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Abstract

Tri-methylated H3 lysine 4 (H3K4me3) is associated with transcriptionally active genes, but its function in the transcription
process is still unclear. Point mutations in the catalytic domain of ATX1 (ARABIDOPSIS TRITHORAX1), a H3K4
methyltransferase, and RNAi knockdowns of subunits of the AtCOMPASS–like (Arabidopsis Complex Proteins Associated
with Set) were used to address this question. We demonstrate that both ATX1 and AtCOMPASS–like are required for high
level accumulation of TBP (TATA-binding protein) and Pol II at promoters and that this requirement is independent of the
catalytic histone modifying activity. However, the catalytic function is critically required for transcription as H3K4me3 levels
determine the efficiency of transcription elongation. The roles of H3K4me3, ATX1, and AtCOMPASS–like may be of a general
relevance for transcription of Trithorax-activated eukaryotic genes.
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Introduction

The H3K4me3 mark is generally associated with transcription-

ally active genes [1–3]. Its genome-wide distribution in yeast,

animal, and plant genomes displays remarkably conserved,

predominantly gene-associated, patterns with a strong bias towards

the 59-ends of transcribed genes [4–7]. Despite the demonstrated

ability of chromatin remodeling/modifying and mRNA processing

proteins to bind the H3K4me3 modification, the actual contribu-

tion of H3K4me3 to transcription is still unclear [8,9].

The eukaryotic histone methyltransferases responsible for the

H3K4me3 mark have diverged both evolutionarily and function-

ally into two families [10]. The TRITHORAX (TRX) family

including Drosophila trithorax (Trx), mammalian MLL1-4, and

Arabidopsis ATX 1-2 segregate into a phylogenetic subgroup that

is distinct from the SET family containing yeast Set1 and its

orthologs in other species [11]. SET family members operate more

globally across the genome while the TRX family members are

more gene-specific. In yeast, Set1is the sole methyltransferase

establishing the genome-wide mono-, di-, and tri-methyl H3K4

marks, while MLL1 tri-methylates less than 5% of human genes

[12,13]. Like MLL1, ATX1 tri-methylates H3K4 at specific genes,

but is not responsible for overall nucleosome modifications in

Arabidopsis [14].

The mechanism of ATX1-dependent gene regulation in

Arabidopsis involves features that are both similar and different

from yeast Set1 and mammalian MLL models. A distinguishing

feature of ATX1-dependent gene regulation is that ATX1 has dual

roles upstream and downstream of the transcription start sites (TSS)

of regulated genes [15]. At promoters ATX1 is found in a complex

with TBP and Pol II affecting the formation/stability of the

transcription preinitiation complex (PIC). The second role is within

the transcribed region where ATX1 establishes a peak of H3K4me3

modified nucleosomes about 300 bp downstream of the TSS.

ATX1’s recruitment and ability to tri-methylate nucleosomes in this

region requires the activated form of Pol II (phosphorylated at its

carboxyl terminal domain (CTD) repeat at serine 5 (Ser5P) [15].

ATX1 binds directly to Ser5P Pol II, an interaction different from

the Paf (Polymerase associated factor)-mediated binding of Set1/

COMPASS to Ser5P Pol II in yeast [16].

Both SET and TRX family proteins (including the human,

Drosophila, and Arabidopsis counterparts) operate within specific

complexes, called COMPASS or COMPASS-LIKE, respectively.

Both types of complexes share three conserved subunits, WDR5-

ASH2L- RbBp5 that are critical for methyltransferase activity of the

respective SET or TRX catalytic subunit [17–20]. The structural

organization and the mechanism by which these three subunits

stimulate the enzyme activity and H3K4me3 accumulation have

been actively pursued and a significant amount of data for the

biochemical and molecular mechanisms is available [21–23].

Although it has been well established that knockdown or

deletion of a COMPASS or COMPASS-like subunit results in
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reduced mRNA and H3K4me3 levels of specific genes [17–20],

how the specific stages of transcription are affected by this

deficiency is less understood. Recently, the Drosophila Set1 (dSet1)

was shown to be required for efficient release of Pol II into

transcription elongation from the heat shock 70 (hsp70) gene [24].

However, the roles of the TRX (MLL or ATX1) type COMPASS-

like complexes in the transcription process have not been fully

elucidated. Due to the structural and functional differences

between the SET and the TRX family members [11], as well as

differences in the protein composition and the interaction between

the respective subunits of the COMPASS or COMPASS-like

complexes [9], it is expected that the complexes supporting the

activity of Set1 (including the human and Drosophila homologs)

and those for TRX (MLL/ATX1) have functionally diversified as

well.

Here, we study the roles of the Arabidopsis ATX1/COMPASS-

like during the specific stages of transcription of two ATX1-

regulated genes, WRKY70 (AT3G56400, encoding a member of the

WRKY family of transcription factors) and LTP7 (AT2G15050,

encoding a lipid transfer protein from an antimicrobial peptide

family) [25]. ATX1 establishes the H3K4me3 marks at the 59-end

nucleosomes of these genes and is required for their optimal

expression in leaves under regular homeostatic conditions [14].

Earlier, it has been reported that ATX1/AtCOMPASS–like

affects transcript levels from the developmentally regulated FLC

gene [20,26]. However, how specific stages of transcription are

affected has not been elucidated.

To distinguish the discrete transcription stages dependent on

H3K4me3 levels from effects caused by the structural disruption

of ATX1/AtCOMPASS–like, we used a combination of RNAi-

mediated knockdowns of AtCOMPASS–like subunits and

specific point mutations to inactivate the catalytic domain of

ATX1. We demonstrate that ATX1, AtCOMPASS–like, and

H3K4me3 have distinct effects on PIC formation and the

transition to transcription elongation. ATX1 and AtCOM-

PASS–like are required for efficient PIC formation. In contrast

to the MLL1-regulated gene model [27], the ATX1-generated

H3K4me3 mark is not required for TBP recruitment during

transcription initiation, but is critical for activating transcription

elongation.

Results

AtCOMPASS–like regulates H3K4me3 and transcript
levels of two ATX1-dependent genes

Two Arabidopsis proteins, AtWDR5a and AtWDR5b, are

related to WDR5 but only AtWDR5a can form a complex with

the other AtCOMPASS–like subunits [20]. We refer to AtWDR5a

as AtWDR5 from here on. To analyze the function of the three

core AtCOMPASS–like subunits, we generated plants expressing

AtWDR5-RNAi, AtASH2-RNAi or AtRbBp5-RNAi constructs.

Knockdown lines produced less transcripts from the respective

subunit genes, confirming efficient knockdown of their target

mRNAs (Figure S1A). The AtWDR5-RNAi, AtASH2-RNAi and

AtRbBp5-RNAi knockdown lines displayed early flowering pheno-

types similar to the atx1 phenotype, supporting their function in a

shared complex (Figure S1B; [20]). Lower expression of any of the

AtCOMPASS–like subunits in the respective AtWDR5, AtASH2, or

AtRbBp5 RNAi knockdown lines resulted in significantly reduced

H3K4me3 levels at the 59-ends of the WRKY70 and LTP7 genes

known to be direct targets of ATX1 (Figure 1A). The WRKY70

and LTP7 genes also produced significantly reduced transcript

levels in these knockdown lines (Figure 1B). We conclude that each

of the three core AtCOMPASS–like subunits (AtWDR5, AtASH2,

and AtRbBp5) must be present for the wild type H3K4me3 and

transcript levels from the ATX1-regulated WRKY70 and LTP7

genes.

Recruitment and distribution patterns of AtCOMPASS–
like at ATX1-regulated genes

The presence and the distribution patterns of AtWDR5 at the

two ATX1-regulated genes were determined by ChIP analysis

with antiWDR5 antibodies. AtWDR5 was found at the promoters

and at the transcription start sites (TSS) regions of WRKY70 and

LTP7 (Figure 2A, 2B). AtWDR5 accumulation peaked at the 59-

ends, then gradually tapered off downstream, in a profile similar to

that of ATX1 (Figure 2C middle row) and H3K4me3 (Figure 2C,

bottom row). The overlapping distribution patterns of ATX1 and

AtWDR5 are consistent with a function in a shared complex. In

addition, ATX1 and AtWDR5 interact directly in the yeast two-

hybrid (Y2-H) binding system (Figure S2C; also shown in [20]) and

a TAP-tagged AtWDR5 fusion protein used as bait in a pull-down

assay successfully recovered ATX1 from total cellular protein

extracts (for more details see Methods and Figure S2A).

The ATX1-AtWDR5 interaction was mapped further by Y2-H

analysis and in pull down assays (Figure S2C, S2D; see Text S1).

Detailed analysis of retained fragments (Figure S2A) by mass

spectroscopy (Figure S3A–S3C) confirmed the ATX1 domain

necessary and sufficient to bind to AtWDR5 was located

immediately upstream of the SET domain (Figure S2B–S2D)

and was similar (Figure S3D) to the Win (WDR5-interacting)

peptide of MLL1 [21,22]. This result is important as it indicates

that ATX1 in Arabidopsis interacts with AtWDR5 through a

conserved domain similar to the MLL1-WDR5 interaction in

mammalian cells [28,29].

Next, we determined whether ATX1 recruits AtCOMPASS–

like (via AtWDR5) to the target genes or whether the presence of

AtWDR5 was needed for recruiting ATX1. The AtWDR5 levels

at the WRKY70 and LTP7 genes in atx1 mutant and wild type

backgrounds, determined by ChIP-PCR with antiWDR5 anti-

bodies, were strongly diminished in atx1 relative to the wild type

background (Figure 2B). The results indicated ATX1 was required

for wild type level occupancy of AtWDR5 at these genes. Thereby,

AtWDR5 occupancy is dependent on ATX1 presence at the

Author Summary

We provide a definitive answer to the question regarding
the role of histone H3 lysine 4 tri-methylation marks in the
transcription of two ATX1-regulated genes. Despite the
proven correlation between the gene transcriptional
activity and the level of H3K4me3 modification on the
nucleosomes, whether H3K4me3 contributes to, or simply
‘‘registers,’’ active transcription has remained unclear.
Another broader-relevance question is whether histone-
modifying proteins are required for recruitment of the
general transcription machinery, thus playing roles beyond
their catalytic activity. Using a combination of gene
deletion and specific point mutation analyses, we untangle
overlapping effects and reveal that H3K4me3 is not
required for TBP/Pol II recruitment to promoters but is
critical as an activating mark for transcription elongation.
The existing hitherto ambiguity about the role of
H3K4me3 as an activating mark has been largely due to
the unknown duality of the ATX1/AtCOMPASS functions:
facilitating PIC assembly and producing H3K4me3 as an
activating mark for transcription elongation.

H3K4me3 as an Activating Mark for Elongation
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ATX1-regulated genes and, most likely, ATX1 helps recruit

AtCOMPASS–like via binding to AtWDR5.

To determine whether ATX1 presence at the ATX1-regulated

genes can occur independently of AtCOMPASS–like, we analyzed

ATX1 levels by ChIP-PCR with antiATX1 antibodies in plants

depleted for AtWDR5. First, we confirmed that in the AtWDR5-

RNAi knockdown lines (Figure S1A) the amounts of AtWDR5

protein at the target gene loci was strongly reduced (Figure 2C, top

row). We found that the amounts of ATX1 bound at the target

genes in these AtWDR5-depleted lines were similar to their levels in

the wild type (Figure 2C, middle row). We conclude that

recruitment of AtWDR5 requires ATX1 but the converse is not

true: ATX1 occupancy does not depend on AtWDR5.

Interestingly, the amount of ATX1 at the 59-end regions of the

target genes was slightly lower in AtASH2-RNAi lines (Figure S4),

possibly suggesting an indirect effect of AtASH2, as AtASH2 does

not directly interact with ATX1 (Figure S2C). Likewise, MLL1

does not bind Ash2L directly, but Ash2L is required for

maintaining the integrity of the complex at the HOX loci [30].

AtCOMPASS–like regulates transcription rates
To determine whether the reduced transcript levels at the two

target genes in the RNAi knockdown lines (Figure 1B) were due to

defects in transcription or resulted from post-transcriptional

events, we measured their rates of transcription. Nuclear run-on

assays indicated that in the AtWDR5-RNAi and AtASH2-RNAi

knockdown lines the WRKY70 and LTP7 genes were transcribed at

much lower rates than in wild type (Figure 3). The reduction in the

transcription rates is large enough to indicate that a reduced rate

of transcription is the primary defect causing lower WRKY70 and

LTP7 transcript levels in the AtWDR5-RNAi and AtASH2-RNAi

knockdown lines.

Roles of AtCOMPASS–like at promoters during initiation
of transcription

To gain insights into the role of AtCOMPASS–like in specific

stages of transcription, we examined a possible role at the

promoters by measuring TBP accumulation in the RNAi

knockdown lines. Decreased AtWDR5 or AtASH2 mRNA levels

correlated with ,50% decrease in TBP levels (Figure 4A)

suggesting an involvement of AtCOMPASS–like in TBP/PIC

assembly.

Reduced TBP levels were likely to be associated with reduced

Pol II recruitment. Therefore, we examined the occupancy of total

Pol II at the analyzed genes. Total Pol II levels in AtWDR5-RNAi

or AtASH2-RNAi knockdown lines were measured by ChIP with

antibodies that do not discriminate between the non-phosphory-

lated and phosphorylated forms of Pol II (Figure 4B). Total Pol II

accumulation at the 59-ends of the three genes ranged from 64%–

81% of wild type levels (Table 1).

Next, we measured the amount of Pol II phosphorylated at

serine 5 of the CTD repeat (Ser5P Pol II) as this modification

marks the transition of Pol II from the promoter (promoter

clearance) to the sites of transcription initiation [31–33]. Ser5P

Pol II levels near the TSSs of the genes in the AtWDR5-RNAi or

AtASH2-RNAi lines were 75%–85% of wild type levels

(Figure 4C, Table 1) indicating that Pol II accumulation at

the TSSs was affected less strongly than the TBP/Pol II levels

at the promoters. The strong reductions in the genes’ transcript

levels and transcription rates in the RNAi lines (Figure 4B),

and the presence of relatively high total Pol II and/or Ser5P

Pol II at the promoters and the 59-ends of the genes (Figure 4B,

4C) suggested that disruption of AtCOMPASS–like also

affected transcription downstream of these stages of

transcription.

Figure 1. H3K4me3 and mRNA levels of two ATX1-regulated genes in the AtWRD5, or AtASH2, or At5-deficient lines. A) Relative
H3K4me3 levels at WRKY70 and LTP7 in control wild type plants transformed with the empty vector (Con), in AtWRD5-RNAi (wR1, wR2) lines (top
panels), AtASH2-RNAi (aR7, aR16) lines (middle panels), and AtRbBp5a-RNAi (rbR11, rbR14) lines (bottom panels) as measured by ChIP-PCR with
HK4me3-specific antibodies. For characterization of the RNAi lines see SF 1A, B). Specific primers used for each gene are at the 59-end, at the peak of
H3K4me3 accumulation (Region 2, as indicated in Figure 2A). Background levels for immunoprecipitated samples with IgG as a control in all genetic
backgrounds were ,0.001 of the input levels (not shown). ACT 7 is used as an internal control; B) Relative transcript levels produced by the genes in
the RNAi knockdown lines described above. Each experiment was repeated at least three times. Each bar is standard errors of the mean (6SEMs,
n = 3).
doi:10.1371/journal.pgen.1003111.g001

H3K4me3 as an Activating Mark for Elongation
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Role of AtCOMPASS–like in transcription elongation
The amounts of total Pol II towards the genes’ 39-ends were

measured to determine if transcription elongation was impaired.

The total Pol II levels at the 39-ends of the WRKY70 and LTP7

genes were strongly decreased in the RNAi lines (48%–55% of

wild type levels, Figure 4B; Table 1). The differences between

lower Pol II amounts at the 3(-ends and higher amounts at the 5(-

ends were significant: (p-value(0.05 for WRKY70 and LTP7). Less

Pol II at the genes’ 3(-ends suggested impaired transcription

elongation.

The distribution of Ser2P Pol II, which marks the transition of Pol II

to the elongation phase [17,32,34,35], was analyzed next. In the wild

type background the Ser2P Pol II distribution increased towards the 3(-

ends of the genes (Figure 5). In the AtWDR5-RNAi or AtASH2-RNAi

knockdown lines, however, the Ser2P Pol II occupancy was

considerably reduced (Figure 5). Importantly, the differences between

the lower amounts of Pol II Ser2P at the 39 ends and the higher

amounts of Pol II Ser5P at the 59 ends were significant (p-values,0.01,

Table 1). We conclude that disruption of AtCOMPASS–like affected

the transition from transcription initiation to transcription elongation.

Figure 2. Distribution profiles of AtWDR5, ATX1, and H3K4me3 at the ATX1-regulated genes in different genotypes. A) Schematic
diagram of the ATX1-regulated WRKY70 and LTP7 genes as well as the ATX1-independent ACT7 gene. The 59 or 39 untranslated regions are shown as
open boxes, the exons as black boxes, and the introns as thin black lines. Numbers below show the locations of the regions analyzed by ChIP-PCR; B)
Distribution and amounts of AtWDR5 determined by ChIP-PCR with antibodies against WDR5 in WS (blue columns) and atx1 (red columns)
backgrounds; C) ChIP-PCR of WDR5, ATX1, and H3K4me3 in WS and AtWDR5 knockdown lines (wR1,wR2). Numbers on the X-axis show amplified
regions as indicated in A. ChIP-PCR values with IgG in all genetic backgrounds were ,0.001 of the input levels (not shown). Each experiment was
repeated at least three times. Each bar is standard errors of the mean (6SEMs, n = 3).
doi:10.1371/journal.pgen.1003111.g002

H3K4me3 as an Activating Mark for Elongation
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Collectively, the results indicate that AtCOMPASS–like plays a

role at the promoters (lower TBP and Pol II levels in RNAi lines),

has a lesser effect on the Ser5P Pol II levels during the promoter

clearance and transcription initiation, but is critically required for

productive transcription elongation at the ATX-regulated genes.

Catalytically inactive ATX1-set does not complement the
atx1 phenotype

The use of an ATX1 T-DNA insertion mutant (atx1) or RNAi

lines for depleting individual subunits of ATX1/AtCOMPASS–

like decreases the amounts of both the intact complex and of

H3K4me3, making it impossible to elucidate which of these

alterations were affecting transcription. To distinguish the effects

caused by changes in the structure of the ATX1/AtCOMPASS–

like complex from effects caused by diminished H3K4me3 levels,

we constructed an ATX1 mutant transgene, ATX1-set, containing

point mutations expected to inactivate its catalytic methyltrans-

ferase domain while maintaining its structural integrity. This

catalytically inactive ATX1-set gene contains 5 tyrosine to alanine

mutations at positions that are evolutionarily conserved in ATX1

and MLL1 (see Methods). One of the conserved tyrosines (ATX1

Y1015) is known to be essential for the methyltransferase activity

of the SET domain of human SET7/9 [36]. Expression of the

HA-tagged ATX1-set protein in transgenic atx1::ATX1-set lines

was verified by immunoblot analysis (Figure S5A). The failure of

ATX1-set to rescue the early-flowering phenotype of atx1 (Figure

S5B) supports a deficiency in ATX1 function in the atx1::ATX1-set

lines.

Analyses of the transcriptional responses of ATX1-regulated

genes in atx1 plants expressing the ATX1-set transgene (atx1::ATX1-

set) indicated the WRKY 70 and LTP7 transcripts were not restored

to their wild type levels (Figure 6A). The reduced WRKY 70 and

LTP7 transcription was due to the mutations in the catalytic

domain and not the HA tag fusion protein structure as

complementation of atx1 with a HA-tagged version of wild type

ATX1 restored the expression of these genes (Figure S5C).

Complemented atx1 plants also displayed the wild type flowering

phenotype (Figure S5B) supporting the conclusion that the effects

observed in the atx1::ATX1-set lines were caused by the deficient

catalytic activity of ATX1-set.

One possible mechanism for the lower WRKY 70 and LTP7

transcription in the atx1::ATX1-set background could be the

inability of ATX1-set to be recruited to its targets. ChIP assays

with antiHA antibodies indicated the ATX1-set protein was

located at the WRKY 70 and LTP7 genes (Figure 6B). However,

despite the ATX1-set recruitment and accumulation at its targets,

Figure 3. Role of AtCOMPASS–like in the transcription rates of
the ATX1-regulated genes. Transcription rates of the ATX1-
regulated genes determined by nuclear run on assays in empty vector
(Con), RNAi knockdown plants deficient for AtWDR5 (wR1 and wR2) or
AtAsh2 (a2R7 and a2R16). Each experiment was repeated at least three
times. Each bar is standard errors of the mean (6SEMs, n = 3).
doi:10.1371/journal.pgen.1003111.g003

Figure 4. Distribution patterns and levels of TBP, of total RNA
Pol II, and of Ser5P Pol II. A) Relative TBP levels at the promoters of
the WRKY70 and LTP7 genes in empty vector control (Con) plants, in
AtWRD5-RNAi (wR1, wR2) lines (top panel) and the AtASH2-RNAi (a2R7,
a2R16) lines (bottom panel). ACT 7 is used as an internal control; B–C)
total Pol II and Ser5P distribution profiles along the genes in control
(Con) and RNAi knockdown genotypes as specified above. Amplified
regions are numbered as indicated in Figure 2A. ChIP-PCR values with
IgG in all genetic backgrounds were ,0.001 of the input levels (not
shown). Each experiment was repeated at least three times. Each bar is
standard errors of the mean (6SEMs, n = 3).
doi:10.1371/journal.pgen.1003111.g004

H3K4me3 as an Activating Mark for Elongation

PLOS Genetics | www.plosgenetics.org 5 December 2012 | Volume 8 | Issue 12 | e1003111



H3K4me3 levels were significantly lower than in wild type and

comparable to the levels in atx1 mutants (Figure 6C). We conclude

that, although ATX1-set was present at the 59-ends of its gene

targets, the ATX1-set histone modifying activity was strongly

decreased or absent. The next question, then, was whether ATX1-

set could still recruit AtWDR5.

ChIP assays with antiWDR5 antibodies indicated that both the

amounts and the distribution patterns of AtWDR5 were similar to

those in wild type and significantly higher than in an atx1

background (Figure 7A). The results indicated the ATX1-set

protein maintained its structural integrity and ability to interact

with the AtCOMPASS–like complex at its target genes. These

results justify the use of the atx1::ATX1-set plants to assess how

diminished H3K4me3 levels affected transcription without appar-

ent changes in the other functions of the ATX1-set/AtCOM-

PASS–like complex.

The role of H3K4me3 in transcription initiation and/or
elongation

The diminished transcript and H3K4me3 levels at the WRKY70

and LTP7 genes in the atx1::ATX1-set background (Figure 6C)

indicate this histone modification is a major factor responsible for

the decreased transcript levels from these genes (Figure 6A). Next,

we analyzed the effects of the diminished amounts of H3K4me3 in

atx1::ATX1-set plants upon the levels of the elongating Ser2P Pol

II. We found that the levels of Ser2P Pol II were low and

comparable to the levels in the atx1 background (Figure 7B),

indicating overall transcription was diminished.

Whether the diminished H3K4me3 levels affected TBP

recruitment to the promoters was analyzed in atx1::ATX1-set

plants. TBP accumulated at the promoters to levels similar to wild

type and much higher than in the atx1 background (Figure 7C).

Accumulation of Pol II in its initiation-activated form (Ser5P) at

the WRKY70 and LTP7 promoters was nearly at wild type levels

in atx1::ATX1-set and again at higher levels than in atx1

(Figure 7D). The most important consequences of this result

are that the absence of ATX1-generated H3K4me3 marks did

not markedly interfere with the assembly of the basal transcrip-

tional machinery and, that the primary defect in transcription

was in the attenuated levels of Pol II Ser2P levels at the genes 39

ends (Figure 7B).

Summarily, despite ‘normal’ recruitment of TBP, ATX1 and

AtCOMPASS–like to the 59-ends of the genes, the rates of

transcription elongation were diminished when H3K4me3 levels

were low, providing compelling evidence that H3K4me3 is an

activating mark for elongation at ATX1/AtCOMPASS–like

regulated genes.

Discussion

A large body of published work has demonstrated that

expressed genes have higher levels of tri-methylated H3K4

residues on their nucleosomes than non-expressed genes

[12,14,37–39]. Although deficiencies in H3K4me3 via knockdown

of COMPASS subunits result in reduced levels of mRNA

production [17–20], the mechanisms by which H3K4me3 affects

transcription are still emerging [8,9]. Revealing a causative link

between H3K4me3 and transcription has been particularly

challenging, as histone methyltransferases are multidomain

proteins that function within large protein complexes. Conse-

quently, interpretation of results based on knockdown mutations

may be misleading as the effects could result from disruption of the

multiple functions of the protein and complexes involved. For

example, mutating ATX1 affects the assembly or stability of TBP/

PIC as well as H3K4 methylation at downstream nucleosomes

[15]. These observations underscore the need for specific

mutations that affect only one function while maintaining the

structural integrity of the protein of interest.

AtCOMPASS–like has dual roles in transcription
In addition to reported similarities of AtCOMPASS–like [20]

with the extensively studied COMPASS/COMPASS-like com-

plexes in animals and yeast, we establish a role for AtCOMPASS–

like in transcription that has not been reported for yeast, fly or

mammalian complexes. We demonstrate that AtCOMPASS–like,

as shown earlier for ATX1 [15], has dual roles in transcription

initiation and H3K4 tri-methylation. Specifically, AtCOMPASS–

like is recruited to promoters by ATX1 (Figure 2B) and plays a role

in TBP/PIC assembly and/or stability. Reduced amounts of

AtWDR5 or AtASH2 caused ,50% decreases in TBP levels at the

promoters (Figure 4A), attenuated transcription, and reduced Pol

Table 1. Distribution of total Pol II or its phosphorylated
forms in RNAi COMPASS subunit-knockdown lines.

Gene Pol II1 % 59-end % 39-end p-value (59 vs 39)

WRKY70 total 8567 5568 0.01

Ser5P 7567 -

Ser2P - 3962 ,0.01

LTP7 total 6467 4864 0.05

Ser5P 7763 -

Ser2P - 4464 ,0.01

1The average of the ChIP-PCR values 6 SD, n = 4, for wdr5R1, wdr5R2, ash2R7,
and ash2R16 RNAi knockdown lines, as a percent of wild type. The 59 and 39-end
regions correspond to regions 2 and 6 in Figure 2; for the shorter LTP7 gene the
39 end corresponds to region 3. P-values are for the significance of the
differences between the 59-end and 39-ends.
doi:10.1371/journal.pgen.1003111.t001

Figure 5. Ser2P Pol II distribution patterns along the genes in
AtWDR5 or AtASH2-RNAi knockdown lines. Distribution of Ser2P Pol
II along the three genes in empty vector control (Con), AtWRD5-RNAi
(wR1, wR2) and AtASH2-RNAi (aR7 and aR16) lines. ChIP-PCR values with
IgG in all genetic backgrounds were ,0.001 of the input levels (not
shown). Each experiment was repeated at least three times. Each bar is
standard errors of the mean (6SEMs, n = 3).
doi:10.1371/journal.pgen.1003111.g005
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II levels on the transcribed genes (Table 1). These results link the

AtCOMPASS–like complex with the basal transcriptional ma-

chinery. In these studies, as in all studies reported for other

systems, we have used RNAi to deplete subunits of AtCOMPASS–

like. As a consequence, it was not possible to separate the effects of

structurally disrupting AtCOMPASS–like from the effects result-

ing from low H3K4me3 levels. Here, we successfully uncouple the

ATX1/AtCOMPASS–like structural contributions from changes

in H3K4me3 levels through analysis of atx1::ATX1-set mutant

plants. The point mutations in this ATX1-set mutant protein

greatly diminish (or eliminate) methyltransferase activity in vivo as

ATX1 target genes had H3K4me3 levels that were identical to

those in the atx1 background. The apparent structural integrity of

the ATX1-set mutant supported, first, by its ability to be correctly

recruited to its target genes and second, by its ability to efficiently

recruit AtWDR5 (Figure 7A) and to recruit/stabilize TBP/Pol II

to promoters (Figure 7C, 7D) despite an apparent lack of catalytic

methyltransferase activity in vivo, allowed us to clearly separate the

dual roles of ATX1/AtCOMPASS–like in transcription.

ATX1/AtCOMPASS–like regulate transcription initiation
independently of the H3K4me3 activity

The ATX1-regulated WRKY70 and LTP genes in wild type,

atx1, and atx1::ATX1-set mutant backgrounds displayed clear

differences in their transcriptional behavior. The strongly reduced

WRKY70 and LTP transcript production in the absence of ATX1

in atx1 mutants was consistent with lower TBP and Pol II

occupancy at the promoters [15]. In contrast, in the atx1::ATX1-set

mutant, the TBP/Pol II (PIC) levels at the promoters were similar

to the wild type (Figure 7C, 7D). This result demonstrates that PIC

levels at promoters depend on the structural integrity of ATX1 but

not on its H3K4 methyltransferase activity. The results from this

study, together with the finding of ATX1 in a protein complex

with TBP and ATX1’s ability to bind directly to the non-

phosphorylated form of Pol II [15], define a novel role for ATX1/

AtCOMPASS–like as a transcriptional co-activator separate and

largely independent of its histone modifying activity. This model

differs from the binding of the TAF3 subunit of TFIID to

H3K4me3 at MLL1-regulated genes [27]. Additionally, the

Arabidopsis genome lacks a TAF3 subunit [40], making anchoring

of TFIID to H3K4me3 nucleosome an unlikely mechanism for

ATX1-regulated genes.

It is important to note also that, hitherto, a role of histone modifying

proteins in PIC formation, that is independent of their histone

modification activity, has been found only for yeast histone

acetyltransferases [41–43]. Our results provide the first demonstration

of a histone methyltransferase as an essential component of the general

transcription machinery independent of its methyltransferase activity.

Figure 6. Transcriptional responses of WRKY70 and LTP7 genes and the amount of HA-tagged ATX1-set and H3K4me3 at these
genes in different backgrounds. A) Transcript levels of WRKY70 and LTP7 genes in wild type (WS), two different atx1:: ATX1-set mutants (setm1
and setm2, respectively; see SF 1), and atx1 backgrounds; B) The amount of HA-tagged ATX1-set in the atx1 background at the ATX1-regulated genes
as determined by ChIP-PCR with antiHA antibody. Wild type (WS) was used as the non-specific control for the antiHA preciptiation as it lacks HA-
tagged ATX1; C) Levels of H3K4me3 at the genes in wild type and the mutant backgrounds. Numbers on the x-coordinate represent regions along
the gene sequences as indicated in Figure 2A, where specific primers were used in the ChIP-PCR assay. ChIP-PCR values with IgG in all genetic
backgrounds were ,0.001 of the input levels (not shown). Each experiment was repeated at least three times. Each bar is standard errors of the mean
(6SEMs, n = 3).
doi:10.1371/journal.pgen.1003111.g006
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Furthermore, as knockdown of the AtWDR5 or AtASH2

subunits reduced TBP occupancy by ,50% at the promoters, it

was surprising that the Ser5P Pol II levels at the 59-ends of the

genes was only slightly decreased (Figure 4C; Table 1). As Ser5P

Pol II is a biochemical marker for transcription initiation and early

elongation [44–46], the results indicated that although required

for normal TBP levels, ATX1/AtCOMPASS–like had a lesser

effect on Pol II levels after promoter clearance. A possible reason is

that a rate-limiting step in transcription on these templates is

downstream of these early stages.

H3K4me3 is required for efficient transcription
elongation

As the ATX1-dependent TBP levels at the promoters were

similar to wild type, the attenuated transcript production in

atx1::ATX1-set mutant lines indicated H3K4me3 was required for

efficient transcriptional processes taking place after PIC formation.

Together, the results showing relatively high TBP and Pol II levels

at the genes’ 59 ends (Figure 4A–4C), reduced rates of

transcription (Figure 3), and reduced amounts of Pol II and its

elongating Ser2P form at the genes’ 39 ends (Figure 5, Table 1),

indicate that transcription elongation is diminished in H3K4me3

deficient genes.

Our results are consistent with a model (Figure 8) in which lower

transcription and lower Ser2P Pol II amounts at the genes’ 39 ends are

due to slow release of Pol II from a promoter proximal pause site into

productive elongation. Diminished release would account for the

accumulation of Ser5P Pol II at the genes’ 59 ends, relative to their 39

ends, in agreement with the model suggested for the Drosophila hsp70

gene when depleted of the dSet1 protein [24]. We suggest that

H3K4me3 generated by either Set/COMPASS or TRX/COM-

PASS-like complexes plays similar roles in activating the transition to

transcription elongation. However, for the Set/COMPASS it remains

to be established whether it affects the basal transcriptional machinery

similarly to the role found here for ATX1/AtCOMPASS–like.

Figure 7. Occupancy of WDR5, TBP, Ser5P, and Ser2P Pol II in WS, atx1, or atx1::ATX1-set (setm1 and setm2) backgrounds. A)
Occupancy by AtWDR5 at the promoters (region 1) and downstream regions; B) Distribution of Ser2P along the genes; C) Levels of TBP recruited to
the promoters and D) of Ser5P Pol II at the promoters of the two genes in the different backgrounds. ChIP-PCR values with IgG in all genetic
backgrounds were ,0.001 of the input levels (not shown). Amplified regions are as indicated in Figure 2A). Each experiment was repeated at least
three times. Each bar is standard errors of the mean (6SEMs, n = 3).
doi:10.1371/journal.pgen.1003111.g007
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Regulation of elongation is emerging as a critical mechanism for

regulating transcription in developmentally regulated and heat-

shock induced animal genes, where the limiting step is the release

of paused/stalled Pol II into elongation [47–50]. It is important to

emphasize a principle difference between animal genes regulated

by paused/stalled Pol II and the ATX1-regulated genes reported

here: these animal genes carry pre-accumulated Ser5P Pol II at

their 59-ends before entering active transcription and they require

stimulation by additional factors to release them into productive

elongation[33,47,49]. In contrast, the ATX1-regulated genes

studied here are actively transcribed in non-stressed differentiated

tissues and do not have paused/stalled Pol II at their 59-ends.

However, the genes experience accumulation of Ser5P Pol II

downstream of TSS (as a form of pausing/stalling) when

H3K4me3 levels are depleted. It is tempting to speculate that

regulation of H3K4me3 levels is a more general mechanism

controlling elongation not limited to inducible genes or genes with

pre-stalled Pol II.

Summarily, we conclude that although the presence of ATX1/

AtCOMPASS–like is required for assembly of the basal transcrip-

tion machinery (transcription initiation) at the promoter, the

H3K4me3 mark generated by ATX1/AtCOMPASS–like is not

required for transcription initiation, but is an activating mark for

transcription elongation. The mechanisms by which H3K4me3

affects transition to productive transcription elongation remain to

be established. H3K4me3 may be responsible for the generation of

a chromatin structure at the 59-end to ensure optimal Pol II release

into productive elongation and/or recruitment of pre-mRNA

processing and elongation factors to the 59 regions of genes

[18,51–53].

Lastly, our finding that the ATX1-Win domain is a functional

counterpart of the Win domain in MLL1 (Figure S2, Figure S3)

[21,22,54] suggests that ATX1 integrates into the AtCOMPASS–

like exclusively through the Win-mediated binding to AtWDR5.

This result underscores the relatedness of the ATX1/AtCOM-

PASS–like with the human MLL1/COMPASS-like [28]. There-

fore, our results may have a broader relevance for the TRX-

regulated genes in eukaryotes.

Materials and Methods

Arabidopsis plants (WS ecotype) were grown for 14–21 d in

potting soil in growth rooms at 22uC with a 12-h light

photoperiod. Descriptions of all the cloning vectors and primers

used in this study, as well as plasmid construction and generation

of AtWDR5a-RNAi, AtASH-RNAi, and AtRbBp5-RNAi transgenic

lines, are provided in ST 1. Genes used in this study have the

following IDs: ATX1 (At2g31650), WDR5a (At3g49660), AtASH2

(At1g51450), AtRbBp5 (At3g21060), TBP(At3g13445), WRKY70

(AT3G56400), LTP7 (AT2G15050).

Figure 8. Model for the roles of ATX1/AtCOMPASS–like and H3K4me3 in transcription. A) The levels of PIC assembled at promoters
depend on the integrity of ATX1/AtCOMPASS–like as ATX1 occurs in a complex with TBP (yellow) and interacts with the carboxyl terminal domain of
Pol II (CTD, blue tail). The bar graph in A below the template shows the relative TBP levels that occur in wild type ATX1 (green), in the ATX1-setm
mutant (Setm, in purple), in RNAi COMPASS-like knockdowns (blue), and in atx1 (black) backgrounds; B) The transition to transcription initiation and
promoter proximal pausing (gray pause rectangle) occurs with similar efficiencies (gray Pol II entry arrows of similar width) for both complexes that
differ only in their ATX1 subunits: wild type ATX1 (top green ATX1) and ATX1-setm mutant (bottom purple Setm). Both wild type and the ATX1-setm
ATX1/COMPASS-like complexes are recruited to this site via ATX1’s affinity for the Ser5P form of Pol II. Wild type ATX1/COMPASS-like produce normal
amounts of H3K4me3 levels, but H3K4me3 levels are diminished in the ATX1-setm mutant (the black line above the templates shows H3K4me3
profile). The levels of H3K4me3 affect the rate of Pol II exit from the promoter proximal pause region (size of gray Pol II exit arrows below the
templates), with a higher exit rate for the wild type template. These different exit rates lead to more Pol II Ser2P complexes active in transcription
elongation in ATX1 than in the ATX1-setm mutant.
doi:10.1371/journal.pgen.1003111.g008
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Yeast two-hybrid assay
The AH190 strain was transformed with one of the

following bait constructs: pGBKT-AtWDR5, pGBKT-AtASH2,

or pGBKT-AtRbBp5, then transformed with one of

the prey constructs: pGADT7-ATX1, pGADT7-ATX1N,

pGADT7-ATX1C, pGADT7-ATX1DH, pGADT7-ATX1win,

pGADT7-ATX1SET, pGADT7-AtAsh2, or pGADT7-AtRbBp5.

Yeast were scored for protein interactions by their ability to grow

on SD medium lacking Trp, Leu, His, and Ade.

Protein pull down assays
For GST-bead pull down assays, GST beads were incubated

with 2 mg of each GST fusion protein, washed, and then incubated

with 3 mg of a His-fusion protein overnight at 4uC. Mock controls

used extracts prepared from E. coli containing the His-Tag or GST

vectors. The beads were washed five times (16PBS buffer, pH 7.4,

containing 140 mM NaCl, 1 mM PMSF and 0.1% TritonX-100),

and the remaining proteins eluted from the washed beads in SDS-

loading buffer, separated on a 12% PAGE/SDS gel, and analyzed

by anti-GST (G018, Applied Biological Materials, Richmond, BC,

Canada, lot: 5019) or anti-His antibody (05-949, Millipore,

Lot:1487531).

Nuclear run-on assays
Analyses were performed as described earlier [55].

Chromatin immunoprecipitation assay
The ChIP assay was performed using a modified method [56].

Briefly, 3 g of leaves were fixed with 1% formaldehyde for 10 min

and quenched in 0.125 M glycine. The treated leaves were ground

in a mortar and pestle in liquid nitrogen, the resulting powder was

solubilized in extraction buffer and filtered through miracloth.

After sonication and centrifugation, the supernatant was pre-

cleared with protein A magnetic beads (Invitrogen, Carlsbad, CA),

and immunoprecipitated with one of the following antibodies

recognizing: Pol II (ab817, Abcam, Cambridge, MA, Lot:

669648); the Ser2P form of Pol II CTD (ab5095, Abcam,

Cambridge, MA, Lot: 703307); the Ser5P form of Pol II CTD

(ab5131, Abcam, Cambridge, MA, Lot: 806890); trimethyl-H3K4

(ab8580, Abcam, Cambridge, MA, Lot: 598382); ATX1 (rabbit

sera, GenScript, SC1031); AtWDR5 (ab75439, Abcam, Cam-

bridge, MA, Lot:872536);); TBP (ab52887, Abcam, Lot:347607),

or control IgG serum added for overnight incubation at 4uC. The

antibody-protein complexes were isolated by binding to protein A

or protein G beads. The washed beads were heated at 65uC for

8 h with proteinase K to reverse the formaldehyde cross-linking

and digest proteins. The sample was then extracted with phenol/

chloroform, the DNA precipitated in ethanol, and then re-

suspended in water. Purified DNA was analyzed by real-time PCR

with gene-specific primers. In all ChIP experiments DNA has been

fragmented to 100–500 bp with the majority fragments having a

length of 200–300 bp.

ATX1-set mutant
The ATX1-setm mutant contains 5 tyrosine to alanine

substitutions: Y927A, Y945A, Y954A, Y1013A, and Y1015A.

The ATX1-set is a synthetic gene expressed from the MAS

promoter and encoding the wild type ATX1 protein with a N-

terminal HA fusion, except for the mutations noted above.

Mass spectrometry and data analysis
A Q-TOF Ultima tandem mass spectrometer (Waters) with

electrospray ionization was used to analyze the eluting peptides.

The stained bands were excised and subjected to LC/MS as

described [57]. Gel pieces were digested by trypsin (no. V5111,

Promega, Madison, WI) and digested peptides were extracted in

5% formic acid/50% acetonitrile and separated using C18

reversed phase LC column (75 micron615 cm, Pepmap 300,

5 micron particle size) (Dionex, Sunnyvale, CA). A Q-TOF

Ultima tandem mass spectrometer (Waters) with electrospray

ionization was used to analyze the eluting peptides. The system

was user-controlled employing MassLynx software (v 4.1, Waters)

in data-dependant acquisition mode with the following parame-

ters: 0.9-sec survey scan (380–1900 Da) followed by up to three

1.4-sec MS/MS acquisitions (60–1900 Da). The instrument was

operated at a mass resolution of 8000. The instrument was

calibrated using the fragment ion masses of doubly protonated

Glu-fibrinopeptide. The peak lists of MS/MS data were generated

using Distiller (Matrix Science, London, UK) using charge state

recognition and de-isotoping with the other default parameters for

Q-TOF data. Data base searches of the acquired MS/MS spectra

were performed using Mascot (Matrix Science, v1.9.0, London,

UK). The NCBI non-redundant database (2010130-10386837

sequences 3543419944 residues) was used restricted to Arabidopsis

thaliana. Search parameters used were: no restrictions on protein

molecular weight or pI, enzymatic specificity was set to trypsin

with up to 3 missed cleavage sites, carbamidomethylation of C was

selected as a fixed modification. Mass accuracy settings were 0.15

daltons for peptide mass.

Reverse transcription and real-time PCR
Total RNA isolation and reverse transcription with oligo(dT)

(18418-012; Invitrogen, Carlsbad, CA) were performed as

described previously [15,58]. Transcript levels were measured

with gene-specific primers by real-time PCR analysis with a

cyclerIQ real-time PCR instrument (Bio-Rad, Hercules, CA) and

SYBR Green mixture (Bio-Rad, Hercules, CA). The relative

amount of specific gene transcripts was quantitated with the

22DDCt calculation according to the manufacturer’s software (Bio-

Rad, Hercules, CA), where DDCt is the difference in the threshold

cycles and the reference housekeeping gene; ACT7 was used as an

internal control for ChIP experiments and immunoprecipitated

DNA was expressed as a percent of input DNA.

Primers used for the various cloning and analytical procedures

are in Table S1.

Supporting Information

Figure S1 A) Relative mRNA levels in the two transgenic

AtWDR5-RNAi (wR1 and wR2), two transgenic AtASH2-RNAi

(a2R7 and a2R16), and two transgenic AtRbBP5-RNAi (rbR11,

rbR14) lines used in this study. Transgenic plants transformed with

the empty vector (Con) were used as a control; B) Flowering

phenotypes in the RNAi-lines, in atx1, and control backgrounds.

(PDF)

Figure S2 Interactions between ATX1, AtWDR5a, AtASH2,

and AtRbPB5; Identification of the ATX1-Win AtWDR5-binding

domain. A) Proteins from total cellular extracts retained by TAP-

tagged-AtWDR5a in a pull-down experiment. Gel stained by

Coomassie blue (left) and western blot assay with antiATX1

antibody (right). Arrows point to ATX1 (120 kD) and degradation

products. Identities were established by MS (Figure S3); B)

Schematic representation of ATX1 protein domains tested for

their ability to bind AtWDR5a in a Y2-H system. Fragments

corresponding to the ATX1 structural domains (PWWP, DAST,

ePHD, Win, and SET) are indicated. Win (50 aa) represents a

construct containing 50 amino acids upstream of the SET domain
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corresponding to the MLL1-Win peptide. C) Positive or negative

interactions between ATX1 deletion fragments with AtWDR5a

are indicated with (+) or (2), respectively. The experimental Y-2H

data are shown on the right. The ATX1 proteins (shown in B)

were fused to the activation domain (AD) and tested for their

ability to bind to AtWDR5, AtASH2, or AtRbBP5, which were

fused to the DNA binding domain (BD). Y-2H controls were

performed with an AD only construct in combination with a BD

containing construct (WDR5, ASH2, RbBP5, or BD alone) and

the resulting growth or lack of growth of the yeast colonies is

shown; D) In vitro pull-down assays of the domains tested in the

Y2-H assays. Immobilized GST-tagged ATX1, or various ATX1-

deletion fragments were tested for binding to soluble His-tagged

AtWDR5 (top panel); Immobilized His-AtWDR5 was tested for

binding to soluble GST-tagged ATX1 fragments (lower panel).

Input and bound proteins were detected by anti-His tag or anti-

GST antibody.

(PDF)

Figure S3 Identification of AtWDR5 interacting protein bands

by MS. A) Coverage map of the ,120 kD band reacting with the

antiATX1 antibody (see arrow in Figure S2A). From MASCOT

database search: Match to: gi|12659210 Score: 2058. Trithorax-

like protein 1 [Arabidopsis thaliana]; Matched peptides shown in

bold red. Score cut-off 35; B) Coverage map of the ,72 kD band

reacting with the antiATX1 antibody (see Figure 1A in text,

arrowhead). From MASCOT database search: Match to:

gi|12659210 Score: 3258. Trithorax-like protein 1 [Arabidopsis

thaliana]; Matched peptides shown in bold red. Score cut-off 35;

C) Coverage map of the ,28 kD band reacting with the ATX1

antibody (see Figure 1A in text, arrow). From MASCOT database

search: Match to: gi|12659210 Score: 863-Trithorax-like protein

1 [Arabidopsis thaliana]; Matched peptides shown in bold red.

Score cut-off 35. Highlighted in yellow is the Win-homologous

sequence; D) Alignment of the conserved Win seq upstream of the

SET domain in MLL1 (Query) and ATX1 (Sbjct). The consensus

ART sequence involved in the interaction with WDR5 is

highlighted.

(PDF)

Figure S4 The amount of ATX1 at the promoter regions of

three genes in AtASH2-deficient lines was determined by ChIP-

PCR using antiATX1 antibody. The primers were located within

the promoter regions (Region 1 in Figure 2A, main text).

(PDF)

Figure S5 Transgenic atx1 mutant plants expressing the

synthetic HA-tagged ATX1-wtSET domain protein or the HA-

tagged ATX1 with Tyr/Ala substitutions in the SET domain (set).

A) Western blot assay with antiHA antibody illustrating the

expression of HA-ATX1-wtSET in two atx1 transgenic lines (HA-

ATX1 and HA-ATX2) and in two atx1 lines expressing the HA-

tagged ATX1-set mutant proteins (setm1 and setm2) transformed

with the respective constructs. The levels of histone H3 expression

detected by antiH3 antibodies are shown as loading controls; B)

Flowering time phenotypes of plants from the transformed lines

shown in (A). Transgenic atx1 plants expressing the HA-ATX1-

setm do not rescue the early flowering caused by the atx1

mutation, while transformants expressing the wt SET restored wild

type flowering; C) expression of the WRKY70 and LTP7 genes in

set1 and set2 mutant lines in the atx1 background and in the

atx1::HA-ATX1-wtSet background. The higher transcript levels

from the WRKY70 and LTP7 genes may result from higher ATX1

protein produced in the transgenic lines.

(PDF)

Table S1 Primers used for the various cloning and analytical

procedures.

(PDF)

Text S1 Interaction between ATX1 and AtWDR5a; Identifica-

tion of the ATX1-Win AtWDR5-binding domain. Interactions

between ATX1 and AtASH2 or AtRbPB5.

(PDF)
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