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Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely
To Affect the Gut Microbiota Composition in Hamsters

Inés Martinez, Diahann J. Perdicaro,® Andrew W. Brown,? Susan Hammons,? Trevor J. Carden,? Timothy P. Carr,® Kent M. Eskridge,*

Jens Walter?

Department of Food Science and Technology,® Department of Nutrition and Health Sciences,” and Department of Statistics,“ University of Nebraska, Lincoln, Nebraska,

USA

The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the
complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, espe-
cially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism
was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal
microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of
these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between
several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of
bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action
of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate,
but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding
of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the
bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Corio-
bacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by
ametabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota.

he mammalian gastrointestinal tract is colonized by trillions of

microorganisms (the gut microbiota), a large fraction of
which are bacteria. This microbial community has an extensive
impact on host metabolism with important implications for
health (1-3). The contribution of the gut microbiota to energy
harvest from the diet and to fat storage constitutes a key beneficial
trait that underlies host-microbiota symbiosis in mammals (4).
However, this contribution has likely become detrimental to
modern humans living in societies with excess food resources, as it
increases susceptibility to metabolic disorders, such as obesity,
type 2 diabetes, and coronary heart disease. Accordingly, the gut
microbiota is increasingly being accepted as an important factor
that contributes to pathological conditions associated with obesity
(5), and in humans, metabolic pathologies often are associated
with alterations in the gut microbiota (which is referred to as
dysbiosis) (6-9). Unfortunately, there is still little consensus on
the bacterial groups that are linked to obesity-related diseases and
metabolic phenotypes (3). In addition, although comparisons be-
tween germ-free and conventional mice and rats have clearly es-
tablished a role of the microbiota in modulating host lipid metab-
olism (2, 10-12), it remains unclear whether dysbioses contribute
to metabolic pathologies. However, such basic information is es-
sential for our understanding of the diet-microbiota-host metab-
olism interplay, especially for the development of dietary strate-
gies to prevent metabolic disorders through a modulation of the
gut microbiome (3, 13, 14).

Novel molecular technologies based on massive parallel se-
quencing have enabled the identification of associations between
host lipid metabolism and gut microbial community structure in
both humans and animals. Two bacterial families, the Erysipelo-
trichaceae and Coriobacteriaceae, have been repeatedly linked to
the host lipid metabolism and associated with the dyslipidemic
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phenotypes. Spencer and coworkers (8) showed that levels of Ery-
sipelotrichaceae were positively associated with changes in liver fat
in humans, and higher proportions of this bacterial group have
been also identified in morbidly obese individuals (9). Erysipelo-
trichaceae have been also linked to lipidemic imbalances in mice
and in a hamster model of hypercholesterolemia (15, 16). For
Coriobacteriaceae, strong positive links have been determined with
plasma non-high-density lipoprotein (non-HDL) in hamsters
(15). Moreover, Claus and colleagues (2) showed an association
between Coriobacteriaceae, in particular the genus Eggerthella,
with host metabolism and especially hepatic triglyceride levels in
mice. The recurrent identification of associations between Corio-
bacteriaceae and Erysipelotrichaceae, and specific taxa within these
families, with host lipid and cholesterol phenotypes in different
host species (humans, mice, and hamsters) suggests a genuine link
between these bacterial groups and the host lipid metabolism (2,
14, 15).

The important similarities between hamsters and humans in
terms of lipid profiles, enzymatic pathways in lipoprotein and bile
metabolism, and susceptibility to diet-induced atherosclerosis
pose advantages in using these animals to investigate functional
interactions between cholesterol metabolism and the gut micro-
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biota (17). In a previous study, we used the hamster model of
hypercholesterolemia and investigated the interplay between
grain sorghum lipid extract in the diet, gut microbial ecology, and
cholesterol metabolism. This study showed that specific bacterial
groups in the fecal samples were tightly linked to diet-induced
improvements in host cholesterol metabolism (15). In particular,
Coriobacteriaceae and unclassified members of the Erysipelo-
trichaceae were negatively correlated with non-HDL cholesterol
and cholesterol absorption, while bifidobacteria showed positive
correlations with HDL cholesterol. Some of these correlations
were highly significant, but the directionality of these interactions
was not established. Unfortunately, hamsters cannot be reared
germ free (18), which precludes the study of causation between
specific bacterial taxa and host cholesterol metabolism employing
gnotobiotic approaches. However, it is possible to specifically
modulate the hamster’s cholesterol metabolism and study the ef-
fects on the gut microbiota. For example, plant sterols and their
esters offer an opportunity to modulate cholesterol metabolism in
hamsters (19). These compounds reduce cholesterol absorption
in the intestine by a displacement of cholesterol by the plant sterol
in intestinal micelles, by cocrystallization between plant sterols
and cholesterol leading to the formation of insoluble crystals, and
by impeding cholesterol hydrolysis by lipases and cholesterol es-
terases (20-26). The chemical processes by which plant sterols
exert their actions have been extensively studied in vitro and do
not require the participation of intestinal bacteria.

In this study, we have characterized the fecal microbiota of
hamsters whose cholesterol metabolism was extensively modu-
lated by dietary addition of plant sterol esters (19). In these ham-
sters, plant sterol ester (PSE) intake reduced cholesterol absorp-
tion and increased cholesterol excretion and, consequently,
decreased plasma non-HDL cholesterol and liver esterified cho-
lesterol levels. Pyrosequencing of 16S rRNA tags revealed that PSE
also induced dramatic shifts in the fecal microbiota with remark-
ably high correlations with host cholesterol metabolites. Most im-
portantly, the associations between several bacterial taxa with fecal
and biliary cholesterol excretion showed an excellent fit to a non-
linear sigmoidal inhibitory model used to describe dose-response
relationships between bacteria and inhibitory compounds (27,
28), suggesting that host cholesterol excretion can shape microbial
community structure through the antimicrobial action of choles-
terol excreted in the gut.

MATERIALS AND METHODS

Animal experiments and diets. The fecal samples analyzed were obtained
in a previous study that determined the effect of dietary PSE on hamsters’
lipid metabolism (19). The handling of animals, feed composition, plant
sterol composition of the diets, sample collection, and metabolic analysis
were described in that report. Briefly, Bio-F1B male Syrian hamsters (Bio
Breeders, Watertown, MA) were individually caged and randomly as-
signed to four dietary treatments throughout a 4-week period, of which
three were included in the present study: a modified AIN-93 M diet con-
taining no PSE (C) and diets containing 5% (wt/wt) plant sterols esterified
with fatty acids from beef tallow (BT) or stearic acid (SA). The final energy
distribution of each diet was 36% fat, 35% carbohydrate, and 29% pro-
tein. The animals were housed in a facility with controlled atmosphere
(25°C) under 12-h light/dark cycles and had access to food and water ad
libitum. The animals were euthanized by CO, asphyxiation after 4 weeks
of dietary intervention. Blood was collected by cardiac puncture, and
plasma was obtained by centrifugation (2,000 X g for 30 min at 4°C).
Total and HDL cholesterol were enzymatically quantified in the plasma
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samples. Livers were excised and immediately frozen in liquid nitrogen.
Total cholesterol, triglycerides, free cholesterol, esterified cholesterol, and
phospholipids were measured in the livers. Cholesterol absorption was
quantified in fecal samples collected at week 3 with radiolabeled sterols as
previously described (29). The complete fecal output was collected during
week 4 and stored frozen (—80°C). Fecal concentration of neutral sterols,
bile acids, cholesterol, dihydrocholesterol, coprostan-3-one, and copros-
tan-3-ol was determined as previously described (19).

Characterization of the fecal microbiota. The gut microbial compo-
sition was determined in fecal samples of hamsters fed a control diet (C)
(n = 7) or plant sterols esterified with SA (n = 9) and BT (n = 6). DNA
was extracted using a standard method that combined enzymatic and
mechanical cell lysis with phenol-chloroform extractions (15). The fecal
microbial community was characterized by massive parallel sequencing of
the V3 region of the 16S rRNA. PCRs were performed with the forward
primer (A-338F) 5'-gccteectegegecatcagACTCCTACGGGAGGCAGCA
G-3" and the reverse primer (B-518R) 5’-gccttgccageccgctcagNNNNNN
NNATTACCGCGGCTGCTGG-3" (with the A and B adaptors indicated
in lowercase and an 8-nucleotide barcode shown as Ns), and products
were sequenced using the Roche Genome Sequencer GS-FLX (454 Life
Sciences) as described previously (15). The sequence data set is available
upon request.

The sequences obtained were subjected to quality control using the
QIIME pipeline (30). Sequences <150 or >350 bp in length were re-
moved, as were sequences containing one or more ambiguous nucleotides
or mismatches to the primer or barcode, an average quality score below
25, and homopolymer runs longer than 6 bp. Chimera removal was per-
formed using the BLAST Fragments algorithm in QIIME. An average of
1,700 sequences per sample was obtained after quality control. Taxonom-
ical characterization of the sequences was done with the Classifier tool
from the Ribosomal Database Project (RDP) (31), which classified the
sequences from the phylum to the genus level. Additionally, operational
taxonomic units (OTU) were determined using a 97% sequence similarity
cutoff to characterize the microbiota at a lower taxonomic level roughly
equivalent to bacterial species. OTUs were generated by aligning the qual-
ity-controlled sequences with the Infernal Alignment algorithm of RDP,
followed by clustering with the Complete Linkage Clustering tool of RDP.
The exact abundance of OTUs determined to be significantly affected by
PSE consumption or associated with host physiological parameters was
determined using BLASTn as described previously (32). Briefly, 5 repre-
sentative sequences of the selected OTUs were taxonomically assigned and
aligned by ClustalW within their respective phyla. Phylogenetic trees were
constructed for each phylum with the neighbor-joining algorithm, and
distance matrices were generated (MEGA 4.0) (33). Sequences that clus-
tered in the tree with >97% similarity were combined into a single OTU,
and consensus sequences were generated within these clusters. The con-
sensus sequences were used to assign all sequences in the entire sequence
set to respective OTUs by aligning them in BioEdit (34) with the BLASTn
algorithm (>97% similarity and at least 95% overlap) against a local
database composed of all of the quality-controlled sequences. UniFrac
analysis was performed using the QIIME pipeline to investigate the beta
diversity of microbial communities (30).

In vitro inhibition bacterial assays. Representative bacterial strains
originating from the mammalian gastrointestinal tract were selected to
test for antibacterial activity of cholesterol, cholesteryl-linoleate, and the
plant sterols -sitosterol and stigmastanol when incorporated into mi-
celles containing bile salts and lecithin. The bacteria and growth media
used were Bifidobacterium longum subsp. infantis ATCC 15697" (in MRS
medium supplemented with 0.5 mg/liter L-cysteine), Lactobacillus reuteri
Lpuph-1 (in MRS medium), Eggerthella lenta ATCC 25559" (in MRS
medium), Slackia heliotrinireducens ATCC 29202" (in MRS medium),
Collinsella intestinalis ATCC 13228" (in peptone yeast glucose [PYG] me-
dium), two human isolates of Collinsella aerofaciens, KD-D8-5 and IM-
D3-18 (in PYG medium), and Clostridium histolyticurn ATCC 194017 (in
PYG medium). All media were prereduced for 24 h, and bacterial inocula
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FIG 1 Alpha and beta diversity measurements of the fecal bacterial communities. (A) Principal coordinate analysis based on UniFrac distances, segregated fecal
microbial communities of hamsters fed plant sterols esterified with stearic acid (dark gray closed circles), and beef tallow (open circles) from animals fed a control

diet (light gray closed circles). (B) Shannon’s diversity index. *, P < 0.05.

for inhibition tests were prepared as follows under anaerobic conditions at
37°C (Bactron IV anaerobic chamber; Shel Laboratory). Bacterial cultures
started from one single colony were grown for 24 h, transferred to fresh
media (1% inoculum), and then grown for another 16 h.

Micelles containing cholesterol (>98% purity; Sigma), cholesteryl-
linoleate (>99% purity; Sigma), or plant sterols (stigmastanol and
B-sitosterol, synthesized as described in reference 21) were prepared as
described by Brown et al. (21), with minor modifications. Briefly, 48 .l of
a solution containing either cholesterol, cholesteryl-linoleate, stigmasta-
nol, or B-sitosterol (161 mg/ml in chloroform) was mixed with 41 pl of a
lecithin solution (221.3 mg/ml in chloroform), and chloroform was re-
moved under a stream of nitrogen. The resulting mixture of lecithin and
cholesterol/sterols was dissolved in a solution containing 5.4 mg/ml of the
bile salt sodium taurocholate (>97% purity; Sigma) in distilled water. The
solutions were sonicated for 3 to 6 min with 30% amplitude using a Bran-
son 450 Sonifier (Danbury, CT) and afterwards filter sterilized with
0.45-pm pore filters (Fisherbrand; Fisher Scientific). To test for the anti-
bacterial capacity of cholesterol, cholesteryl-linoleate, or the plant sterols,
5 pl of a 1:10 dilution of the bacterial inocula was transferred into a
solution made of 500 p.l of prereduced micelle suspensions and 500 wl of
the appropriate prereduced double-concentrated (2X) media. Given the
antibacterial activity of bile acids, micelle suspensions containing bile ac-
ids but no sterols were inoculated and used as controls. Cultures were
incubated anaerobically at 37°C for 12 h (mid-log phase), and spectro-
photometric optical density (OD) quantifications were performed at
600 nm (BioMate3; Thermo Scientific). Three biological replicates
were conducted for the experiments. The concentration of cholesterol
in these experiments (386 g/ml media) is approximately double the
concentration of the average cholesterol levels measured in the fecal
samples of hamsters consuming the control diet (170 = 111 pg/g) but
still around 20 times lower than the fecal cholesterol levels present in
SA-treated hamsters (4,303 = 1,930 ng/g). Unfortunately, generation
of micelles containing higher amounts of cholesterol, which would
have better reflected the in vivo conditions, was not possible due to the
formation of a precipitate.

Statistical analysis. Results were expressed as means * standard de-
viations (SD) unless otherwise stated. The impact of dietary treatments on
the abundance of individual bacterial taxa was analyzed by one-way anal-
yses of variance (ANOVA) and Tukey’s post hoc tests. Correlations be-
tween bacterial groups and host physiological measurements were as-
sessed with Pearson’s correlations and nonlinear regressions. A nonlinear
four-parameter sigmoidal inhibitory model that describes dose-response
relationships between bacteria and inhibitory compounds was used to fit
the data (27, 28). The model is represented by the equation Y = Y, +
(Y. X X*I9P€)/(EC5, %P + X*°P¢), where X represents the metabolic

max

parameter, Y the abundance of the bacterial taxon in the fecal sample, Y,
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and Y, ., are the minimum and maximum effects, respectively, ECy, is the
concentration where 50% of the maximum effect is measured, and the
slope is the sigmoidicity coefficient.

The statistical analyses were performed using GraphPad Prism ver-
sion 5.0 (GraphPad Software). P < 0.05 in the ANOVAs and correla-
tion coefficients of r > 0.60 (in absolute values) were considered sig-
nificant. In addition to the analyses described above, partial
correlations were performed with SAS/STAT software to evaluate the
associations between metabolic markers and abundance of bacterial
populations when excluding the effect of diet using linear regressions.
To decrease the number of variables in this analysis and increase the
power of the test, only a few bacterial taxa (Coriobacteriaceae, Erysip-
elotrichaceae, unclassified Erysipelotrichaceae, and OTU1) and meta-
bolic markers (whole-body cholesterol synthesis, fecal cholesterol ex-
cretion, fecal neutral sterols, and fecal bile acid) that were determined
to be pertinent based on the previous analyses were selected to conduct
the partial correlation statistics.

RESULTS

Dietary supplementation with 5% PSE induced substantial al-
terations of the fecal microbiota of hamsters. 454 Pyrosequenc-
ing was used to characterize the fecal microbiota of hamsters fed a
control diet or a diet supplemented with 5% plant sterols esterified
with stearic acid (SA) or beef tallow (BT). The inclusion of PSE in
the diet, in particular SA, had extensive effects on the fecal micro-
biota composition. UniFrac analysis revealed that the fecal micro-
bial communities of hamsters fed the SA diet clustered separately
from those of the control group (Fig. 1A). Analysis of Shannon
diversity coefficients revealed that dietary addition of SA reduced
the diversity of the fecal microbiota compared to that of the con-
trol (P < 0.05) (Fig. 1B).

Dietary PSE significantly altered the gut microbiota at all tax-
onomic levels (Table 1). PSE had a dramatic effect on the abun-
dance of the phylum Actinobacteria, and especially on the family
Coriobacteriaceae, which declined 10- and 4-fold with SA or BT
intake, respectively. Three OTUs belonging to this family were
significantly reduced through PSE (Table 1; also see Fig. S1 in the
supplemental material). SA induced a significant increase in the
phylum Firmicutes which was, to a large degree, due to a bloom of
asingle OTU (OTU16) within the family Eubacteriaceae (Table 1).
It is possible that this increase was due to the ability of this organ-
ism to utilize the additional cholesterol that became available as a
growth substrate in the gut of PSE-treated hamsters. However, the
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TABLE 1 Abundance of fecal bacterial taxa of hamsters fed a control diet or diets enriched in plant sterol esters”

Abundance level by diet (% of total sequences [mean * SD])?

P value
Taxon Control SA BT (by ANOVA)
Phylum
Actinobacteria 16.55 = 7.27 3.24 = 1.90%%* 8.37 £ 5.04* 0.0002
Firmicutes 72.88 = 5.50 85.07 £ 7.25%*§ 76.44 = 4.90 0.0025
Family
Coriobacteriaceae 11.63 £ 7.30 0.88 * 0.49%** 2.71 £2.32*%* 0.0002
Eubacteriaceae 0.02 = 0.05 10.85 + 11.58*§ 0.61 = 1.32 0.0156
Genus
Unc. Coriobacteriaceae 11.57 £ 7.30 0.87 = 0.49*** 2.66 £ 2.27%* 0.0002
Unc. Erysipelotrichaceae 1.08 = 0.30% 0.66 £ 0.24 0.76 £ 0.40 0.0409
Unc. Eubacteriaceae 0.02 = 0.05 10.85 £ 11.58%**§§$§ 0.61 = 1.32 <0.0001
OTUs (family, genus and species, similarity to closest type strain)
OTUL1 (Coriobacteriaceae, Eggerthella lenta, 97%) 6.98 * 7.46 0.24 £0.31* 0.04 = 0.07% 0.0078
OTU2 (Coriobacteriaceae, Gordonibacter pamelaeae, 93%) 2.05 + 0.76 0.12 * 0.10%** 0.81 + 1.19* 0.0002
OTU4 (Coriobacteriaceae, Slackia heliotrinireducens, 97%) 1.22 £ 0.93 0.03 £ 0.10%* 0.24 + 0.30* 0.0011
OTUS8 (Erysipelotrichaceae, Allobaculum stercoricanis, 91%) 6.56 * 4.80 1.48 * 2.24% 2.71 £ 2.51 0.0205
OTUY (Erysipelotrichaceae, Allobaculum stercoricanis, 86%) 3.30 = 3.19 0.15 * 0.14** 0.31 + 0.28* 0.0051
OTU10 (Erysipelotrichaceae, Eubacterium cylindroides, 87%) 1.03 = 1.00 0.08 = 0.07* 0.28 £ 0.23 0.0125
OTU12 (Erysipelotrichaceae, Allobaculum stercoricanis, 94%) 3.14 = 1.55 0.71 £ 0.86** 1.43 *= 1.08% 0.0021
OTU13 (Erysipelotrichaceae, Eubacterium biforme, 87%) 0.52 £ 0.25 0.09 £ 0.09** 0.22 £ 0.40 0.0100
OTU15 (Eubacteriaceae, Clostridium sufflavum, 90%) 0.91 + 0.67 0.20 + 0.29* 0.29 = 0.21* 0.0105
OTU16 (Eubacteriaceae, Eubacterium limosum, 93%) 0.04 = 0.06 8.55 £ 12.71 0.62 = 1.49 0.0972

“ The taxa presented were significantly affected by plant sterols esterified with stearic acid (SA) or beef tallow (BT) or were determined to be associated with host metabolic markers

of the lipid metabolism. Unc., unclassified.

bx P <0.05 %, P < 0.01; **, P < 0.001 compared to the control group. §, P < 0.05; §§, P < 0.01; §§§, P < 0.001 compared to the BT group.

presence of OTU16 is strictly linked to the absence of the OTUs
whose abundance was reduced by PSE (data not shown), suggest-
ing that the bloom was caused by OTU16 expanding into niches
that became vacant. Although total Firmicutes levels showed an
increase with SA, five OTUs belonging to the family Erysipelo-
trichaceae did not follow this general trend and instead showed a
dramatic reduction (Table 1; also see Fig. S2).

Correlation analysis showed an extensive link between the
microbiota and host lipid metabolism. The feeding of PSE in-
duced extensive changes in the lipid and cholesterol metabolism
of hamsters (19), and many of the individual metabolites were
highly interrelated (Fig. 2A). One of the goals of the present study
was to investigate whether the lipidemic effects were associated
with shifts in the gut microbiota. The correlation analysis revealed
that host cholesterol metabolism was extensively interlinked with
the bacterial community (Fig. 2). The tightest associations were
observed within the phylum Actinobacteria and especially the fam-
ily Coriobacteriaceae, which showed remarkable associations with
cholesterol absorption (r = 0.75, P < 0.0001), whole-body cho-
lesterol synthesis (r = —0.75, P < 0.0001), fecal biliary cholesterol
excretion (r = —0.75, P < 0.0001), liver free cholesterol (r = 0.73,
P < 0.0001), plasma non-HDL cholesterol (r = 0.68, P = 0.0005),
and liver weight (r = 0.82, P < 0.0001), among others. Similar
high correlations were observed for the OTUs belonging to the
Coriobacteriaceae and Erysipelotrichaceae families that were af-
fected by PSE administration. Total Firmicutes and unclassified
Erysipelotrichaceae also displayed significant associations with
host lipidemic markers, although they were less significant than
associations detected for Coriobacteriaceae and the individual
OTUs (Fig. 2).

January 2013 Volume 79 Number 2

Improvements in the host lipid metabolism appear to be in-
dependent from metabolic modifications of intestinal choles-
terol by the gut microbiota. One mechanism through which gut
bacteria could lower host cholesterol levels is the transformation
of cholesterol to coprostan-3-one, coprostan-3-ol, and dihydro-
cholesterol, which are, to a large degree, excreted (29). However,
fecal concentrations of these cholesterol derivatives were not af-
fected by PSE intake, and their fecal concentrations did not cor-
relate with any of the host lipid metabolism markers tested
(Fig. 2A). In addition, the correlation analysis did not provide
evidence for an association between coprostan-3-one, coprostan-
3-o0l, and dihydrocholesterol and specific bacterial members of the
gut microbiota (Fig. 2). These findings suggest that PSE-induced
shifts of the gut microbiota did not impact bacterial cholesterol
metabolites in the gastrointestinal lumen, and the bacterial action
on the cholesterol pool was not responsible for the improvements
observed in host lipid metabolism.

Cholesterol excreted by the host via bile appears to inhibit
specific bacterial taxa. Upon visual inspection of the correlation
plots, the associations of bacterial taxa with host cholesterol syn-
thesis and excretion appeared to follow an exponential relation-
ship. In addition, these associations appeared to resemble dose-
response curves observed in microbial antibiotic assays. We
therefore tested how bacterial proportions and cholesterol synthe-
sis/excretion fitted a four-parameter sigmoidal model for bacterial
inhibition used to describe dose-response relationships between
bacteria and inhibitory compounds (27, 28). This analysis re-
vealed that the relationships between cholesterol synthesis, fecal
biliary cholesterol excretion, and fecal cholesterol with several
bacterial taxa showed an almost perfect fit to the inhibitory model
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FIG 2 Associations among host markers of the lipid metabolism and with fecal bacterial populations. Heat maps display correlation coefficients among markers
of the host lipid metabolism (A) and between host lipid profile and abundance of fecal bacterial populations (B). Unc., unclassified.

(Fig. 3). For example, the associations between Coriobacteriaceae
and host cholesterol synthesis, fecal biliary cholesterol excretion,
and fecal cholesterol excretion fitted the model with regression
coefficients of —0.93, —0.87, and —0.91, respectively. The model
was an even better fit for the data obtained for OTU1, which is
related to Eggerthella lenta. Interestingly, the fecal proportions of
OTU13, which was classified as a member of the Erysipelo-
trichaceae family, also showed a tight association with cholesterol
synthesis and excretion with an excellent fit to the model. In total,
four OTUs, two belonging to the Coriobacteriaceae (OTUs 1 and
4) and two belonging to the Erysipelotrichaceae (OTUs 13 and 15),
displayed a significant fit to the four-parameter sigmoidal model
(r=—0.94, —0.71, —0.73, and —0.68, respectively). The fact that
the abundance of taxonomically distinct bacterial taxa displayed
associations with fecal cholesterol concentrations that fit an inhi-
bition model suggests an antibacterial role of the excreted choles-
terol. In contrast, bile acid concentrations showed no negative
associations with the fecal proportions of Coriobacteriaceae- or
Erysipelotrichaceae-related phylotypes that were affected by the
feeding of PSE (see Fig. S3 in the supplemental material).

Partial correlation analysis revealed that the negative associa-
tions between the abundance of Erysipelotrichaceae with whole-
body cholesterol synthesis and concentrations of fecal neutral ste-
rols (P = 0.033 and 0.034, respectively) were independent of
dietary PSE. This analysis suggested that the links between fecal
proportions of Erysipelotrichaceae and Coriobacteriaceae with fecal
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cholesterol also are independent of PSE intake (P = 0.076 and
0.069, respectively). Importantly, the abundance of the family Co-
riobacteriaceae (P = 0.0726, r = —0.7122) and OTUs 1 (P =
0.0244, r = —0.82) and 13 (P = 0.0032, r = —0.92) also showed
significant negative associations with fecal cholesterol excretion in
hamsters on the control diet alone (see Fig. S4 in the supplemental
material). These findings suggest that the associations detected
between host cholesterol metabolism and the microbiota are not
solely caused by PSE but also by a direct association of the host
phenotype with the bacterial taxa.

Cholesteryl-linoleate but not plant sterols inhibits growth of
gut bacteria in vitro. To gain insight into the functional interac-
tions between bacteria and cholesterol metabolism, we deter-
mined the capability of cholesterol, cholesteryl-linoleate, and the
plant sterols stigmastanol and B-sitosterol to inhibit bacterial
growth when included in model bile mixed micelles containing a
bile salt and lecithin, which are natural components of micelles in
the gut (35). We used plant sterols for these experiments as PSE get
hydrolyzed in the gut, and the unesterified sterol is the compound
that is incorporated into intestinal micelles (20). We tested for the
inhibition of seven strains of gut bacteria, including strains be-
longing to the Coriobacteriaceae, as members of this bacterial fam-
ily were most affected in our animal experiments. No statistically
significant levels of inhibition were detected for any of the treat-
ments. However, out of the seven strains tested, Lactobacillus reu-
teri, Clostridium histolyticum, and Collinsella aerofaciens showed a
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modest degree of inhibition. All three showed reduced growth in
the presence of micelles containing cholesteryl-linoleate com-
pared to control micelles containing only lecithin and bile acid
(Fig. 4). Growth of Lactobacillus reuteri also appeared to be inhib-
ited by micelles containing cholesterol.

DISCUSSION

In this study, we have characterized the interplay between the gut
microbiota and cholesterol metabolism in hamsters treated with
PSE. The study revealed that PSE-induced alterations of choles-
terol metabolism were tightly associated with specific composi-

A Lactobacillus reuteri B

AOD600
AOD600

Collinsella aerofaciens C

tional shifts of the gut microbiota. The strongest associations were
identified between the families Coriobacteriaceae and Erysipelo-
trichaceae, and several OTUs within these families, and host cho-
lesterol concentrations in plasma, the liver, and fecal samples. Al-
though it is difficult to determine cause-effect relationships
among these associations because of the impossibility of raising
hamsters germ free, this study provided several lines of evidence
that indicate that the bacterial shifts induced by PSE are a conse-
quence of changes in host cholesterol metabolism.

First, the capability of PSE to decrease cholesterol absorption
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FIG 4 In vitro inhibition of fecal bacterial isolates by sterols. Shown are optical density differences between micelles containing cholesterol, cholesteryl-
linoleate, B-sitosterol, and stigmastanol compared to control micelles without sterols for the gut bacterial isolates Lactobacillus reuteri (A), Collinsella
aerofaciens (B), and Clostridium histolyticum (C). AODy,, change in optical density at 600 nm.
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and ultimately modify the host cholesterol metabolism is based on
physicochemical interactions independent of bacterial action.
Second, levels of cholesterol derivatives (coprostan-3-one, co-
prostan-3-ol, and dihydrocholesterol) that are considered to con-
tribute to the cholesterol-lowering activity of the gut microbiota
were not affected by PSE and showed no association with host
cholesterol phenotypes. Third, PSE have not been described to be
antibacterial and therefore are unlikely to directly cause the dra-
matic shifts in the microbiota when added to the diet. In contrast,
cholesterol derivatives, and especially cholesterol-linoleate, have
been shown to be antibacterial (36, 37), and associations between
several bacterial taxa affected by dietary PSE with fecal and biliary
cholesterol excretion showed an excellent fit to a sigmoidal inhib-
itory nonlinear model of dose-response relationships between
bacteria and inhibitory compounds (Fig. 3). Fourth, fecal choles-
terol excretion was negatively associated with bacterial taxa when
only hamsters in the control treatment were considered.

The data obtained in this study therefore suggest that changes
in host cholesterol metabolism induced through dietary PSE were
the main drivers of the modulation in gut microbiota composi-
tion. A schematic summary illustrating the physiological pro-
cesses that are likely to have caused the PSE-induced associations
between host cholesterol metabolism and the gut microbiota is
shown in Fig. 5. Intake of PSE decreased plasma and liver choles-
terol levels through an inhibition of both dietary and biliary cho-
lesterol absorption in the small intestine, with a consequent in-
crease in fecal cholesterol excretion (Fig. 5A). In order to maintain
cholesterol homeostasis, the host compensated for the decrease in
the total cholesterol pool by increasing cholesterol synthesis (Fig.
5B), which resulted in a further increase of bile-excreted choles-
terol. The combination of higher biliary cholesterol excretion and
decreased cholesterol absorption resulted in increased concentra-
tions of free and esterified cholesterol in the gastrointestinal tract.
These cholesterol derivatives exert an antibacterial effect on spe-
cific members of the gastrointestinal microbiota, causing altera-
tions in the microbial community. Since cholesterol excretion
strongly correlated with plasma cholesterol levels, the antimicro-
bial effect of cholesterol is ultimately causing detectable correla-
tions between specific bacterial taxa and host plasma and liver
cholesterol levels (Fig. 5B).

The findings obtained in this study are relevant to our under-
standing of the gut microbiota-host lipid metabolism interplay.
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The linkages between the gut microbiota and cholesterol metab-
olism found in PSE-treated hamsters recapitulated previous find-
ings for hamsters fed grain sorghum lipid extracts (GSL) (15). In
addition, negative correlations between Coriobacteriaceae and
Erysipelotrichaceae with fecal cholesterol excretion were also de-
tected by our group in an independent experiment with hamsters
that were fed whole sorghum kernels (I. Martinez, T. P. Carr, C. L.
Weller, and J. Walter, unpublished observations). Bacterial taxa
within the families Coriobacteriaceae and Erysipelotrichaceae have
been recurrently associated with host dyslipidemic phenotypes in
mice and humans in the context of obesity, metabolic syndrome,
and hypercholesterolemia (8, 9, 16). If microbiome alterations
contributed to lipidmic aberrancies, they could constitute phar-
maceutical targets to improve host metabolic functions. In fact,
we have previously suggested Coriobacteriaceae as therapeutic tar-
gets to improve host cholesterol metabolism (15). However, the
data obtained with PSE-treated hamsters suggest that the strong
associations between Coriobacteriaceae and Erysipelotrichaceae
and host cholesterol metabolism are caused by the host phenotype
affecting the bacteria. Analogous interactions could exist in mice
and humans, especially in relation to metabolic disorders that are
associated with an altered cholesterol metabolism, such as obesity
and the metabolic syndrome. The findings also indicate that diet
can modulate gut microbiota composition through an effect on
host metabolism, which has also been demonstrated for dietary
fat-induced changes in host bile acid composition (38).

The findings obtained from PSE-treated hamsters provided the
first evidence for a role of cholesterol as a relevant host factor that
modulates the gut microbiota. The in vitro assays performed in
this study confirmed the antibacterial effect of cholesteryl-linole-
ate on selected strains of gut bacteria. Although the antibacterial
effect detected in the in vitro experiments was modest, even small
levels of inhibition could be relevant under the competitive con-
ditions in the gastrointestinal tract, where even a minor reduction
in growth rate could translate into a significant ecological disad-
vantage. [t is important to point out that the approximate concen-
trations of cholesterol in the in vitro experiments, due to experi-
mental limitations, were around 20 times lower than those present
in the gut of hamsters during PSE treatment. Interestingly, cho-
lesterol and its derivatives have antibacterial activity in the nose
and eye epithelial linings (36, 37). In addition, the findings of Do
and coworkers suggest that the antibacterial effect of cholesterol-
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esters in nasal fluid acts in synergism with that of the a-defensin
HNP-2 (36). Enteric defensins play a significant role in regulating
the gut microbiota (39), and the strong inhibitory effects of cho-
lesterol detected in hamsters therefore might be caused by a syn-
ergistic effect of the two compounds. Clearly, the in vitro experi-
ments on the antibacterial effects of cholesterol included in this
study are only preliminary, and further research should be tar-
geted towards elucidating the role of cholesterol as a host factor
that modulates the gut microbiota.

Bile acids, which are synthesized from cholesterol, also have
antimicrobial activity (40, 41). Bile acids have been demonstrated
to modulate gut microbiota composition (38, 42), and since the
concentration and composition of excreted bile are influenced by
dietary fat, bile acids have been suggested to be one cause for the
dysbiosis that is associated with obesity-related pathologies (14).
However, bile acids did not appear to be a contributing factor in
the population shifts observed in PSE-treated hamsters, as fecal
bile acid excretion was reduced by PSE and showed significant
positive correlations with the bacteria of the Coriobacteriaceae and
Erysipelotrichaceae families that were affected by PSE. Although
the reduction of bile excretion in PSE-treated hamsters was likely
caused by the smaller cholesterol pool, only fecal cholesterol
showed highly significant correlations with both the improve-
ments in host lipid metabolism and the abundance of bacterial
taxa.

Although this study revealed an example of how a host meta-
bolic factor influences the gut microbiota composition, research
with germ-free animals has clearly shown that gut microbes im-
pact host metabolism (including cholesterol metabolism), and it
is likely that some alterations of the gut microbiome associated
with host metabolism have functional consequences for the host
(12, 43-45). Specific bacterial taxa have been determined to im-
prove lipid markers in the host. Bifidobacteria, which showed pos-
itive associations with plasma HDL cholesterol in our previous
study (15), have been identified to alleviate dyslipidemia and
high-fat-induced insulin resistance when administered as probi-
otics (46-50). In addition, some changes in gut microbiota com-
position induced through host factors might still have pathologi-
cal consequences, as shown recently for a fat-induced pathobiont
expansion caused by changes in the bile acid pool (38). Given that
the gut microbiota reduces liver and plasma cholesterol levels (11,
12), we cannot exclude that the dramatic changes in Coriobacteri-
aceae and Erysipelotrichaceae contribute to the cholesterol-lower-
ing effects of PSEs. However, the findings obtained in this study
provide evidence that interactions between the gut microbiota
and host metabolism are bidirectional, and some patterns of dys-
biosis associated with metabolic dysfunctions might be a conse-
quence rather than a cause of the host phenotype.
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Supplementary Figure 1. Phylogenetic tree containing partial 16S rRNA gene
sequences of OTUs affected by PSE belonging to the Coriobacteriaceae family
and closely related type strains. Representative sequences of each OTU were aligned
with related type strain 16S rRNA sequences to generate the phylogenetic tree. Consensus
sequences were obtained from sequences with >97% similarity, and used as query sequences
for local blasts with a database for the tags obtained in the study.The graphs show the
proportions of OTUs significantly affected by dietary PSE. * P < 0.05,** P < 0.01,*** P < 0.001.
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Supplementary Figure 3. Associations between bile acid excretion and proportions
of gut bacterial populations. Correlations between bile acid excretion and the
abundance of Coriobacteriaceae (A), Erysipelotrichaceae (B), OTU1 (C), OTU4 (D),

OTU13 (E), and OTU15 (F).
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Supplementary Figure 4. Associations between fecal cholesterol excretion and
proportions of gut bacterial populations in hamsters on the control diet. Correlations
between fecal cholesterol excretion and abundance of Coriobacteriaceae (A), OTU1 (B),
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