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RESEARCH ARTICLE Open Access

A novel function prediction approach using
protein overlap networks
Shide Liang1*, Dandan Zheng2, Daron M Standley1, Huarong Guo3 and Chi Zhang4*

Abstract

Background: Construction of a reliable network remains the bottleneck for network-based protein function
prediction. We built an artificial network model called protein overlap network (PON) for the entire genome of
yeast, fly, worm, and human, respectively. Each node of the network represents a protein, and two proteins are
connected if they share a domain according to InterPro database.

Results: The function of a protein can be predicted by counting the occurrence frequency of GO (gene ontology)
terms associated with domains of direct neighbors. The average success rate and coverage were 34.3% and 43.9%,
respectively, for the test genomes, and were increased to 37.9% and 51.3% when a composite PON of the four
species was used for the prediction. As a comparison, the success rate was 7.0% in the random control procedure.
We also made predictions with GO term annotations of the second layer nodes using the composite network and
obtained an impressive success rate (>30%) and coverage (>30%), even for small genomes. Further improvement
was achieved by statistical analysis of manually annotated GO terms for each neighboring protein.

Conclusions: The PONs are composed of dense modules accompanied by a few long distance connections. Based
on the PONs, we developed multiple approaches effective for protein function prediction.

Keywords: Protein overlap network, Protein function prediction, Composite network, Functional genomics

Background
Proteins are basic functional components in any bio-
logical process. Discovery of the functions of an indi-
vidual protein is therefore a critical step towards
understanding biological processes and the complete
biological system. Besides experimental studies, compu-
tational prediction plays an important role in current
protein function investigation [1]. The general biochem-
ical function of a protein can be inferred if the amino
acid sequence or 3-D structure of the protein resembles
another protein whose function is known [2-7]. The
rationale for the homology-based method is that two
proteins with a similar sequence or structure could
evolve from a common ancestor and thus have similar
functions. Although this homology-based method re-
mains the most widely utilized computational tool for
function assignment, some proteins identified from

genome sequencing do not have any homologs that were
functionally characterized in the previous studies. On
the other hand, homologous proteins might also acquire
different functions in evolution [8]. Thus computational
methods other than the homology-based method are
much in demand to improve the accuracy and coverage
for protein function prediction.
Graph theoretical analysis can be used for predicting the

function of uncharacterized proteins [9-11]. Briefly, genes
or the products of genes, i.e. proteins, are represented as
nodes in the network and two nodes are connected if they
are in some type of association, e.g., protein-protein inter-
action (PPI). Possible functions of a protein can be
assigned based on the frequently observed known func-
tions of its immediate interacting partners [12]. Advanced
approaches, such as defining the neighborhood of a pro-
tein with a radius of n [13], considering the shared neigh-
borhood of a pair of proteins [14], transferring common
annotations in a module to the uncharacterized members
[15-19], were also developed over the years.
Unlike function inference methods, construction of a

reliable network remains the bottleneck for network-
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based function prediction. High-throughput experimen-
tal methods such as two-hybrid techniques [20], affin-
ity precipitation [21], and synthetic lethal screening
[22,23] have been developed to construct PPI net-
works. Gene expression networks were built from gene
pairs showing significant correlation of expression in
microarray experiments [24,25]. In spite of wide appli-
cations, the high-throughput experimental methods
often sacrifice specificity for scale. The constructed
networks have a high level of false positives [26] and
the predicted protein functions are even noisier.
The so-called genomic context (GC) methods, na-

mely, gene fusion [27], gene order conservation [28],
phylogenetic profiles [29], and operon rearrangement
[30,31] exploit the genome sequences themselves to
predict protein-protein associations. The derived infor-
mation can be used for the construction of a PPI net-
work. As a result, the network based approach showed
better performance than the raw scores of GC-based
methods in protein function prediction [10].
To a less extent, domain co-occurrence networks (DCN)

were investigated for the prediction of protein and domain
functions [32]. A protein domain is a continuous sequence
within the protein that represents a structural, functional,
and evolutional unit. A simple protein may contain a single
domain, whereas 70% of eukaryotic proteins are composed
of multiple domains [33]. In a DCN, two domains are
connected by an edge if there is one protein containing
both of them. Previous studies showed that DCNs are
scale-free and small-world networks [34]. The domain
function could be predicted by counting the occurrence fre-
quency of GO terms associated with the neighboring nodes
in a single-genome DCN while the function of a multiple-
domain protein could be derived by integrating the pre-
dicted function of each domain. The prediction results were
not improved by sophisticated algorithms such as χ2

method or support vector machine (SVM) learning [32].
As a counterpart to DCN, the protein overlap network

(PON) provides another way for function prediction. In
a PON, each node represents a protein and two nodes
are connected with an edge if the proteins share a com-
mon domain. While a few efforts have been made to
study the properties of DCNs [32,34-36], to our know-
ledge, there has been no detailed research report but a
few brief comments about PONs [35]. In this study, we
constructed the PONs with the entire genomes of indi-
vidual organisms, studied the network properties, and
made predictions of protein function with the composite
PON of multiple genomes.

Methods
Data acquisition
The protein annotations were downloaded from InterPro
[37], a database that integrates various resources, for the

complete genomes of yeast (S. cerevisiae), fruit fly
(D. melanogaster), worm (C. elegans), and human
(H. sapiens) in April 2012. Every protein was annotated
with domains retrieved from the Pfam database [38], and
the functions of each domain were represented by their
available GO (gene ontology) term annotations [39]. The
four species were selected because they were all well-
studied model organisms spanning comprehensive levels
of complexity. We found 4,759 proteins possessing a
UniProt ID [40] and Pfam annotation, and a total num-
ber of 2619 domains with 947 GO term annotations in
yeast, as well as 12,933 proteins (3422 domains and
1114 GO terms) of fly, 15,433 proteins (3172 domains
and 1093 GO terms) of worm, and 41,053 proteins
(4290 domains and 1363 GO terms) of human. The GO
term annotations were the same for the common do-
mains contained in various proteins of the four species.
We also used UniProt-GOA (gene ontology annota-

tion) database [41] for prediction and evaluation, in
which GO terms were assigned to gene products using a
combination of high-quality electronic mappings and
manual curation. Even homologous proteins with the
same domain composition might acquire various func-
tions in evolution and thus annotated with different GO
terms. The gene association files were downloaded from
http://www.ebi.ac.uk/GOA/ for yeast, fly, worm, and hu-
man in April 2012.

Network construction and property analysis
In our constructed PONs, each node represents one pro-
tein. Two nodes are connected by an edge if the corre-
sponding proteins share a common domain defined by
Pfam. The proteins and the domains acquired above
were used to construct a PON for yeast, fly, worm, and
human, respectively.
We investigated three main network properties for the

PONs: degree and degree distribution, shortest path
length, and clustering coefficient. The degree of a node
is defined as the number of its immediate neighbors.
The shortest path length between any two nodes is cal-
culated with Dijsktra algorithm [42] using B-heaps
scheme. The clustering coefficient of node i is defined as

ci ¼ 2ni

ki ki−1ð Þ ð1Þ

where ni is the number of connected node pairs (edges)
among nodes directly connected to the central node n
and ki is the number of neighboring nodes of the central
node n.

Protein function prediction with a domain-based method
We used the neighbor-counting method to retrieve GO
terms associated with all neighbors of a query protein in
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the PON and ranked them by their occurrence frequen-
cies. Instead of simply counting the number of protein
nodes associated with a GO term, the occurrence fre-
quency was calculated as the number of domains that
were associated with the GO term and presented in the
neighboring nodes. Naturally, GO terms associated with
the common domains shared by a query protein and its
neighbors should be considered more favorable than
those associated with domains observed only in the
neighbors. For the purpose of testing the prediction
method, we assumed that the function was unknown for
all domains in the query protein. Thus, unless specific-
ally indicated, we made predictions using only domains
that were not observed in the query protein, i.e., exclud-
ing the common domains. In cases where a GO term
was associated with both the common domain and other
domains in neighbors, the GO term was considered in
prediction but the common domain was not counted in
the occurrence frequency. The result was compared with
the combination of annotated GO terms of all domains
in the query protein. As a control to evaluate the predic-
tion performance, we randomly switched GO terms be-
longing to two proteins and the corresponding domains
throughout the whole genome.

Protein function prediction with GOA database
Annotated GO terms obtained from the GOA database
were statistically analyzed for neighboring nodes of the
query protein. Those with a high occurrence frequency,
i.e., associated with a large number of proteins, were se-
lected and compared with the annotations of the query
in the GOA database.

Evaluation of protein function prediction
We used the success rate of prediction as the primary
evaluation method. The success rate was defined as the
ratio of correctly predicted GO terms to the total predic-
tions. For the purpose of evaluation, we limited the
number of predicted GO terms to be the same as that of
the annotated GO terms in the query protein. Fre-
quently, several GO terms had the same occurrence fre-
quency around the cut-off and only a part of them were
randomly selected to meet the criteria. We might also
have a smaller number of GO terms associated with the
neighboring proteins than the total annotations of the
query protein and thus all of the analyzed GO terms
constituted the prediction. In addition to the success
rate, we also evaluated top 3 ranked GO terms, which
means that the prediction was considered correct only if
one of the three GO terms matched any annotation of
the query protein. Similarly, the GO term with the
highest occurrence frequency was evaluated for the top
1 GO term accuracy. A node was considered predictable
if any of its neighboring nodes was annotated with one

or more GO terms. Predictable nodes with observed GO
term annotations were subject for evaluation and the
coverage was calculated as the percentage of the evalu-
ated nodes out of all nodes in the network.

Results
Statistical properties of protein overlap network
We built PONs with proteins from the whole genomes
of yeast, fly, worm, and human, respectively. The net-
work usually contained many disconnected sub-graphs
with one main sub-graph consisting of 50% of proteins
except for the relatively small yeast PON, in which the
main sub graph contained 16% of the total proteins and
24% of proteins were not connected to any other pro-
teins (Figure 1).
For each PON, we investigated three network proper-

ties for their largest/main sub-graphs (Table 1), namely,
average shortest path length, clustering coefficient, and
degree. The average length of shortest path between any
two nodes in a PON is in the range of 4 ~ 6 for the four
species and decreases with the increasing network size
(Table 1). This is consistent with other reports that the
recombination of existing domains, rather than acquir-
ing new domains, could be the majority mechanism to
form new proteins and increase genome complexity
[43,44]. Another key feature of the networks is their high
clustering coefficients (>0.9), which indicates that the
PON is a hierarchical network (Figure 2) composed of
densely connected modules accompanied by a few long
distance connections. The pattern of degree distribution
of yeast, fly, worm, and human was found to be similar
to each other despite the different network size. The
number of nodes with a specific degree value did not
follow a typical power law distribution of a scale-free
network (Figure 3) and the logarithmic relationship be-
tween the two variables is not as linear as that for a do-
main co-ocurrence network [32]. There are huge
clusters of proteins with the same high degree value in a
PON (see examples in the upper right corner of Figure 3)
and proteins in the cluster are often connected to each
other with the same domain composition. The degree
value of a node is correlated with the popularity of its
domain components other than the total number of do-
mains it contains. For example, in the human PON, the
triple functional domain protein [UniProt : O75962] has
the highest degree value of 1,983 but only contains 5 an-
notated domains, Spectrin, RhoGEF, SH3_1, I-set, and
Pkinase, which prevail in a large number of nodes ran-
ging from 91 to 930. On the other hand, the average de-
gree value (257) for proteins with the most divergent
domain composition (8 domains) is lower than the aver-
age (312) for the total network.
For the entire network of the four species, 65 ~ 75%

proteins were annotated with at least one GO term
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according to the InterPro database and the mean value
of the annotations was very similar (2.4 ~ 2.6) despite of
the different genome size. The nodes in a PON sub-
graph frequently have a common GO term annotation.
About 30% of the nodes share the most popular GO
term, protein binding function, for the main sub-graphs
of the fly, worm, and human networks. On the other
hand, the most popular GO term for the main sub-
graph of the yeast is ATP binding function, which is
shared by 41% of the nodes. Nevertheless, 95% of the
nodes of the third largest sub-graph of the yeast net-
work, which contains 106 proteins and 36 domains,
share the most popular GO term Protein binding func-
tion. Compared to the main sub-graphs, other sub-
graphs usually are small, comprise only a few domains,
and have a very popular GO term among the nodes.

Protein function prediction with a single-genome PON
We predicted the function of a protein by statistically
analyzing GO terms associated with domains in its
neighboring nodes, i.e. the domain-based method. Since
the annotated GO terms in InterPro database were
exactly the same for identical domains among various
proteins, the mean success rate was extremely high
(>99%) if the GO terms associated with the common do-
mains of the query protein and neighboring proteins
were favorably considered. The success rate was not

100% only because in some cases the query protein
contained a few domains observed in none of neighbor-
ing protein. In real predictions, we might not know the
functions of the query domains, and so in our predic-
tion, only the GO terms associated with the other “not
shared” domains were statistically analyzed and those
GO terms with a high occurrence frequency were com-
pared with the combination of annotated GO terms
from all domains of the query protein. The success rates
predicted with the single-genome PON for yeast, fly,
worm, and human were 30.2%, 34.2%, 32.6%, and 40.0%
(Table 2), respectively, and were much better than the
corresponding rates (4.9%, 6.7%, 6.5%, and 9.9%) ob-
tained in the control group of random predictions.
One likely factor contributing to the high success rate

for human as compared with yeast is the size difference
between the two networks. For a query protein with do-
mains A and B and its neighbors AC1, AC2, …, and
ACn, the more Cn domains share a common GO term,
the higher the possibility that domain B or protein AB
will associate with the same GO term (Figure 4). In fact,
the average success rate increased to over 60% and the
best of top 3 accuracy was over 97.5% for the human
PON if we considered only GO terms associated with at
least 7 domain types (n > =7). For the yeast PON, it is
unlikely to identify GO terms associated with a large
number of domains due to the small network size and
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Figure 1 Relationship between quantity and size of sub-graphs. The PON of an entire genome was calculated.

Table 1 Network properties of the main sub-graphs of four investigated genomes

No. of
proteins

No. of
domains

No. of
GO terms

Mean value

Degree Path length Clustering coefficient

Yeast 762 237 146 38.4 5.65 0.94

Fly 6,099 915 385 101.9 4.52 0.93

Worm 7,742 745 343 121.3 5.02 0.95

Human 25,455 1,478 551 312.5 4.14 0.92

The mean value was calculated for the degree and clustering coefficient of all nodes and the shortest path length between any two nodes in the network.
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the low degree value as seen from Table 1. Actually, the
success rate of yeast (30.5%) was slightly higher than
that of human (26.5%) for nodes where all analyzed GO
terms were associated with one domain. The success
rate slightly increased to 33.9% but the coverage signifi-
cantly decreased to 16.1%, if we considered only GO
terms shared by at least two domains in the yeast PON.

Prediction with a composite PON
We constructed the composite PON by combining dif-
ferent genomes because the success rate of the domain-
based method is positively correlated with the size of the
network and the GO term annotation of a domain is

exactly the same for various genomes according to
InterPro database. The composite PON from the four spe-
cies (yeast, fly, worm, and human) containing 74178 nodes
and 5079 domains was constructed to investigate whether
the prediction could be improved with a larger PON. The
accuracies obtained for each of the four species using the
composite PON were compared with those obtained using
their individual single-genome PONs. For the three species
with a smaller-sized genome, yeast, fly, and worm, the
success rate was slightly improved by up to 4% and the
coverage was also increased by 7%-12%. For the human
genome, the coverage slightly increased by 1.2% though
the success rate decreased by 1.6% (Table 2 & Table 3).

Figure 2 Main sub-graph of yeast PON. (A) Main sub-graph consisting of two modules. (B) Network connections between two modules. The
dashed line represents the edge between two nodes and the arrow indicates the domain connection within a protein. Two modules in the
graph are connected by domain RWD [Pfam: PF05773] associated with protein binding function. Pkinase [Pfam: PF0069, upper module], DEAD
[Pfam: PF00270, lower module], and Helicase_C [Pfam: PF00271, lower module] are prevailing domains associated with ATP binding function. Only
annotated domains in InterPro database were presented for proteins GCN2 [UniProt: P15442], GIR2 [UniProt: Q03768], IMPACT homolog [UniProt:
P25637], and a putative ATP-dependent RNA helicase [UniProt: Q06698].
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There are two advantages using the composite PON for
protein function predictions: one is to improve the accuracy
for those nodes that already can be predicted with the cor-
responding small-sized single-genome PON, and the other
is to improve the coverage by adding new predictions, albeit
at lower accuracy. With the composite PON, the success
rate significantly increased by 8.7%, 2.6%, and 4.6% for
those annotated and originally predicable nodes for yeast,
fly, and worm, respectively. On the other hand, the new
predictions that were unpredictable with a single-genome
PON showed lower success rates (<20%) except for worm
(32%), partly due to the lack of annotated domain types at
the neighboring nodes. For example, the average occur-
rence frequencies of the most popular GO terms were 1.3
and 1.8 for the new predictions in the composite network
compared with 6.3 and 6.2 for the originally predictable
nodes for fly and worm, respectively. In future studies,
more proteins and genomes may be used in the combin-
ation to improve the prediction accuracy and coverage even
for the human genome.

Prediction using the second layer neighbors
Frequently, only a few or no annotated domains were
observed at direct neighboring nodes. To increase the

coverage, we thus made predictions with the domain-
based method considering the second layer nodes, i.e.,
the radius 2 neighbors of the query protein. For a query
protein AB (A and B are domain or domain combin-
ation of the protein), the direct neighbor BC, and a sec-
ond layer node CD, we made the prediction based on
frequency counting of the GO terms associated with the
domain D and all its peers. Here, for a clear comparison,
we limited the domain D such that D is not a compo-
nent domain for any immediate neighbors, i.e., D does
not combine with A to form any protein. Usually, the ac-
curacy is lower than that predicted from direct neigh-
bors (Table 3 & Table 4). Nonetheless, if the composite
network was used and only the GO terms associated
with a lot of type D domains (more than 16, for ex-
ample) were considered, an impressive success rate
(>30%) and coverage (>30%) could also be obtained. For
small genomes, it should be noted that the composite
network is essential for the high performance due to the
limited number of domains and domain connections in
the single-genome networks.

Figure 3 Distribution of degree values in human PON. The
points in the box represent huge clusters of proteins with the same
domain composition.

Table 2 Results of protein function prediction with a single-genome PON

Success ratea (%) Predictableb (%) Coveragec (%) Top 1 Top 3

accuracyd (%) accuracye (%)

Yeast 30.2 37.1 33.9 34.0 63.0

Fly 34.2 54.1 47.4 37.5 59.6

Worm 32.6 53.0 38.3 36.0 61.0

Human 40.0 68.3 55.8 43.3 70.4
aPercentage of correctly predicted GO terms averaged throughout the whole genome.
bA node was predictable if its neighboring nodes were annotated with at least one GO term.
cPercentage of predictable and annotated nodes.
dThe GO term with the highest frequency of occurrence was evaluated.
eThe best of the top 3 predictions was evaluated in cases that neighboring nodes were annotated with at least three GO terms.
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Figure 4 Effect of domain diversity on function prediction
accuracy. A GO term was used for prediction only if it was
associated with at least a certain number of domain types at the
neighboring nodes.
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Prediction and evaluation with gene ontology annotation
(UniProt-GOA) database
Proteins may acquire different functions in evolution
while maintaining the same domain composition. There
are inherent limitations of domain-based function pre-
diction methods, where the function of a domain is fixed
despite their existence in various proteins. With a PON,
we are able to predict the function of a protein by
statistically analyzing manually annotated GO terms for
each neighboring protein. We obtained the GO term an-
notations from the gene ontology annotation (GOA)
database for both prediction and evaluation. Using a
single-genome PON, the mean success rate (60.8%) of
yeast, fly, worm and human (Table 5), is much higher
than that (48.9%) predicted by the domain-based
method. Here, for fair comparison, GO terms associated
with the common domains between the query protein
and neighboring nodes were considered favorably with
the domain-based method and the annotations from
GOA database were also used for evaluation. Unfortu-
nately, the success rate predicted with the GOA database
decreased to 55.6% when the composite PON of four ge-
nomes was used for prediction and decreased further to
48.0% when the composite PON excluding the predicted
genome was used (each query protein was treated as one
node of the network while all other proteins belonging
to the same genome were removed, e.g., the composite
PON of fly, worm, and human was used to predict the
function of a yeast protein). On the other hand, the mean
success rate of the four species predicted by the domain-
based method (46.1%) was nearly unchanged assuming no

genome and domain annotation information to construct
their own PONs.
Moreover, the GOA database used for prediction is a

comprehensive GO annotation dataset and the coverage
is very high for the four species predicted with the com-
posite PON of other genomes, respectively, achieving a
mean value of 79.2%. As a comparison, the domain-
based method yield a mean coverage of 71.0%, which is
also high compared with those in Table 3 for considering
the common domains in the prediction. Furthermore,
we define the recall rate as the percentage of correctly
predicted GO terms in total annotations of the query
protein. The recall rate of the domain-based method
(36.6%) is significantly lower than that of the GOA data-
base method (47.5%) since the InterPro database used for
the domain-based method is only one of information
sources to build the GOA database and the predicted GO
terms are often less than the annotations in GOA database.
In general, the GOA database method shows a better

success rate, coverage of query proteins, and recall rate of
observed GO terms than the domain-based method, espe-
cially in prediction with a single-genome PON. However,
there are only 13 species with genome-wide annotations in
the GOA database until the end of 2012, therefore the ap-
plicability is rather limited. It is also not clear to what ex-
tent the high success rate predicted with the GOA database
is related to the sequence similarity between common do-
mains of the query protein and neighbors. On the other
hand, we optimized the domain-based method without
considering the common domains. The unknown function
of a domain can be predicted from other functionally

Table 4 Results of protein function prediction with the second layer nodes

No. of domains associated with a statistically analyzed GO term

> = 1 > = 4 > = 16

Success rate (%) Coverage (%) Success rate (%) Coverage (%) Success rate (%) Coverage (%)

Yeast 20.6 41.5 26.1 30.2 28.2 17.6

Fly 24.7 51.7 28.4 42.8 33.2 30.0

Worm 23.5 46.6 28.1 37.1 34.7 24.9

Human 28.5 55.3 31.6 47.5 36.7 33.0

The composite network of four genomes was used for prediction.

Table 3 Results of protein function prediction with a composite PON of four genomes

Overall success rate (%) Coverage (%) Success rate (%)

High degree nodesa Low degree nodesb

Yeast 32.8 45.9 38.9 15.4

Fly 34.4 54.1 36.8 17.2

Worm 36.1 48.2 37.2 32.0

Human 38.4 57.0 38.8 19.4
aAnnotated and predictable with a single-genome PON.
bNew prediction with the composite PON.
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characterized domains, which is especially helpful for
biological experimentalists.

Discussion
We built PONs for protein function prediction. Our
function prediction algorithm is based on two observa-
tions. Firstly, if two domains (or domain combinations),
B and C, combine with the domain A to form two pro-
teins: AB and AC, it is possible that the domain B and
C share the same GO terms. Actually, for all connected
pairs, e.g., AB and AC, in the human PON, a GO term
associated with domain B is also associated with domain
C in 24.4% of cases compared with 4.7% in the random
control procedure. In fact, this indirect functional asso-
ciation was also observed at protein level in early stud-
ies. Chua et al. found proteins interacting with the same
partners had a greater likelihood of sharing similar phys-
ical or biochemical characteristics [14]. Secondly, a GO
term that is associated with A is also the annotated GO
term of B in 35.4% cases, i.e., domains within a protein
may share the same GO term annotations, which is the
basis for domain function prediction with a DCN [32]. It
should be noted that the GO terms shared by B and C
are not due only to the fact that B shares GO terms with
A and A shares GO terms with C (35.4% × 35.4% <24.4%).
Wang et al. made protein function predictions by inte-

grating the GO terms predicted for each of its domains
using a single-genome DCN [32]. If all the conditions
were equally set, the domain-based PON methods and
the DCN methods should produce exactly the same re-
sults for protein function prediction. Nevertheless, PONs
contain richer information than DCNs, which makes it
possible to yield better prediction results. For example,
the current Pfam 26.0 has a sequence coverage of only
69.7% and an amino acid coverage of 44.4% for the hu-
man genome [38]. For the DCN method, the prediction
completely relies on the Pfam annotation. However, the
complete GO term annotations of a protein could be
obtained from GOA database [41] and used for function

prediction with a PON even if only a part of the protein
is annotated with Pfam domains.
GO term comparison is a yes-or-no binary criterion in

this study even though two different GO terms may
share functional similarity. Nevertheless, the mean value
of success rates calculated with the binary criterion
strongly correlates with that of the similarity scores in
large-scale calculations like those presented here. For ex-
ample, the mean success rates predicted and evaluated
with the GOA database were 48.3, 41.1, and 35.5% re-
spectively, for yeast proteins using the single-genome
PON, the composite PON of four species, and the com-
posite PON excluding yeast. When the semantic score
between the predicted GO term set and the annotated
set of each protein was calculated with the online
method G-sesame [45], the mean values correspondingly
increased to 0.709, 0.678, and 0.638, respectively.
The currently proposed methods can be used for the

prediction of new functions of a protein in addition to
the annotated GO terms, or a protein with unknown
function. In fact, there are 3.2% yeast proteins that are
not annotated but predictable with the domain based
method using the single-genome PON (Table 2). The
number increased to 7.5% by using the composite net-
work of yeast, fly, worm, and human. In future, more ge-
nomes could be used to build the composite network to
improve the prediction accuracy and coverage for the
domain-based prediction method. Results from multiple
approaches such as the domain-based method, predic-
tion with the GOA database, and analysis of the second
layer neighbors could also be combined to produce a
comprehensive prediction.

Conclusion
The protein overlap networks have different properties
compared with the domain co-occurrence networks.
The PON of an entire genome contains many discon-
nected sub-graphs with one main sub-graph, which
comprises 50% of proteins except for the relatively small

Table 5 Results of prediction and evaluation with GOA database

Success rate (%) Coverage (%) Top 1 accuracy (%) Top 3 accuracy (%)

Prediction with a single-genome network

Yeast 48.3 75.2 75.7 90.0

Fly 63.6 82.2 81.8 89.0

Worm 70.8 66.8 84.6 91.3

Human 60.7 84.6 80.6 90.8

Prediction with the composite network constructed from the other three genomes excluding the predicted one

Yeast 35.5 85.0 68.0 86.1

Fly 51.1 84.8 77.0 85.8

Worm 56.0 67.8 77.5 86.2

Human 49.3 79.1 72.7 84.6
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PON of yeast. The logarithmic relationship between the
number of nodes and the corresponding degree value
does not follow a typical power law distribution of scale-
free network. The clustering coefficient of the networks
is exceptionally high (>0.9). Using a PON, protein func-
tions can be predicted with the domain-based method
or gene ontology annotation database. The GOA data-
base method usually shows a better performance than
the domain-based method. The composite PON of mul-
tiple genomes can be used to enhance the performance
for the domain-based method, especially in prediction
for small genomes. But the GOA database method
achieves the best accuracy for a protein when the single-
genome PON of the same species is used. The success
rate of the domain-based method is close to that of the
GOA method in prediction for proteins without
genome-wide sequence information and domain annota-
tions. Moreover, the domain-based method can be opti-
mized to predict the functions for an uncharacterized
domain from the annotated GO terms of other domains.
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