysis were performed according 

to manufacturer’s instructions for 1 mL of homogenous liquid sample.  Briefly, 1 mL of diluted 

sample was added to the appropriate amount of prepared extraction solution heated to 60
o
C.  

Extractions were performed in a 60
o
C shaking water bath for the recommended time.  Each 

sample was extracted in triplicate.  Samples were cooled to room temperature and 1 mL of each 

extraction was centrifuged in a ThermoScientific Legend Micro 17 centrifuge for the 

recommended time and speed from the manufacturer-provided insert.  Additional dilutions were 

performed in the extraction buffer provided by corresponding kits to fall within the manufacturer-

provided standard curves.   

 For each ELISA, 100 μL of extracted and diluted sample was added to three wells of the 

antibody-coated microtiter wells provided by each kit manufacturer.  Samples were incubated for 

10 minutes and were washed the appropriate number of times with prepared manufacturer-

provided wash buffer solution.  Excess buffer was removed from wells by tapping the inverted 

plate on a paper towel.  100 μL of conjugate antibody solution was added to wells and the plate 

was allowed to incubate for an additional 10 minutes.  Washing was repeated, and 100 μL of 

substrate was added to each well, followed by a final 10 minute incubation period to develop a 

colorimetric reaction.  100 μL of acidic stop solution was added to the wells, and the plates were 
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read in a Dynex Spectra MR Plate Reader at the manufacturer-recommended wavelength.  The 

concentration of analyte in each sample was read from the standard curve.   

 Samples that contained concentrations of detectable milk proteins that fell outside the 

dynamic range of the kits were diluted with the manufacturer-provided extraction buffer until 

their concentration was quantifiable.  Dilution factors were applied to the detected value of milk 

residue to determine a “final” concentration for each sample.  The ranges of quantitation and 

other kit information for the kits used in the study are listed in Appendix B.  

 Data analysis was performed in Microsoft Excel, GraphPad Prism (Version 4.03), and 

manufacturer-provided software, if any.  The Neogen Veratox® Software (Version 3.02) was 

used to analyze Neogen data, while the r-Biopharm RIDAWIN® Software (Version 1.42) was 

used to evaluate r-Biopharm data.  Criteria for acceptable ELISA kit performance included an R
2
 

of ≥0.98 for the standard curve and a coefficient of variation (%CV) of ≤20%.   

4. Results/Discussion 

Protein Concentration of Extracts 

 Three assays, Lowry, Absorbance at 280nm, and the Microtannin Protein Assay were 

used to determine the concentration of protein in 5% NaCl-soluble extracts of cheese samples.   
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Figure 4.1. Protein Concentration of Cheddar cheese aged 0.5-24 months as determined by 

the Lowry Protein Assay.  Vertical error bars represent standard deviation.  

 Results of the Lowry Protein assay display a nondescript and variable trend in the 

concentration of 5% NaCl soluble protein, with peaks observed at 2, 6, and 24 months of aging, 

corresponding to 12.5, 14.7, and 12.2 μg/mL (Figure 4.1 and Table 4.1).  The lowest levels of 

soluble protein are observed at 0.5, 8, and 19 months of aging in the Lowry Assay, falling at 9.1, 

8.9, and 9.1 μg protein/mL, respectively.  The soluble protein concentration remains relatively 

stable in the samples taken between 8 and 19 months of aging; among these samples; the 

variation was only 5%.  Because the observed response displayed variable trends, additional 

methods were used to evaluate and quantify protein concentration.  The UV-absorbance of each 

5% NaCl-soluble cheese extract at 520 nm and the microtannin protein assay were used as 

alternative methods to measure protein concentration.   
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Figure 4.2. Protein concentration of Cheddar cheese aged 0.5-24 months as measured by 

absorbance at 280nm.  Error bars represent standard deviation. 

 

 According to UV-absorbance data, the concentration of soluble protein is greater at the 

end of aging (24 months) than at the onset (0.5 months) (See Figure 4.2 and Table 4.1).  At 24 

months, approximately 7.2 μg/mL of protein is observed, whereas only 5.2 μg/mL soluble protein 

is measured at 0.5 months.  A peak in soluble protein concentration is observed at 6 months of 

aging, corresponding to 7.8 μg/mL (Figure 4.2). The Warburg-Christian Method was used to 

correct for interference from ribonucleic acids at A280 and is described in greater detail in Chapter 

4.3.  The trends in concentration of soluble protein as determined by the A280 assay are less 

variable than the data observed using the Lowry Protein Assay.   

 A third method, the Microtannin Protein Assay, was used to confirm results obtained 

through the Lowry and A280 methods.  Results are listed in Figure 4.3 and Table 4.1.  
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Figure 4.3. Protein concentration of Cheddar cheese aged 0.5-24 months, as measured using 

the microtannin protein assay.  Vertical error bars represent standard deviation. 

 

 According to the Microtannin Protein assay, as aging continues, there is a decrease in 5% 

sodium chloride-soluble protein (Figure 4.3 and Table 4.1).  A peak in soluble protein content is 

observed at 2 months of aging; in agreement with the Lowry protein assay (Figures 4.1 and 4.3).   

 Different results among the assays are expected.  The Lowry and A280 assays rely on 

intact proteins to determine concentration, while the Microtannin assay can detect both intact 

proteins and free amino acids.  In cheese, proteolytic enzymes release small peptides and free 

amino acids during the degradation of larger proteins throughout aging.  Increasing levels of 

proteolysis should correspond to an increased concentration of free amino acids and a decrease in 

intact protein in sample extracts, although this is not observed (Kuchroo and Fox, 1982).  

Literature does not indicate any of the assays as superior to the others for accurately determining 

protein concentration in cheeses.  To provide an estimate of actual concentration in extracts for 

visualization purposes only, the results of the three assays were averaged for each sample.   
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Table 4.1. Cumulative Protein Concentration Assay data for Cheddar cheese aged 0.5-24 

months 

Age (mo.) Lowry (μg/μL) A280 (μg/μL) Microtannin (μg/μL) Average (μg/μL) 

0.5 9.1 5.2 10.2 8.2 

1 10.7 5.4 9.0 8.4 

2 12.5 6.6 11.2 10.1 

4 10.8 6.7 9.3 9.0 

6 14.7 7.8 8.5 10.3 

8 8.9 7.1 7.8 7.9 

10 9.4 6.8 6.5 7.5 

13 9.3 6.7 6.4 7.5 

19 9.1 7.2 5.5 7.3 

24 12.2 7.2 5.3 8.2 

 

 

Figure 4.4. Protein concentration of Cheddar cheese aged 0.5-24 months as determined by 

the Lowry Protein Assay, Absorbance at 280nm, and the Microtannin Protein Assay.    

 According to the averaged data (Figure 4.4), 5% sodium chloride soluble protein remains 

relatively consistent over time, varying only 3 μg/μL throughout aging.  The microtannin protein 

assay is the most robust method of the three used for protein analysis in this study.  The assay 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 5 10 15 20 25 30

u
g

/u
L

 P
ro

te
in

 

Months of Aging 

Protein Concentration in Aged Cheddar 

Cheese 

Lowry

A280

Microtannin

Average



162 

 

 

displays limited interference from sample buffers or matrix components and is highly 

reproducible.  The other protein assays performed are generally consistent with the microtannin 

assay.   

 The observed increases and decreases in protein concentration during aging are possibly a 

result of the liberation and subsequent degradation of small peptides released during casein 

proteolysis.  Peaks are observed in protein concentration at 2 and 6 months of aging in the Lowry 

and A280 methods.  No peak is observed in the microtannin assay at the 6 month time point, but a 

peak is observed at 2 months.   

Electrophoresis 

 Gels were run at conditions described above.  Only the gels loaded with 10μg of protein 

per lane are displayed; see Figures 4.5 and 4.6.   
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Figure 4.5. Profiles of aged Cheddar cheese. Lane X: molecular weight marker; lane 2: 0.5 

months, lane 3: 1 month; lane 4: 2 months;  lane 5: 4 months; lane 6: 6 months; lane 7: 8 months.  

Gels were run at 200V for 35 minutes. Each well contains approximately 10 μg of protein.    
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Figure 4.6. Profiles of aged Cheddar cheese.  Lane X: BioRad Precision Plus Protein Dual Xtra 

molecular weight marker; Lane 2: 6 months; lane 3: 8 months; lane 4: 10 months; lane 5: 13 

months; lane 6: 19 months; lane 7: 24 months.  Gels were run at 200V for 35 minutes. Each well 

was loaded with approximately 10 μg of protein.  

 

 Samples were split between two gels.  Protein degradation is easily observed throughout 

aging as displayed with the changes in intensity of bands as aging continues (Figures 4.5 and 4.6).  

10 µg of each protein extract was loaded in each lane of the gels.  The bands displayed in the 24-

month Cheddar sample are distinctly less prominent than the protein bands observed in samples 

taken during the early stages of aging.  The casein bands, observable between 20-30kDa, show a 

dramatic decrease in intensity over time.  Low molecular weight peptides increase throughout 

aging, as shown by an increase in intensity of residues below the 10 kDa marker.   

 In concurrence with the data obtained in the assays to measure protein concentration, 

there is an increase in band intensity at the two month time point, displayed as a band migrating 

in the 12-13 kDa range.  Where a peak was also observed in the Lowry and A280 assays at 6 

months of aging, only a minimal increase in band intensity is observed in the 12-13 kDa range.  
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However, a large decrease in intensity is observed around 15 kDa and within the intact casein 

region (27-30 kDa), when the 6 month sample is compared to the 4 month time point.  

 According to Grappin et al. (1985), para-κ-casein is not degraded during cheese ripening, 

only during cheese manufacture.  Electrophoretic analyses reveal a band near 16 kDa thought to 

be para-κ-casein.  The intensity of this band remains visually consistent throughout aging.   

ELISA Analysis 

 ELISA analysis was performed on defatted cheese samples using three commercial 

casein ELISA kits (Neogen Veratox® , ELISA Systems™ Casein, and R-Biopharm 

Ridascreen®) and one commercial Total Milk kit (Neogen Veratox® ).  Kit specificities to 

purified casein fractions and milk ingredients were determined in earlier work (see Chapter 3).   

Kit sensitivities are displayed in Table 4.2.  The Neogen Veratox® Casein kit is specifically 

sensitive to α- and β-casein.  Analyses with purified protein fractions revealed that this kit detects 

both protein fractions at approximately 100% of the present level.  The ELISA Systems™ Casein 

kit is specifically sensitive to α-casein, at approximately 90% sensitivity to the actual quantity 

present in the sample.  The kit fails to detect β- and κ-casein, regardless of the present 

concentration.  The R-Biopharm RIDASCREEN® Fast Casein kit primarily detects κ-casein, at 

100% of the ratio present, but also detects some β-casein, at approximately 10% of the level 

actually present.  The Neogen Veratox® Total Milk kit is primarily sensitive to κ-casein (at 50% 

of the present concentration), but also detects some α- and β-casein (approximately 10% of the 

present levels).   
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Table 4.2. Sensitivities of selected milk ELISA kits as described in Chapter 3.  

Analyte α-casein β-casein κ-casein 

Proportion (Wal, 2001) 50% 37% 13% 

Ratio to kit standards 

Neogen Veratox®  Casein 1.0 1.0 0.0 

ELISA Systems™ Casein™  0.9 0.0 0.0 

r-Biopharm Fast Casein 0.0 0.1 1.0 

Neogen Veratox®  Total Milk 0.1 0.1 0.5 

 

 The oldest cheese sample evaluated was collected 24 months from the date of production.  

The youngest sample evaluated was procured 0.5 months post-production.  Observable 

differences in milk residue quantitation with ELISA kits were expected between the two extremes 

of aging, even if significant differences were not observed between sequential time points.   

Table 4.3. Milk residues in aged Cheddar cheese as detected by the Neogen Veratox® Total 

Milk  

Neogen Total Milk Analysis of Aged Cheddar Cheese 

Age (mo) Sample avg ppm 

NFDM 

St. Dev. %CV 

0.5 116 12000 720 6% 

1 117 14000 630 5% 

2 118 15000 2700 19% 

4 119 14000 550 4% 

6 120 8700 740 9% 

8 121 5100 620 12% 

10 122 4400 960 22% 

13 123 3600 490 14% 

19 124 970 200 21% 

24 136 1000 50 5% 
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Figure 4.7. Detection of milk residues in aged Cheddar cheese with the Neogen Veratox® 

Total Milk kit. Error bars represent standard deviation (n=3). 

 Using the Neogen Veratox® Total Milk kit, a substantial decrease in detection of milk 

protein residues expressed as NFDM was observed with increasing cheese age.  However, milk 

protein residues remained detectable even after fermentation and 24 months of aging using the 

Neogen Total Milk ELISA kit.  Over the course of aging, milk protein detection was reduced by 

more than 90% with 93% of signal lost between the highest (2 months) to the lowest (19 months) 

detection points. 

 During the aging of Cheddar cheese, an increase in the detection of milk protein residues 

with the Neogen Veratox® Total Milk ELISA was observed after two and four months of aging.  

The increase in milk protein detection peaks after 2 months of aging is followed by decreases in 

detection throughout the remaining aging process.  When comparing ELISA results to levels of 

soluble protein throughout cheese aging, there is a compatible peak in detectable protein content 

at 2 months of aging.  However, compatible results between residual milk protein detection by 

ELISA and soluble protein were not similarly observed after 6 months of aging. 
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 In previous analyses, it was determined that the Neogen Total Milk kit is primarily 

sensitive to κ-casein, detecting and quantifying at a ratio of about 50% of the concentration 

present in the sample.  The kit displays only about 10% sensitivity to α- and β-casein.  Although 

κ-casein residues remain in the sample, their prevalence as a ratio of the other present casein 

fractions is unknown.  The peak in detection after 2 months of aging suggests the increased 

exposure of κ-casein epitopes or protein solubility in this sample.  While the kit is capable of 

detecting some α- and β-casein (10%), the dramatic liberation of solely the soluble epitopes of α- 

and β-casein is unlikely to cause the observed peak in results observed with the Neogen 

Veratox® Total Milk kit.   

 The Neogen Veratox® Casein kit was also used to evaluate detectable milk residues 

throughout Cheddar cheese ripening.   

Table 4.4. Detection of milk residues in aged Cheddar cheese with the Neogen Veratox® 

Casein kit.  

Age (mo) avg ppm NFDM Standard Deviation %CV 

0.5 36000 4600 13% 

1 49000 2900 6% 

2 47000 5800 12% 

4 37000 4300 12% 

6 22000 5100 23% 

8 8400 1500 18% 

10 6700 870 13% 

13 5800 430 7% 

19 1200 70 6% 

24 970 90 9% 
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Figure 4.8. Detection of ppm NFDM in aged Cheddar cheese using the Neogen Veratox® 

Casein kit. Vertical error bars represent standard deviation.   

 A similar trend in curve shape was observed with the Neogen Veratox®  Casein kit as 

was observed with the Neogen Veratox® Total Milk kit (Figures 4.7 and 4.8).  A peak in 

detectable milk residues occurred in the cheese aged for two months.  Over the entire time course 

of aging, the detection of casein residues using the Neogen Veratox casein ELISA decreased by 

97% with a decrease of 98% from the peak level of casein detection.  The increase in detectable 

milk residues observed in the cheese between 2 weeks and 1 month of aging may be a result of 

exposure of previously hidden linear epitopes upon changes resulting from proteolysis.   

 Using the Neogen Veratox® Casein kit, a peak in detection of milk residues occurs after 

1-2 months of cheese aging.  While the detection level is higher after 1 month of aging, there is 

no observable difference between detection after 1 and 2 months.  Similarly to the results 

obtained using the Neogen Veratox® Total Milk kit, the increase in detection of casein residues 

after 2 months of cheese aging corresponds with an increase in soluble protein content but no 

such correlation was observed after 6 months of aging.   
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 According to previous work, the Neogen Veratox® Casein kit quantifies milk residues at 

a level of 100% of α- and β-casein fragments detected.  The peak in detection of casein residues 

observed after 2 months of cheese aging would suggest an increase in detectable α and/or β-

casein residues.  Even though the Neogen Veratox® Casein and Total Milk kits detect different 

fragments of casein in samples, similar trends are displayed in detection of residual milk proteins 

in Cheddar cheese over time with both kits.   

 The r-Biopharm Fast Casein kit was also used to evaluate Cheddar cheese. Results are 

displayed below.   

Table 4.5.  Detection of casein by the r-Biopharm® Fast Casein kit in aged Cheddar cheese 

Age 

(mo) 

avg 

ppm 

Casein 

Standard 

Deviation 

%CV 

0.5 22000 3000 13% 

1 24000 2100 8% 

2 33000 2200 7% 

4 22000 3400 16% 

6 16000 150 1% 

8 8700 250 3% 

10 4500 520 12% 

13 3700 160 4% 

19 2400 100 4% 

24 2200 140 7% 
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Figure 4.9.  Detection of casein residues in aged Cheddar cheese using the r-Biopharm 

RIDASCREEN® Fast Casein kit.  Vertical error bars represent standard deviation.  

 Using the R-Biopharm RIDASCREEN® Fast Casein kit, a similar trend is observed in 

detection of milk protein residues as with the two Neogen Kits.  A peak in detection is observed 

after 2 months of cheese aging.  The detectable casein content then decreases throughout the 

remaining period of cheese aging.  The lowest level of detectable milk protein is observed after 

24 months of aging.  With this kit, the detection of casein residues decreased by approximately 

93% over the time course of cheese aging between 2 months and 24 months.  Over the entire time 

course of aging, the decrease in detection of casein residues with this kit is approximately 90%.  

Again, the increase in casein detection after 2 months of cheese aging corresponds to an increase 

in soluble protein detection but, as with the other ELISAs, a similar correlation was not observed 

after 6 months of cheese aging.  

 According to previous data (see Chapter 3 for more information), the r-Biopharm 

RIDASCREEN® Fast Casein kit relies on detection of κ-casein for quantification.  The kit also 

has a low sensitivity to β-casein, at approximately 10%.  Because the Neogen Veratox® Total 

Milk kit and the r-Biopharm® Fast Casein kit both detect primarily κ-casein, the similar results 
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obtained between these two kits is not surprising.  The increase in detectable milk protein 

residues observed after 2 months of cheese aging can be explained by the liberation of κ- or β-

casein residues due to proteolysis.   

 ELISA Systems™ Casein kit data is displayed below, in Table 4.6 and Figure 4.10.   

Table 4.6. Detection of casein residues in aged Cheddar cheese using the ELISA Systems™ 

Casein kit 

Age 

(mo) 

avg 

ppm 

SMP 

Standard 

Deviation 

%CV 

0.5 40400 2300 6% 

1 33700 1500 4% 

2 33400 1400 4% 

4 23700 870 4% 

6 12300 600 5% 

8 6600 270 4% 

10 2700 180 6% 

13 2200 150 7% 

19 310 20 7% 

24 270 10 5% 
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Figure 4.10. Detection of casein residues in aged Cheddar cheese using the ELISA 

Systems™ Casein kit.  Vertical error bars represent standard deviation.  

 The detection of casein residues in aging cheese displayed a different trend with the 

ELISA Systems™ Casein kit.  Unlike the other three kits tested, no peak in detectable milk 

protein residues was observed after 2 months of cheese aging.  However, the decrease in 

detection over the entire time period of cheese aging was similar to the trend observed with the 

other evaluated kits.  From production to two years of aging, a 99% decrease in detectability of 

milk protein residues in cheese by this kit was observed.  From previous research, the ELISA 

Systems™ Casein kit relies strictly on detection of αs-casein for quantitation (ratio of 0.9).   

 Because no peak was observed in the detection of milk residues after 2 months of cheese 

aging with the ELISA Systems™ Casein kit, the evidence initially suggests that the peaks 

observed with other kits may be a result of increased solubility or revealed epitopes of β or κ-

casein.  In contrast, the ELISA Systems™ Casein kit result seems to indicate continuous 

degradation of the αs-casein without exposure of additional epitopes detected by the kit.  

Additionally, it is possible that the proteolysis that occurs during cheese aging and fermentation 
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decreases the solubility of proteins.  Caseins are primarily linear proteins and proteolysis may or 

may not have an effect on their solubility.  However, the results may also suggest that the ELISA 

Systems™ Casein kit was developed using antibodies that recognize only conformational 

epitopes of α-casein which are progressively lost during cheese aging.   

  Table 4.7. Cumulative ELISA analysis of milk residues in aged Cheddar cheese 

  ppm NFDM ppm SM 

Age 

(m) 

Neogen Total 

Milk 
Neogen Casein 

r-Biopharm Fast 

Casein 

ELISA Systems™ 

Casein 

0.5 12000 36000 22000 40400 

1 14000 49000 24000 33700 

2 15000 47000 33000 33400 

4 14000 37000 22000 23700 

6 8700 22000 16000 12300 

8 5100 8400 8700 6600 

10 4400 6700 4500 2700 

13 3600 5800 3700 2200 

19 970 1200 2400 310 

24 1000 970 2200 270 

 

 Contrary to the results observed with the Lowry and A280 protein assays but consistent 

with the Microtannin Protein Assay, no peak in detection of milk protein residues was observed 

after 6 months of aging with any of the selected ELISA kits.  However, in the Neogen Veratox® 

Casein and Total Milk kits and r-Biopharm RIDASCREEN® Fast Casein kit, a peak in milk 

protein residue detection was observed after 2 months of cheese aging, as also indicated by all 

protein assays.  With all evaluated ELISA kits, the detection of milk protein residues dramatically 

decreases over the entire time course of cheese aging.  A 90-99% reduction in the detection of 

milk protein residues is observed in all kits from production to 24 months of aging.  However, 

even with this decrease, milk protein residues were still detected, even at the most advanced 

levels of proteolysis.   
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 Literature suggests that αs1-casein is degraded substantially more than other caseins 

during Cheddar cheese ripening (Singh et al., 1995).   According to ELISA results, the kit that 

relies exclusively on detection of α-casein epitopes, ELISA Systems™ Casein, exhibits the most 

dramatic decrease in detection during ripening (99%).  Additionally, this kit is the only one that 

displayed a progressive decrease in the detection of milk protein residues during the entire time 

course of cheese aging.  Thus, this kit might uniquely offer an excellent approach to the 

monitoring of cheese proteolysis and especially the loss of αs-casein structure.   

 While both the Neogen Veratox® Total Milk kit and the r-Biopharm RIDASCREEN® 

Fast Casein kit are capable of detecting and quantifying κ-casein, the r-Biopharm kit detects a 

significantly higher concentration of milk residues in aged Cheddar cheese (Figure 4.11).  

Previous work indicates that the r-Biopharm kit has a 1.0 ratio of detection for κ-casein, while the 

Neogen Total Milk kit has a 0.5 ratio.  This observation may indicate that the kit targets an 

epitope stable to proteolysis in Cheddar cheese manufacture and ripening.  Literature indicates 

that para-κ-casein is not broken down during cheese ripening, so the degradation observed by the 

kits must be a result of casein glycomacropeptide f(1-105) (Rank et al., 1985).   
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Figure 4.11. Detected ppm NFDM in aged Cheddar cheese as measured by commercial milk 

ELISA kits 

 This research highlights the importance of understanding the limitations of ELISA kits 

for the detection of allergen residues in food products.  In this case, fermentation is shown to have 

a major effect on the detection of milk protein residues in aged Cheddar cheese.  This finding is 

not especially surprising because the antibodies in commercial ELISA kits are oriented toward 

the detection of intact milk proteins while the milk proteins in aged Cheddar cheese have been 

subjected to considerable proteolysis.  None of the current commercially-available milk ELISA 

methods are validated specifically for milk allergen detection in fermented foods.  The dramatic 

loss in the ability of the antibodies in these kits to detect milk proteins between young and aged 

cheese may be a cause for some concern.  While high concentrations of Cheddar cheese are 

detected with current commercially-available ELISA kits, low concentrations of aged or highly 

proteolyzed cheese will be a challenge to reliably detect and quantify.  The recovery of trace 

amounts of aged cheese in various common food matrices has not yet been assessed by ELISA 
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methods.  The importance of cross contact between cheese with other processed food products 

has not been fully assessed but might be difficult to assess with the current commercial milk 

ELISA kits.  The construction of milk ELISA kits capable of the detection of milk allergen 

epitopes stable during fermentation and aging would seem to offer a path toward development of 

improved methods.   
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CHAPTER 5. SURVEY OF RETAIL CHEESES: THE EFFECT OF DIFFERENT 

METHODS OF FERMENTATION ON THE DETECTION OF MILK PROTEIN 

RESIDUES BY ENZYME-LINKED IMMUNOSORBENT ASSAY 

1. Abstract 

 Milk is one of the most important allergenic foods in the United States and around the 

world and contains several major antigens with differing susceptibilities to proteolytic enzymes.  

The extent of proteolysis in cheese varies as a result of conditions during manufacture and 

ripening.  Proteolysis has the potential to degrade allergenic epitopes that are important for 

residue detection and elicitation of allergic reactions.  Enzyme-linked immunosorbent assays are 

not currently validated for use in detecting residues in hydrolyzed or fermented products.  Five 

retail cheeses produced using different styles of fermentation were investigated for detectable 

milk protein residues with four commercial ELISA kits.  Pasta-filata, propionic acid-fermented, 

surface-mold ripened, internal mold ripened, and surface bacterial-ripened cheeses were assessed.  

The Neogen Veratox® Total Milk and r-Biopharm RIDASCREEN® Fast Casein kits are capable 

of detecting milk residues in all cheeses evaluated.  Only kits that employ antibodies sensitive to 

κ-casein are capable of detecting milk residues in blue cheese that exhibits extensive proteolysis.  

The other two ELISA kits, Neogen Veratox® Casein and ELISA Systems™ Casein can detect 

milk residues in cheeses other than blue-veined varieties.  ELISA results cannot be quantitatively 

compared among kits.  The quantitative reliability of ELISA results in detection of cheese 

residues is questionable, but these methods are sufficiently robust to use as a semi-quantitative 

indication of proper allergen control or the validation of cleaning programs in industry settings.   

2.  Introduction 

 Proteolysis is arguably one of the most important biochemical processes for texture and 

flavor development in cheese (Fox and McSweeney, 1996).  Some cheeses, like Mozzarella, are 

minimally ripened and are served fresh.  Other cheeses, such as blue-veined varieties, are 
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subjected to extensive proteolysis.  However, proteolysis during the manufacture and ripening of 

cheese can potentially destroy milk protein epitopes that are important for detection of allergenic 

residues or elicitation of reactions in milk-allergic consumers.   

 Cow’s milk is one of the most dominant food allergens, especially among infants and 

children in the United States (Sicherer, 2011a).   Cow’s milk is composed of two main groups of 

proteins; whey and caseins.  The caseins comprise roughly 80% of total milk proteins, while 

whey proteins compose the remaining 20% (Wal, 2001b).  While two whey proteins, β-

lactoglobulin and α-lactalbumin play major roles in milk allergy, these proteins are drained from 

the curds during the production of cheese and have minimal presence in finished cheeses.  The 

caseins, α-, β, and κ-casein, are retained in the cheese; casein is also a major milk allergen (Wal, 

2001b).   

 There are several important proteolytic enzymes in cheese that contribute to ripening.  

The two most important enzymes for primary proteolysis are chymosin and plasmin.  These 

enzymes are reviewed more in depth in Chapter 4 of this thesis.  Chymosin is added to milk 

during the initial stages of cheese making.  This enzyme initially drives the disruption of milk 

micelles and causes the coagulation of milk into curd by hydrolyzing a specific bond in κ-casein; 

Phe105-Met106.  Whey proteins and the soluble fragment of κ-casein f(1-105) are drained from 

curds during manufacture.  Plasmin is an indigenous milk protease and exhibits the highest level 

of activity in the later stages of cheese ripening.  Primary proteolysis of all cheese varieties 

involves hydrolysis of αs1-casein by chymosin and β-casein by plasmin (Fox and McSweeney, 

1996).  The levels of proteolysis by chymosin and plasmin depend on the variety of cheese and 

conditions of ripening.  

 Additional bacteria and mold cultures are often added to cheese during production.  

These cultures are employed specifically to produce characteristic flavors and textures during 
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ripening through the action of unique enzymes (Fox et al., 2004; Rank et al., 1985; Upadhyay et 

al., 2004).   

 The extent and patterns of proteolysis in cheese are used as indicators of product quality 

and maturity.  Proteolysis of cheese has been evaluated in numerous ways and has been 

thoroughly reviewed (Bansal et al., 2009; Fox, 1989; Fox and McSweeney, 1996; Fox et al., 

2004; McSweeney and Fox, 1997; Sousa et al., 2001; Upadhyay et al., 2004).  The relationship 

between style of fermentation and the presence of intact milk residues and allergenic epitopes has 

not been evaluated thoroughly.   

 Different degrees of proteolysis among retail cheeses indicate the possibility that 

allergenic epitopes are also differentially degraded in various cheeses.  This may provide issues 

for milk allergic consumers, especially those that try to avoid foods that may contain allergenic 

proteins.   

 This research seeks to determine if commercially-available milk ELISA kits are capable 

of detecting residues in five types of retail cheeses with differing degrees of proteolysis.  

Measurement of the extent of proteolysis in cheese may suggest further application for ELISA 

kits as indicators of cheese quality and maturity.  Additionally, results may indicate whether 

concern is warranted for kit manufacturers, the food industry, or food-allergic consumers 

associated with the detecting trace levels of cheese in food products.     

3. Materials and Methods  

Cheese Procurement and Sample Preparation 

 Five varieties of commercial cheese were purchased from a local retail establishment.  

Cheese varieties included Mozzarella (BelGiosio Cheese Inc. Green Bay, Wisconsin), 

Emmentaler (Emmi, Lucerne, Switzerland), Blue (Maytag Dairy Farms, Newton, Iowa), 
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Limburger (Landhaus, Monroe, Wisconsin), and Brie (Martin-Collet, Normandy, France).  

Approximately 1 lb of each cheese was purchased.   

 Individual pieces of cheese were sliced in half so as to provide a full representation of 

aging throughout the wedge or wheel.  Brie cheeses aged in wheels may have different degrees of 

proteolysis throughout the slices in which the cheese is sold (Upadhyay et al., 2004).  Where 

necessary (Brie and Emmentaler), rinds were removed from cheeses.  All cheese samples were 

partitioned into approximately 1 cm x 1 cm cubes.  30g of each cheese was finely ground using a 

Spex 6850 CentriPrep Freezer/Mill (Metuchen, NJ).  Freezer-milled samples were placed into 

plastic zip-top bags and were frozen at -20
O
C until time of analysis.  

Preparation of Extracts for SDS-PAGE and ELISA Analysis 

 For protein concentration assays and SDS-PAGE analysis, 5 g of each freezer-milled 

cheese was mixed with 20 mL of 5% sodium chloride solution in a 50 mL Falcon™ tube, using a 

pulse-vortex technique (BD Biosciences, San Jose, CA).  Cheeses were extracted with horizontal 

shaking for 60 minutes hour at room temperature (22
o
C) on a Barnstead Thermolyne LabQuake 

Shaker (Thermo Fisher Scientific, Rockford, IL).  After extraction, the samples were centrifuged 

for 30 minutes at 3020 x g at 10
o
C in an IEC Centra MP4R Centrifuge (International Equipment 

Company, Needham Heights, MA).  The aqueous layer was removed to a new 50 mL Falcon™ 

tube, and pellets and fat layers were discarded (BD Biosciences, San Jose, CA).  Aqueous layers 

were frozen at -20
o
C until time of analysis.    

 For preparation for ELISA analysis, 20 g of each finely-ground freezer-milled cheese was 

defatted using a cold hexane extraction.  180 g of cold hexane (-20
o
C) was poured over 20 g of 

each freezer-milled cheese in a 500 mL Erlenmeyer flask.  Flasks were briefly mixed using a 

swirling technique, covered, and placed in an ice bath on a Barnstead Thermolyne LabQuake 

Horizontal Shaker (Thermo Fisher Scientific, Rockford, IL) in a fume hood.  Samples were 
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allowed to extract for 30 minutes with horizontal shaking.  The hexane and fat layer was decanted 

into an appropriate waste collection container.  Another 180 mL of cold hexane was added to 

each flask. The swirling technique and 30 minute extraction were repeated.  The hexane and fat 

layer was decanted, and the cheese was suspended in a final wash of 180 mL of cold hexane and 

was allowed to extract for a final 30 minutes.  The final cheese and hexane extraction were 

swirled to mix and filtered by gravity filtration through a fluted Whatman Size 1 Filter paper in a 

glass funnel.   The filter paper and retained cheese were removed from the funnel, laid flat, and 

were allowed to dry overnight in a fume hood.  Dried and defatted cheese samples were 

transferred to plastic zip-top bags and stored at -20
o
C until the time of analysis.  Used hexane was 

disposed according to directions provided by the Office of Environmental Health and Safety at 

the University of Nebraska-Lincoln.   

 Defatted cheese samples were prepared for ELISA analysis by dissolution in 5% sodium 

chloride.  1 g of each defatted cheese was mixed with 9 mL of 5% NaCl by pulse-vortex 

technique in a 15 mL Falcon™ tube.  Solutions were horizontally shaken at 90% max speed for 3 

hours on a Barnstead Thermolyne LabQuake Horizontal Shaker (Thermo Fisher Scientific, 

Rockford, IL).  Solutions were centrifuged at 3,020 x g for 30 minutes at 10
o
C.  The aqueous 

layer was decanted to a new 15 mL Falcon™ tube and pellets and fat layers were discarded.  

Samples were frozen at -20
o
C until time of analysis.   

Protein Concentration of Extracts 

 Micro- Lowry, Microtannin, and A280 protein assays were used to measure the 

concentration of protein in cheese extracts.  Extracts were prepared as described above for SDS-

PAGE.  The Micro-Lowry assay was performed according to standard protocol and adapted for 

use in a 96-well microtiter plate (Lowry et al., 1951).  The Lowry assay is a colorimetric dye-

binding assay that quantitates protein in a sample through copper-protein complex formation.  A 
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2 mg/mL standard solution of Bovine Serum Albumin (BSA) was diluted to build a standard 

curve of 0-200 μg/mL (Pierce Scientific, a division of Thermo Scientific, Rockford, IL).  Briefly, 

a solution of 2% sodium carbonate in 0.1 N sodium hydroxide was generated, and referred to as 

solution A.  A 0.5% cupric sulfate solution in deionized, distilled water (d2H2O) was also 

constructed and called solution B.  For a 96-well microtiter plate, 23 mL of solution A was added 

to 0.46 mL solution B and mixed well by a pulse-vortex method.  The A + B solution was 

referred to as solution C.  Solution D constituted a 1 N solution of Folin Reagent.  For a 96-well 

microtiter plate, approximately 2.4 mL of solution D was required.  The assay was performed on 

cheese extracts at several levels of dilution. Samples were diluted with 5% sodium chloride to fall 

within the constructed standard curve.  40 μL of each dilution level was applied in duplicate to a 

96-well plate.  BSA standard solutions (0-200 μg/mL) were applied in triplicate.  200 μL of 

Lowry Solution C was added to each well using a multi-channel pipette and the plate was 

incubated at room temperature (22
o
C) for 10 minutes.  After the incubation, 20 μL of Lowry 

solution D was added to each well of the plate using a multi-channel pipette.  The plate was 

mixed for 30 seconds on a horizontal plate shaker and the plate was incubated at room 

temperature for an additional 30 minutes.  The absorption was read at 490 nm with a BioTek 

EC808x Microplate Reader and evaluated with KC Junior Software (Winooski, VT).   

 The Microtannin protein precipitation assay was also performed on extracts prepared for 

SDS-PAGE.  The Microtannin assay relies on the precipitation and suspension of protein, driven 

by the formation of phenol-tannic acid complexes (Mejbaum-Katzenellenbogen and 

Dobryszycka, 1959; Trayer and Trayer, 1988).  Two solutions were required for the assay, tannin 

reagent and gum Arabic solution.  Tannin reagent, a solution of 10% w/v tannic acid in 2% 

phenol v/v in 1 N HCl, was produced. A 0.2% w/v solution of gum Arabic was also prepared.  

For the assay, samples were diluted to fall within the standard curve range, 0-75 μg/mL BSA 

using 5% sodium chloride.  1 mL of tannin reagent was added to 1 mL of each unknown sample 
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in duplicate borosilicate glass disposable culture tubes.  Samples were briefly mixed using a 

pulse-vortex technique and were allowed to incubate for 10 minutes at room temperature (22
o
C).  

1 mL 0.2% gum Arabic solution was added to each tube, mixed by the pulse vortex method, and 

the absorbance of precipitated protein in standards and samples was read in disposable cuvettes 

with 10 mm path length in a NanoDrop 2000c Spectrophotometer at 520 nm (ThermoScientific, 

Rockford, IL).   

 The UV absorbance of extracts prepared for SDS-PAGE was measured at A280.   The 

A260/A280 ratio was used to correct the estimated protein content by applying the Warburg-

Christian method.  Because proteins containing tyrosine, tryptophan, and disulfide bonds and 

ribonucleic acids absorb light at 280 nm, and only nucleic acids absorb at 260 nm, the A260/A280 

ratio will remove the contribution of nucleic acids from the concentration estimate.  A280 was 

measured using the pedestal function of a NanoDrop 2000c Spectrophotometer.  The Warburg-

Christian equation is listed below. 

Equation 5.1. Warburg-Christian Method for determining protein concentration from A280 

(    )  (                 )      ⁄         

 Correction factors were determined from corresponding A260/A280 ratio values in a 

standard table (Warburg and Christian, 1942). 

Electrophoresis 

 Results from the protein quantitation assays were used to determine the necessary volume 

of sample per well.  Because published literature does not indicate the superiority of any assay 

over the others for accurately determining the concentration of soluble proteins in cheese extracts, 

the results for the Micro-Lowry, Microtannin, and A280 assays were averaged and used to 

calculate a general estimate of concentration for electrophoretic purposes only.   Samples were 
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prepared under reducing conditions (Laemmli, 1970).  Briefly, 25 μL of each extracted sample 

was mixed with 25 μL of Laemmli sample buffer containing 5.4% dithiothreitol and was boiled in 

a 100
O
C water bath for 5 minutes.  Reduced samples were allowed to return to room temperature 

and were centrifuged for 5 minutes at 16,200 x g in a ThermoScientific Legend Micro 17 

centrifuge (ThermoScientific, Rockford, IL).  Protein separation was performed in a Bio-Rad 

Mini-Protean® Tetracell electrophoresis unit using 18% Tris-HCl precast polyacrylamide Ready 

Gels® for Mini-Protean® systems, 10 wells, 30 µL maximum volume per well (Bio-Rad 

Laboratories, Hercules, CA).  5 μL of Precision Plus Protein™ Dual X-tra Standard was loaded in 

the first lane of each gel to serve as a molecular weight marker (Bio-Rad Laboratories, Hercules, 

CA).  Samples were loaded on gels in two different concentrations; 10 μg/lane and 15 μg/lane.  

Empty lanes were loaded with 5 μL of sample buffer to improve electrophoretic profiles.   

 Gels were run at 200 volts for approximately 30-40 minutes, or until the dye front 

reached the bottom of the gel.  Gels were removed from their cassettes, rinsed in several changes 

of d2H2O, and fixed in 1x fixing solution for 30 minutes.  Gels were rinsed in several changes of 

d2H2O and stained overnight using the Coomassie Brilliant Blue R-250 Staining System (Bio-Rad 

Laboratories, Hercules, CA).  After staining, gels were allowed to destain for approximately 3-4 

hours, with 3-4 changes of destain solution, or until the desired level of destaining was reached.  

Gels were rehydrated for 10 minutes in a solution of 25 mM Tris and 192 mM Glycine at pH 8.3 

(Bio-Rad Laboratories, Hercules, CA).  Gels were then imaged at F=8.0, Z=30.0 with UV/ 

Fluorescence in a Kodak Gel Logic Imaging System equipped with Carestream Molecular 

Imaging Software (Eastman Kodak, Rochester, NY).     

ELISA Analysis 

 Four commercial ELISA kits were used.  Neogen Veratox® Total Milk and Casein 

ELISA kits were obtained from Neogen® Corporation (Lansing, MI, USA).  ELISA Systems™ 
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Casein kits were obtained from ELISA Systems (Windsor, Queensland, Australia).  R-Biopharm 

RIDASCREEN® Fast Casein (Darmstadt, Germany) kits were obtained from Pi Bioscientific 

(Seattle, WA, USA).   Kit information regarding the levels of detection and quantitation (LOD 

and LOQ, respectively), composition of manufacturer-provided standard solutions, and kit 

reporting units are displayed in Table 5.1.   

Table 5.1. Commercial Milk ELISA kit sensitivities. Limits of Detection (LOD) and Limit of 

quantitation (LOQ) are listed for each kit. 

Kit LOD LOQ Standards Reporting Units (ppm) 

r-Biopharm Fast Casein 0.12 ppm 0.5 ppm casein casein 

Neogen Veratox Total Milk 1 ppm 2.5 ppm NFDM NFDM 

Neogen Veratox Casein 1 ppm 2.5 ppm NFDM NFDM 

ELISA Systems Casein 0.5 ppm 1.0 ppm a-casein skim milk powder 

  

 Prior to sample extraction according to the ELISA procedure, defatted and suspended 

samples were diluted an additional 1:100 in 5% sodium chloride.  Extractions were performed 

according to manufacturer-provided protocol for 1 mL of liquid sample.  Briefly, 1 mL of liquid 

sample was extracted in a recommended amount of heated (60
O
C) extraction buffer in a 

disposable Falcon™ tube.  Samples were briefly mixed using a pulse-vortex technique and were 

extracted in a 60
O
C shaking water bath for a set amount of time.  Next, samples were cooled to 

room temperature and 1 mL of each extraction was centrifuged for 5 minutes at 16,200 x g in a 

ThermoScientific Legend Micro 17 centrifuge (ThermoScientific, Rockford, IL).  Additional 

dilutions were performed as necessary for samples to fall within the dynamic range of each kit 

(Appendix B).   All samples were extracted in triplicate.   

 ELISA assays were performed according to protocols provided.   Briefly, 100 μL of each 

manufacturer-provided standard and extracted sample were applied to antibody-coated wells of a 

microtiter plate.  All samples were applied to triplicate wells.  Plates were allowed to incubate for 

the appropriate amount of time (10-15 minutes, depending on each kit).  At the end of incubation, 
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plates were inverted and sample was poured out of the wells.  Wells were filled with wash buffer, 

plates were inverted, and the process was repeated for the appropriate number of washes.  At the 

final wash, plates were inverted and excess wash buffer was tapped out onto an absorbent paper 

towel.   

 Next, 100 μL of enzyme-labeled conjugate antibody solution was added to each well and 

plates were incubated for 10-15 minutes, according to manufacturer’s instructions.  Plates were 

washed as described above and excess buffer was removed.  100 μL of substrate solution was 

added to each well and plates were incubated in the dark for a final 10-15 minutes to allow a 

colorimetric reaction to occur.  In the four kits evaluated, the intensity of color development is 

directly related to the concentration of detected protein residue in the sample.  100 μL of acidic 

stop solution was added to each well to prevent additional color development.  The absorbance of 

each well was read at the manufacturer recommended wavelength using a BioTek Eon Microplate 

Spectrophotometer equipped with Gen5 v 2.0 Software (Winooski, VT).   

Data Analysis  

 Data was analyzed using Microsoft Excel, GraphPad Prism v 4.03, and SAS v 9.2.  

Appropriate curve fits for ELISA kits were determined using PROC GLIMMIX regression 

analysis in SAS v 9.2.   All kit standard curves were appropriately modeled using a quadratic 

response curve.  Optical density readings for unknown samples were fit to the curve and results 

were interpolated.  Where appropriate for comparisons, ELISA kit results were converted to 

relevant units using equations 5.2 and 5.3.   

Equation 5.2. Conversion detected concentration of ppm NFDM to ppm casein 
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Equation 5.3. Conversion of detected ppm casein to ppm NFDM 

          
                  

              
 

          

                     
                     

4. Results  

Protein Concentration Determination Assays 

 Results obtained with the three protein concentration assays are listed below (Tables 5.2-

5.4, Figure 5.1).  Micro-Lowry assay results are displayed in Table 5.2 and Figure 5.1.  The 

amount of sodium chloride-soluble protein is lowest in Mozzarella cheese, and highest in Brie 

cheese.  The %CV for all samples except Mozzarella cheese is quite high, indicating variability in 

solubility, sample homogeneity or assay performance.   

Table 5.2. Micro-Lowry Protein Assay of Retail Cheeses.  

Micro-Lowry Protein Assay
a
 

Sample Concentration (μg/μL) Std. Dev %CV 

Mozzarella 7.6 0.2 3% 

Emmentaler 15.2 2.5 17% 

Blue 10.4 3.8 36% 

Limburger 11.0 3.9 35% 

Brie 25.0 7.9 32% 
a 
Cheeses were extracted in 5% sodium chloride.   

 Results of the Microtannin assay are listed in Table 5.3 and Figure 5.1.  Assay results 

indicate that Mozzarella and Emmentaler cheese display similar protein concentration (11.1 ± 0.7 

and 11.1 ± 0.1 μg/μL protein, respectively).  Blue cheese displays a very low protein 

concentration in extracts, while Brie displays the highest concentration of the extracts evaluated 

(1.2 ± 0.02 μg/μL protein and 19.1 ± 0.6 μg/μL protein, respectively).  The Limburger cheese 

extract contains approximately 13.7 ± 0.8 μg/μL protein, according to the Microtannin assay 
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(Table 5.3).  Samples evaluated with the Microtannin assay have a much lower %CV than 

samples evaluated with the Micro-Lowry method.   

Table 5.3. Microtannin Protein Assay of Retail Cheeses.  

Microtannin Protein Assay 

Sample Concentration (μg/μL) Std. Dev %CV 

Mozzarella 11.1 0.7 6% 

Emmentaler 11.1 0.1 1% 

Blue 1.2 0.0 1% 

Limburger 13.7 0.8 6% 

Brie 19.1 0.6 3% 
a 
Cheeses were extracted in 5% sodium chloride.   

 A280 data with the Warburg-Christian Correction applied are displayed in Table 5.4 and 

Figure 5.1.  Mozzarella and Emmentaler cheese display the two lowest concentrations of protein 

in the extracts as measured by the A280 assay (3.6 ± 0.1 and 4.9 ± 1.4 μg/μL protein, respectively).  

Limburger cheese has the highest protein concentration in the extracts with 16.5 ± 1.3 μg/μL 

protein, followed by Blue and Brie cheese, at concentrations of 13.5 ± 1.3 and 10.4 ± 1.8 μg/μL 

protein, respectively.  The %CVs observed in the assay are lower than the levels observed in the 

Micro-Lowry assay.   

Table 5.4 Absorbance at 280nm of Retail Cheeses with Warburg-Christian Correction.  

A280 Protein Assay 

Sample Concentration (μg/μL) Std. Dev %CV 

Mozzarella 3.6 0.1 2% 

Emmentaler 4.9 1.4 29% 

Blue 13.5 1.3 10% 

Limburger 16.5 1.3 8% 

Brie 10.4 1.8 18% 
a 
Cheeses were extracted in 5% sodium chloride.   
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 Excluding data obtained during the analysis of Mozzarella extracts, the Microtannin 

assay exhibits the lowest variation in detection across all other cheese samples.   

 

Figure 5.1. Cumulative results of protein assays for retail cheese samples. Error bars 

represent standard deviation. All sample extracts were solubilized in 5% NaCl prior to the assay.   

 

Electrophoresis 

 SDS-PAGE profiles of cheese extracts were observed.  The gel loaded with 15 μg 

protein/lane is depicted in Figure 5.2 as determined by averaging the concentrations of the three 

protein assays.  See Methods section for more information. 

 Intact α-, β-, and κ-casein bands migrate near the 20-25 kDa molecular weight marker 

(Wal, 2001b).  Intense casein bands appear in extracts of Mozzarella, Limburger, and Brie 

cheeses (lanes 2, 5, and 6, respectively).  Emmentaler cheese displays some faint bands in the 

casein migration region (Lane 3, Figure 5.2, 20-25 kDa).  There are low molecular weight traces 

of protein, although there are no definitive bands present below 10 kDa. In SDS-PAGE 
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evaluation of Limburger cheese extracts, intense bands are observed both in the casein region 

(20-25 kDa) and between 10-15 kDa (Lane 5, Figure 5.2).  These bands appear in a similar region 

of the whey proteins, β-lactoglobulin and α-lactalbumin, which migrate near 18.3 and 14.2 kDa, 

respectively (Wal, 2001b).  However, these bands may also correspond to degradation products of 

larger molecular weight milk proteins.   In Brie extracts, intense bands are observed in the casein 

migration region (Lane 6, Figure 5.2).  Additionally, heavy bands are also observed in the region 

between 10-15 kDa, which may correspond to β-lactoglobulin and α-lactalbumin residues.  

Casein bands are not apparent in the Blue cheese extract, as shown in Lane 4.  The low presence 

of bands in the gel emphasizes the low level of intact protein in the sample.  Blue cheese appears 

to exhibit the most extensively proteolysis among the retail cheese samples evaluated.  

 Low molecular weight bands in any lane may correspond to peptide fragments of larger 

molecular weight proteins that result from proteolysis occurring during cheese manufacturing.  

Some banding below 10 kDa is also observed, likely corresponding to breakdown products of 

higher molecular weight milk proteins.  Light shading appears in low molecular weight regions of 

the gel, especially in Mozzarella, Limburger and Brie extracts (lanes 2, 3, and 6). 

 



195 

 

 

 

Figure 5.2. SDS-PAGE gel of 5% sodium chloride soluble cheese extracts; 15 μg protein per 

lane. Lane X: molecular weight ladder. Lane 2: Mozzarella; Lane 3: Emmentaler; Lane 4: Blue; 

Lane 5: Limburger; Lane 6: Brie. Gels were run at a constant voltage of 200V for approximately 

35 minutes.   

ELISA Analysis 

 To compare the results of all four commercial ELISA kits for milk residues, the results 

were converted, where necessary (Neogen Veratox® Total Milk and Casein kits), to ppm casein 

using Equation 5.2.  All cheeses contained detectable milk residues with all cheeses except with 

the two casein ELISA methods for Blue cheese. 

 In the r-Biopharm RIDASCREEN® Fast Casein kit, Brie cheese displayed the highest 

amount of detectable milk residue at 39,000 ± 4,000 ppm casein (Table 5.5), while Blue cheese 

displayed the lowest detectable milk protein residue at 16 ± 1.6 ppm casein.  All samples contain 

detectable milk residues.   
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Table 5.5. r-Biopharm RIDASCREEN® Fast Casein ELISA analysis of retail cheeses 

r-Biopharm Fast Casein ELISA Results 

Sample Detected Average ppm Casein Std. Dev. %CV 

Mozzarella 21000 2500 12% 

Emmentaler 4400 330 8% 

Blue 16 1.6 10% 

Limburger 2700 130 5% 

Brie 39000 4000 10% 

 

 The analysis of retail cheeses with the Neogen Veratox® Total Milk kit displayed similar 

results to the r-Biopharm RIDASCREEN® Fast Casein kit.  The Blue cheese extract displays the 

lowest concentration of milk residues (410 ±40 ppm casein, Table 5.6).  Brie and Mozzarella 

cheese display the highest detectable concentration of milk residues in the extracts at 7,300 ± 

1,500 ppm casein and 7,000 ± 460 ppm casein, respectively.  The highest level of variation is 

observed with the Neogen Veratox® Total Milk kit during the analysis of Brie cheese extracts, at 

21% CV.   

Table 5.6. Neogen Veratox® Total Milk ELISA analysis of retail cheeses.   

Neogen Veratox® Total Milk ELISA Results 

Sample Detected Average ppm Casein Std. Dev. %CV 

Mozzarella 7000 460 7% 

Emmentaler 2300 210 9% 

Blue 410 40 10% 

Limburger 6200 250 4% 

Brie 7300 1500 21% 

  

 The Neogen Veratox® Casein kit detects the highest concentration of milk residues in 

Limburger cheese extract at 21,000 ± 2,900 ppm casein (Table 5.7).  Milk residue is not detected 

in Blue cheese extracts using the Neogen Veratox® Casein kit.  The lower limit of quantitation 
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for this kit is 2.5 ppm NFDM or approximately 0.7 ppm casein).  Mozzarella displays the second 

highest level of detected milk residues of the cheeses evaluated (12,000 ± 1,200 ppm casein).  

The highest variation in extracts is observed in Brie cheese, at 24% CV.   

Table 5.7. Neogen Veratox® Casein ELISA Analysis of Retail Cheeses.  

Neogen Veratox Casein ELISA Results 

Sample Detected Average ppm Casein Std. Dev. %CV 

Mozzarella 12000 1200 10% 

Emmentaler 4200 460 11% 

Blue BLQ
a 

. . 

Limburger 21000 2900 14% 

Brie 2100 500 24% 
aBLQ indicates a reading below the level of quantitation for the kit.  See Table 5.1 for limits of quantitation. 

 

 The ELISA Systems™ Casein kit detected high levels of milk residue in all cheese 

extracts except for Blue cheese where no detectable casein was found.  The limit of quantitation 

(LOQ) in this kit is 1 ppm NFDM (approximately 0.28 ppm casein, see Table 5.1).  The highest 

levels of milk residue were observed in Mozzarella and Limburger cheese at 40,000 ± 2,300 and 

33,000 ± 2,100 ppm casein, respectively (Table 5.8).  Low levels of variation were observed 

among all cheese extracts, with the highest %CV at approximately 6% for both Mozzarella and 

Limburger cheese.  Comparatively, this kit displays the lowest level of variation among all the 

kits evaluated (less than 6%, see Table 5.8).   

Table 5.8. ELISA Systems™ Casein results of retail cheese analyses.  

ELISA Systems™ Casein ELISA Results 

Sample Detected Average ppm Casein Std. Dev. %CV 

Mozzarella 40000 2300 6% 

Emmentaler 14000 90 1% 

Blue  BLQ
a
  .  . 

Limburger 33000 2100 6% 

Brie 14000 160 1% 
aBLQ indicates a reading below the limit of quantitation for the kit. See Table 5.1 for limits of quantitation. 
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 While both the r-Biopharm RIDASCREEN® Fast Casein and the Neogen Veratox® 

Total Milk kits primarily detect residues of κ-casein (Chapter 3), they provide different estimates 

of the levels of milk residues present in the cheese extracts.  The r-Biopharm Casein kit detects 

higher levels of milk residues than the Neogen Veratox Total Milk kit for Mozzarella, 

Emmentaler, and Brie cheeses (21,000 ± 2,500 ppm casein, 4,400 ± 330 ppm casein, and 39,000 

± 4,000 ppm casein versus 7,000 ± 460, 2,300 ± 210, and 7,300 ± 1,500 ppm casein, respectively) 

(See Tables 5.5 and 5.6).  Only two kits, Neogen Veratox® Total Milk and r-Biopharm 

RIDASCREEN® Fast Casein, are capable of detecting milk residues in Blue cheese extracts (410 

± 40 and 120 ± 5 ppm casein, respectively, see Tables 5.5 and 5.6).  The ELISA results confirm 

that Blue cheese has the highest level of proteolysis among the evaluated cheeses.    

 

Figure 5.3. Commercial Milk ELISA detection of retail cheeses. rBFC: r-Biopharm 

RIDASCREEN® Fast Casein; NVTM: Neogen Veratox® Total Milk; NVC: Neogen Veratox® 

Casein; ESC: ELISA Systems™ Casein. NVTM and NVC values converted to ppm NFDM using 

Equation 5.2.  Error bars represent standard deviation.  
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5. Discussion 

 Previous analyses with purified protein residues revealed the sensitivities of commercial 

milk ELISA kits.  Relevant information regarding kit sensitivities to milk residues is displayed in 

Table 5.9.  Briefly, the r-Biopharm RIDASCREEN® Fast Casein kit primarily detects κ-casein.  

The Neogen Veratox® Total Milk kit is mainly sensitive to κ-casein but also displays some 

sensitivity to α- and β-casein.  The Neogen Veratox® Casein kit detects α- and β- casein with 

equal sensitivity (approximately 100% of the level of purified casein present).  The ELISA 

Systems™ Casein kit only detects α-casein.   

Table 5.9. Sensitivities of ELISA kits to purified casein fragments. For example, The r-

Biopharm RIDASCREEN® Fast Casein kit reports the detection of approximately 10% of  the 

level of β-casein present and 100% of the level of κ-casein present.   

 Level of Detection
 

Kit α-casein β-casein κ-casein 

r-Biopharm RIDASCREEN® Fast Casein 0% 10% 100% 

Neogen Veratox® Total Milk 10% 10% 50% 

Neogen Veratox® Casein 100% 100% 0% 

ELISA Systems™ Casein 90% 0% 0% 

 

 Mozzarella and other pasta-filata cheeses display minimal proteolysis.  This type of 

cheese is produced with minimal ripening (0-3 weeks) and is favored for its characteristic stretchy 

texture and fresh dairy flavor (Fox and McSweeney, 1996; Hutkins, 2008).  As Mozzarella is 

cooked and stretched at high temperatures, chymosin is extensively denatured prior to ripening.  

Proteolysis in Mozzarella cheese is therefore dominated by the activity of plasmin on β-casein 

(Upadhyay et al., 2004).  None of the ELISA kits evaluated provide similar estimates of the 

concentration of milk residues remaining in Mozzarella cheese.  The extent of proteolysis in 

Mozzarella, although limited, is likely best estimated by the Neogen Veratox® Casein kit, as it 

displays sensitivity to epitopes of β-casein.   Due to the deactivation of chymosin during the 

cooking step of Mozzarella, kits that detect α-casein, such as the ELISA Systems™ Casein or the 
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Neogen Veratox® Casein kit, likely provide the best estimates milk residue concentration for this 

cheese as α-casein is likely to remain more intact.  

  Emmentaler and other Swiss-type cheeses develop characteristic flavors and air pockets, 

or ‘eyes’ through the action of propionic acid-producing bacteria.  Emmentaler cheese typically is 

made using three starter cultures: Streptococcus thermophilus, Lactobacillus helveticus, and 

Propionibacterium freudenreichii subsp. shermanii (Hutkins, 2008).   Because these cheeses are 

cooked at a high temperature (about 55
o
C) during manufacture, many of the indigenous and 

added proteases are deactivated prior to ripening.  Emmentaler cheese is described to have 

decreased proteolytic activity compared to other cheeses that are aged for similar lengths of time 

(Sousa et al., 2001).  Research has revealed that primary proteolysis in Emmentaler cheese is 

characterized by high plasmin activity and corresponding degradation of β-casein (Grappin et al., 

1999; Sousa et al., 2001).  Chymosin is extensively denatured during the high-temperature 

cooking step and displays minimal proteolytic activity in Swiss-type cheeses (Fox and 

McSweeney, 1996).   As with Mozzarella, the extent of proteolysis in Swiss-type cheeses is best 

characterized using the Neogen Veratox® Casein kit.  The assessment of remaining milk residues 

for food safety purposes is probably best estimated in Emmentaler and Swiss-type cheeses by kits 

that detect α-casein, specifically the Neogen Veratox® Casein and ELISA Systems™ Casein kit.    

 Extensive proteolysis occurs during manufacturing of Blue cheese and blue-veined 

varieties of cheese due to the proteolytic action of Penicillium roqueforti.  In mature Blue cheese, 

α- and β-casein are completely hydrolyzed (Fox and McSweeney, 1996; Upadhyay et al., 2004).   

Brie cheese is ripened by a mold of the same genus used in the ripening of blue-veined cheese; 

Penicillium camemberti.  Both P. roquefortii and P. camemberti secrete aspartyl and 

metalloproteinases, with targeted specificity for αs1- and β-casein, respectively (Spinnler and 

Gripon, 2004).  Following sporulation of P. roqueforti in Blue cheese at approximately 15 days of 

ripening, proteolytic activity becomes dominated by extracellular proteases and the protein 
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degradation profile is dramatically changed (Spinnler and Gripon, 2004).  Proteolysis is more 

extensive in Blue cheese than Brie (Upadhyay et al., 2004; Zarmpoutis et al., 1997).  This 

research indicates that both Blue and Brie cheese may be best detected by ELISA kits with kits 

specific for κ-casein.  Results demonstrate that the Neogen Veratox® Total Milk and r-Biopharm 

RIDASCREEN® Fast Casein kit are both capable of detecting κ-casein residues in Brie and Blue 

cheese.  Substantial milk residues in Brie cheese are detected using all ELISA kits showing that 

proteolysis of α- and β-casein is incomplete during manufacture of Brie cheese.  Milk residues of 

Blue cheese are only detected with the kits that target κ-casein epitopes which confirms that 

proteolysis of α- and β-casein is extensive in Blue cheese. 

 Limburger cheese is a bacterially smear-ripened cheese, employing Brevibacterium 

linens to develop its characteristic odor and flavor.  Although only low numbers of B. linens can 

be isolated from the surface of ripening Limburger cheese, its presence is crucial for proper 

development of characteristic organoleptic properties.  B. linens primarily targets αs1- and β-

casein.    All kits detect milk residues in Limburger cheese at high level.  Although proteolysis in 

Limburger cheese has not been extensively studied, this research indicates incomplete proteolysis 

of α- and β-casein in this cheese.  Sufficient concentrations of reactive milk residues exist in the 

Limburger extracts to detect with current commercial milk ELISA methods and SDS-PAGE.   

 The results of the three protein assay methods (Microtannin, Micro-Lowry and A280) did 

not correlate with the level of proteolysis among the evaluated cheese samples.  Two of the 

assays, the Micro-Lowry and A280, rely on intact protein for determining the protein concentration 

in the samples.  The Microtannin assay also has the capability of detecting free amino acids.  All 

assays determine the concentration of soluble protein in an extract.  However, these methods were 

not helpful in assessing the extent of proteolysis in the various cheeses. Higher levels of 

proteolysis should correspond to increased levels of free amino acids in cheese extracts (Kuchroo 

and Fox, 1982).   
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 While cheeses display increased characteristics of ripening over time (soluble nitrogen, 

free amino acids, etc.), the level of degradation does not always correspond to age.  The levels of 

proteolysis observed in cheeses are driven by the activity of proteinases.  While Parmesan-

Reggiano cheese is often aged for several years or more, Blue cheese is considered to have a 

higher degree of proteolysis, even though it is aged for only about 3 months (Upadhyay et al., 

2004).  The activity of enzymes, both indigenous and exogenous, drives the patterns and extent of 

proteolysis in cheese.  Patterns of proteolysis in different varieties of cheese are developed by 

enzymatic activity.  Enzymatic activity does not remain consistent in cheeses throughout aging.   

 Biochemical changes that occur during ripening are capable of altering the pH of cheeses 

and affecting the solubility of proteins in solution.  Partly due to the dramatic differences in pH 

among cheese varieties and the resulting effects on solubility and extraction of milk proteins, a 

universal method to evaluate proteolysis has not been established or widely adopted.  Protein 

concentration assays do not appear to appropriately indicate the level of proteolysis in cheese.  

The cheeses with higher levels of proteolysis do not necessarily exhibit increased levels of free 

amino acids or soluble protein in extracts as analyzed with the Microtannin, Micro-Lowry, and 

A280 assays. 

 The various milk ELISA methods appear to have potential uses in monitoring the 

proteolysis of various cheeses during ripening because of their different sensitivities to various 

casein fractions.  In cheeses where chymosin is inactivated by heat and subsequent proteolysis is 

dominated by plasmin activity (Mozzarella and Emmentaler), the specificity of the Neogen 

Veratox® Casein kit for β-casein may provide a specialized approach to monitor proteolysis 

during ripening.  Additionally, the combination of ELISAs specific to κ-casein such as Neogen 

Veratox® Total Milk and r-Biopharm RIDASCREEN® Fast Casein kits with ELISAs sensitive 

to α- and β-caseins such as Neogen Veratox® Casein kit may offer an approach to monitor 

proteolysis in cheeses subjected to more extensive proteolysis such as Brie and Blue. 
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 Currently available commercial ELISA kits are capable of detecting milk residues in 

most cheese extracts although only certain ELISA methods are capable of detecting residues in 

blue-veined and other mold-ripened cheeses.  Thus milk ELISAs can be used in the food industry 

to monitor cross contact where equipment is shared between formulations containing cheese and 

other non-milk formulations.  However, the selection of the most appropriate ELISA methods for 

such analyses may depend upon the variety of cheese in the formulation. 

 Although cheese manufacturing seems to lower or even eliminate the concentrations of 

the major allergenic casein fractions from milk, the effects of fermentation and ripening of cheese 

on its residual allergenicity cannot be determined by ELISA methods.  Proteolytic fragments of 

casein that are not reactive with the antibodies in the ELISA kits might still have the ability to 

react with milk-specific IgE antibodies in milk-allergic individuals and provoke reactions.  Oral 

challenge studies with cheese would be needed to evaluate their allergenicity.  However, the 

dramatic loss of α- and β-casein residues in blue-veined cheeses suggests that they might have 

diminished allergenic activity.     
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CHAPTER 6. THE DETECTION OF MILK RESIDUES IN ENZYME-MODIFIED 

CHEESES USING COMMERCIAL ENZYME-LINKED IMMUNOSORBENT ASSAY 

KITS 

1. Abstract 

 Proteolysis in foods poses a challenge for the detection of protein residues with enzyme-

linked immunosorbent assays (ELISAs).  Proteolytic enzymes degrade food proteins that are 

targeted by such assays and results can be misleading.  Cross-contamination of food products 

with residues of foods or ingredients from allergenic sources may go undetected with commercial 

ELISA kits if those foods or ingredients have been subject to proteolysis.  Thus, commercial 

ELISA kits may not be useful in such situations to verify and monitor product safety and allergen 

control policies, although this has not been formally evaluated.  This research seeks to evaluate 

the capabilities of commercial milk ELISA kits to detect milk residues in a variety of enzyme-

modified cheeses.  While few studies have been performed on the allergenic relevance of 

fermented cheese proteins to elicit reactions in allergic consumers, the widespread use of cheese 

in packaged foods and the prevalence of milk allergy render cheese an important food ingredient 

for analysis.  Five enzyme-modified cheese (EMC) samples were analyzed with SDS-PAGE and 

four commercially- available milk ELISA kits.  ELISA kits have differing antibody specificities 

and not all commercial assays are able to detect milk residues in EMC samples.  All EMCs 

display high levels and unique patterns of proteolysis.  The r-Biopharm RIDASCREEN® Fast 

Casein kit displays superior detection of milk residues in EMC extracts compared to other 

evaluated kits. Alternatively, the ELISA Systems™ Casein kit was unable to detect milk residues 

in any of the EMC samples evaluated.  While the application of ELISA kits for detecting milk 

residues in foods as a result of the use of EMCs as food ingredients can still be recommended, the 

selection of a suitable milk ELISA kit is paramount and dependent upon results obtained with 

positive control samples.   
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2. Introduction 

 Enzyme-modified cheeses (EMC) are intensely-flavored and inexpensive derivatives of 

cheese.  EMCs are subjected to intense processing techniques that lead to dramatic changes in 

structure, composition, biochemical characteristics, texture, and flavor (Guinee and Kilcawley, 

2004).  They are typically applied to food products in small amounts to add or augment cheese 

flavor. 

 EMCs are produced through the incubation of cheese or curd with proteolytic and 

lipolytic enzymes (Kilcawley et al., 1998).  EMCs are typically produced in slurry-type systems, 

but can be distributed and used in various product formulations in slurry or dried powder forms.  

The intensity of cheese flavor in EMCs typically ranges from 15-30 times higher than the level of 

flavor in natural cheese (Kilcawley et al., 1998).   

 The application of EMCs for use in packaged foods is extensive and includes use in many 

products, including cheese substitutes, cheese powder, soups, sauces, dips, dressings, and snack 

coatings (Guinee and Kilcawley, 2004).  EMC flavors have been produced to resemble many 

cheeses including Cheddar, Blue, Swiss, Mozzarella, Parmesan, Gouda, Camembert and others 

(Guinee and Kilcawley, 2004; Moskowitz and Noelck, 1987).    

 The manufacture of EMCs begins with traditionally-produced cheese curds of the desired 

variety.  Water and emulsifying salts are added to the curd and the mixture is blended to break up 

the protein curd matrix and increase the surface area for enzyme activity.  The cheese paste is 

pasteurized to inactivate any residual enzyme activity from the manufacture of the cheese curds.  

Proteases, peptidases, and lipases are added to the slurry to hydrolyze caseins and fat.  Typically, 

the selected proteases are derived from bacteria and molds, primarily of the genera Bacillus or 

Aspergillus (Guinee and Kilcawley, 2004).  Because Bacillus proteases lack the debittering 

activity of aminopeptidases, Aspergillus or Lactococcus lactis derived proteolytic enzymes are 
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also added to degrade any bitter peptides generated during the production of EMCs (Guinee and 

Kilcawley, 2004).    Lipases also play a critical role in producing characteristic cheese flavors and 

have been extensively reviewed elsewhere (Guinee and Kilcawley, 2004; Kilcawley et al., 2002; 

Kilcawley et al., 1998).  The enzymes and cheese mix are incubated and slowly agitated for 

several days (1-4) at a moderate temperature (25
o
C-45

o
C) (Guinee and Kilcawley, 2004).  After 

the incubation, the slurry mix is pasteurized and homogenized again to eliminate residual enzyme 

activity and preserve the developed flavors before storage.  Depending on the desired application, 

the slurry can be dried to a powder to increase shelf life, stability, and mixing capabilities.   

 Individual manufacturers do not typically reveal the source or specificity of enzymes 

used to produce EMCs.  The combinations of enzymes, their activities, and specificities used to 

produce the unique characteristics of individual EMCs are proprietary information.   

 Although EMCs undergo extensive proteolysis during production, intact proteins and 

protein fragments (peptides) may persist in the final product.  It is unknown whether these 

degraded protein fragments retain allergenic activity.  Current commercially-available 

immunoassay methods for allergen detection may not be sufficiently sensitive to detect residues 

in foods subjected to extensive proteolysis, although this has not been previously studied.  

Analyses of ELISA capabilities to detect milk residues in retail cheeses revealed that residues are 

not detected in cheese that are subjected to extensive proteolysis with all evaluated ELISA kit 

methods.  If similar detection deficiencies occur with ELISA methods with EMCs, these methods 

may not be useful in the validation of allergen control regimens in manufacturing settings that use 

enzyme-modified cheeses.   

 The widespread use of EMCs in the food industry suggests the potential exists for cross-

contamination of milk residues, especially in manufacturing settings.  Additional risk to the 

allergic consumer may accrue if current analytical methods are unable to detect milk residues 
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from EMCs that display extensive proteolysis.  This research seeks to highlight the capability of 

commercial ELISA kits for detecting milk residues in EMCs subjected to extensive proteolysis.   

3. Materials and Methods 

Sample Procurement and Preparation 

 Five varieties of slurry-form enzyme-modified cheese were kindly donated by Givaudan 

Corporation (Cincinnati, Ohio).  The samples included four types of EMC of the Cheddar type 

and one sample of EMC of the skim milk type.  Information provided on the cheese sample labels 

is listed in Table 6.1. Designations for the samples are listed in column 1of Table 6.1 and will be 

used throughout the chapter.  Cheeses were warmed, stirred, and were distributed into several 

small containers.  Aliquots were stored at -20
o
C until the time of analysis.     

Table 6.1. Enzyme-Modified Cheese Samples  

Designation Sample Lot Number 

EMC-A Skim Milk Cheese- Proteolytic- (protease, peptidase) 6309326606 

EMC-B Cheddar Cheese- Mild (protease, lipases) 6309227906 

EMC-C Cheddar Cheese- Medium Sharp (proteases, lipase) 6310404110 

EMC-D Cheddar Cheese- Sharp (protease, lipases) 6310506872 

EMC-E Cheddar Cheese- Proteolytic (protease) 6310509009 

 

 Briefly, approximately 30 g of each EMC was thawed and a thin layer was spread evenly 

within a plastic zip-top bag.  Bags were laid horizontally and rapidly frozen in a -80
o
C freezer for 

approximately 24 hours.  Frozen samples were fractured into small pieces and were finely ground 

using a Spex 6850 CentriPrep Freezer/Mill (Metuchen, NJ).  Milled samples were placed into 

plastic zip-top bags and transferred to a -20
o
C freezer for storage until the time of analysis.   

 For samples intended for SDS-PAGE, approximately 5 g of each sample was weighed 

into a 50 mL Falcon™ tube (BD Biosciences, San Jose, CA).  20 mL of 5% sodium chloride 

solution was added to each tube and the samples were mixed by a pulse-vortex technique for 
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approximately 10 seconds.  Samples were laid horizontally on a Barnstead Thermolyne 

LabQuake Shaker and were extracted for 60 minutes at room temperature with shaking (Thermo 

Fisher Scientific, Rockford, IL). After extraction, samples were centrifuged at 3,020 x g for 30 

minutes at 10
o
C using an IEC Centra MP4R Centrifuge (International Equipment Company, 

Needham Heights, MA). The aqueous layer was removed to a new 50 mL Falcon™ tube and the 

pellet and fat layer were discarded.  Extracts were frozen at -20
o
C until the time of analysis.   

 EMC samples were prepared for ELISA analysis by defatting using a cold hexane 

extraction procedure.  Approximately 20 g of freezer/milled EMC cheese was weighed into a 500 

mL glass Erlenmeyer flask. 180 mL of cold hexanes (-20
o
C) was poured over the samples.  Flasks 

were briefly swirled to mix and placed in an ice bath on a Barnstead Thermolyne LabQuake 

Horizontal Shaker in a fume hood. Flasks were shaken for 30 minutes.  The hexane and fat layer 

was decanted into an appropriate waste disposal container.  Another 180 mL of cold hexane was 

added to the flasks.  Flasks were again swirled to mix and returned to the shaking ice bath for an 

additional 30 minute incubation.  The hexane and fat layer was again decanted and a final wash of 

180 mL of cold hexane was added to the flask, swirled, and mixed with shaking for 30 minutes.  

The final solution was swirled to mix and then gravity filtered using a fluted Whatman size 1 

filter paper in a glass funnel in a fume hood.  The filter paper and retained sample were removed 

from the funnel after draining and laid flat to dry overnight in the fume hood.  After samples were 

dried, they were crushed and finely ground using a Mr. Coffee IDS77 Coffee Grinder.  Dried and 

defatted samples were placed in plastic zip-top bags and stored at -20
o
C until the time of analysis.   

 Defatted samples for ELISA analysis were solubilized in 5% sodium chloride prior to 

ELISA extraction.  Briefly, 1 g of dried and defatted cheese was weighed into a 15 mL 

polypropylene Falcon™ tube and 9 mL of 5% sodium chloride was added.  Tubes were mixed 

using a pulse-vortex technique.  Samples were solubilized with shaking on a Barnstead 

Thermolyne LabQuake Horizontal Shaker for approximately 3 hours.  Extracts were centrifuged 
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in an IEC Centra MP4R Centrifuge for 30 minutes at 10
o
C and 3,020 x g.  The aqueous layer was 

removed to a new 15 mL Falcon™ tube, and the pellet and fat layer were discarded.   

Determination of Protein Concentration 

 The soluble protein concentration of extracts prepared for SDS-PAGE was evaluated 

using the Micro-Lowry, Microtannin and A280 assays.  A brief review of these methods is 

provided (see Chapter 5 for detailed discussion on these methods).   

 The Micro-Lowry assay was performed according to Lowry et al. (1951) with 

modifications for application in a 96-well microtiter plate.  The Lowry protein assay is a 

colorimetric dye-binding assay that relies on the addition of Folin-Ciocalteu reagent to samples to 

quantitate the concentration of soluble protein.  The reduction of iron complexes with protein to 

facilitate a colorimetric reaction that can be read with a spectrophotometer.  The standard curve 

was constructed with diluted solutions of Bovine Serum Albumin (BSA) in the range of 0-75 

μg/mL, and the concentration of unknown samples was interpolated from the standard curve.   

 The Microtannin assay was performed according to procedure developed by Mejbaum-

Katzenellenbogen and Dobryszycka (1959) and modified by Trayer and Trayer (1988).  Our 

Microtannin procedure was modified slightly to adapt for use in a 96-well microtiter plate format.  

In the assay, protein is precipitated using a solution of tannic acid.  Proteins, peptides, and free 

amino acids containing phenol groups react with tannic acid and precipitate out of solution.  

Precipitated proteins and fragments are suspended in solution with the addition of a dilute gum 

Arabic solution.  The detection of protein in the assay is due to reflectance of the precipitated 

protein that is held in solution.  Like the Micro-Lowry assay, BSA is used to construct a standard 

curve in the range of 0-200 μg/mL.  The concentration of unknown samples is interpolated from 

the standard curve.   
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 The A280 assay is one of the simplest assays used for determining protein concentration in 

samples.  The absorbance of solubilized samples is read at 280 nm and is expressed in units of 

BSA equivalents.  Because ribonucleic acids also absorb at 280 nm, the Warburg-Christian 

method was applied to results to correct the data (Warburg and Christian, 1942).  Because only 

ribonucleotides absorb radiation at 260 nm, the ratio of A260/A280 can be applied to the data to 

determine the contribution of protein to the results and provide a more accurate estimate of 

protein concentration.  The absorbance of extracts at A280 was read using a Nanodrop 2000c 

Spectrophotometer (ThermoScientific, Rockford, IL).   

Electrophoresis 

 Extracts prepared as described above were used for SDS-PAGE.  Extracts were prepared 

under reducing conditions according to Laemmli (1970).  Briefly, 27 mg of dithiothreitol (DTT) 

was weighed into a 1.5 mL Safe-Lock™ Eppendorf microcentrifuge tube.  500 mL of Laemmli 

sample buffer was added to the DTT and mixed thoroughly using a pulse-vortex technique (Bio-

Rad Laboratories, Hercules, CA).  25 μL of each sample extract was pipetted into a 1.5 mL 

Eppendorf tube and mixed with 25 μL of the Laemmli sample buffer and DTT mixture.  Samples 

were boiled for 5 minutes in a 100
o
C water bath followed by cooling to room temperature.  

Samples were then centrifuged at 16,200 x g for 5 minutes in a ThermoScientific Legend Micro 

17 centrifuge (ThermoScientific, Rockford, IL).   

 Four gels were run, each with approximately 10, 15, 50, and 100 μg of protein loaded in 

each lane.   Load volumes were estimated by averaging the results from the Micro-Lowry and 

A280 assays.  Published research has not indicated the superiority of either protein assay in the 

detection of cheese protein or EMC protein.  The Microtannin results were excluded from the 

estimate of load volume because the results were dramatically lower than those observed with the 

other assays.  Protein separation was performed using 18% Tris-HCl precast polyacrylamide 
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Ready Gels® for Mini-Protean® systems (Bio-Rad Laboratories, Hercules, CA).  The first lane 

of each well was loaded with 5 μL of Precision Plus Protein™ Dual X-tra Standard (Bio-Rad 

Laboratories, Hercules, CA) to serve as a molecular weight marker.  Unused lanes on the gels 

were loaded with 5uL of sample buffer to improve electrophoretic profiles.   

 Gels were run in a Bio-Rad Mini-Protean® Tetracell electrophoresis unit at a constant 

voltage of  200V for approximately 35-45 minutes, or until the dye front reached the bottom of 

the gel.  After running, gels were removed from their plastic cassettes, rinsed in several changes 

of d2H2O, and fixed using 60% trichloroacetic acid (w/v) and 17.5% 5-sulfosalicylic acid (w/v) 

diluted 1:5 with distilled, reverse osmosis water (Sigma-Aldrich, St. Louis, MO) for 30 minutes.  

Fixed gels were rinsed in several changes of d2H2O and stained overnight in Coomassie Brilliant 

Blue R-250 staining system (Bio-Rad Laboratories, Hercules, California) with shaking on a 

Barnstead Thermolyne LabQuake Horizontal Shaker.  After staining, gels were destained for 3-4 

hours in several changes of Coomassie Brilliant Blue R-250 Destaining Solution, or until the 

desired level of destaining was reached (161-0438, Bio-Rad Laboratories, Hercules, CA).  The 

destain solution used is a proprietary formula with estimated content of 50-100% water, 20-35% 

methanol, and 10-20% acetic acid.  Gels were briefly rehydrated for approximately 10 minutes in 

a solution of 25 mM Tris and 192 mM Glycine at pH 8.3 and imaged with UV/Fluorescence 

using a Kodak Gel Logic Imaging System equipped with CareStream Molecular Imaging 

Software (Eastman Kodak, Rochester, NY).     

Enzyme-Linked Immunosorbent Assays  

 The commercial ELISA kits used for analysis of EMCs in this study included the Neogen 

Veratox® Total Milk, Neogen Veratox® Casein, ELISA Systems™ Casein, and r-Biopharm 

RIDASCREEN® Fast Casein kits.  Neogen Veratox® kits were obtained from Neogen 

Corporation (Lansing, Michigan).  The ELISA Systems™ Casein kit was obtained from the 
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manufacturer (Queensland, Australia).  r-Biopharm® kits (Darmstadt, Germany) were obtained 

from a distributor, Pi Bioscientific (Seattle, Washington). Enzyme-linked immunosorbent assays 

(ELISAs) were carried out according to product inserts provided by each kit manufacturer.  Both 

the Neogen Veratox®  Casein and Total Milk kits report data in units of parts per million of non-

fat dry milk (ppm NFDM).  The ELISA Systems™ Casein and r-Biopharm RIDASCREEN® 

Fast Casein kits report results in units of ppm casein.  For comparison purposes, the Neogen® 

results were converted to ppm casein using Equation 6.1. 

 EMC samples were prepared for ELISA analysis as described above.  Defatted EMCs 

were suspended 1:10 in 5% sodium chloride solution prior to extraction with ELISA kits.  1 mL 

of each EMC sample was extracted in triplicate according to instructions provided by each 

manufacturer.  Briefly, 1 mL of aqueous EMC was pipetted into a polypropylene Falcon™ tube.  

The appropriate amount of pre-warmed (60
o
C) kit-specific extraction buffer was added to each 

sample and mixed using a pulse-vortex technique.  Samples were extracted in a 60
o
C shaking 

water bath for the appropriate amount of time according to each kit’s protocol.  Samples were 

cooled to room temperature and a 1 mL aliquot of each extraction was centrifuged in a 1.5 mL 

Eppendorf microcentrifuge tube in a Thermo Legend Micro 17 centrifuge at 16,200 x g for 5 

minutes.   

 ELISAs were performed according to manufacturer instructions.  Briefly, 100 μL of each 

EMC extraction was applied to antibody-coated wells in triplicate.  Standard solutions of known 

concentration were provided with the kits and were also applied to antibody-coated wells.  Well 

plates were incubated for 10-15 minutes, depending on manufacturer protocol.  After the 

incubation, wells were washed several times by filling each well with a dilute solution of PBS-

Tween and inverting the plates to dump the residual buffer.  This was repeated several times, as 

recommended by the manufacturer.  After all washes, plates were inverted onto a clean paper 

towel and excess wash buffer was tapped out.  100 μL of enzyme-labeled conjugate antibody was 
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added to each well and the plates were incubated for an additional 10-15 minutes.  Plates were 

washed and tapped dry as described previously with PBS-Tween wash buffer.  100 μL of 

substrate solution was added to each well and plates were incubated for a final 10-15 minutes 

while a colorimetric reaction occurred. 100 μL of acidic stop solution was added to each well to 

prevent further enzymatic activity.  The resulting absorbance of each well was read at the 

appropriate wavelengths using a BioTek Eon Microplate Spectrophotometer equipped with Gen5 

v 2.0 Software (Winooski, VT).  Standard curves were constructed using the absorbances of the 

standard solutions.  The concentration of residues in unknown samples was interpolated from the 

constructed curve.   

Data Analysis and Criteria for Acceptable Performance of ELISA kits 

 Standard curves for the Micro-Lowry and Microtannin assays were constructed in 

GraphPad Prism v4.03.  The concentrations of the soluble milk protein  in EMC samples were 

interpolated from the standard curves and values were compiled in Microsoft Excel.  For ELISA 

analysis, the appropriate curve fits were determined in SAS v 9.2 using PROC GLIMMIX 

regression analysis. All ELISA standard curves were appropriately modeled using a quadratic 

response curve.  The absorbance values of unknown samples were fit to the curves and the 

appropriate concentration was interpolated.  Where necessary, conversions were applied to 

compare kit data.  Equations 6.1 and 6.2 were used to transform NFDM concentrations to casein, 

and vice versa. 

Equation 6.1. Converting ppm NFDM to ppm casein 
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Equation 6.2. Converting ppm casein to ppm NFDM 

          
                  

              
 

          

                     
                     

 Previous work has documented that commercial ELISA kits perform differently and often 

inconsistently both within and among kit lots (see Chapters 2 and 3).  Instability of kit 

components, especially standard solutions used to construct standard curves, contribute to high 

levels of variation among ELISA results.  Although universal criteria for validation of 

commercial ELISA kits has been suggested, it has not been widely implemented (Abbott et al., 

2010).  For the purposes of this research, variation will be measured and expressed as percent 

coefficient of variation (%CV).  Acceptable intra-sample variation is limited to %CV ≤ 20%.  

Additionally, an R
2 
≥ 0.98 was required for acceptance of the standard curve constructed from the 

manufacturer-provided standards.  If %CV conditions were not met, the assay was repeated to 

confirm variation.  Any assay with an R
2
 < 0.98 was rerun and previous data was not used.   

4. Results 

Determination of Protein Concentration 

 Cumulative results of the protein assays are displayed in Figure 6.1. 

 Results of the Micro-Lowry assay are listed in Table 6.2.  The highest protein 

concentration as determined by the Micro-Lowry Assay is 25.8 ± 0.7 μg/μL protein and was 

observed in EMC-A (skim milk cheese, Table 6.2).  The lowest concentration of soluble protein 

was found in the EMC-E (proteolytic Cheddar Cheese) sample (11.0 ± 5.0 μg/μL protein).  A 

high %CV was observed among the protein concentrations measured in EMC-E samples 

(approximately 46%, Table 6.2).   
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Table 6.2. Micro-Lowry Analysis of EMC Extracts 

Micro-Lowry Protein Assay 

Sample Concentration (μg/μL) Std. Dev %CV 

EMC-A 22.6 2.4 11% 

EMC-B 25.8 0.7 3% 

EMC-C 15.8 3.0 19% 

EMC-D 20.6 5.4 26% 

EMC-E 11.0 5.0 46% 

  

  Substantially lower soluble protein concentrations were observed in the EMC extracts 

using the Microtannin Assay (Table 6.3).  The highest level of protein was observed in the EMC-

D extract (1.0 ± 0.4 μg/μL protein, Table 6.3).  The lowest concentration of protein was measured 

in EMC-E, cheddar cheese with protease (0.1 ± 0.01 μg/μL protein).  High variation was 

observed in EMC-D, the sharp Cheddar cheese sample produced with protease and lipase.   

Table 6.3. Microtannin Analysis of EMC Extracts  

Microtannin Protein Assay 

Sample Concentration (μg/μL) Std. Dev %CV 

EMC-A 0.6 0.07 11% 

EMC-B 0.4 0.01 1% 

EMC-C 0.5 0.01 1% 

EMC-D 1.0 0.36 35% 

EMC-E 0.1 0.01 6% 

 

 In the A280 assay, the highest concentrations of protein were found in EMC-E and EMC-

A, at 15.4 ± 0.4 μg/μL and 15.1 ± 0.3 μg/μL, respectively (Table 6.4).  EMC –E is the proteolytic 

cheddar, while EMC-A is the proteolytic skim milk cheese.  The lowest level of protein was 

detected in EMC-D, corresponding to the Sharp Cheddar Cheese.  Acceptable levels of variation 

were observed among analysis of replicates (%CV≤ 20%).   
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Table 6.4. A280 Results from EMC Extracts 

A280 Protein Concentration 

Sample Concentration (μg/μL) Std. Dev %CV 

EMC-A 15.1 0.3 2% 

EMC-B 8.4 0.3 4% 

EMC-C 10.6 0.9 8% 

EMC-D 7.8 1.2 16% 

EMC-E 15.4 0.4 3% 

  

 

Figure 6.1. Cumulative Results of Protein Concentration for EMCs.  Error bars represent 

standard deviation. 

Electrophoresis 

 Electrophoresis was performed as described above.  Images of gels loaded with 15 μg and 

100 μg of protein per lane are depicted below in Figures 6.2 and 6.3. In Figure 6.2, some very 
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faint bands are visible in lanes 2-5, corresponding to EMC- A, B, C, and D.  Only two bands 

(estimated MW of 13 kDa) in lanes 4 and 5) were consistently observed among cheeses.  No 

bands are observed in lane 6, EMC-E, the proteolytic Cheddar made with only protease.  None of 

the bands in any sample appear particularly intense, and it is difficult to judge and compare the 

level of proteolysis among EMC samples based on the gels alone.  The lack of observed bands in 

lane 6 would indicate that this EMC may have undergone the most proteolysis.  The highest 

molecular weight protein band is observed at about 30 kDa in Lane 5, corresponding to Sharp 

cheddar cheese produced with protease and lipase.  Although some slight shading appears in the 

gel below 10 kDa, this is likely a remnant of staining, rather than the presence of low molecular-

weight peptides.   

 

Figure 6.2. Enzyme-Modified Cheese 15 μg of protein loaded per lane.  LaneX: Molecular 

weight marker, Lane 2: EMC-A, Lane 3: EMC-B, Lane 4: EMC-C, Lane 5: EMC-D, Lane 6: 

EMC- E. SDS-PAGE run under reducing conditions.  

 The gel loaded with 100 μg of protein per lane improves the intensity of protein bands in 

the EMC extracts (Figure 6.3).  Several residual bands are observed in lanes 3 and 6, 

corresponding to EMC-A (skim milk cheese) and EMC-D (Sharp Cheddar EMC), respectively.  
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The bands that appear in lanes 3 and 4 in Figure 6.2 appear more intense in Lanes 4 and 5 of 

Figure 6.3.  In lane 7, no bands are apparent for the EMC-E sample, corresponding to the 

Proteolytic Cheddar extract.   Shadowed staining is observed at ranges below 5 kDa in lanes 3-6.  

This staining may correspond to low molecular weight peptides. Unlike the staining observed in 

the region below 10 kDa in Figure 6.2, the staining observed in Figure 6.3 is unequal across 

lanes.  Both EMC-A and EMC-D appear to have minor bands migrating closely within the casein 

region (20-25 kDa) (Wal, 2001b).  Two closely-migrating heavy bands occur in both lanes 5 and 

6 near 13 kDa.  While these bands could correspond to the whey protein α-lactalbumin, the 

majority of the whey proteins are drained from the cheese curd prior to EMC production.  α-

lactalbumin bands are documented to migrate near 14 kDa (Wal, 2001b).   

 

Figure 6.3. Enzyme-Modified Cheese, 100 μg of protein loaded per lane. Lane X: Molecular 

weight marker. Lane 2: Blue Cheese control. Lane 3: EMC-A, Lane 4: EMC-B, Lane 5: EMC-C, 

Lane 6: EMC-D, Lane 7: EMC-E.  SDS-PAGE run under reducing conditions. 
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 Loading the Tris/Glycine gel with 100 μg of protein per lane facilitated the observation of 

low intensity protein bands.  The high amount of protein required to load in the wells in order to 

observe bands in EMC samples suggests that the protein fragments produced during the 

manufacture of EMCs are rapidly degraded by additional proteolysis and other enzymes.  The 

profiles observed in lanes 4 and 5 (EMC-B (Mild Cheddar) and C (Medium Sharp cheddar), 

respectively) display little diversity.  Two definite bands are observed in each lane; some other 

potential bands may be present.  The EMC samples in lanes 3 and 6 (EMC-A and EMC-D) 

display a diversity of peptide products and may indicate that these EMCs are produced using 

many enzymes with various specificity.   

ELISA Analysis 

 The Neogen Veratox® Total Milk kit results are displayed in Table 6.5 and Figure 6.4.  

The concentration of milk residues detected by this kit is expressed in ppm NFDM.  Equation 6.1 

was applied to the data to report results in units of ppm casein.  The limit of quantitation for this 

kit is 2.5 ppm NFDM, corresponding to approximately 0.7 ppm casein.  In two of the samples, 

EMC-C (Medium Sharp Cheddar) and EMC-E (Proteolytic Cheddar), milk residues were not 

detected.  The other three samples, EMC-A (Skim Milk Cheese), EMC-B (Mild Cheddar), and 

EMC-D (Sharp Cheddar) had detectable milk residues within the range of quantitation for the kit.   

Table 6.5. Neogen Veratox® Total Milk ELISA Results for EMCs  

Neogen Veratox® Total Milk ELISA Results 

Sample Detected Average ppm casein Std. Dev. %CV 

EMC-A 11 1.7 15% 

EMC-B 14 0.7 5% 

EMC-C BLQ
a 

  

EMC-D 16 4.5 28% 

EMC-E BLQ
a 

  
a
BLQ= Below the limit of quantitation of 2.5 ppm NFDM (0.7 ppm casein) 
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 Neogen Veratox® Casein results are expressed in Table 6.6 and Figure 6.4.  The 

concentration of detected milk protein residues is expressed by the kit in units of ppm NFDM.  

Equation 6.1 was used to convert the reported level of ppm NFDM in each sample to an 

equivalent concentration of ppm casein.  The limit of quantitation for this kit is 2.5 ppm NFDM, 

corresponding to approximately 0.7 ppm casein.  Three of the EMC extracts did not contain milk 

residues that were detectable by the Neogen Veratox® Casein ELISA kit.  EMC-A (Skim Milk 

Cheese), EMC-C (Medium Sharp Cheddar) and EMC-E (Proteolytic Cheddar) extracts had 

results below the level of quantitation (BLQ) for the kit (Table 6.6).  The EMC-B and EMC-D 

extracts had results of 11 ± 0.4 ppm casein and 14 ± 0.9 ppm casein, respectively.  The EMC-B 

and EMC-D extracts containing detectable milk residues exhibited low and acceptable levels of 

variation (3% and 6% CV, respectively).   

Table 6.6. Neogen Veratox® Casein Analysis of EMC Samples  

Neogen Veratox® Casein ELISA Results 

Sample Detected Average ppm casein Std. Dev. %CV 

EMC-A BLQ
a 

  

EMC-B 11 0.4 3% 

EMC-C BLQ
a 

  

EMC-D 14 0.9 6% 

EMC-E BLQ
a 

  
a
BLQ= Below the limit of quantitation of 2.5 ppm NFDM (0.7 ppm casein). 

 Results of EMC extract analysis using the r-Biopharm RIDASCREEN® Fast Casein kit 

are listed below in Table 6.7 and Figure 6.4.  The kit reports the results in units of ppm casein.  

The limit of quantitation for this kit is 0.5 ppm casein.  While similar to the LOQs for the Neogen 

Veratox® kits, milk protein residue was detected in all samples using the r-Biopharm 

RIDASCREEN® Fast Casein kit.  All samples displayed acceptable %CVs (see Chapter 2 for 

more information on determination of criteria for acceptable kit performance).   The lowest 

concentration of milk residue was detected in the EMC-E (Proteolytic Cheddar) extract (12 ± 1.2 
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ppm casein).  The highest concentration of milk residue was detected in the EMC-D extract (22 ± 

3.6 ppm casein).   

Table 6.7. r-Biopharm RIDASCREEN® Fast Casein Analysis of EMCs 

r-Biopharm RIDASCREEN® Fast Casein ELISA Results 

Sample Detected Average ppm casein Std. Dev. %CV 

EMC-A 19 0.9 4% 

EMC-B 18 0.7 4% 

EMC-C 16 1.0 6% 

EMC-D 22 3.6 16% 

EMC-E 12 1.2 10% 

 

 Results determined by the ELISA Systems™ Casein kit are listed in Table 6.8 and Figure 

6.4.  The LOQ for this kit is 1 ppm skim milk, corresponding to approximately 0.3 ppm casein. 

The ELISA Systems™ Casein kit reports the results in units of ppm casein, however, the kit was 

unable to detect any milk protein residues in the EMC extracts.  Theoretically, this kit has the 

most sensitivity to quantify residues of milk protein present in a sample.   

Table 6.8. ELISA Systems™ Casein Analysis of EMCs 

ELISA Systems™ Casein ELISA Results 

Sample Detected Average ppm casein Std. Dev. %CV 

EMC-A BLQ
a 

  

EMC-B BLQ
a 

  

EMC-C BLQ
a 

  

EMC-D BLQ
a 

  

EMC-E BLQ
a 

  
a
BLQ= Below the limit of quantitation of 1 ppm skim milk powder 

 In summary, the r-Biopharm RIDASCREEN® Fast Casein kit detected milk residues in 

all EMC samples, while the ELISA Systems™ Casein kit failed to detect milk residues in any of 

the samples evaluated.   The Neogen Veratox® Total Milk kit detected milk residues in EMC-

A,B, and D, corresponding to Skim Milk Cheese, Mild Cheddar, and Sharp Cheddar, 
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respectively.  The Neogen Veratox® Casein kit detected milk residues in only two of the extracts, 

EMC-B and EMC-D, corresponding to Mild and Sharp Cheddar EMCs, respectively.   

 

Figure 6.4. Cumulative ELISA Analysis of Enzyme Modified Cheese (EMC) Extracts.  

rBFC: r-Biopharm RIDASCREEN® Fast Casein kit; NVTM: Neogen Veratox™ Total Milk; 

NVC: Neogen Veratox® Casein; ESC: ELISA Systems™ Casein.  Error bars represent standard 

deviation.   

5. Discussion 

 The general protein assays conducted in this research give conflicting information 

regarding the level of proteolysis in samples.  No observable trends are present among EMC 

samples, and the protein assays do not agree on the level of protein or amino acid present in the 

extracts.  The Micro-Lowry assay suggests that the highest protein concentration is observed in 

EMC-B (Mild Cheddar cheese).  The A280 assay suggests EMC-E (Proteolytic Cheddar) contains 

the highest concentration of protein in the extract, while the Microtannin assay suggests EMC-D 

(Sharp Cheddar) is the most concentrated.  In agreement with the Microtannin assay, results from 
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ELISA analysis suggest that EMC-D (Sharp Cheddar) has the highest level of detected milk 

protein residues in the extracts in the r-Biopharm RIDASCREEN® Fast Casein, Neogen 

Veratox® Total Milk and Neogen Veratox® Casein kit.  Compared to the other protein assays, 

the Microtannin assay suggests extracts contain very low concentrations of protein.  The actual 

protein concentration of extracts is unknown.  Published research evaluating proteolysis in cheese 

often employs the Kjeldahl procedure to determine protein concentrations (Creamer, 1991).  

Additional assays must be performed to confirm the protein concentration of EMC extracts.   

Milk protein residues are not detected in all EMC samples with all commercial milk 

ELISA kits.  Results suggest that the r-Biopharm RIDASCREEN® Fast Casein kit is capable of 

detecting milk residues in all EMC samples evaluated.  Additionally, the ELISA Systems™ 

Casein kit fails to detect milk residues in any EMC sample tested.  Previous research identified 

the specificities of the ELISA kits for individual purified caseins (see Chapter 3).   The 

specificities of the kits are listed in Table 6.9.  Commercial ELISA kits exhibit different 

specificities of detection for each milk protein.  The r-Biopharm RIDASCREEN® Fast Casein kit 

is primarily sensitive to epitopes of κ-casein, but also has some capability to detect residues of β-

casein.  The Neogen Veratox® Total Milk kit also exhibits sensitivity to κ-casein, but also has 

some affinity to α- and β-casein residues.  The Neogen Veratox® Casein kit detects α- and β-

casein equally well, while the ELISA Systems™ Casein kit only detects α-casein.   

Table 6.9. Specificities of Commercial ELISA Kits for Detection of Purified Milk Proteins
a
 

Kit α-casein β-casein κ-casein 

r-Biopharm® Fast Casein 0% 10% 100% 

Neogen Veratox® Total Milk 10% 10% 50% 

Neogen Veratox® Casein 100% 100% 0% 

ELISA Systems™ Casein 90% 0% 0% 
a
Percentages are based on the ability of each kit to detect milk residues in spiked samples of 

known concentration. See Chapter 3 for detailed equations and explanations. 
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 Knowing the specificities of commercial ELISA kits contributes to the ability to identify 

trends in the detection of EMC samples.  The increased detection of milk residues by the r-

Biopharm RIDASCREEN® Fast Casein kit compared to other kits evaluated is likely a 

consequence of the resistance of κ-casein epitopes targeted by the antibodies in the kit to the 

proteolytic enzymes used to produce the EMCs.  The lowest detection of milk residues reported 

by this kit is observed in the EMC-E (Proteolytic Cheddar) sample (Table 6.7).  According to the 

limited information provided with the samples, the Proteolytic Cheddar (EMC-E) is produced 

using a protease enzyme (Table 6.1).  Milk residues are detected in all samples by the r-Biopharm 

RIDASCREEN® Fast Casein kit, indicating that at least some of the κ-casein epitopes targeted 

by the antibodies in this kit remain intact in all samples, even after exposure to extensive 

proteolysis with a variety of enzymes.   

 Alternatively, no detectable milk residues are reported in the ELISA Systems™ Casein 

analysis of EMC samples (Table 6.8).  This kit relies solely on the presence of epitopes of α-

casein for detection of milk residues in samples (Table 6.9).  Because no milk residues are 

detected, the results indicate that α-casein is extensively degraded by proteolytic enzymes during 

the production of EMCs.   

 Although tempting to attempt to correlate the detection of milk residues in Mild, Medium 

Sharp, and Sharp Cheddar EMCs (EMC-B, C, and D, respectively), the appropriate information 

regarding enzyme specificity is lacking.  Making the assumption that all three EMCs are 

produced using enzyme mixtures with identical activity and specificity is unfounded.  Viewing 

the SDS-PAGE profiles of extracts, it is apparent that EMC-B, C, and D are not produced using 

the same enzymes or protocols (Figure 6.3).  The three profiles display starkly different protein 

profiles with minimal overlap or similarities.  While it is possible that the bands are different 

fragments of the same proteins, they do not migrate similarly.  Advanced proteomic analyses are 

required to identify the bands and confirm their protein origins.  In a study of a range of 



227 

 

 

commercial Cheddar EMCs, it was determined that EMCs display extensive and dissimilar 

patterns of proteolysis (Kilcawley et al., 2000).  HPLC studies revealed that even when 

electrophoretic protein profiles appeared similar, EMCs were produced using different proteolytic 

systems (Kilcawley et al., 2000).    

  In the three ELISA kits capable of detecting milk residues in EMCs, EMC-D (Sharp 

Cheddar) has more detectable milk protein residues than any of the other samples. In terms of the 

detected levels of milk protein residues, EMC-D (Sharp Cheddar) may have the most intact 

epitopes detected by ELISA kits.  This correlates well with the observations in the SDS-PAGE 

analysis where a number of high molecular weight protein bands were present.  The fewest 

detectable milk residues are found in samples EMC-C and EMC-E (Medium Sharp Cheddar and 

Proteolytic Cheddar, respectively) which also had limited or no proteins bands detected on the 

SDS-PAGE gel as well.   

 In EMC-A, the ELISA Systems™ Casein and Neogen Veratox® Casein kit detect the 

least amount of milk residues (Table 6.6 and 6.8).  These kits are sensitive to detecting α-casein 

and α- and β-casein, respectively (Table 6.9).  Detection by the r-Biopharm RIDASCREEN® 

Fast Casein kit and Neogen Veratox® Total Milk kits suggest that the order of degradation of 

milk proteins from most degraded to least degraded in EMC-A (Skim milk cheese) is   α > β > κ 

(Table 6.5, 6.7, 6.9).  

 In EMC-B (Mild Cheddar Cheese), the order of degradation of milk proteins from most 

to least degraded is α > β > κ.  In EMC-C (Medium Sharp Cheddar) the order of degradation is α 

≈ β > κ.  In EMC-D (Sharp Cheddar), the order is α > κ > β.  In EMC-E (Proteolytic Cheddar), 

the order of degradation is α ≈ β > κ.   

 EMC-C and EMC-E contain the fewest detectable milk residues and also exhibit the 

order of degradation as α ≈ β > κ.  In these samples, the α- and β-casein fragments are completely 
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degraded as seen by the lack of detection in kits that focus exclusively on the detection of these 

two fragments for quantitation of milk residues (ELISA Systems™ Casein and Neogen Veratox® 

Casein).  While the Neogen Veratox® Total Milk kit has the capability to detect κ-casein in 

addition to some sensitivity to epitopes of α- and β-casein, no milk residues are reported.  

However, the r-Biopharm RIDASCREEN® Fast Casein kit detects some milk residues in the 

samples.  This is likely a result of the kit antibodies targeting different epitopes of κ-casein than 

the Neogen Veratox® Total Milk kit.  We can confirm the analysis of the ELISA kits with 

regards to the lack of detection of milk residues EMC-E samples by viewing the SDS-PAGE gel 

(see Figures 6.2 and 6.3).  Even at extremely high concentrations of loaded protein, no discernible 

protein bands are visible in the molecular weight regions depicted on the gel (18% Tris/Glycine 

with the 2.5-250 kDa molecular weight markers).   

 Milk protein residues from most enzyme-modified cheeses can be qualitatively detected 

with commercial immunoassays.  However, not all commercial ELISA kits are appropriate for the 

quantitative analysis of milk protein residues in foods where cross-contact of EMC residue may 

be a concern.  The r-Biopharm RIDASCREEN® Fast Casein kit provides improved detection of 

EMC samples tested in this study, however due to the extensive proteolysis during the production 

of EMC, quantitative results obtained from this kit (or any of the other kits) may not be 100% 

accurate.  Quantitative ELISA results are subject to the presence of intact target epitopes, as 

opposed to the actual concentration of milk protein residues.  Because EMCs are produced using 

a variety of enzymes, the capability of ELISA kits to quantify milk protein residues is highly 

dependent on the specificity of enzymes used to manufacture the cheeses.  This study was 

conducted using concentrated extracts of EMC.  Recommendations for commercial kit usage may 

be different for analysis of trace residues of EMC in food products, as would be observed in 

situations where cross-contact may be a concern.  While the application of ELISA kits for 

detecting milk residues in foods as a result of the use of EMCs as food ingredients can still be 
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recommended, the selection of a suitable milk ELISA kit is paramount and dependent upon 

results obtained with positive control samples.  Further research is needed to evaluate the 

capability of commercial ELISA kits, especially the r-Biopharm RIDASCREEN® Fast Casein 

kit, to detect milk residues in samples containing trace amounts of EMC.   
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APPENDIX A. ADDITIONAL MATHEMATICAL EQUATIONS AND CONVERSIONS 

 

Equation A.1. Converting ppm α-casein spikes to equivalent ppm casein 

                     
            

                 
               

a
Values obtained from estimates for αs1- and αs2-casein from (Wal et al., 2001) 

Equation A.2. Converting ppm β-casein spikes to equivalent ppm casein 

                      
            

                  
                

a
Values obtained from estimates for β-casein from (Wal et al., 2001) 

Equation A.3. Converting ppm κ-casein spikes to equivalent ppm casein 

               
            

                  
                

a
Values obtained from estimates for β-casein from (Wal et al., 2001) 

Equation A.4.  Calculating proportions: What proportion of casein is α-casein? 

                    
            

             
     

Equation A.5. Calculating proportions: What proportion of milk protein is α-casein? 

                    
                  

             
 

                

                   
     

Equation A.6. Calculating proportions: What proportion of NFDM is α-casein? 

                   

  
                  

             
 

                

                   
 
                       

           

       

 Equations A.4 –A.6 are also used to calculate proportions of β- and κ-casein in casein, 

milk protein, and NFDM by substituting the proportions of β- and κ-casein in the bovine milk 

micelle in the equation in place of the α-casein term (0.5).  For β-casein, the value is 0.37 and for 

κ-casein, the value is 0.13 (Wal et al., 2001). 
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Equation A.7. Calculating proportions: What proportion of milk protein is BLG? 

               
             

                   
     

Equation A.8. Calculating proportions: What proportion of NFDM is BLG? 

               
             

                   
 
                       

           
        

Equation A.9. Calculating proportions: What proportion of milk protein is ALA? 

               
              

                   
      

Equation A.10. Calculating proportions: What proportion of NFDM is ALA? 

               
              

                   
 
                       

           
         

Equation A.11. Calculating conversion factors: WPC34 to ppm milk protein.  

                

         
 

       

             
 

         

            
      

Equation A.12. Calculating conversion factors: WPC34 to ppm NFDM 

                

         
 

       

             
 

         

            
 
           

             
      

Equation A.13. Calculating conversion factors: WPC80 to ppm milk protein 

                

         
 

       

             
 

         

            
      

Equation A.14. Calculating conversion factors: WPC80 to ppm NFDM 

                

         
 

       

             
 

         

            
 
           

             
       

Equation A.15. Calculating conversion factors: Sodium Caseinate to ppm milk protein 

                

         
 
           

             
 

         

                
      

Equation A.16. Calculating conversion factors: Sodium Caseinate to ppm NFDM 

                

         
 
           

             
 

         

                
 
           

             
      



234 

 

 

 Equations A.11-A.16 were developed using values for percent protein contained in each 

milk-derived ingredient as listed in Table 3.2.  The proteins present in WPC34 and WPC80 were 

assumed to be 100% whey protein.  The proteins present in sodium caseinate were assumed to be 

100% caseins.  Additional terms are added into the equation in case different estimations of the 

source of protein are obtained in the future.   
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APPENDIX B. COMMERCIAL MILK ELISA KIT OPERATING INFORMATION 
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APPENDIX C. RESEARCH SUMMARY 

The main outcomes of this research, organized by chapter, are as follows. 

Chapter 2 

• Milk ELISA kits do not perform equally- and have different reporting units and reference 

materials 

• Milk kits that lack Certificates of Authenticity, have a high %CV and/or a high % 

difference from the expected values are not recommended for quantitative analysis of 

milk residues.  Kits that are excluded from further chapters include the Morinaga Casein, 

Morinaga BLG, and Romer Casein kits. 

Chapter 3 

• Each kit manufacturer uses antibodies of varying specificity and affinity to develop 

commercial ELISAs.  Casein ELISA kits detect various individual fragments of casein, 

BLG ELISA kits detect BLG, total milk ELISA kits detect various milk proteins, and no 

currently available commercial ELISA is capable of detecting ALA.   

• Milk ELISA kits have targeted specificities, not broad spectrum detection of milk 

proteins 

• Total Milk ELISA kits are capable of detecting milk residues in all milk-derived 

ingredients, although these estimates are not quantitatively accurate. 

• Some residual caseins are present in whey protein concentrates; there may also be some 

residues of BLG in casein ingredients.  This could be an advantage for detection using 

total milk kits. 

Chapter 4 
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• ELISA methods can detect milk residues in young Cheddar cheese, but the detection 

signal dramatically decreases during aging.  A 90% loss of signal is observed between the 

youngest and oldest Cheddar cheeses using commercial ELISA methods.   

• ELISA kits can detect milk residues from concentrated Cheddar cheese aged up to 2 

years, although the capability of these methods to detect trace levels of aged cheese may 

be a challenge for reliable detection and quantitation.   

Chapter 5 

• Currently available ELISA methods detect milk residues in most cheese extracts, but only 

some ELISA methods detect residues in extensively proteolyzed cheese.   

• Appropriate selection of milk ELISA kits for accurate residue detection depends on the 

variety of cheese in the formulation. 

Chapter 6 

• Not all commercial ELISA kits are appropriate for milk residue detection in EMC 

samples.  Concern is warranted when using ELISA methods for EMC evaluation.  Some 

kits fail to detect milk residues in any of the EMC samples tested; only one kit is capable 

of detecting milk residues in all samples.  A low level of detection is reported in kits that 

are capable of detecting milk residues in EMCs.   

Overall 

• Appropriate selection of ELISA kits is crucial to accurate quantitation of milk residues in 

fermented products. 

• Commercial ELISA kits have some ability to detect milk residues in highly concentrated 

samples of fermented dairy products 
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• Further work needs to be performed to assess the ability of ELISA kits to detect trace 

residues of milk from fermented foods in industry-specific conditions.  
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