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Rényi Institute, Budapest, Hungary

ohkatona@renyi.hu

Dedicated to Professor
Bernhard Thalheim
for his 60th birthday

1 Introduction

Consider the data of a class in a school (in Europe), it can be supposed that
the last name is a key, that is all other data are functionally dependent on
it. Considering the whole school, the probability of having two students with
the same last name is pretty high, so the last name cannot be taken as a
key. But, very likely the first and last names together from a key. It will be
certainly not true for the data of a large city.

The example above illustrates that, considering the database to be ran-
dom, the size (number of rows) largely determines which functional depen-
dencies can be considered valid. The aim of the present paper is to give a
model of this situation. The first attempts in this directions were the papers
of Demetrovics, Katona, Miklós, Seleznjev and Thalheim [1], [2]. There the
authors supposed that the data of one individual are probabilistically inde-
pendent. It was shown even in this case that a set of constant times the
logarithm of the size of the database many columns will functionally deter-
mine a given other column with high probability. Their model however was
not able to include ”real” functional dependencies or situations like ”very
probably functionally dependent”. The aim of the present paper is to extend
the results in this direction.

Let Ω be the set of attributes, |Ω| = n. The set of all possible entries
is denoted by E. (If the distinct attributes have different sets of entries
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then E is their union.) Let one row of the database is the random vector
(ξ1, ξ2, . . . , ξn) where the ξs are not necessarily independent, the distribution
is given by the probabilities

Pr(ξ1 = u1, ξ2 = u2, . . . , ξn = un) (1)

for all possible entries u1, u2, . . . , un ∈ E. Let A ⊂ Ω, b ∈ Ω. We say that b
functionally depends on A with probability one if the probabilities

Pr(ξi = ui(i ∈ A), ξb = ub)

are zero for all but one ub ∈ E for any choice of entries ui ∈ E(i ∈ A). On
the other hand the individuals, the rows are chosen independently. In terms
of probability theory, consider m (totally) independently chosen realizations
of the random vector whose probabilities are determined by (1).

An entropy like function is needed to our further investigations. Let ξ and
η be two, not necessarily independent random variables. The probability of
the event that ξ = k and η = ` is pk,`, the probability of ξ being k is
pk =

∑
` pk`. Define

H2(ξ → η) = − log2

(∑
k

p2k −
∑
k,`

p2k,`

)
. (2)

This quantity is related to the Rényi entropy of order 2 (see [4] and [5]).
Let A ⊂ Ω, b ∈ Ω, b 6∈ A. The random vector of the coordinates ξi(i ∈ A)

will be denoted by α. The probability of the event that α is equal to the kth
sequence is denoted by pk(A). Moreover, the probability of the event that α
is equal to the kth sequence and ξb has the `th entry is pk,`(A, b). Our crucial
notion is defined in the following way:

H2(A→ b) = H2(α→ ξb). (3)

The Heuristic Version of the Theorem. The functional dependency A→
b ”seems to hold” (there are no two rows equal in the entries belonging to A
and different in the column of b) with large probability in a random database
of size m if and only if 2 log2m is much smaller than H2(A→ b).

The statement above will be made more clear by analyzing two special
cases. First let us suppose that all the ξ’s are independent in (1) and each
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of them has a probability distribution (q1, q2, . . . , qR). Then the probabilities
in question are

Pr(ξi = ui(i ∈ A), ξb = ub) =
∏
i∈A

qui · qub .

These probabilities will pay the role of pk` in (2), while pk will be

Pr(ξi = ui(i ∈ A)) =
∏
i∈A

qui .

It is easy to see that in this case (deleting the arguments A and b)

∑
k

p2k −
∑
k,`

p2k` =
∑
k

p2k −
∑
k

p2k
∑
`

r2` =

(∑
k

p2k

)
−

(
1−

∑
`

r2`

)
. (4)

On the other hand, ∑
`

r2` =

(∑
i

q2i

)|A|
. (5)

Using (2), (3), (4) and (5) we obtain

H2(A→ b) = |A| ·H2(q1, q2, . . . qR)− log2

(
1−

∑
`

q2`

)

where H2(q1, q2, . . . qR) = log2

∑
i q

2
i is the Rényi entropy of order 2 ([4],

[5]). Here the first term tends to infinity with |A| while the second term is
constant. H2(A→ b) is close to |A|·H2(q1, q2, . . . qR). The Theorem means in
this case that A→ b holds for a random database of size m if 2 log2m is less
than |A| · H2(q1, q2, . . . qR), that is, for the As satisfying |A| > 2 log2m

H2(q1,q2,...qR)
.

This was proved in [2].
The other important special case is when b is really functionally dependent

on A. Then pk` = pk for a uniquely determined ` = `(k), all other pk`s are
zero. Therefore the last term in (2) is equal to

∑
k p

2
k, (2) is plus infinity.

The Theorem says in this case that A → b holds when 2 log2m is less than
∞, that is always.
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2 The exact forms of the Theorem

It will be supposed that the database consists of m (totally) independently
chosen rows of the random vector defined by the probability distribution (1).
Our result is of asymptotic nature, it is valid for large matrices, large number
of columns and rows. More precisely we will assume that n = |Ω|, |A| depend
on m what tends to infinity. It may seem more natural to take n to be the
main variable and to suppose that the other quantities depend on it while it
tends to infinity. However the size of the asymptotical existence of A→ b is
independent on n it only depends on the relation of m and H2(A→ b). This
is why it is better to consider m as the basic variable.

It will be supposed that the distribution (1) for n′ is the ”continuation”
of the one for n, that is, the probabilities in (1) can be obtained by summing
the probabilities for n′ for ξn+1, . . . , ξn′ . The column b is fixed, while |A|
tends to infinity by adding newer and newer columns (distinct from b) to A.

Some more definitions are needed to the formulation of the theorem. The
probability of the of the event that A→ b (A ⊂ Ω, b ∈ Ω) holds in a database
of size m is denoted by Pr(A→ b,m). Let p(α, ξb, I) denote the probability
of the event that the pair of two independent copies (α1, ξb,1), (α2, ξb,2) gives
a counter-example, that is, Pr(α1 = α2, ξb,1 6= ξb,2). Similarly p(α, ξb, V ) de-
notes the probability of the event that the triple (α1, ξb,1), (α2, ξb,2), (α3, ξb,3)
gives two counter-examples in the following way: α1 = α2 = α3, ξb,1 6= ξb,2 6=
ξb,3. Finally p(α, ξb, N) is the probability of the event that the quadruple
(α1, ξb,1), (α2, ξb,2), (α3, ξb,3), (α4, ξb,4) gives three counter-examples forming a
path: α1 = α2 = α3 = α4, ξb,1 6= ξb,2 6= ξb,3 6= ξb,4.

The first exact form of the Theorem is a repetition/implementation of
the main theorem in [3]. This theorem is stated for two random variables.
The only novelty here is that one of these variables is a random vector α.
But this causes no real change. Therefore the theorem below needs no proof
here. The interested reader is referred to [3].

Theorem 1.

Pr(A→ b,m)→


0 if 2 log2m−H2(A→ b)→ +∞,
e−2

a−1
if 2 log2m−H2(A→ b)→ a,

1 if 2 log2m−H2(A→ b)→ −∞.
under the assumptions that

p(α, ξb, V )2

p(α, ξb, I)3
→ 0 (6)
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and
p(α, ξb, N)

p(α, ξb, I)2
→ 0 (7)

hold.

Although this is the most general form of the statement, known to us, it
is difficult to check if the conditions (6) and (7) hold. However, exploiting the
matrix structure in this case we can give weaker, but more natural conditions.
Let pκ(A) denote the probability of the event that α = κ. Moreover, pκ,`(A, b)
denotes the probability of the event that α = κ, ξb = `.

Theorem 2.

Pr(A→ b,m)→


0 if 2 log2m−H2(A→ b)→ +∞,
e−2

a−1
if 2 log2m−H2(A→ b)→ a,

1 if 2 log2m−H2(A→ b)→ −∞.

under the following assumptions:
(i)

maxκ pκ(A)√∑
κ p

2
κ(A)

→ 0, (8)

(ii) There is a constant 0 < u < 1 independent of A such that∑
κ,` p

2
κ,`(A, b)∑

κ p
2
κ(A)

≤ u (9)

hold.

Proof. We have to prove that (i) and (ii) imply both (6) and (7). Let
us start with some elementary lemmas. The first two of them prove that if
a sequence of non-negative numbers is given with a fixed sum and an upper
bound c is given on them then the sum of their squares is maximized for a
choice with (one exception) all members = c or 0. We give the proof for sake
of completeness.

Lemma 1. Let the real numbers 0 ≤ a, b, c satisfy the inequalities b ≤ a ≤
c ≤ a+ b. Then

a2 + b2 ≤ c2 + (a+ b− c)2 (10)

holds.
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Proof. Consider the function x2 + (a+ b−x)2. It is increasing from a+b
2

.
The conditions of the lemma imply (10), considering the values x = a and
x = c.

Lemma 2. Let a1, a2, . . . , aN be non-negative real numbers with sum
∑

i a =
s. If ai ≤ c holds for all 1 ≤ i ≤ N then∑

i

a2i ≤
⌈s
c

⌉
c2 (11)

is true.

Proof. We use induction over N . The case N = 1 is trivial. Order the
numbers in the following way: a1 ≤ a2 ≤ . . . ≤ aN ≤ c. If aN = c then delete
this member and use the inductional hypothesis. Otherwise, if aN < c two
cases will be distinguished. Firstly, if c ≤ aN−1 + aN then apply Lemma 1
with a = aN , b = aN−1. Replacing aN by c and aN1 by aN−1 + aN − c a new
sequence of numbers is obtained with the the same sum and non-decreased
sum of squares. It is sufficient to prove the statement for this sequence, but
this follows from the previous case, since it contains aN = c. Secondly, if
c > aN−1 + aN then apply Lemma 1 with b = aN−1, a = aN , c = aN−1 + aN .
The so obtained inequality, a2N−1 + a2N ≤ (aN−1 + aN)2 + 02 (what can be
directly seen) shows that replacing aN−1 and aN by aN−1 +aN and 0 the sum
is unchanged, the sum of the squares is non-decreased. Since this sequence
contains a 0, omitting this the induction can be used, again.

Lemma 3. Let q1, q2, . . . , qN be non-negative real numbers, where all of these
(including N) depend on n what tends to the infinity. Then

maxk qk∑
k qk

→ 0 (12)

implies ∑
k q

2
k

(
∑

k qk)
2 → 0. (13)

Proof. Use (11) of Lemma 2 with c(n) = maxk qk and s =
∑

k qk:∑
k q

2
k

(
∑

k qk)
2 ≤

(∑
k qk
c(n)

+ 1
)
c2(n)

(
∑

k qk)
2 =

c(n)∑
k qk

+

(
c(n)∑
k qk

)2
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shows that (12) really implies (13).
Return to the proof of Theorem 2. Lemma 3 will be applied for the values

p2κ(A) in place of qi. Condition (12) becomes exactly (8), therefore (13) gives∑
κ p

4
κ(A)

(
∑

κ p
2
κ(A))2

→ 0. (14)

Let us now give a lower estimate on p(α, ξb, I) using (ii) (that is (9))

p(α, ξb, I) =
∑
κ

p2κ(A)−
∑
κ,`

p2κ,`(A, b) ≥ (1− u)
∑
κ

p2κ(A). (15)

Recall that p(α, ξb, N) is the probability of the event that the quadruple
(α1, ξb,1), (α2, ξb,2), (α3, ξb,3), (α4, ξb,4) gives three counter-examples forming a
path: α1 = α2 = α3 = α4, ξb,1 6= ξb,2 6= ξb,3 6= ξb,4. This is a subevent of the
event that α1 = α2 = α3 = α4. The probability of the latter one is

∑
κ p

4
κ(A).

Hence we have
p(α, ξb, N) ≤

∑
κ

p4κ(A). (16)

(15) and (16) give an upper bound on the left hand side of (7):

p(α, ξb, N)

p(α, ξb, I)2
≤

∑
κ p

4
κ(A)

(1− u)2 (
∑

κ p
2
κ(A))2

. (17)

The right hand side tends to 0 by (14), proving (7).
The left hand side of (6) can be similarly upperbounded:

p(α, ξb, V )2

p(α, ξb, I)3
≤ (

∑
κ p

3
κ(A))

2

(1− u)3 (
∑

κ p
2
κ(A))3

. (18)

Apply the well-known Cauchy-Bunyakovsky-Schwarz inequality(∑
i

aibi

)2

≤

(∑
i

a2i

)(∑
i

b2i

)

with pκ(A) and p2κ(A):(∑
κ

p3κ(A)

)2

≤

(∑
κ

p2κ(A)

)(∑
κ

p4κ(A)

)
.
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This latter inequality implies

(
∑

κ p
3
κ(A))

2

(
∑

κ p
2
κ(A))3

≤
∑

κ p
4
κ(A)

(
∑

κ p
2
κ(A))2

. (19)

(18), (19) and (14) prove (6).

3 Remarks, future work

Related earlier work. In addition to the papers [1], [2], mentioned in
the introduction, one should mention the important works of Seleznjev and
Thalheim [6], [7] on the probabilistic-statistical properties of databases.

On the conditions of Theorem 2. Condition (i) is a rather weak one,
it is satisfied in a very wide range. However it is stronger than the condition
maxκ pκ(A) → 0. An example when the latter one holds but (i) does not
is the following. Let N denote the total number of members (probabilities),
and choose the largest one to be 1√

N
, the other ones are equal, and add up

to 1. Then the limit in (8) is 1
2
, not 0.

On the other hand, condition (ii) (that is (9)) is strong. It excludes e.g.
the case when b is ”very probably functionally dependent” on A. We are
sure that (6) and (7) can be proved under (8) and a much weaker condition
than (9). It needs a deeper analysis of the situation. For instance, the rough
estimate (16) is not sufficient in this more general case.

Future work. Besides the analytic work suggested in the previous para-
graph, one should consider a more general setting of the whole problem.
Already the present setting has a certain ”data mining” nature. We investi-
gated here that when (at what size?) a hidden, weak statistical dependence
becomes visible. A possible more general setting is when the following ques-
tion is investigated. Given the statistical dependence a certain number of
examples can be expected. At what size have we at least (say) half of this
number. Another possible step forward if the ”quality” of the examples is
also taken into consideration.
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