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Oxidative damage and myofiber degeneration in
the gastrocnemius of patients with peripheral
arterial disease

Dustin J Weiss'", George P Casale'", Panagiotis Koutakis', Aikaterini A Nella', Stanley A Swanson', Zhen Zhu',
Dimitrios Miserlis', Jason M Johanning'? and Iraklis | Pipinos'?"

Abstract

Peripheral arterial disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in arteries
supplying the legs, affects an estimated 27 million people in Europe and North America. Increased production of
reactive oxygen species by dysfunctional mitochondria in leg muscles of PAD patients is viewed as a key mechanism of
initiation and progression of the disease. Previous studies demonstrated increased oxidative damage in homogenates
of biopsy specimens from PAD gastrocnemius compared to controls, but did not address myofiber-specific damage. In
this study, we investigated oxidative damage to myofibers as a possible cause of the myopathy of PAD. To achieve this,

possible cause of PAD myopathy.

we developed and validated fluorescence microscopy procedures for quantitative analysis of carbonyl groups and
4-hydroxy-2-nonenal (HNE) adducts in myofibers of biopsy specimens from human gastrocnemius. PAD and control
specimens were evaluated for differences in 1) myofiber content of these two forms of oxidative damage and 2)
myofiber cross-sectional area. Furthermore, oxidative damage to PAD myofibers was tested for associations with clinical
stage of disease, degree of ischemia in the affected leg, and myofiber cross-sectional area. Carbonyl groups and HNE
adducts were increased 30% (p < 0.0001) and 40% (p < 0.0001), respectively, in the myofibers of PAD (N = 34) compared
to control (N = 21) patients. Mean cross-sectional area of PAD myofibers was reduced 29.3% compared to controls

(p < 0.0003). Both forms of oxidative damage increased with clinical stage of disease, blood flow limitation in the
ischemic leg, and reduced myofiber cross-sectional area. The data establish oxidative damage to myofibers as a

Introduction

Peripheral arterial disease (PAD) is a manifestation of
atherosclerosis that produces progressive narrowing and
occlusion of arteries supplying the lower extremities. In
Europe and North America, the prevalence of PAD is es-
timated at 16% of individuals 55 years and older, which
corresponds to 27 million people, 10.5 million of whom
are symptomatic [1,2]. The majority of PAD patients ex-
perience claudication, i.e, walking-induced leg muscle
pain relieved by rest, and their disease is classified as
Fontaine Stage 2 [3]. In the later stages of PAD, patients
experience foot pain at rest (Fontaine Stage 3) and/or
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non-healing ulcers, necrosis and gangrene (Fontaine Stage
4). Although the primary problem in PAD patients is the
presence of atherosclerotic blockages in the arteries sup-
plying their legs [4-6], altered, arterial hemodynamics is
not the only cause of functional limitation in the lower
limbs of PAD patients [7-12].

Several laboratories including our own have demon-
strated that a myopathy is present in the legs of patients
with PAD [4-6]. This myopathy is characterized by pro-
gressive myofiber degeneration with fibrous and/or fatty
deposition [13,14] and a defect in mitochondrial energy
metabolism [15-17] characterized by reduced activities of
mitochondrial electron transport chain complexes in asso-
ciation with increased carbonyl and 4-hydroxy-2-nonenal
(HNE) damage to whole muscle protein [11]. However,
the precise relationship between oxidative damage and the
myopathy of PAD remains to be determined. Assuming

© 2013 Weiss et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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that oxidative damage to myofibers is a principal cause of
the myopathy of PAD, we hypothesized that mean oxida-
tive damage per myofiber increases with advancing disease,
in association with declining myofiber cross-sectional area.
We tested this hypothesis by quantitatively comparing oxi-
dative damage within the myofibers of biopsy specimens
from PAD and control gastrocnemius, and by testing
myofiber oxidative damage for associations with Fontaine
stage, hemodynamic limitation of the PAD limb and
myofiber cross-sectional area. This rigorously quantitative,
observational approach is essential for designing pre-
clinical studies that are driven by specific histological, cel-
lular and molecular features of the disease and, therefore,
offer improved translational performance [18].

Materials and methods

Human subjects

The Institutional Review Boards of the VA Nebraska-
Western Iowa Medical Center and University of Nebraska
Medical Center approved the experimental protocol and
all subjects gave informed consent.

PAD group

We recruited 34 consecutive patients undergoing lower ex-
tremity operations for symptomatic PAD (Table 1). For
every patient, the diagnosis of PAD was based on medical
history, physical examination, significantly decreased ankle-
brachial index (ABI < 0.9) and computerized or standard ar-
teriography demonstrating stenoses and/or occlusions in
the arteries supplying the lower extremities. The diagnostic
workup revealed evidence of aortoiliac disease alone in
three patients, femoropopliteal disease alone in seven pa-
tients, aortoiliac and femoropopliteal disease in 11 patients,
aortoiliac and femoropopliteal and crural occlusive disease
in five patients and femoropopliteal and crural disease in
eight patients. PAD in patients presenting with intermittent
claudication and no symptoms of ischemic rest pain and no
evidence of tissue loss was classified as Fontaine stage 2.
PAD in patients presenting with ischemic rest pain and no
evidence of tissue loss was classified as stage 3. PAD in pa-
tients presenting with ischemic, non-healing ulcers and/or
gangrene was classified as stage 4. Seven patients under-
went aortobifemoral bypass grafting, eight patients under-
went femoropopliteal bypass grafting, seven patients
underwent femorotibial bypass grafting, three patients
underwent combined aortofemoral and femoropopliteal by-
pass grafting and the other nine patients underwent a
major amputation procedure.

Control group

We recruited 21 patients with normal blood flow to their
lower limbs, undergoing lower extremity operations for in-
dications other than PAD (Table 1). These patients had no
history of PAD symptoms, and all had normal lower
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Table 1 Demographics of PAD and control patients

Control PAD p-value
Number of subjects 21 34 N/A
Mean Age (years)* 64.0+93 615+74 0.278
Height (m)* 1.79+0.10 1.76 £ 0.06 0.175
Weight (kg)* 912+14 816+19 0.057
BMI* 289+43 264+6.2 0117
Gender 19/2 32/2 0.868
(male/female)
Smoking (%) 524 735 0.109
Coronary Artery 238 61.7 0.006
Disease (%)
PCIS (%) 238 147 0480
CABG' (%) 143 147 0966
Myocardial 19.0 206 0.890
Infraction (%)
Stroke (%) 4.7 3.0 0.726
Obesity" (%) 19 235 0.695
Dyslipidemia (%) 476 55.8 0.551
Diabetes mellitus (%) 238 294 0.650
Hypertension (%) 57.1 82.3 0.041
Renal 143 8.80 0.528
Insufficiency™ (%)
Ankle brachial 113£021 034+£024 < 0.001
index* (094-1.34) (001-081)

*Data are presented as mean * SD.

TObesity: Body mass index higher than 30.

§PCl = percutaneous coronary intervention.

IICABG = coronary artery bypass graft.

tRenal insufficiency: estimated creatinine clearance less than 60 ml/min/1.73 m2.
$Data are presented as mean + SD and (minimum-maximum value).

extremity pulses at examination. All controls had normal
ABIs at rest and after stress and all led sedentary lifestyles.

Biopsy

Gastrocnemius samples weighing approximately 250 mg
were obtained from the anteromedial aspect of the muscle
belly, 10 cm distal to the tibial tuberosity. All biopsy speci-
mens were obtained with a 6 mm Bergstrom needle. Some
samples were frozen for biochemical analysis and some
were placed immediately into cold methacarn. After
48 hours in methacarn, the specimens were transferred to
cold ethanol: H,O (50:50 v/v) and subsequently embedded
in paraffin.

Quantitative fluorescence microscopy

Quantitative labeling of hydrazide-reactive carbonyl groups
and 4-hydroxy-2-nonenal (HNE) adducts in

gastrocnemius specimens

Paraffin-embedded biopsy specimens sectioned at 4 mi-
crons were labeled with three fluorescent reagents for
quantification of ROS-induced oxidative damage in
myofibers. These procedures are presented in detail in
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“Additional file 1” and are briefly described as follows.
Carbonyl groups [19,20] and the Michael adduct of HNE
[21] were labeled (Figure 1) with procedures that permit-
ted non-overlapping measurement of these distinct forms
of oxidative damage. As a means of partitioning individual
myofibers for measurement of oxidative damage, sarco-
lemmas were labeled with Wheat Germ Agglutinin. For
measurement of protein carbonyls [22,23], endogenous
biotin groups were blocked and then carbonyl groups
were biotinylated by treatment of slide specimens with
5 mM biocytin-hydrazide (EZ-Link Hydrazide-Biocytin,
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product # 28020; Thermo Scientific-Pierce Protein Re-
search Products, Rockford, IL, USA). For measurement of
HNE adducts [21], specimens were treated with a mouse
monoclonal antibody (20 ug/mL) (product # MAB3249;
R&D Systems, Minneapolis, MN, USA) specific for the
Michael adduct of HNE. Control slides were treated with
IgG2b « isotype control (20 ug/mL) from non-immunized
mice (product # 14-4732-82; eBioscience, San Diego, CA,
USA). After overnight incubation at 5°C, the slides were
labeled at room temperature, with a mixture of Alexa
Fluor® 488 conjugated streptavidin (10 ug/mL) (product #

Figure 1 Oxidative damage determined as carbonyl groups (Panels A and B) and HNE adducts (Panels C and D), is increased in
gastrocnemius myofibers of patients with peripheral arterial disease (Panels A and C) compared to the control patients (Panels B and
D). The control muscle has polygonal myofibers of similar shape and size. The PAD muscle exhibits a wide range of myofiber sizes with a smaller
average myofiber size. Additionally, the PAD muscle has fatty infiltration, endomysial fibrosis (increased extracellular matrix between myofibers)
and target lesions with evidence of increased oxidative damage (arrows). Levels of oxidative damage varied widely among PAD myofibers but
similar patterns of injury were seen with carbonyl and HNE labeling. Oxidative damage in PAD muscle was not limited to the myofiber
compartment but was consistently elevated throughout the extracellular matrix where it was present exclusively as carbonyl groups. HNE adducts
were confined to the interior of the myofibers and were not detected in the extracellular matrix. Specimens obtained by needle biopsy of the
gastrocnemius were fixed in cold methacarn, embedded in paraffin, sectioned at 4 u and mounted to glass slides. Carbonyl groups in slide-
mounted needle biopsy specimens were labeled with biocytin hydrazide plus streptavidin-Alexa Fluor® 488 (Panels A and B) and HNE adducts
were labeled with monoclonal anti-HNE antibody plus goat anti-mouse IgG-Alexa Fluor® 568 (Panels € and D). Images of each microscopic field
were captured with a 10X objective. The white bar represents a length of 50 microns.
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S11223; Life Technologies-Molecular Probes, Eugene, OR,
USA) and Alexa Fluor® 568 conjugated goat anti-mouse
IgG (10 ug/mL) (product # S11223;Life Technologies-
Molecular Probes, Eugene, OR, USA). Myofiber sarco-
lemmas were labeled with Alexa Fluor® 350 conjugated
Wheat Germ Agglutinin (10 ug/mL) (product # W11263;
Life Technologies-Molecular Probes, Eugene, OR, USA).
The specimens were mounted in ProLong® Gold anti-fade
medium with DAPI nuclear stain (product # P36931; Life
Technologies-Molecular Probes, Eugene, OR, USA).

Image acquisition and analysis

Quantification of carbonyl groups and HNE adducts
within individual myofibers and measurement of myofiber
cross-sectional area, were based on three-channel imaging
[24,25] of each microscopic field. Fluorescence images
were captured with the 10x objective of a widefield, epi-
fluorescence microscope (Leica DMRXA2; North Central
Instruments, Plymouth, MN, USA) and a B/W CCD
camera (Orca ER C4742-95; Hamamatsu Photonics,
Bridgewater, NJ, USA), with Image-Pro® Plus software
(Media Cybernetics, Bethesda, MD, USA). Each of 5 to 15
microscopic fields per specimen (400 to 2800 myofibers)
was captured in three fluorescence channels correspond-
ing to 1) myofiber sarcolemma, 2) carbonyl groups and 3)
HNE adducts. Fluorescence signal produced by carbonyl
groups or HNE adducts within each myofiber was
expressed as mean pixel intensity in grayscale units (gsu)
(on a 12-bit gray scale), which corresponds to concentra-
tion within the myofiber. Fluorescence signal was cor-
rected for background (typically near the black level of the
camera) and the mean of all myofibers in each specimen
was determined. Quantification of the fluorescence signals
produced by carbonyl groups and HNE adducts was vali-
dated by linear correlation of both signals across specimens
obtained from the PAD patients (N = 34) (Additional file 1:
Figure S1) and by Reverse-Phase Protein Array analysis
(Additional file 1: Figure S2, A and B).

Analysis of myofiber cross-sectional area and oxidative
damage in PAD and control gastrocnemius specimens

For each PAD and control patient, quartiles of oxidative
damage (carbonyl or HNE signal) were determined to
evaluate the association of myofiber cross-sectional area
and oxidative damage. The median, upper and lower quar-
tiles of oxidative damage for both the carbonyl and HNE
signals were determined and defined four classes (Q1, Q2,
Q3 and Q4) of myofibers. Q1 includes all fibers at or
below the lower quartile. Q2 includes all fibers at or below
the median and above the lower quartile. Q3 includes all
fibers at or below the upper quartile and above the me-
dian. Q4 includes all fibers above the upper quartile. The
mean of each class was determined for each patient.
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Statistics

Baseline characteristics of PAD and controls subjects were
compared using general linear models for continuous vari-
ables and chi-square tests for categorical variables. Cat-
egorical variables that were different between the two
groups were used as covariates in subsequent analyses.
Differences in myofiber cross-sectional area and content
of carbonyl groups and HNE adducts in PAD compared
control muscle were evaluated by analysis of covariance
with adjustments for CAD and HTN. The relationships of
stage of disease and myofiber content of carbonyl groups
and HNE adducts were evaluated by linear regression with
adjustments for CAD and HTN. The relationships of
myofiber content of carbonyl groups and HNE adducts to
ABI were evaluated by a Pearson partial correlation with
adjustments for CAD and HTN.

Changes in myofiber cross-sectional area in relation to
changes in content of carbonyl groups and HNE adducts
were evaluated by quartile analysis with a repeated mea-
sures model. A least-squares post hoc analysis was done
when a significant effect was found. All analyses were
implemented with SAS statistical software version 9.3 (SAS
Institute Inc., Cary, North Carolina, USA). Data are
presented as mean and standard deviation unless stated
otherwise and significance was set at p < 0.05.

Results

The demographic information for both the PAD and con-
trol subjects is presented in Table 1. Only CAD (y* = 7.50,
p=0006) and HIN (y*=4.15, p=0.041) were signifi-
cantly different between the PAD and control subjects.

Gastrocnemius specimens of PAD patients exhibited
increased oxidative damage and reduced myofiber
cross-sectional area

Myofibers of PAD patients exhibited a wide range of car-
bonyl and HNE damage and, overall, a greater burden of
oxidative damage compared to myofibers of control pa-
tients (Figure 1). Carbonyl groups and HNE adducts were
increased 30% (F351 =23.15; p <0.0001) and 40% (F35; =
14.3; p < 0.0001) respectively, in myofibers of PAD patients
(n=34) compared to controls (n=21), after adjusting for
CAD and HTN (Table 2). In biological systems, HNE ad-
ducts are present predominantly as the Michael adduct
[26,27], which lacks a reactive carbonyl group, thus, fluor-
escence signals from carbonyl groups and the HNE adduct
are non-overlapping. This non-overlapping character is
mirrored in the distinctive labeling of the extra-myofiber
compartment (Figure 1). For both PAD and control speci-
mens, HNE labeling was localized to the interior of the
myofibers while substantial carbonyl labeling was observed
within myofibers as well as in the extra-myofiber compart-
ment. Intra-myofiber abundances of both biomarkers
exhibited agreement a) within individual specimens, as
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Table 2 Oxidative damage and cross-sectional area of myofibers from PAD and control patients

Controls (n=21) PAD (n=34) p-value
Carbonyl Content (gsu*) (mean * SD) 486 + 135 695+ 132 < 0.0001
HNE Content (gsu) (mean + SD) 261+ 101 436+ 119 < 0.0001
Cross-Sectional Area* (mean + SD) 5324+ 1,371 3,760 £ 1,546 0.0003

*Grayscale units (12-bit gray scale) of background-corrected fluorescence emission from labeled carbonyl groups and HNE adducts.

*Cross-sectional area is given in square microns (u?).

seen by a fiber-by-fiber comparison of their labeling in-
tensities (Figure 1) and b) across specimens obtained
from the PAD patients (N = 34), as determined by cor-
relation analysis of the mean values of the specimens
(Additional file 1: Figure S1). The mean cross-sectional
area of PAD myofibers was reduced 29.3% compared to
controls (F351 = 7.65; p < 0.0003) after adjusting for
CAD and HTN, suggesting that increased oxidative
damage produced loss of structural integrity of PAD
myofibers (Table 2).

Oxidative damage in gastrocnemius myofibers was
associated with disease stage and ankle brachial index
The extent of oxidative damage as expressed by content of
carbonyl groups and HNE adducts in gastrocnemius
myofibers of PAD patients was associated with the patient’s
stage of disease, adjusting for CAD and HTN (Figure 2).
PAD patients (n=34) were assigned a disease level of 2’
(N=13), 3 (N=9), or 4 (N=12) corresponding to
Fontaine Stage 2 (claudication), Stage 3 (rest pain) or Stage
4 (tissue loss), respectively [3]. Carbonyl content increased
(R*=0.83, p < 0.0001; Figure 2A) through advancing stage
of disease: Fontaine Stage 2 (552 + 43 gsu), Stage 3 (707 £
80 gsu) and Stage 4 (827 + 132 gsu). Similarly, HNE con-
tent increased (R* = 0.72, p < 0.0001; Figure 2B) through

advancing stage of disease: Fontaine Stage 2 (310 + 71
gsu), Stage 3 (454 + 44 gsu) and Stage 4 (548 + 82 gsu). In
agreement with these findings, myofiber carbonyl content
was inversely correlated (r = -0.64, 95% CI: [-0.80
to —-0.38], p < 0.0001) with ABI (Figure 3A). Similarly,
HNE content in the gastrocnemius myofibers was in-
versely correlated (r = -0.59, 95% CI: [-0.77 to —-0.31], p <
0.001) with ABI (Figure 3B).

The observed increase of oxidative damage in PAD
gastrocnemius was associated with a significant decrease
of myofiber cross-sectional area

Cross-sectional area of myofibers in PAD muscle de-
creased significantly in association with increased oxida-
tive damage defined by quartiles of carbonyl (p < 0.001) or
HNE (p < 0.001) content. Specifically, for carbonyl damage
the cross-sectional area of Q4 myofibers was significantly
reduced when compared to Q1 (p = 0.0031), Q2 (p =
0.0012) and Q3 (p = 0.0047; Table 3) myofibers. For HNE
damage the cross-sectional area of Q4 myofibers was sig-
nificantly reduced when compared to Q1 (p = 0.0013), Q2
(p = 0.0019) and Q3 (p = 0.0084; Table 3) myofibers. The
mean cross-sectional area of myofibers in control muscle
remained the same across quartile-based groupings of car-
bonyl or HNE content (Table 3).
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Figure 2 Scatterplots of carbonyl (Panel A) and HNE (Panel B) damage as a function of Fontaine Stage of disease. PAD patients (n = 34)
were assigned a disease level of 2" (N=13), '3 (N=9), or ‘4’ (N =12) corresponding to Fontaine Stage 2 (claudication), Stage 3 (rest pain) or Stage
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Discussion

The present work is an extension of previous studies that
established the presence of a myopathy characterized by
myofiber degeneration, mitochondrial dysfunction and
oxidative damage in the gastrocnemius of patients with
PAD. Abnormalities in mitochondrial ultrastructure [13]
and inefficient utilization of acyl-CoAs [28] constitute the
earliest evidence of a mitochondriopathy in PAD muscle.
Later studies established a defect in mitochondrial energy
metabolism in the gastrocnemius of PAD patients with
moderate claudication [15-17]. This finding together with
the observation of increased ROS biomarkers in the
plasma of PAD patients after a single bout of exercise-
induced claudication [29,30] suggests that damaged
electron transport chain complexes and increased ROS
production may contribute to the pathophysiology of
PAD. This conclusion is supported by a study [11] that
demonstrated reduced enzymatic and respiratory activities
of electron transport chain complexes I, III, and IV in
PAD compared to control gastrocnemius. These changes
were associated with significant increases in both carbonyl
groups and HNE adducts in whole muscle protein. Similar
findings were reported for a mouse model of hind limb
ischemia [31], where inflow arterial occlusion alone, i.e, in

the absence of comorbid conditions, caused myopathy
with myofiber degeneration, mitochondrial dysfunction
and oxidative damage. Although our previous studies of
PAD patients clearly demonstrated increased oxidative
damage in ischemic muscle, they could not identify the
myofiber as a site of damage. In addition, the study design
we used in our previous work did not address the relation-
ship between oxidative damage and severity of clinical dis-
ease, degree of hemodynamic limitation in the ischemic
leg or myofiber cross-sectional area.

We developed a unique method based on fluorescence
microscopy, for quantitative analysis of myofiber morph-
ology and biomolecules and their chemical modifications
in individual myofibers of clinical specimens taken from
patients [24,25]. Oxidative damage was increased in
myofibers of the gastrocnemius of PAD compared to con-
trol patients, in association with reduced myofiber cross-
sectional area, suggesting that myofiber degeneration may
be a consequence of the accumulation of oxidative damage
within the fibers. Mean cross-sectional area of the more
damaged myofibers in PAD muscle was smaller, again
linking myofiber degeneration with increased oxidative
damage to the myofibers. Furthermore, our data revealed
that the extent of oxidative damage within myofibers of

Table 3 Association of myofiber cross-sectional area and oxidative damage, for PAD and control patients

Q1 Q2 Q3 Q4
PAD myofiber area by carbonyl (1% 3965+ 1778 3931 +1,6320 3,788+ 1,539 3376 +£1,422%
Control myofiber area by carbonyl (pz) 5074 + 1,696 5382+ 1,521 5396 + 1,568 5,442 + 1,387
PAD myofiber area by HNE (pz) 3,945 +1,329 3,921 £ 1,486 3,832£1,621 3,320+ 1,568*
Control myofiber area by HNE (%) 5,243 + 1,402 5,389+ 1,260 5,304 + 999 5,364 + 925

*Cross-sectional area in square microns (u?) is presented as mean = SD.

*Q4 is significantly different from Q1, Q2 and Q3 at p < 0.01 (for carbonyl groups and HNE adducts).
Myofibers were distributed on the basis of quartiles of carbonyl or HNE content into the following groups:

Q1: All fibers at or below the lower quartile.

Q2: All fibers at or below the median and above the lower quartileQ3: All fibers at or below the upper quartile and above the median.

Q4: All fibers above the upper quartile.
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PAD muscle was associated with both limb ABI
(representing hemodynamic limitation) and Fontaine
Stage (representing clinical progression of the disease).

We quantified two forms of ROS-mediated oxidative
damage, carbonyl groups and the Michael adduct of
HNE, with procedures that detected each form exclu-
sively of the other. Carbonyl groups (free aldehydes and
ketones) are present largely as carbonylated proteins that
cannot be repaired by the cell [19,20] and, consequently,
accumulate at a rate dependent upon rates of carbonyla-
tion, ROS detoxification, proteolysis and the formation
of insoluble oxidized protein aggregates [20]. Protein
carbonyls, widely used as biomarkers of oxidative stress,
represent a spectrum of oxidative modifications includ-
ing direct oxidation of protein, lipid peroxidation, and
protein glycation [20]. The second form of oxidative
damage that we quantified was the Michael adduct of
HNE. Among reactive aldehydes produced by lipid per-
oxidation, HNE is the most abundant and toxic of the
a,p-unsaturated aldehydes [32], is formed exclusively by
lipid peroxidation, and is considered to be a major
contributor to the cytopathological effects of oxidative
stress [33]. The primary mechanism of HNE toxicity is
protein adduction rather than depletion of cellular redu-
cing equivalents, and HNE adducts are predominantly
Michael adducts [26]. The pathophysiologic importance of
HNE is supported by increased tissue abundance of the al-
dehyde and its Michael adduct in diseases characterized
by increased oxidative damage; including Alzheimer’s
Disease, Parkinson’s Disease, atherosclerosis, cardiovas-
cular disease, and chronic obstructive pulmonary
disease [20].

Oxidative damage in PAD muscle was not limited to the
myofiber compartment but occurred throughout the
ECM, as well. Levels of oxidative damage varied widely
among PAD myofibers but were consistently elevated
throughout the ECM. Oxidative damage to the ECM was
detected exclusively as carbonyl groups. HNE adducts
were confined to the interior of the myofibers and were
not detected in the ECM. These observations suggest dif-
ferences in the mechanisms producing oxidative damage
in the ECM and myofibers. For example, oxidative damage
to the ECM may be due largely to the formation of ad-
vanced glycation end products. On the other hand, oxida-
tive damage within the myofiber may be due largely to
lipid peroxidation end products produced primarily by
damaged and dysfunctional mitochondria.

An important question emerging from our findings is
related to the effects of exercise on the muscles of PAD
patients. On the one hand, it is widely held that exercise
therapy for claudicating patients is a primary treatment
option (IA rating) given the documented health improve-
ments that follow exercise therapy [3]. On the other hand,
it is possible that exercise (at least some forms of exercise
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or too much exercise) may not help PAD patients and may
even worsen the damage in their legs. ROS biomarkers are
increased in the plasma of PAD patients, after a single bout
of exercise-induced claudication [29,30]. Damaged electron
transport chain complexes and increased ROS production
appear to be central to the pathophysiology of PAD
[4-6,17,34]. Is it possible that “non-optimized” exercise in-
duces metabolic, oxidative and inflammatory stress in the
already damaged and impaired PAD limb thereby worsen-
ing the condition of the ischemic muscle [35]? The most
thorough attempt to address this question was a study of
claudicating patients undergoing a 12-week program of ex-
ercise therapy [36]. The study demonstrated significantly
increased peak exercise performance and peak oxygen con-
sumption. However, evaluation of gastrocnemius biopsy
specimens demonstrated that training was associated with
skeletal muscle injury characterized by denervation of
muscle fibers (identified as a significant increase in target
lesions and angular fibers) and a trend for increased con-
nective tissue. Interestingly, a concurrent control group
undergoing strength training exhibited no such changes in
their muscles. The authors concluded that, over the
12 weeks of treatment, the observed changes in skeletal
muscle were not of sufficient magnitude to prevent im-
proved performance in response to the training program
but that increased walking activity over time may be injuri-
ous to skeletal muscle fibers [36]. Although the benefits of
exercise for the functional status of claudicating patients
have been well-documented, unanswered questions remain
in regard to the mechanisms underlying the effects of exer-
cise and the potential of non-optimized exercise to pro-
duce deleterious effects in the ischemic muscle [35]. There
is a need for studies that will establish the optimal prescrip-
tion of exercise for the claudicating patient by carefully
evaluating the effects of exercise on PAD skeletal muscle
and how they relate to changes in performance.

To our knowledge, this study is the first to quantify oxi-
dative damage to myofibers in the gastrocnemius of PAD
patients, on a fiber-by-fiber basis, and to relate these
changes to clinical stage of disease, severity of arterial oc-
clusions and myofiber cross-sectional area. Importantly,
we have established that fixed, paraffin-embedded biopsy
specimens may be used to quantify molecular changes in
the affected muscles of PAD patients. This methodology
can produce quantitative profiles of disease- and stage-
specific molecular pathologies of PAD. This may help us
to: 1) develop highly representative models of the disease
in animals or cell culture, 2) follow and possibly predict
the natural history of PAD in a particular limb and patient,
3) design and direct individualized, targeted treatment for
the PAD patient, and 4) establish a reliable biomarker sig-
nature for PAD-related myofiber degeneration that can be
used for direct evaluation of clinical interventions, e.g., ex-
ercise and revascularization. Oxidative damage to the
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muscular system of the lower limbs appears to be of cen-
tral importance in the pathogenesis of PAD and more
work is needed to improve our knowledge of oxidative
stress mechanisms in the legs of PAD patients.

The principal limitation of our study is that it did not
identify cause and effect linkages between carbonyl groups
or HNE adducts and PAD. Instead, the study demon-
strated that each form of oxidative damage was increased
within myofibers and was associated with both disease
progression and worsening ABIs. Consequently, this study
identified oxidative damage to myofibers as a potential
mechanism of PAD. This quantitative, observational ap-
proach is essential to designing hypotheses that are highly
relevant to human disease and, therefore, support the de-
sign of more effective translational studies [18].

Conclusions

In summary, our work demonstrated increased oxidative
damage to gastrocnemius myofibers in PAD patients that
was associated with increased hemodynamic impairment,
reduced myofiber cross-sectional area and disease stage.
These findings are consistent with myofiber oxidative
damage as a significant contributor to the pathophysiology
of PAD. They also provide insight into the chronic and
progressive nature of PAD, where accumulation of oxida-
tive damage in the ischemic limb may cause patients to
transition from claudication to critical limb ischemia and
eventually limb loss. Finally, our quantitative molecular
profiling of human biopsy specimens may be a potential
tool for designing effective translational studies and
targeted interventions needed for improved diagnosis, sta-
ging and treatment of PAD.
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myofibers, across analytical sessions.
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